
Near-Optimal Interdiction of Factored MDPs

Swetasudha Panda and Yevgeniy Vorobeychik

Electrical Engineering and Computer Science

Vanderbilt University

Nashville, TN

swetasudha.panda,yevgeniy.vorobeychik@vanderbilt.edu

Abstract

Stackelberg games have been widely used to

model interactions between attackers and de-

fenders in a broad array of security domains.

One related approach involves plan interdic-

tion, whereby a defender chooses a subset of

actions to block (remove), and the attacker

constructs an optimal plan in response. In pre-

vious work, this approach has been introduced

in the context of Markov decision processes

(MDPs). The key challenge, however, is that

the state space of MDPs grows exponentially

in the number of state variables. We propose

a novel scalable MDP interdiction framework

which makes use of factored representation of

state, using a parity function basis for repre-

senting a value function over a Boolean space.

We demonstrate that our approach is signifi-

cantly more scalable than prior art, while re-

sulting in near-optimal interdiction decisions.

1 INTRODUCTION

Stackelberg game approaches to security have received

considerable attention in recent years, both in theoreti-

cal investigation and practical use [8, 11, 14]. A major

challenge in such approaches is high-resolution model-

ing of adversarial evasion of defensive measures. Letch-

ford and Vorobeychik proposed modeling such evasion

in a Stackelberg framework of plan interdiction [12],

where the Stackelberg leader eliminates a subset of at-

tack actions, and the adversary computes an optimal plan

in the restricted action space. This approach was devel-

oped both in the context of deterministic (PDDL-based)

planning, and planning with Markov decision processes

(MDPs). However, while interdiction of deterministic

plans was quite scalable, the approach scaled very poorly

in the context of MDPs. The central challenge with MDP

interdiction is the exponential size of the state space in

the number of state variables.

We aim to address the problem of MDP interdiction

at scale by leveraging approximation techniques devel-

oped for factored MDPs. Scalability in factored MDPs

has been achieved by two basic approaches: a) explot-

ing structure in the MDP transition model and reward

function [3, 2, 9], and b) value function approximation

[1, 9, 10, 4, 16, 5]. Factored MDPs [6] represent the

complex state space using state variables and the tran-

sition model using a dynamic Bayesian network. This

representation allows an exponential reduction in the rep-

resentation size of structured MDPs. Moreover, efficient

approximate solution algorithms have been proposed that

exploit structure in factored MDPs.

Starting with the approximation methods for factored

MDPs, we develop a mixed-integer linear programming

approach for factored MDP interdiction. In doing so,

we face two challenges: 1) effective basis representation,

and 2) a super-exponential set of constraints correspond-

ing to alternative evasion plans for the attacker. To ad-

dress the first challenge, we propose using a Fourier (par-

ity function) basis over a Boolean hypercube to represent

the value function over a binary factor space. While there

always exists an exact Fourier basis for functions over a

Boolean space, the representation is exponential in size.

We address this challenge by developing iterative basis

generation methods. Addressing the second challenge

of an intractably large constraint space, we develop a

novel constraint generation algorithm using a combina-

tion of linear programming factored MDP solvers and

novel heuristics for attack plan generation. We demon-

strate the effectiveness of the proposed approaches on

realistic examples from the international planning com-

petition (IPC). In particular, we show that our approach

offers dramatically improved scalability without signifi-

cantly compromising solution quality.

2 PRELIMINARIES

Our work builds on solution approaches for discounted

infinite-horizon MDPs, and particularly for factored

MDPs, which we now introduce.

MDPs and Factored MDPs Formally, a discounted

infinite-horizon MDP is defined as a tuple D =
(X, A,R, P, γ) where X is a finite set of |X| = N
states; A is a finite set of actions; R is a reward function

R : X×A 7→ R, in which R(x, a) is the reward obtained

by the agent in state x after taking action a; P is a Marko-

vian transition model where P (x′|x, a) is the probability

of moving from state x to x′, after taking action a; and

γ ∈ [0, 1) is the discount factor which exponentially dis-

counts future rewards. It is well-known that such MDPs

always admit an optimal stationary deterministic policy,

which is a mapping π : X 7→ A, where π(x) is the ac-

tion the agent takes at state x [15]. Each policy can be

associated with a value function Vπ ∈ R
N , where Vπ(x)

is the discounted cumulative value obtained by starting

at state x and following policy π. Formally,

Vπ(x) = Eπ

[∞
∑

t=0

γtR(Xt, π(Xt))
∣

∣x(0) = x

]

,

where X(t) is a random variable representing the state of

the system after t steps.

The discounted reward MDP is a natural model for se-

curity, since it captures the fact that attackers prefer to

achieve their goals (positive rewards) earlier, and incur

costs (negative rewards) later. Additionally, it captures

an element of deterrence: the attack which takes too

many steps has far more opportunities to fail in practice.

Thus, minor (low-reward) goals may be preferred over

major (high-reward) goals if they can be achieved much

more quickly.

Factored MDPs exploit problem structure to compactly

represent MDPs. The set of states is described by a

set of random state variables X = {X1, . . . , Xn}.

