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a b s t r a c t 

Research on breaking time-reversal symmetry in wave phenomena is a growing area of 

interest in the field of phononic crystals and metamaterials aiming to realize one-way 

propagation devices which have many potential technological applications. Here we inves- 

tigate wave propagation in phononic crystals, periodic laminates in particular, where both 

elastic moduli and mass density are modulated in space and time in a wave-like fashion. 

The modulation introduces a bias which breaks time-reversal symmetry and reciprocity. 

A full characterization of how the dispersion curve transforms due to wave-like modula- 

tions is given in analytical and geometrical terms for both low (subsonic) and high (su- 

personic) modulation speeds. Theoretical findings are supported by numerical simulations. 

More specific to low frequencies, the macroscopic constitutive law of 1, 2 and 3D modu- 

lated laminates is proven to be of the Willis type with a non-negligible Willis coupling in 

the strictly scale-separated homogenization limit. The existence of a macroscopic stress- 

velocity and momentum-strain Willis coupling is in fact directly related to the breaking of 

reciprocity. Finally, closed form expressions of the macroscopic constitutive parameters are 

obtained and some elementary yet insightful energy bounds are derived and discussed. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

The transformation method introduced by Greenleaf et al. (20 03a , 20 03b) , and later by Leonhardt (2006) and Pendry

et al. (2006) , provided an efficient route to cloaking devices for phenomena governed by equations that are form-invariant

by coordinate transformations such as the conductivity equation, the acoustic wave equation and Maxwell’s equations of

electromagnetism. As for elasticity, Milton et al. (2006) demonstrated that the equations of infinitesimal elastodynamics are

invariant if written in a modified form due to Willis (1997) . Unlike the usual elasticity equations, the Willis model allows

for velocity-generated stresses and for strain-generated momenta through a constitutive law featuring stress-velocity and 

momentum-strain couplings, hereafter called Willis couplings. 

Originating from considerations on elastic wave propagation in random matrix-inclusion composites ( Willis, 1980a,

1980b ), the Willis theory of elastodynamic homogenization regained attention in recent years due to the increasing inter-

est in metamaterials and in their modelling on the macroscopic scale (see, e.g., Amirkhizi and Nemat-Nasser, 2008; Milton,

2007; Nassar et al., 2015; Nemat-Nasser and Srivastava, 2011; Norris et al., 2012; Shuvalov et al., 2011; Torrent et al., 2015 ).
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Nonetheless, the use of the Willis model in the design of cloaking devices, or other wave-control devices and metamaterials

in general, remains virtually nonexistent. In fact, one major obstacle is the inherent complexity of the Willis constitutive law

due to non-locality and non-uniqueness issues ( Willis, 2012 ). More fundamentally, the effective behaviour of elastic compos-

ites in the homogenization limit usually exhibits infinitesimally small Willis couplings and microstructures with substantial

Willis couplings potentially useful in cloaking applications are yet to be found. 

The purpose of the present paper is to characterize wave propagation in novel elastic media, time-modulated phononic

crystals, and to show that their macroscopic constitutive behaviour in the rigorous homogenization low-frequency limit is

of the Willis type with non-negligible Willis couplings. The considered media have elastic moduli and mass density that are

modulated in space and in time in a wave-like fashion at a constant speed. The modulation introduces a bias which breaks

time-reversal symmetry and reciprocity and manifests on the macroscopic scale through a Willis coupling. 

In a conventional reciprocal medium with time-reversal symmetry, waves travelling in opposite directions necessarily

have similar characteristics regarding phase and group velocities, dispersion and damping. Thus, breaking reciprocity can

help control waves in novel and revolutionary ways by achieving selective one-way wave propagation ( Fleury et al., 2014 ),

directional mode conversion ( Yu and Fan, 2009; Zanjani et al., 2015, 2014 ) and directional bandgaps ( Swinteck et al., 2015;

Trainiti and Ruzzene, 2016 ). 

To break time-reversal symmetry, one of two classes of non-conventional topologies have to be adopted. Systems of the

first class qualify as intrinsic and involve using structural chirality, dissipation and non-linearity ( Liang et al., 2009; Liu et al.,

2011, 2012; Mousavi et al., 2015 ). Systems of the second class are extrinsic as they are subjected to external stimuli in the

form of a “pump wave” effectively modulating the properties of the host medium ( Fleury et al., 2014; Yu and Fan, 2009 )

in both space and time. In practice, a time-modulation of stiffness can be induced by means of the photo-elastic effect

( Gump et al., 2004; Swinteck et al., 2015 ) or by using programmable piezoelectric components ( Casadei et al., 2012; Chen

et al., 2016; 2014 ). On the other hand, mixed stiffness and mass density modulations are possible in magnetorheological

elastomers ( Danas et al., 2012 ) and in other soft non-linear media by controlled propagation of sonic booms for instance

as suggested by Reed et al. (2003) . The effects of wave-like modulations of constitutive parameters on wave propagation

were investigated in earlier works on parametric amplification by many authors (see, e.g., Cassedy and Oliner, 1963a, 1963b;

Hessel and Oliner, 1961; Simon, 1960; Slater, 1958 ) but only recently has the potential for directional wave control been

recognized. 

As for homogenization aspects, it seems that A.K.Lurie and collaborators were among the first to systematically study

the macroscopic response of modulated phononic crystals that they called “dynamic materials”. See the book by Lurie

(2007) and references therein. Here, we extend their results to modulations of arbitrary profiles and to higher spatial di-

mensions while making explicit connections with Willis theory and non-reciprocity. 

The paper proceeds as follows. Section 2 is an extensive case study of one-dimensional (1D) laminates where both mass-

density and elastic stiffness are periodically modulated in a wave-like fashion. A dispersion equation is derived under the

most general possible modulation configurations. The effects of the modulation are qualitatively and quantitatively charac-

terized and illustrated in both high- and low-frequency regimes and also for subsonic and supersonic modulation speeds.

In particular, a criterion for the opening of directional bandgaps in arbitrary low-contrast media is formulated. Furthermore,

it is demonstrated that modulating either mass density or the elastic stiffness has only high-frequency repercussions on

the location of bandgaps whereas modulating both of them effectively breaks reciprocity at low frequencies as well, thus

generating a Willis coupling. Some anomalous transient responses highlighting the breaking of time-reversal symmetry are

numerically simulated and illustrated. 

In Section 3 , the 1D analysis of Section 2 is generalized to higher dimensions. A closed form analytical expression of

the macroscopic constitutive law of periodically modulated laminates in d dimensions is obtained in the homogenization

limit. The macroscopic behaviour corresponds to a unique local Willis medium with non-negligible coupling tensors. Last,

the Willis coupling tensors are explicitly calculated for slowly modulated isotropic layers. 

Various elementary bounds on energy are derived and exploited in Section 4 . In particular, sufficient conditions for the

positive-definiteness of the macroscopic elastic stiffness tensor and of the macroscopic mass density tensor are presented.

Finally, a few conclusions are drawn. 

2. Wave propagation in 1D modulated phononic crystals 

We start by investigating the effects of space-time modulations of stiffness and mass density on free wave propagation

in 1D phononic crystals. The dispersion relation is derived and a geometric interpretation of the influence of modulations, in

relation to non-reciprocity in particular, is provided and discussed for high- and low-frequency propagating waves. Finally,

we establish a connection between acoustic non-reciprocity and a family of macroscopic constitutive behaviours exhibiting

a Willis coupling. 

2.1. Governing equations 

For a 1D elastic medium, the constitutive and motion equations, in terms of the stress σ and the particle velocity v , are

∂ x v = ∂ t (σ /κ) , ∂ x σ = ∂ t (ρv ) , (1)
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Fig. 1. A 1D two-phase modulated laminate sketched at two instants of time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and can be expressed succinctly as 

∂ x η + ∂ t ( A η) = 0 , (2) 

with 

η = 

[
v 

−σ

]
, A = 

[
0 1 /κ
ρ 0 

]
. (3) 

Elastic stiffness and mass density are designated by κ and ρ , respectively. 

Energy conservation is a direct consequence of the governing equations. For passive materials featuring no sources (nor

sinks), Eq. (1) implies the conservation equation 

∂ t E − ∂ x (v σ ) = 0 . 

where E = 

1 
2 ρv 2 + 

1 
2 κ

−1 σ 2 and −v σ are energy density and energy flux. When a perturbation travels across the medium,

the total potential and kinetic energy E at a given point can only change by channelling to neighbouring points in the form

of an energy flux −v σ . In the following, we intend to investigate wave propagation in a family of modulated materials where

stiffness and mass density are varied with respect to space and time. Energy conservation equation then becomes 

∂ t E − ∂ x (v σ ) = 

1 

2 

(∂ t κ) ε 2 − 1 

2 

(∂ t ρ) v 2 , 

where ε = σ/κ is strain. Changing κ and ρ in space and time will effectively pump energy into or out of the medium and

will ultimately influence the way waves propagate. 

Hereafter, we tackle 1D periodic media where κ and ρ are modulated in space and time in a wave-like fashion: 

κ = κ(x, t) = κ(x − c m 

t ) , ρ = ρ(x, t ) = ρ(x − c m 

t) , 

with c m 

being the modulation speed. Calling L the thickness of a unit cell, κ and ρ are L -periodic functions of x and of

x − c m 

t and L / c m 

-periodic functions of t . Beyond energy conservation, the wave nature of the modulation introduces a bias

in space-time and breaks time-reversal symmetry: in general, when the medium supports a wave v ( x, t ), it will not support

v (x, −t) . 

Wave propagation in one dimension depends upon the two derived parameters: phase velocity and impedance, 

c = 

√ 

κ/ρ, z = 

√ 

ρκ, (4) 

respectively. When c m 

takes on values between the minimum and the maximum phase velocity, discontinuities in the trav-

elling wave, reminiscent of sonic booms, may appear and invalidate the implicit smoothness hypotheses made throughout

the paper. Further details can be found in the papers by Cassedy and Oliner (1963a , 1963b) . Thus, in the following, it is

understood that the modulation speed satisfies 

(∀ ξ ∈ (0 , L ) , c(ξ ) > | c m 

| ) or (∀ ξ ∈ (0 , L ) , c(ξ ) < | c m 

| ) , (5)

which can be identified, respectively, as subsonic and supersonic regimes. 

We begin by deriving the dispersion relation for media with unit cells of arbitrary profiles, and then move on to consider

applications to laminates composed of discrete phases, i.e., with piecewise constant functions κ and ρ . A two-phase laminate

is depicted in Fig. 1 . First however, we modify the governing equations into a form which can be analyzed by standard

methods. 

2.2. Equations in the moving frame 

Since κ and ρ depend on ( x, t ) through a unique combination, x − c m 

t, the medium is more conveniently described with

a new variable ξ introduced by the change of variable 

(ξ , t) = (x − c m 

t , t ) , (∂ x , ∂ t ) = (∂ ξ , −c m 

∂ ξ + ∂ t ) . 
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Hence, the governing Eq. (3) can be rewritten as 

∂ ξ [( I − c m 

A ) η] + A ∂ t η = 0 , 

where A now depends on ξ but not on t . Then, with the change of the state vector 

ψ = ( I − c m 

A ) η, 

we obtain 

∂ ξψ + B ∂ t ψ = 0 (6)

where the new constitutive matrix is 

B = A ( I − c m 

A ) −1 = 

1 

c 2 − c 2 m 

[
c m 

1 /ρ
κ c m 

]
. 

This is guaranteed to remain finite by virtue of the restrictions (5) . 

Note that the form of the Eq. (6) for the modified state vector ψ implies that it is continuous across interfaces. The

continuity of the first component of ψ is equivalent to the continuity of the displacement u and is expected. The continuity

of the second component of ψ is equivalent to that of the modified stress σ + c m 

ρv and replaces the usual stress continuity

hypothesis due to the presence of moving discontinuities in the constitutive parameters κ and ρ . The latter property can be

proven by virtue of a “Reynolds transport theorem”. 