Let Dom(Xi) be the domain of values for Xi. A

state x defines a value xi ∈ Dom(Xi) for each vari-

able Xi. Throughout, we assume that all variables

are Boolean. The transition model for each action a
is compactly represented as the product of local fac-

tors by using a DBN. Let Xi denote the variable Xi

at the current time and X ′
i the same variable at the

next time step. For a given action a, each node X ′
i

is associated with a conditional probability distribution

(CPD) Pa(X
′
i|Parentsa(X

′
i)). The transition probabil-

ity is given by Pa(x
′|x) =

∏

i Pa(x
′
i|x[Parentsa(X

′
i)]),

where x[Parentsa(X
′
i)] is the value in x to the variables

in Parentsa(X
′
i). The complexity of this representation is

linear in the number of state variables and exponential in

the number of variables in the largest factor. The reward

function is represented as the sum of a set of localized

reward functions. Let Ra
1 , . . . , R

a
r be a set of functions,

where the scope of each Ra
i is restricted to the variable

cluster Wa
i ⊂ {X1, . . . , Xn}. The reward for taking ac-

tion a at state x is then Ra(x) =
r
∑

i=1

Ra
i (W

a
i) ∈ R.

Linear Programming Methods for Solving MDPs A

common method for computing an optimal policy of an

MDP is by using the following linear program (LP):

min
∑

x

α(x)V (x) (1a)

s.t.: ∀x, a, V (x) ≥ R(x, a) + γ
∑

x′

P (x′|x, a)V (x′).

(1b)

where the variables V (x) represent the value function

V(x), starting at state x. The state relevance weights

αs are such that α(x) > 0 and
∑

x

α(x) = 1. The

optimal policy π∗ can be computed as the greedy pol-

icy with respect to V∗, π∗ = argmaxa[R(x, a) +
γ
∑

x′

P (x′|x, a)V (x′)]. The dual of this LP (dual LP)

maximizes the total expected reward for all actions:

max
∑

x

∑

a

φa(x)R(x, a) (2a)

s.t.: ∀x, a, φa(x) ≥ 0 (2b)

∀x,
∑

a

φa(x) = α(x) + γ
∑

a

∑

x
′

P (x|x′, a)φa(x
′).

(2c)

where φa(x) called the visitation frequency for state x

and action a is the (discounted) expected number of

times that state x will be visited and action a will be

executed in this state. There is a one-to-one correspone-

dence between policies in the MDP and feasible solu-

tions to the dual LP.

In the case of factored MDPs, there is no guarantee that

the structure extends to the value function [9] and lin-

ear value function approximation is a common approach.

A factored (linear) value function V is a linear func-

tion over a set of basis functions H = {h1, . . . , hk},

such that V(x) =
∑k

j=1 wjhj(x) for some coefficients

w = (w1, . . . , wk)
′, where the scope of each hi is re-

stricted to some subset of variables Ci. The approximate

LP corresponding to (1) is given by Guestrin et al. [6]:

min
∑

i

αiwi (3a)

s.t.: ∀a,maxx{R
a(x) +

∑

i

wi[γg
a
i (x)− hi(x)]} ≤ 0.

(3b)

where for basis hi, αi =
∑

x

α(x)hi(x) is the factored

equivalent of α and gai (x) =
∑

x′

P (x′|x, a)hi(x
′) is the

factored representation of expected future value. The

non-linear constraint in LP (3) can be represented by a

set of linear constraints using approaches similar to vari-

able elimination in cost networks. The factored dual ap-

proximation LP [7] is defined on a set of variable clus-

ters B ⊇ BFMDP where BFMDP = {Wa
1 , . . . ,W

a
r :

∀a} ∪ {C1, . . . ,Ck} ∪ {Γa(C1), . . . ,Γa(Ck) : ∀a},

Γa(C) = ∪Xi∈CPARENTSa(Xi) = Scope[g] is the set

of parent state variables of variables in C (Scope[h]) in

the DBN for action a. This factored dual LP is given by:

max
∑

a

r
∑

j=1

∑

wa
j
∈Dom[Wa

j
]

µa(w
a
j)R

a
j (w

a
j)

s.t.:

∀i = 1, . . . , k :
∑

c∈Dom[Ci]

µ(c)hi(c) =
∑

c∈Dom[Ci]

α(c)hi(c)

+ γ
∑

a

∑

y∈Dom[Γa(C
′

i
)]

µa(y)g
a
i (y) (4a)

∀Bi,Bj ∈ B, ∀y ∈ Dom[Bi ∩Bj], ∀a :
∑

bi∼[y]

µa(bi) =
∑

bj∼[y]

µa(bj) (4b)

∀B ∈ B, ∀b ∈ Dom[B], ∀a, µa(b) ≥ 0 (4c)

µ(b) =
∑

a
′

µa
′ (b), (4d)

∑

b
′∈Dom[B]

µ(b
′

) =
1

1− γ
(4e)

where µa(b) =
∑

x∼[b] φa(x), ∀b ∈ Dom[B] is the

marginal visitation frequency for a subset of state vari-

ables B ⊂ X (b ∈ Dom[B] represents enumeration of

the variables in B and x ∼ [b] are the assignments of x

that are consistent with b), and µ(b) =
∑

a µa(b). The

constraints ensure that these µa variables are consistent

across variable subsets. The factored dual approximation

is guranteed to be equivalent to the dual LP-based ap-

proximation [7] if the factored MDP cluster set B forms

a junction tree. Triangulation Tr(BFMDP) constructs a

junction tree by adding cluster sets to B if needed. Ap-

proximate triangulation T̂r(B) returns some cluster set

B′ such that B ⊆ B′. The constant basis function h0—

i.e., with scope as the empty set {∅}—is always included

in H for feasibility of the above factored LPs.