2.3. Dispersion relation 

Since B is L -periodic in ξ , we can look for harmonic plane wave solutions 

ψ (ξ , t) = ψ (ξ ) e −i �t , 

subject to the Floquet–Bloch periodic boundary condition 

ψ (ξ + L ) = ψ (ξ ) e iKL , (7)

where wavenumber K and frequency � describe the phase of the travelling wave in the moving frame of reference ( ξ , t ).

The state vector thus satisfies 

ψ (ξ ) = M (ξ , ξ0 ) ψ (ξ0 ) , 

where the matricant M ( ξ , ξ 0 ) ( Pease, 1965 ) is the solution of the ordinary differential equation 

∂ ξ M = i �B (ξ ) M , M (ξ0 , ξ0 ) = I . 

The existence of a non-trivial solution ψ satisfying the Floquet–Bloch boundary condition (7) is therefore equivalent to the

vanishing of the determinant 

det 
(
M (ξ + L, ξ ) − e iKL I 

)
= 0 . 

Noting that B has the form 

B = 

c m 

c 2 − c 2 m 

I + 

c 

c 2 − c 2 m 

J , J = 

[
0 1 /z 
z 0 

]
the matricant may be written 

M (ξ , ξ0 ) = exp 

(
ic m 

�

∫ ξ

ξ0 

d ξ

c 2 − c 2 m 

)
N (ξ , ξ0 ) 

where the 2 × 2 unitary matrix N ( ξ , ξ 0 ) is the solution of 

∂ ξ N = 

i �c 

c 2 − c 2 m 

J N , N (ξ0 , ξ0 ) = I . 

The Floquet–Bloch condition therefore reduces to 

cos 

(
KL −

〈
c m 

�L 

c 2 − c 2 m 

〉)
= 

1 

2 

tr N (ξ + L, ξ ) (8)

where the brackets 〈 〉 = 

1 
L 

∫ L 
0 d ξ denote the operator of averaging over a unit cell and tr is the trace operator. 

Note finally that, as mentioned earlier, ψ has wavenumber K and frequency � in the moving frame of reference ( ξ , t ). In

the original frame ( x, t ), the travelling wave wavenumber k and temporal frequency ω can be retrieved based on 

kx − ωt = Kξ − �t, 

from which it can be inferred that 
k = K, ω = � + c m 

k. (9) 
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2.4. Discrete layering 

Each phase in the unit cell, indexed with j from 1 to J , has stiffness κ j , mass density ρ j , phase velocity c j = 

√ 

κ j /ρ j ,

impedance z j = 

√ 

ρ j κ j and a thickness L j . In this setting, wave-like modulations alter the underlying microstructure by

shifting the interfaces between phases ( Fig. 1 ). Interfaces that were located at 

x = nL + 

j ∑ 

m =1 

L m 

, n ∈ Z , 1 ≤ j ≤ J, 

are now moving at a constant speed c m 

and, at instant t , are located at 

x = nL + 

j ∑ 

m =1 

L m 

+ c m 

t, n ∈ Z , 1 ≤ j ≤ J. 

Over phase j , B is a constant matrix B j so that the equation for N is a linear first order ordinary differential equation

with constant coefficients. Using the fact that J 2 = I the matrix exponential solution, say across phase 1, N ( L 1 , 0) is simply

N 1 = exp 

(
i 

c m 

�L 1 

c 2 
1 

− c 2 m 

J 1 

)
= cos 

(
c 1 �L 1 

c 2 
1 

− c 2 m 

)
I + i sin 

(
c 1 �L 1 

c 2 
1 

− c 2 m 

)
J 1 . (10) 

By induction over the J phases of the unit cell, we obtain 

N (L, 0) = 

J ∏ 

j=1 

N j . 

As an example, for J = 2 and upon calculating the product N 1 N 2 , we retrieve the ( k, ω)-dispersion relation of Lurie

(2007) 

cos 

[
kL − c m 

(ω − c m 

k ) 

(
L 1 

c 2 
1 

− c 2 m 

+ 

L 2 

c 2 
2 

− c 2 m 

)]

= cos 

(
ω − c m 

k 

c 2 
1 

− c 2 m 

c 1 L 1 

)
cos 

(
ω − c m 

k 

c 2 
2 

− c 2 m 

c 2 L 2 

)
− 1 

2 

(
z 1 
z 2 

+ 

z 2 
z 1 

)
sin 

(
ω − c m 

k 

c 2 
1 

− c 2 m 

c 1 L 1 

)
sin 

(
ω − c m 

k 

c 2 
2 

− c 2 m 

c 2 L 2 

)
. (11) 

For c m 

= 0 , the standard dispersion relation of a non-modulated two-phase phononic crystal is recovered: 

cos ( kL ) = cos 

(
ω 

c 1 
L 1 

)
cos 

(
ω 

c 2 
L 2 

)
− 1 

2 

(
z 1 
z 2 

+ 

z 2 
z 1 

)
sin 

(
ω 

c 1 
L 1 

)
sin 

(
ω 

c 2 
L 2 

)
. (12) 

It is important to emphasize that the derived dispersion relation (8) is valid for any number of layers J , for large or small

mismatch between layers and for arbitrary modulation speeds c m 

except these coinciding with phase velocity in any of the

layers. Thus, in the context of discrete laminates, the assumption (5) becomes 

| c m 

| < min c j or | c m 

| > max c j . (13) 

2.5. Acoustic non-reciprocity 

By inspecting the dispersion relation (11) , it becomes clear that, in general, if ( k, ω) belongs to the dispersion curve,

then (−k, ω) does not. The modulation speed c m 

indeed breaks reciprocity, i.e., time reversal symmetry, so that waves

travelling to the right and to the left have different characteristics, e.g., different group velocity, phase velocity or damping

coefficient. In order to understand how time modulation transforms the dispersion relation, we first focus our attention on

slow modulations and neglect effects related to c n m 

, for n ≥ 2. This simplification remains valid as long as 

| c m 

| 
 min c j . 

Fast modulations are treated afterwards. 

2.5.1. Slow modulations 

To first order in c m 

, the dispersion relation (11) can be approximated by 

cos 
[(

k − c m 

ω 

〈
c −2 

〉)
L 
]

= cos 

(
ω − c m 

k 

c 1 
L 1 

)
cos 

(
ω − c m 

k 

c 2 
L 2 

)
− 1 

2 

(
z 1 
z 2 

+ 

z 2 
z 1 

)
sin 

(
ω − c m 

k 

c 1 
L 1 

)
sin 

(
ω − c m 

k 

c 2 
L 2 

)
. 

(14) 

It is then clear that ( k, ω) is a solution to (14) if and only if the transformed couple 

T (k, ω) = (k − c m 

ω〈 c −2 〉 , ω − c m 

k ) , 
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Fig. 2. The lower branches of a typical dispersion curve of a 1D phononic crystal: with ( C (c m ) , in red) and without ( C (0) , in blue) modulation. The 

shearing effect of T −1 is sketched. The corresponding phononic crystal has two phases with contrasts of κ1 /κ2 = 1 . 5 and ρ1 /ρ2 = 1 . 2 . The modulation 

speed c m is 
√ 

κ2 /ρ2 / 10 . Wavenumbers and frequencies are respectively normalized with respect to the unit cell length L and to the first cut-off frequency 

in the absence of modulation ω c . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is a solution to (12) . Thus, calling C (c m 

) the dispersion curve of the laminate modulated at speed c m 

, we have, to first order

in c m 

, 

(k, ω) ∈ C (c m 

) ⇐⇒ T (k, ω) ∈ C (0) , 

where C (0) is the dispersion curve of the non-modulated laminate. In other words, to first order in c m 

, the dispersion

curve of the modulated laminate C (c m 

) is obtained by uniformly shearing C (0) in the ( k, ω)-space as dictated by the linear

transformation T ( Fig. 2 ). Furthermore, revisiting Eqs. (8) and (10) shows that the above characterization generalizes for any

number of phases J , and indeed for any travelling modulation subject to the constraints (5) . In conclusion, the dispersion

curve of a 1D periodic medium modulated at speed c m 

, C (c m 

) , can be deduced from the dispersion curve of the same

medium in the absence of the modulation, C (0) , according to 

C (c m 

) = T −1 (C (0)) 

As an application, consider the bandgaps located at the edges of the Brillouin zones k = πn/L, n ∈ Z \{ 0 } . Due to the

modulation, they all get shifted by an amount equal to πnc m 

/ L ( Fig. 2 ). Accordingly, total bandgaps, blocking right- and

left-going waves, become directional bandgaps, blocking either right- or left-going waves, whenever the shift is larger than

half of the gap width. Namely, the n th bandgap, of width �n ω, becomes directional if 

| c m 

| ≥ L �n ω 

2 πn 

. 

Hence, high-frequency bandgaps are the first to become directional whereas low-frequency bandgaps require higher modu-

lation speeds. Note that the assumption made on the smallness of c m 

makes the previous result valid in the limit 

L �n ω 

2 πn 


 min c j . 

For instance, it holds at high enough frequencies (large n ) and/or for low contrast materials (small �n ω). In the latter case,

the width of the n th bandgap is directly related to the amplitude of the impedance modulation. Calling �n z the n th Fourier

coefficient of z , the n th bandgap is directional if 

| c m 

| ≥ 〈 c 〉 
n 

√ ∣∣∣∣�n z 

〈 z 〉 
∣∣∣∣. 

Slater (1958) and Cassedy and Oliner (1963a , 1963b) , among others in the previous century, derived similar results for

1D low-contrast media where either κ or ρ is sinusoidally modulated. More recently, Swinteck et al. (2015) and Trainiti and

Ruzzene (2016) reinterpreted these results in terms of directional bandgaps. The present considerations generalize earlier

works to arbitrary 1D low-contrast phononic crystals where both κ and ρ are modulated in space and time. 
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Fig. 3. The dispersion curve of a modulated two-phase laminate ( κ1 /κ2 = 1 . 5 , ρ1 /ρ2 = 1 . 2 ) for increasing subsonic (top row) and supersonic (bottom row) 

modulation speeds c m . Horizontal axis refer to kL and vertical axis to ω / ω c . The dashed lines intersect at kL = π and ω/ω c = 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5.2. Fast modulations 

By fast modulations, we mean those for which the modulation speed c m 

is comparable to but lower than min c or greater

than max c in accordance with inequality (13) . Here, the influence of all orders of c m 

needs be taken into account. To that

purpose, we observe that the general dispersion relation (8) depends, when it comes to the constitutive properties, on

the profiles of phase velocity c and impedance z . It is appropriate thus to rename C (0 , c, z) the dispersion curve of the

non-modulated medium and C (c m 

, c, z) that of the one modulated at c m 

. The transformation from the former to the latter

happens in two steps. 

First, according to Eq. (10) , the curve C (0 , c, z) is transformed into C (0 , ̂  c , z) with 

1 

ˆ c = 

∣∣c − c m 

/c 2 
∣∣. 

That is, when the modulation is turned on, it is as if the constitutive parameters ( c, z ) were changed into ( ̂ c , z) . The modified

phase velocities are shifted downwards in the subsonic regime ( c m 

< min c ) and upwards in the supersonic regime ( c m 

>

max c ). Hence, one expects bands to become “denser” around the edges of the sonic regime where phase velocities are the

lowest (see Fig. 3 ). 

Second, Eqs. (8) and (9) imply that C (c m 

, c, z) is related to C (0 , ̂  c , z) through 

(k, ω) ∈ C (c m 

, c, z) ⇐⇒ T (k, ω) ∈ C (0 , ̂  c , z) . 