Computing Attack Policies Policies in factored

MDPs can be compactly represented assuming the de-

fault action model [10]. Different actions often have

very similar transition dynamics, only differing in their

effect on a small subset of variables. In factored

MDPs that follow a default transition model for each

action a, Effects[a] ⊂ X′ are the variables in

the next state whose local probability model is dif-

ferent from the model for the default action d, i.e.,

Pa(X
′
i|Parentsa(X

′
i)) 6= Pd(X

′
i|Parentsd(X

′
i)) [10].

Similarly, in the default reward model, there is a set of

reward functions for the default action d. The extra re-

ward of any action a has scope restricted to Wa
i . With

the above assumptions, the greedy policy relative to a

factored value function can be represented as a decision

list [6].

However, this default action model is often not applica-

ble in many real world examples. In such cases, we solve

the approximate factored dual LP and monitor the values

of the µa variables as a proxy to determine if a certain

action appears in the computed policy. More precisely,

if φa is a feasible solution to the exact dual LP, then in

a state x, φa(x) > 0 if a = π(x) and φa(x) = 0 for

all other actions. In the approximate solution with a sub-

set of basis functions, all φa variables may not be rep-

resented by the set of µa variables. However, we can

approximately determine the set of actions in a policy by

removing those actions a from the set of allowed actions,

for which µa(b) = 0 ∀b ∈ Dom[B], ∀B ∈ B.

3 MDP INTERDICTION

3.1 PROBLEM DEFINITION

We model MDP interdiction as a Stackelberg (two-stage,

one-shot) game with two players: defender and attacker.

The defender, who is the Stackelberg leader, commits to

a set of mitigations, and the attacker, who is the follower,

computes an MDP policy which optimally responds to

(e.g., evades) these mitigations.

Formally, the MDP interdiction problem (MDPI) is de-

fined by a tuple {M, Cm, RD, RA,X, A, P, γ}, M is

the set of mitigation strategies available to the defender,

RD and RA are the reward functions for the defender

and the attacker respectively, Cm is the cost of a mit-

igation m ∈ M to the defender, and X, A, P, γ are

the state space, action space, transition function, and

discount factor of an infinite-horizon discounted MDPs

which the attacker is solving in response to mitigations

deployed by the defender. The semantics of a mitigation

m ∈ M is that it removes (protects against) a subset

of attack actions from the original attacker action space

A.1 For a given set of mitigations M ⊆ M deployed by

the defender, we can define an attacker’s resulting MDP,

τ(M) = [X, A(M), RA, P, γ] over the restricted action

space A(M) which includes only the actions which are

not removed by any mitigation m ∈ M . In the MDPI

Stackelberg game, the defender first chooses M ⊆ M,

and the attacker subsequently chooses a policy π in the

resulting restricted MDP τ(M). Since the attacker is ef-

fectively facing a decision problem, it will suffice to re-

strict attention to optimal attacker policies which are de-

terministic and stationary. Let Π∗(M) be the set of op-

timal deterministic stationary policies of τ(M). Define

VA(x, π) to be the attacker’s value function for a policy

π starting at state x in MDP τ(M), and let VD(x, π) be

the defender’s value function (i.e., using the defender’s

reward function RD). Let x0 be the initial state of the

MDP. We seek a strong Stackelberg equilibrium (SSE) of

MDPI, in which the defender solves

max
M⊆M

VD(x0, π
∗(M))−

∑

m∈M

Cm,

where π∗(M) ∈ argmaxπ∈Π∗(M) V
A(x0, π), and the

attacker breaks ties in the defender’s favor.

3.2 GENERAL APPROACH

Letchford and Vorobeychik proposed a general ap-

proach for MDP interdiction [12] based on a mixed-

integer linear programming (MILP). If we define vari-

ables Dm which are 1 iff the defender chooses

a mitigation m, the defender’s objective becomes

max
∑

x

∑

a

φa(x)R
D(x, a)−

∑

m∈M

DmCD
m , where φa(x)

are the dual variables of the MDP linear program

as before. The attacker’s objective is then given by

max
∑

x

∑

a

φa(x)R
A(x, a). To account for the attacker’s

best response, a set of constraints was introduced for the

defender so that a) the optimal attacker policy chosen by

the MILP is feasible given the set of defender mitiga-

tions, and b) the attacker’s utility corresponding to this

computed policy is better than that of any other feasible

policy. Since the general approach relies on the exact

representation of the state space, it fails to scale. Below

we introduce our general framework which leverages the

factored representation of MDPs, enabling scalability to

practical problem instances.

1This is quite general; for example, we can model mitiga-
tions which modify the initial state by including actions with
no preconditions and effects which represent initial state, and
allow interdiction of these actions.

3.3 A MILP FORMULATION FOR FACTORED

MDP INTERDICTION

We first exhibit the defender and attacker objectives us-

ing a factored representation of states. Given a set of

basis functions H and the variable cluster set BFMDP

the defender’s utility is given by

∑

a

r
∑

j=1

∑

wa
j
∈Dom[Wa

j
]

µa(w
a
j)R

Da
j (wa

j)−
∑

m∈M

DmCD
m ,

where the expected sum of rewards is represented by the

µa variables, the factored version of the visitation fre-

quencies with scope restricted to that of the local reward

functions. The first term is to minimize the attacker’s

value of the initial state (we set RD = −RA in our exper-

iments) and the second term represents mitigation costs.

The attacker’s objective, in turn, is

∑

a

r
∑

j=1

∑

wa
j
∈Dom[Wa

j
]

µa(w
a
j)R

Aa
j (wa

j).