The transformation T has now the exact expression 

T (k, ω) = 

(
k − c m 

(ω − c m 

k ) 

〈
1 

c 2 − c 2 m 

〉
, ω − c m 

k 

)

including all orders of c m 

. In other words, the inverse transform T −1 finitely deforms C (0 , ̂  c , z) into the dispersion curve

of the modulated medium C (c m 

, c, z) . This deformation becomes so severe in the supersonic regime that some “horizontal”

bandgaps become “vertical” (See Fig. 3 ). These vertical gaps indicate the existence of potentially unstable solutions with a

real wavenumber and an imaginary frequency ( Cassedy and Oliner, 1963a, 1963b ). 

Fig. 3 illustrates the change inflicted on the dispersion curve for various (positive) modulation speeds. The effect of slow

modulations is to hybridize total bandgaps and create couples of directional gaps as mentioned earlier. This is seen by com-

paring the dispersion diagrams plotted for c m 

= 0 and c m 

= 0 . 1 min c. For faster modulations ( c m 

→ ( min c) −), directionality
1 Absolute values are added here to ensure positivity of phase velocity and ease interpretations. In fact, when c − c 2 m /c changes signs, matrix N transforms 

into its Hermitian conjugate N ∗ which, in fine, does not alter the dispersion relation. 
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in wave propagation can be observed at low frequencies: when the modulation speed is positive, i.e., the modulation is

travelling to the right, left-going waves are often blocked whereas right-going waves are always transmitted. 

Finally, remark that the constitutive parameters of the phononic crystal change in time with a frequency 2 πc m 

/ L and in

space with a frequency 2 π / L . Consequently, for infinitely fast modulations, these parameters are effectively being changed

in time only and at an infinitely high frequency 2 πc m 

/ L � ω. In this extreme setting, a travelling wave effectively sees

the parameters of the laminate homogenized in time. Therefore, the medium behaves as if it had an effective mass density

equal to the harmonic mean of densities and an effective stiffness equal to the arithmetic mean of stiffnesses (e.g., plot

c m 

= 4( max c) on Fig. 3 ). The resulting dispersion relation is 

〈 κ〉 k 2 − ω 

2 

〈 1 /ρ〉 = 0 . 

Wave propagation within such a phononic crystal is both dispersionless and reciprocal. 

2.6. Homogenization 

For low frequencies, when the wavelength of propagating elastic waves is much larger than the characteristic size of

the microstructure, the properties of the phononic crystal can be well described using homogenized parameters or effective

medium parameters. Effective medium theory has been successful in modelling many unconventional wave phenomena in

metamaterials. 

2.6.1. Slow modulations 

It is well known that the dispersion relation of a non-modulated phononic crystal at low frequencies, i.e., in the homog-

enization limit, reduces to 

1 

〈 1 /κ〉 k 
2 − 〈 ρ〉 ω 

2 = 0 . (15)

The general results of the previous subsection imply that the dispersion curve of the same phononic crystal when slowly

modulated at speed c m 

is 

1 

〈 1 /κ〉 (k − c m 

ω 

〈
c −2 

〉
) 2 − 〈 ρ〉 (ω − c m 

k ) 2 = 0 . 

By expanding, regrouping and neglecting higher powers of c m 

, one gets 

1 

〈 1 /κ〉 k 
2 + 2 c m 

( 

〈 ρ〉 −
〈
c −2 

〉
〈 1 /κ〉 

) 

ωk − 〈 ρ〉 ω 

2 = 0 , 

or, inserting c 2 = κ/ρ, 

1 

〈 1 /κ〉 k 
2 + 2 c m 

〈 ρ〉 
(

1 − 〈 ρ/κ〉 
〈 ρ〉 〈 1 /κ〉 

)
ωk − 〈 ρ〉 ω 

2 = 0 . 

Consequently, the phase/group velocity 2 V = ω/k of low-frequency waves travelling in the modulated phononic crystal sat-

isfies 

1 

〈 1 /κ〉 + 2 c m 

〈 ρ〉 
(

1 − 〈 ρ/κ〉 
〈 ρ〉 〈 1 /κ〉 

)
V − 〈 ρ〉 V 

2 = 0 . 

In the absence of modulation ( c m 

= 0 ), the previous equation has two roots of equal value and opposite sign 

V = ± 1 √ 〈 ρ〉 〈 1 /κ〉 
attributed to left-going and right-going waves. However, in the presence of even a slow modulation, the two roots become 

V = 

(
1 − 〈 ρ/κ〉 

〈 ρ〉 〈 1 /κ〉 
)

c m 

± 1 √ 〈 ρ〉 〈 1 /κ〉 
so that left-going and right-going waves now travel at different group velocities, breaking thus time-reversal symmetry at

low frequencies. This is illustrated on Fig. 4 where the dispersion diagram is asymmetric even when restricted to the range

ω / ω c 
 1 where ω c is the first cut-off frequency of the non-modulated phononic crystal. The non-dimensional constitutive

parameter 

β = 1 − 〈 ρ/κ〉 
〈 ρ〉 〈 1 /κ〉 = 1 − 〈 1 /c 2 〉 

〈 z/c 〉〈 1 / (zc) 〉 
2 The homogenization limit is dispersionless. 
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Fig. 4. The dispersion curve of a 1D laminate: with ( C (c m ) , in red solid lines) and without ( C (0) , in blue dotted lines) modulation when the frequency 

is within the homogenization limit. The corresponding laminate has two phases with high contrasts of κ1 /κ2 = ρ1 /ρ2 = 100 in order to maximize non- 

reciprocity. The modulation speed c m is c /10. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

can be seen as a measure of contrast and of non-reciprocity at low frequencies. Note that it vanishes if either κ or ρ is

uniform. As a result, these low-frequency effects were missed by earlier papers where either κ or ρ is modulated but not

the other. 

The defined contrast parameter β can be either positive or negative. When β is positive, waves travelling with the

modulation are accelerated and waves travelling in the opposite direction of the modulation are decelerated. This happens

for instance when c is uniform across phases so that 

β = 1 − 1 

〈 z 〉 〈 1 /z 〉 ≥ 0 . 