For each mitigation m ∈ M , let Am,a = 1 iff m re-

moves action a. To ensure that the computed policy is

feasible, we add the constraints 4a-4e in the approximate

factored dual LP. Let δπ = 1 if and only if the policy π
is interdicted, i.e., there is a deployed mitigation m that

removes at least one action from π. We denote the fol-

lowing MILP formulation for MDPI by MDPI MILP:

max
∑

a

r
∑

j=1

∑

wa
j
∈Dom[Wa

j
]

µa(w
a
j)R

Da
j (wa

j)−
∑

m

DmCm

s.t.:

∀a,m,DmAm,a ≤ Da ≤
∑

m′

Dm′Am′,a (5a)

∀a, ∀B ∈ B, ∀b ∈ Dom[B],

µa(b) ≤ Z(1−Da) (5b)

∀π, a ∈ π,Da ≤ δπ ≤
∑

a′∈π

Da′ (5c)

∀π,
∑

a

r
∑

j=1

∑

wa
j
∈Dom[Wa

j
]

µa(w
a
j)R

Aa
j (wa

j)

≥ VA(x0, π)− Zδπ (5d)

constraints 4a− 4e

where Z is a large number and B = Tr(BFMDP). (We

use T̂r(B) = B so that B = BFMDP). The constraints

5a compute a variable Da such that Da = 1 iff there is

a mitigation m that interdicts action a. Constraint 5b

ensures that if an action is interdicted, the correspond-

ing visitation frequencies are 0. Constraints 5c compute

δπ . Constraints 5d represents the condition that the pol-

icy generated for the attacker is its best response to the

defender’s choce of mitigations.

If H , the set of basis functions considered is general

enough to include the full value function space, the so-

lution to this MILP yields the optimal interdiction de-

cision for the defender. The key challenge, however, is

(a) what basis function space we should consider, and

(b) given that capturing arbitrary value functions in the

basis space is likely intractable, how can we best ap-

proximate a value function basis in this space. Finally,

the set of constraints captures all possible attack poli-

cies, thereby rendering the MILP too large to be tractable

even with a compact set of bases. We address these chal-

lenges next, starting with the issue of iteratively gener-

ating constraints to avoid complete enumeration of the

policy space (Section 4), and proceeding to address the

basis selection problem thereafter (Section 5).

4 CONSTRAINT GENERATION FOR

FACTORED MDP INTERDICTION

The MDP interdiction algorithm requires the addition

of policies and the corresponding utilities as constraints

(captured by Constraint 5d). To compute the attacker’s

best response, we solve the approximate primal LP 3

for a given basis set H (we deal with the basis selec-

tion problem in Section 5). We can then compute the

attacker’s policy as discussed in Section 2.

4.1 CONSTRAINT GENERATION WITH BASIS

FUNCTION SELECTION

We define the master problem MDPI MASTER(P̂) as a

relaxed version of the MILP with the constraints 5a-5d

corresponding to a subset P̂ of all possible policies. For

now, suppose that we have a method for selecting a sub-

set of “important” basis functions (Section 5).

The constraint generation procedure (Algorithm 1)

works as follows. In any iteration, P̂ contains a small

set of attack policies generated thus far. We solve the

master problem with P̂ to obtain a set of mitigations

M̂ ⊆ M, along with a policy π̂ ∈ P̂ with a util-

ity of V̂ = VA(x0, π̂) which is the attacker’s best de-

cision from the feasible subset of policies in P̂ . Now

there are two possibilities: either π̂ is the actual best re-

sponse of the attacker, in the presence of the deployed

mitigations, or the actual attacker best response is not in

P̂ . To confirm, we can compute the best response for

the attacker by solving a factored MDP (LP 3), remov-

ing actions which are blocked by the mitigations M̂ . At

this point, we also improve our basis function set, as de-

scribed in Section 5 (GENERATEBASIS(AM̂ , H)). The

resulting solution will either have a utility of V̂ to the at-

tacker, confirming M̂ as the optimal set of mitigations,

or will be a strict improvement on V̂ , in which case we

add the resulting policy (computed as described in Sec-

tion 2), and its utility, to the master program, and repeat.

Algorithm 1 Constraint Generation with Basis Selection

function CONSTRAINTGENERATION(P̂, H)

V = ∞
V̂ = 0
while V̂ < V do

(M̂,Da, V̂) =MDPI MASTER(P̂, H)

AM̂ = ∅
for a ∈ A do

if Da = 0 then

AM̂ = AM̂ ∪ a

(π, V, Ĥ) = GENERATEBASIS(AM̂ , H)

if V > V̂ then

P̂ = P̂ ∪ π
H = Ĥ

This constraint generation procedure suffers from two

important bottlenecks: the number of iterations can be

large, and each iteration can be computationally costly.

Next we improve upon the baseline procedure above by

alleviating both of these issues.

4.1.1 Reducing the Number of Iterations of

Constraint Generation

A natural way to begin the constraint generation process

is with an empty subset of attack policies P̂ . However,

this results in a large number of iterations of the con-

straint generation procedure building up enough attack

policies to prevent trivial mitigation solutions, which

mitigate no actions, or a single action sufficient to make

all policies in P̂ infeasible. To address this, we start

by selecting a subset of (possibly all) attacker actions

â ∈ A. For each â, we solve the attacker’s best response

with the single action â, using the approximate primal

LP 3. The corresponding attack policies have only a sin-

gle action. We then define the initial subset P̂ using these

sets of attacker policies and the corresponding utilities,

allowing us to warm start the constraint iteration proce-

dure and saving a considerable amount of computation

time in the process.