Conversely, when β is negative, waves travelling along the modulation are decelerated and waves going in the inverse

direction are accelerated. Such phenomena can be observed in medium with a uniform z in which case 

β = 1 −
〈
1 /c 2 

〉
〈 1 /c 〉 2 ≤ 0 . 

In terms of a macroscopic equation of motion, the wave travelling in the modulated laminate in the low-frequency limit,

hereafter called U , is governed by 

1 

〈 1 /κ〉 ∂ 
2 
x U + 2 c m 

( 〈 ρ/κ〉 
〈 1 /κ〉 − 〈 ρ〉 

)
∂ x ∂ t U − 〈 ρ〉 ∂ 2 t U = 0 . 

This equation of motion is of Willis (1997) type: 

κe ∂ 2 x U + 2 s∂ x ∂ t U − ρe ∂ 2 t U = 0 . 

Parameter κe is interpreted as a macroscopic stiffness, ρe as a macroscopic mass density and s as a coupling coefficient with

the dimension of an impedance. The existence of a mixed derivative term ∂ x ∂ t U implies that, on the level of the constitutive

behaviour, the macroscopic stress is coupled to the macroscopic velocity and the macroscopic momentum is coupled to the

macroscopic strain, the coupling being as strong as the non-reciprocity itself. 

Effective constitutive behaviours of the Willis type are usually obtained by micromechanical homogenization approaches

for relatively high frequencies and, as frequency decreases, reduce to standard constitutive behaviours where the mentioned

coupling vanishes ( Nassar et al., 2016; Shuvalov et al., 2011; Willis, 1997 ). For the modulated medium under consideration

however, the coupling does not vanish at low frequencies. In the next section, a generalization to faster modulations is

presented. 

2.6.2. Fast modulations 

When c m 

takes finite values, applying the two-step transformation described in Section 2.5.2 to the macroscopic disper-

sion Eq. (15) of a non-modulated medium leads again to a Willis type equation of motion. The macroscopic constitutive

parameters now have the expressions 

κe = 

〈
κ

κ − c 2 m 

ρ

〉2 〈
1 

κ − c 2 m 

ρ

〉−1 

− c 2 m 

〈
ρκ

κ − c 2 m 

ρ

〉
, 

ρe = −c 2 m 

〈
ρ

κ − c 2 m 

ρ

〉2 〈
1 

κ − c 2 m 

ρ

〉−1 

+ 

〈
ρκ

κ − c 2 m 

ρ

〉
, 

s = c m 

〈
κ

κ − c 2 m 

ρ

〉〈
ρ

κ − c 2 m 

ρ

〉〈
1 

κ − c 2 m 

ρ

〉−1 

− c m 

〈
ρκ

κ − c 2 m 

ρ

〉
. 
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As for the macroscopic phase/group velocity, it is a solution to the equation 

κe − 2 sV − ρe V 

2 = 0 . 

Thus, as a function of the macroscopic constitutive parameters, it reads 

V = 

(
− s ±

√ 

s 2 + ρe κe 
)
/ ρe , 

or, 

V = c m 

+ 

( 〈
c m 

c 2 − c 2 m 

〉
±

√ 〈
c/z 

c 2 − c 2 m 

〉〈
cz 

c 2 − c 2 m 

〉) −1 

, 

as a function of the microscopic impedance z , phase velocity c and modulation speed c m 

. 

In the foregoing expression, the denominator c 2 − c 2 m 

remains positive (resp. negative) across the whole unit cell in the

subsonic (resp. supersonic) regime. Consequently, macroscopic phase velocities are always real valued which is equivalent

to the positivity of the discriminant 

s 2 + ρe κe ≥ 0 . 

This property is a particular case of a more general one proven in Section 4.3 . Nonetheless, at some supersonic modulation

speeds, group velocity can become infinite suggesting that V is different than the necessarily bounded energy velocity.

In fact, energy arrival cannot precede that of the wave front which propagates across large distances at the always finite

velocity 3 

V f = 

〈 
1 

±c − c m 

〉 −1 

+ c m 

. 

2.6.3. Example: effective properties of a medium with uniform phase velocity 

To illustrate the macroscopic behaviour of a 1D modulated laminate in a simple context, we assume in this subsection

that c is uniform across the unit cell so that only the impedance z is modulated. The effective parameters then become 

κe = 

c 

c 2 − c 2 m 

(
c 2 〈 1 /z 〉 −1 − c 2 m 

〈 z 〉 ), 
ρe = 

1 /c 

c 2 − c 2 m 

(
−c 2 m 

〈 1 /z 〉 −1 + c 2 〈 z 〉 ), 
s = 

c m 

c 

c 2 − c 2 m 

(〈 1 /z 〉 −1 − 〈 z 〉 ), 
and the macroscopic phase velocity simplifies into 

V = c m 

+ 

c 2 − c 2 m 

c m 

± c 
√ 〈 1 /z 〉 〈 z 〉 , 

whereas the wave front velocity V f becomes a constant equal to c as expected. 

Given the harmonic-arithmetic inequality 1/ 〈 1/ z 〉 ≤ 〈 z 〉 , it is clear that, in the subsonic regime, the macroscopic mass

density is always positive. However, the macroscopic stiffness becomes negative whenever 

1 

〈 1 /z 〉 〈 z 〉 c 
2 ≤ c 2 m 

< c 2 . 

In this case, both macroscopic phase velocities become of the same sign so that a directional bandgap opens at arbitrarily

low frequencies. When equality occurs, κe and one of the V vanish. Conversely, at supersonic speeds, macroscopic stiffness

is positive but macroscopic mass density is negative if 

c 2 < c 2 m 

≤ 〈 1 /z 〉 〈 z 〉 c 2 . 
Here also, both values of V are of the same sign. Finally, at equality, one V is infinite and the macroscopic mass density is

null. 