4.1.2 Fast Constraint Generation

While warm starting considerably reduces the number of

iterations of the constraint generation procedure, each it-

eration still involves a costly set of computational oper-

ations even to evaluate whether new policies need to be

added. However, we observe that to make progress in

constraint generation, we only need to find some policy

which yields a better utility for the attacker than the op-

timal policy computed in the master program.

A major part of the overhead is the size of the basis set.

To speed up computation, we propose to attempt gen-

erating an improved policy (ATTACKERPOLICY(A,H))

first using only a small subset of the basis function (e.g.,

H1 with each basis using a single state variable, as dis-

cussed in Section 5). If the attacker’s utility computed

in the subproblem is greater than the best response com-

puted by the master program, we add this policy to the

set of constraints. Otherwise, we fall back on the full

combined basis selection and factored MDP solution ap-

proach. This approach may need more iterations to con-

verge, but each iteration will be much faster. Algorithm

2 is a formalization of these ideas.

Algorithm 2 Fast Constraint Generation

function CONSTRAINTGENERATION(P̂, H1)

V = ∞
V̂ = 0
while V̂ < V do

(M̂,Da, V̂)=MDPI MASTER(P̂, H1)

AM̂ = ∅
for a ∈ A do

if Da = 0 then

AM̂ = AM̂ ∪ a

(π, V) = ATTACKERPOLICY(AM̂ , H1)

if V > V̂ then

P̂ = P̂ ∪ π
else

(π, V, Ĥ) = GENERATEBASIS(AM̂ , H1)

5 BASIS GENERATION

In this section we address the issue of selecting a basis

function space for linear value function approximation

and, subsequently, the incremental generation of the “im-

portant” set of basis functions H .

5.1 FOURIER BASIS FUNCTIONS ON

BOOLEAN FEATURE SPACE

We start by making use of the assumption that all vari-

ables are Boolean. In this case, the Fourier (parity) ba-

sis for Boolean function is a natural basis choice: every

function f : {0, 1}n → R can be uniquely represented

as f(x) =
∑

S⊆{1,...,n} f̂(S)hS(x) [13], where hS is a

parity function over the subset S of the variables:

hS(x) =
∏

i∈S

(−1)xi =

{

+1, if
∑

i∈S xi mod 2 = 0.

−1, if
∑

i∈S xi mod 2 = 1.

(6)

While the full Fourier representation of the value func-

tion is therefore linear, and exact, it has 2n bases. Con-

sequently, it is crucial to intelligently select a small sub-

set which yields a sufficiently good approximation of the

value function for the purposes of computing an approx-

imately optimal set of mitigations. We do this by an iter-

ative basis function selection process described below.

5.2 ITERATIVE BASIS FUNCTION SELECTION

The attacker solves the approximate LP (3) to compute

the best response to the imposed mitigations. Observe

that the basis functions correspond to variables in this LP.

Column generation can be used to generate only those

variables which have the potential to improve the objec-

tive function. Thus, basis functions can be iteratively

generated while computing the attacker’s policy. How-

ever, since the variables w corresponding to the basis

functions are unconstrained, the concept of reduced cost

is not well-defined. In this case, we compute the magni-

tude of the constraint violation in the dual LP instead.

Recall that the non-linear constraint in the LP (3)

maxx{R
a(x) +

∑

i

wi[γg
a
i (x) − hi(x)]} ≤ 0 is repre-

sented as a set of linear constraints using variable elimi-

nation [6]. Instead of enumerating the entire state space,

one variable is eliminated at a time. There is one set

of factored LP constraints for each action a. Let Xj

be the variable being eliminated. If Xj appears in any

set C ∪ Γa(C), (C = Scope[h]), and/or Wa (the scope

of any local reward function) these set of state variables

are “relevant” while eliminating Xj . Denote this set

of relevant variables by Za
j . Only these variables are

enumerated while maximizing over Xj . For each enu-

meration, the linear constraint is of the form umax ≥
uR +

∑

i wiu
γgi−hi , where umax is the variable intro-

duced after elimination, uR is the relevant factored re-

ward term and uγgi−hi represents γgi −hi for a relevant

hi. After all state variables are eliminated, the remaining

elimination-introduced variables have empty scope and

the final maximization constraint is added. The number

of constraints in this LP grows exponentially in the in-

duced width of the cost network, the undirected graph

defined over the variables X1, . . . , Xn, with an edge be-

tween Xl and Xm if they appear together in Za
j . Given

this construction, we describe our basis function selec-

tion approach as follows.

We begin with a subset of basis functions H0 and solve

the above factored LP. It is necessary to include h0 = ∅
in H0 to ensure feasibility of the LP. Next, we need to

determine whether a new basis function will improve the

current LP objective. We consider the dual LP

max
λk≥0

∑

k

uR
k λk

s.t.:
∑

k

uγgi−hi

k λk = αi, ∀i,
(7)

where λk is the dual variable corresponding to a factored

linear constraint k in the primal LP, and uR
k and uγgi−hi

k

are the reward function and basis function terms respec-

tively in constraint k. If a new basis hl is added, it gen-

erates a new column in the primal LP, and thus, a new

constraint in the dual LP. If the new constraint is not sat-

isfied given the current λ, the objective can be improved

by adding this basis. More precisely, if the new con-

straint is violated given the current λ, the amount of vio-

lation β = |
∑

k u
γgl−hl

k λk − αl| can be used to decide

whether to include the new basis. We compute the mag-

nitude of constraint violation for a possible new basis and

choose the basis which maximizes this violation. We add

this basis to the primal LP and repeat. Finally, we return

the updated set of basis functions. The corresponding LP

objective is the attacker’s utility, given a set of actions A.