When normalized by their values in the limit c m 

→ 0, the above macroscopic parameters turn out to be dependent on

two variables: the normalized modulation speed c m 

/ c and a non-dimensional impedance-contrast parameter 〈 z 〉〈 1/ z 〉 . The

latter is always larger than 1 with equality occurring for a homogeneous medium. The normalized profiles are plotted in

Fig. 5 . Most remarkably, the profile of V is asymmetric (with respect to the horizontal axis) meaning that right-going and

left-going waves have different phase velocities. Furthermore, in the region where either κe or ρe is negative, both branches

of V have the same sign indicating the opening of a directional bandgap at arbitrarily low frequencies (see Fig. 6 ). 
3 The velocity V f is deduced from a purely kinematic consideration: if x ( t ) is the position of the wave front, then ˙ x (t) = c(x (t) − c m t) . 
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Fig. 5. The profiles of the normalized macroscopic constitutive parameters κe , ρe and s and of the macroscopic phase/group velocity V as functions of 

the modulation speed c m . The normalization starred factors correspond to the values calculated for slow modulations ( Section 2.6.1 ). At the excluded sonic 

modulation speed c m = c, the macroscopic constitutive parameters diverge and the macroscopic group velocities become the same. Group velocities diverge 

when the macroscopic mass density is zero. For these plots, the contrast is such that 〈 z 〉 〈 1 /z 〉 = 2 . 

Fig. 6. The low-frequency part of the dispersion curve of a 1D laminate: with ( C (c m ) , in red solid lines) and without ( C (0) , in blue dotted lines) 

modulation. The corresponding laminate has two phases with medium contrasts of κ1 /κ2 = ρ1 /ρ2 = 9 ( 〈 z 〉〈 1/ z 〉 ≈ 2). The modulation speed c m is 2 c /3. At 

this value, κe is negative so that both macroscopic phase velocities have the same sign and a directional bandgap exists at arbitrarily low frequencies. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7. Numerical simulations of transient responses 

To validate our theoretical findings, the transient response of a finite slab of a modulated phononic crystal is numerically

simulated using the finite element method implemented by the commercial code COMSOL Multiphysics. The considered

phononic crystal has two phases of equal thickness L/ 2 = 1 cm . The constitutive properties of the first phase are κ1 = 7 GPa

and ρ1 = 2800 kg / m 

3 whereas those of the second phase are given by κ2 = κ1 / 20 and ρ2 = ρ1 / 20 so that c 1 = c 2 . The slab

has a total thickness of 280 L and is loaded longitudinally at its centre point with a transient narrow-band excitation F ( t ).

The behaviour of the non-modulated phononic crystal is systematically compared to that of the one rapidly modulated at

the subsonic speed c m 

= 0 . 2 c 1 = 0 . 2 c 2 = 10 0 0 m/s . 

To track the wave propagation in the system, the transient wave fields at discrete locations are presented in Fig. 7 . For

comparison, the transient wave fields for the non-modulated phononic crystal are also included. The transient responses

were simulated for two loadings. The first one (see Fig. 7 ( a )) has a central frequency f 1 ≈ 25, 4 kHz falling within a di-

rectional bandgap of the modulated medium and within a total passing band of the non-modulated medium. The radiated

wave is expected thus to propagate to the right exclusively in the presence of the modulation and in both directions in

its absence (see Fig. 7 ( b, c )). The second loading (see Fig. 7 ( c )) has a central frequency f 2 ≈ 12, 7 kHz which is in the first

total passing band of both the modulated and non-modulated media. Emitted waves propagate to the left and to the right.

Nonetheless, in the modulated medium, the modulation introduces a well-pronounced bias breaking time-reversal symme- 

try so that right-going and left-going waves have manifestly different velocities ( Fig. 7 ( e, f )). 

The dispersion diagram is obtained numerically by computing the space-time Fourier transform of the transient response

of the phononic crystal under a broad-band excitation F ( t ) with a central frequency f ≈ 63, 6 kHz. The excitation force F ( t )
3 
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Fig. 7. Transient loadings and responses for a central frequency f 1 ≈ 25, 4 kHz (a − c) and f 2 ≈ 12, 7 kHz (d − f ) . The propagation direction is represented, 

for c m = 0 , by dashed green arrows and, for c m � = 0, by solid blue ones. For c m = 0 , wave propagation is symmetric ( b, e ). For c m � = 0, right-going waves 

are accelerated ( c, f ) and left-going waves are blocked at f 1 ( c ) and decelerated at f 2 ( f ). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. 8. The transient body force loading F in time (top left) and frequency (top right) domains. The corresponding transient response is analysed and its 

components plotted as level sets in the (k, f = 2 πω) -domain to generate the dispersion diagram (bottom). The components amplitudes are normalized 

to have values between 0 and 1 on an arbitrary scale (color bar). Solid lines correspond to the dispersion diagram of Eq. (11) . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

as well as its modal density distribution and the generated dispersion diagram are plotted in Fig. 8 . Note that in order to fa-

cilitate the convergence of the numerical method, the Heaviside function describing the two-phase geometry was smoothed.

As a consequence, the computed dispersion diagram differs slightly from the one obtained analytically through Eq. (11) . 

3. Wave propagation in 3D modulated laminates 

Next, the constitutive behaviour of a laminate modulated at a finite speed c m 

is derived in a full anisotropic elasticity

3D context. This behaviour is valid in the rigorous homogenization limit and is shown to be of the Willis type. Closed form

analytical expressions of the various macroscopic constitutive parameters, including the Willis coupling tensors, are given in

terms of the phases constitutive parameters and of the modulation speed. 

3.1. Governing equations 

Consider a periodic elastic laminate in d , say 3, dimensions ( Fig. 9 ). Its stiffness tensor C and mass density ρ are periodic

functions of one space coordinate, hereafter called x , carried by a unit vector denoted n (= ∇x ) and are independent of the

other d − 1 spatial coordinates. When time-modulated at speed c m 

, C and ρ become periodic functions of x − c m 

t: 

C ( x , t) = C (x − c m 

t) , ρ( x , t) = ρ(x − c m 

t) . 