We outline this procedure formally in Algorithm 3.

Algorithm 3 Iterative Basis Function Selection

function GENERATEBASIS(A,H)

λ, V ′ =ATTACKERPOLICY(A,H)

for s ∈ {1, . . . , smax} do

while Hs 6= ∅ do

β = 0
for hl ∈ Hs and hl /∈ H do

if |
∑

k u
γgl−hl

k λk − αl| > β then

β = |
∑

k u
γgl−hl

k λk − αl|

ĥl = hl

H = H ∪ ĥl

(λ, V) =ATTACKERPOLICY(A,H)

if |V − V ′| < θ then return V ′, H

Hs = Hs \ ĥl

V ′ = V

In Algorithm 3, ATTACKERPOLICY(A,H) solves the

LP (3) and Hs is the set of parity basis functions over

s state variables. To maintain smaller cost networks,

we consider all bases of a particular size before mov-

ing to the next size until s = smax, for some smax ≤ n.

Within a particular size, we consider those variable clus-

ters that are also connected in the underlying DBN of

the factored MDP (i.e., one variable is the parent node

of the other variable). We observe that many dual vari-

ables λk will be 0 so that we can restrict all computa-

tions to the set of active constraints {k, λk > 0}. Finally,

using the parity basis functions allows two simplifica-

tions. First, we consider the ga variable corresponding

to a basis h: ga(y) =
∑

c∈C

∏

i|Xi∈C Pa(c[Xi]|y)h(c),

for each assignment y ∈ Γa(C), where C is the scope

of h and the sum is over Dom[C], the enumeration of

variables in C. In our case, using the parity basis, this

sum of products can be reorganized as a product of sums:

ga(y) =
∏

i|Xi∈C P (xi = 0|y, a) − P (xi = 1|y, a).
These terms can be precomputed for each state variable

allowing efficient computation. Second, we consider

α =
∑

x

α(x)h(x) =
∑

c∈C

α(c)h(c), where α(c) is the

marginal of α over Dom[C]. In the case of parity basis

functions, αl = 0, ∀l 6= 0 and β = |
∑

k u
γgl−hl

k λk|.

6 GREEDY INTERDICTION

In this section, we propose a greedy heuristic for fac-

tored MDP interdiction which requires the generation

of attacker policies in response to specific mitigations.

Specifically, we start with a mitigation strategy by ran-

domly choosing an action to block. The attacker then

computes a policy with utility V using the restricted set

of actions. Next, we evaluate actions in the available set

of actions Aav , at random, choosing an action to block

if it decreases the sum of the attacker utility and total

mitigation cost. Here we assume that each mitigation

blocks exactly one action. The algorithm proceeds until

no action can be found to be blocked so as to improve

the defender’s utility. This greedy algorithm is outlined

as Algorithm 4.

We speed up greedy interdiction similar to fast constraint

generation in Section 4.1.2 by computing policies with a

small subset of basis functions (e.g., H1). At the very

end, we make further additions to the set of basis func-

tions to compute the attacker’s policy in response to the

greedily computed mitigation strategy to check whether

the attacker can indeed improve on the approximate best

response computed over the restricted space.

7 EXPERIMENTS

We evaluate our MDP interdiction algorithms on sev-

eral instances of three problem domains from the in-

ternational planning competition (IPC 2014): a) sysad-

min b) academic advising and c) wildfire. While these

have little direct connection to security, they provide the

most meaningful evaluation of our approaches in terms

of effectiveness and scalability: prior security-related do-

mains which consider multi-stage attacks use toy exam-

ples which would not provide a meaningful evaluation.

Algorithm 4 Greedy Factored MDP Interdiction

Aav = A
Am = ∅
An = Aav

V̂ = ∞
while An 6= ∅ do

a =CHOOSERANDOM(Aav)

V = ATTACKERPOLICY(Aav \ a,H)

if V A < V̂ then

Am = Am ∪ a
V̂ = V
Aav = Aav \ a
An = Aav

if Aav = ∅ then

break

else

An = An \ a
return V = GENERATEBASIS(A \Am, H)

For all experiments, each defender mitigation m ∈ M
blocks exactly one action a. We also let RA(x, a) =
−RD(x, a)−Ca, where Ca is the cost of action a, which

we set to 0 for the default (no-op) action and to 0.5 for all

other actions.. We set the cost of imposing a mitigation

Cm = 1 for all m. We use the discount factor of γ =
0.9. The experiments are run on a 2.4GHz hyperthreaded

8-core Ubuntu Linux machine with 16 GB RAM, with

CPLEX version 12.51 used to solve MILP instances.

7.1 COMPARISON WITH EXACT MDP

INTERDICTION

2 3 4 5 6 7 8 9 10
Number of state variables

0.0

0.5

1.0

1.5

2.0

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

1e6
optimal

s=4

s=3

s=2

s=1

2 3 4 5 6 7 8 9 10
Number of state variables

5

10

15

20

25

30

35

40

45

U
ti

lit
y

optimal

s=4

s=3

s=2

s=1

Figure 1: Comparison of exact and approximate MDP

interdiction in terms of runtime (left) and attacker utility

(right; lower is better for the defender).

First, we compare the performance of the constraint gen-

eration with basis selection algorithm to the state-of-

the-art optimal solution in MDP interdiction proposed

by Letchford and Vorobeychik [12]. We consider the

sysadmin domain with n = 2 − 10 state variables (2n

states) and 10 actions. We evaluate our approach with

s = 1, 2, 3 and 4, where s is the maximum number of

state variables in the scope of any basis.

As expected, the runtime of the exact MDPI is dominated

by our approach for sufficiently many state variables

(Figure 1(a)); more significantly, the exact approach runs

out of memory for larger problem sizes.

From Figure 1(b) we can see that while the utility of

approximate interdiction improves significantly as s in-

creases from 1 to 2, it already becomes close to optimal

when s = 2, with little added value from increasing it

further. Consequently, our experiments below use s = 2.

7.2 SCALABILITY

We evaluate the constraint generation approach on larger

problem sizes on the sysadmin domain (up to 60 state

variables and 60 actions). Even with constraint genera-

tion with only a subset of basis functions, our baseline

algorithm (marked as “slow bilevel”) scales poorly for

n > 30. On the other hand, the use of fast constraint

generation (Algorithm 2, marked as “fast bilevel”), sig-

nificantly improves scalability (Figure 2 left). Indeed, the

baseline (slow bilevel) becomes intractable for n ≥ 50,

whereas we can successfully solve these with the “fast”

approach. Since we compute the utility of the final at-

tacker policy using basis generation, the solution accu-

racy is not compromised (Figure 2 right).

10 20 30 40 50 60
Number of state variables

101

102

103

104

105

106

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

slow bilevel

fast_bilevel

10 15 20 25 30 35 40 45
Number of state variables

20

40

60

80

100

120

U
ti

lit
y

slow bilevel

fast_bilevel

Figure 2: Comparison between baseline (slow) and fast

interdiction on the sysadmin domain in terms of runtime

(left) and utility (right).

In the second set of scalability experiments, we evalu-

ate our approaches on 10 problem instances of the aca-

demic advising domain. The problem size increases with

problem number from 10 to 30 courses (20 to 60 state

variables and 10 to 30 actions). For each problem size,

there are two instances, corresponding to different pro-

gram requirements and course prerequisites. The first

(odd numbered) problem instance is somewhat simpler

(fewer prerequisites per course). The second (even num-

bered) instance is more complicated, with a larger num-

ber of prerequisites per course (larger number of connec-

tions in the underlying DBN). Problem 10 has the largest

problem size with 30 courses, 11 program requirements,

3 prerequisites for most courses and 4 prerequisites for

8 courses. As demonstrated in Figure 3, we observe a

similar trend as before: the fast constraint generation ap-

proach significantly outperforms baseline without com-

promising much solution quality. The baseline is in-

tractable for problems 7 to 10 (n ≥ 50).

1 2 3 4 5 6 7 8 9 10
Problem number

102

103

104

105

106

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

slow bilevel

fast_bilevel

1 2 3 4 5 6
Problem number

−280

−260

−240

−220

−200

−180

−160

−140

−120

−100

U
ti

lit
y

slow bilevel

fast_bilevel

Figure 3: Comparison between baseline (slow) and fast

interdiction on the academic advising domain in terms of

runtime (left) and utility (right).

In the third set of experiments, we evaluate on 6 problem

instances of the wildfire domain. The grid size increases

with problem number from m = 3 to 5 (n = 2 ×m2 =
18 to 50 state variables, and 36 to 100 actions). For each

grid size, there are two instances, corresponding to dif-

ferent neighbourhood configurations and targets (cells on

the grid that need to be protected). The first (odd num-

bered) problem instance has fewer targets than the sec-

ond (even numbered) instance. The results are shown in

Figure 4. The baseline is again intractable on problems 5

and 6 (n = 50) which can be solved by fast bilevel.

1 2 3 4 5 6
Problem number

102

103

104

105

106

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

slow bilevel

fast bilevel

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Problem number

−12000

−10000

−8000

−6000

−4000

−2000

0

U
ti

lit
y

slow bilevel

fast bilevel

Figure 4: Comparison between baseline (slow) and fast

interdiction on the wildfire domain in terms of runtime

(left) and utility (right).

7.3 EFFECTIVENESS OF GREEDY

INTERDICTION

Finally, we compare the greedy interdiction algorithm to

fast constraint generation. As shown in Figures 5-7, the

greedy algorithm is faster for larger problem sizes, sav-

ing up to an order of magnitude of computation time,

without significantly compromising solution quality.

8 CONCLUSION

We presented a MILP approach for factored MDP inter-

diction, using a parity basis for linear value function ap-

proximation over binary state variables. We offered an

iterative basis generation approach to select the most ef-

fective set of basis functions, and presented several vari-

ations of constraint generation, combined with basis se-

10 20 30 40 50 60
Number of state variables

101

102

103

104

105

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

greedy

fast_bilevel

10 20 30 40 50 60
Number of state variables

20

40

60

80

100

120

140

160

U
ti

lit
y

greedy

fast_bilevel

Figure 5: Comparison between fast interdiction and

greedy in terms of runtime (left) and utility (right) on

the sysadmin domain.

1 2 3 4 5 6 7 8 9 10
Problem number

102

103

104

105

106

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

greedy

fast_bilevel

1 2 3 4 5 6 7 8 9 10
Problem number

−300

−250

−200

−150

−100

U
ti

lit
y

fast_bilevel

greedy

Figure 6: Comparison between fast interdiction and

greedy in terms of runtime (left) and utility (right) on

the academic advising domain.

1 2 3 4 5 6
Problem number

102

103

104

105

106

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

greedy

fast bilevel

1 2 3 4 5 6
Problem number

−18000

−16000

−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

U
ti

lit
y

greedy

fast bilevel

Figure 7: Comparison between fast interdiction and

greedy in terms of runtime (left) and utility (right) on

the wildfire domain.

lection, to solve the MILP. We evaluated our approaches

on several realistic problem instances and demonstrated

significantly increased scalability while achieving near-

optimal solutions. Finally, we proposed a greedy algo-

rithm for MDP interdiction and showed that it can further

improve scalability.

In this paper, we only model deterministic mitigation

strategies. Related research on Stackelberg games for

security often considers randomized defensive resource

allocation, which in our case would translate to random-

ized mitigations that can yield considerably higher utility

to the defender. Within our framework, such an exten-

sion is quite non-trivial, and remains an important ques-

tion for future research.

Acknowledgements This research was partially sup-

ported by NSF (CNS-1640624, IIS-1526860, IIS-

1649972, CNS-1238959), ONR (N00014-15-1-2621),

ARO (W911NF-16-1-0069), NIH (UH2 CA203708-01,

R01HG006844), and AFRL (FA 8750-14-2-0180).

References

[1] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-

dynamic programming: an overview. In Decision

and Control, 1995., Proceedings of the 34th IEEE

Conference on, volume 1, pages 560–564. IEEE,

1995.

[2] Craig Boutilier, Thomas Dean, and Steve Hanks.

Decision-theoretic planning: Structural assump-

tions and computational leverage. Journal of Ar-

tificial Intelligence Research, 11(1):94, 1999.

[3] Craig Boutilier, Richard Dearden, and Moisés

Goldszmidt. Stochastic dynamic programming

with factored representations. Artificial intelli-

gence, 121(1):49–107, 2000.

[4] Thomas G Dietterich. Hierarchical reinforcement

learning with the maxq value function decomposi-

tion. J. Artif. Intell. Res.(JAIR), 13:227–303, 2000.

[5] Carlos Guestrin, Daphne Koller, and Ronald Parr.

Max-norm projections for factored mdps. In IJCAI,

volume 1, pages 673–682, 2001.

[6] Carlos Guestrin, Daphne Koller, Ronald Parr, and

Shobha Venkataraman. Efficient solution algo-

rithms for factored mdps. Journal of Artificial In-

telligence Research, 19:399–468, 2003.

[7] Carlos Ernesto Guestrin. Planning under uncer-

tainty in complex structured environments. PhD

thesis, Stanford University, 2003.

[8] Manish Jain, James Pita, Milind Tambe, Fernando

Ordónez, Praveen Paruchuri, and Sarit Kraus.

Bayesian stackelberg games and their application

for security at los angeles international airport.

ACM SIGecom Exchanges, 7(2):10, 2008.

[9] Daphne Koller and Ronald Parr. Computing fac-

tored value functions for policies in structured

mdps. In IJCAI, volume 99, pages 1332–1339,

1999.

[10] Daphne Koller and Ronald Parr. Policy iteration

for factored mdps. In Proceedings of the Sixteenth

conference on Uncertainty in artificial intelligence,

pages 326–334. Morgan Kaufmann Publishers Inc.,

2000.

[11] Dmytro Korzhyk, Zhengyu Yin, Christopher Kiek-

intveld, Vincent Conitzer, and Milind Tambe.

Stackelberg vs. nash in security games: An ex-

tended investigation of interchangeability, equiva-

lence, and uniqueness. J. Artif. Intell. Res.(JAIR),

41:297–327, 2011.

[12] Joshua Letchford and Yevgeniy Vorobeychik. Opti-

mal interdiction of attack plans. In Proceedings of

the 2013 international conference on Autonomous

agents and multi-agent systems, pages 199–206. In-

ternational Foundation for Autonomous Agents and

Multiagent Systems, 2013.

[13] Ryan O’Donnell. Some topics in analysis of

boolean functions. In Proceedings of the fortieth

annual ACM symposium on Theory of computing,

pages 569–578. ACM, 2008.

[14] Praveen Paruchuri, Jonathan P Pearce, Janusz

Marecki, Milind Tambe, Fernando Ordonez, and

Sarit Kraus. Playing games for security: An ef-

ficient exact algorithm for solving bayesian stack-

elberg games. In Proceedings of the 7th interna-

tional joint conference on Autonomous agents and

multiagent systems-Volume 2, pages 895–902. In-

ternational Foundation for Autonomous Agents and

Multiagent Systems, 2008.

[15] Martin L Puterman. Markov decision processes:

Discrete stochastic dynamic programming. 1994.

[16] Robert St-Aubin, Jesse Hoey, and Craig Boutilier.

Apricodd: Approximate policy construction using

decision diagrams. In NIPS, pages 1089–1095,

2000.

	INTRODUCTION
	PRELIMINARIES
	MDP INTERDICTION
	PROBLEM DEFINITION
	GENERAL APPROACH
	A MILP FORMULATION FOR FACTORED MDP INTERDICTION

	CONSTRAINT GENERATION FOR FACTORED MDP INTERDICTION
	CONSTRAINT GENERATION WITH BASIS FUNCTION SELECTION
	Reducing the Number of Iterations of Constraint Generation
	Fast Constraint Generation

	BASIS GENERATION
	FOURIER BASIS FUNCTIONS ON BOOLEAN FEATURE SPACE
	ITERATIVE BASIS FUNCTION SELECTION

	GREEDY INTERDICTION
	EXPERIMENTS
	COMPARISON WITH EXACT MDP INTERDICTION
	SCALABILITY
	EFFECTIVENESS OF GREEDY INTERDICTION

	CONCLUSION