Note that a modulation at speed c m 

in a direction other than n is equivalent to a modulation at speed c m 

· n in the direction

of n due to the layered geometry. 
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Fig. 9. A sketch of a 3D two-phase laminate. Direction n is the lamination direction whereas m is a generic orthogonal direction. 

 

 

 

 

 

 

 

 

These constitutive parameters relate the stress tensor σ to the infinitesimal strain tensor ε and the momentum field p

to the velocity field v , according to 

σ = C : ε , p = ρv . 

The equilibrium of momentum dictates that 

∇ · σ = ∂ t p . 

Last, strain and velocity derive from the same displacement field u 

ε = ∇ �
s u , v = ∂ t u . 

Therefore, the equation of motion written in terms of u with full dependencies is 

∇ · [ C (x − c m 

t) : ( ∇ �
s u ( x , t))] = ∂ t (ρ(x − c m 

t ) ∂ t u ( x , t )) . 

3.2. Two-scale asymptotic expansions 

Adapting standard two-scale asymptotic homogenization procedure (see, e.g., Sanchez-Palencia, 1980 ), we look for dis-

placement solutions in the form 

u = u ( x , x − c m 

t , t ) 

where u ( x , ξ , t ) is a solution to the motion equation 

( ∇ + n ∂ ξ ) · { C (ξ ) : [( ∇ + n ∂ ξ )�s u ( x , ξ , t)] } = (∂ t − c m 

∂ ξ )[ ρ(ξ )(∂ t − c m 

∂ ξ ) u ( x , ξ , t)] 

and is an L -periodic function of ξ where L is the unit cell thickness in the direction n . 

In the homogenization limit, L is infinitely small compared to the wavelength of travelling waves and ξ describes a mixed

space-time fast variable whereas x and t describe slow variables. Thus, derivatives with respect to ξ yield larger variations

than derivatives with respect to both x and t . The equation of motion is scaled accordingly into (
∇ + n 

∂ ξ
ε

)
·
{

C (ξ ) : 

[(
∇ + n 

∂ ξ
ε

)
�

s u 

ε ( x , ξ , t) 

]}
= 

(
∂ t − c m 

∂ ξ
ε

)[
ρ(ξ ) 

(
∂ t − c m 

∂ ξ
ε

)
u 

ε ( x , ξ , t) 

]
(16)

where the limit ε → 0 now corresponds to the homogenization limit. 

Finally, the scaled displacement field is expanded into the asymptotic series 

u 

ε ( x , ξ , t) = U ( x , ξ , t) + εδu ( x , ξ , t) + O (ε2 ) , (17)

U being the macroscopic displacement we wish to characterize and δu being its first order correction. 

3.3. Scale separation 

Inserting the expansion (17) into the scaled motion Eq. (16) and keeping the lowest order terms, those proportional to

ε−2 , yields 

n ∂ ξ ·
[
C (ξ ) : 

(
n ∂ ξ �

s U ( x , ξ , t) 
)]

= c 2 m 

∂ ξ
(
ρ(ξ ) ∂ ξU ( x , ξ , t) 

)
. 

When contracted with U and integrated with respect to ξ over a unit cell, the above equation yields ∫ L 

0 

∂ ξU ( x , ξ , t) · ( n · C (ξ ) · n − c 2 m 

ρ(ξ ) I ) · ∂ ξU ( x , ξ , t) d ξ = 0 , (18)

where I is the second order identity tensor. 

Now, we make the assumption that 

n · C (ξ ) · n − c 2 m 

ρ(ξ ) I 
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is definite positive for all ξ or definite negative for all ξ . This means that c m 

does not exceed any of the phase velocities in

direction n or exceeds all of them at once; a guarantee of continuity, as mentioned earlier. Note that C is possibly anisotropic

and that c m 

is allowed to match phase velocity in directions other than n . 

These considerations allow us to conclude that the integrand in (18) has a constant sign, implying 

∂ ξU = 0 . 

Thus, to the leading order, the displacement U does not depend on the fast variable ξ . The macroscopic and microscopic

scales described respectively by ( x , t ) and ξ are therefore separated. 

3.4. Localization tensors 

The second step, after scale separation, is to derive localization tensors which yield the microscopic variations of δu in

terms of the macroscopic strain and velocity fields. 

Inserting again (17) into (16) and keeping the terms proportional to ε−1 results in 

n ∂ ξ ·
[
C : 

(
n ∂ ξ �

s δu + E 

)]
= −c m 

∂ ξ
[
ρ
(
−c m 

∂ ξ δu + V 

)]
, (19) 

where explicit dependencies have been dropped to improve readability and 

E = E ( x , t) = ∇ �
s U ( x , t) , V = V ( x , t) = ∂ t U ( x , t) , 

are the macroscopic strain and velocity fields, respectively. 

The foregoing motion equation is a linear second order ordinary differential equation which can be integrated once into 

( n · C · n − c 2 m 

ρI ) · ∂ ξ δu = α − n · C : E − c m 

ρV 

with α being an integration constant, or rather ξ -independent, vector. The inequality constraint imposed upon c m 

means

that the second order tensor 

� = ( n · C · n − c 2 m 

ρI ) −1 (20) 

is well defined, symmetric and either positive or negative definite. Thus, we have 

∂ ξ δu = � · ( α − n · C : E − c m 

ρV ) . 

When averaged with respect to ξ , the left hand side above vanishes by periodicity and we are left with an equation which

can be solved for α, namely, 

0 = 〈 �〉 · α − 〈 � � n : C 〉 : E − c m 

〈 ρ�〉 · V . 

Therefore, 

α = 〈 �〉 −1 · 〈 � � n : C 〉 : E + c m 

〈 �〉 −1 · 〈 ρ�〉 · V 

since an average of positive or negative definite tensors, such as 〈 �〉 , is again positive or negative definite, ergo invertible.

Concluding, the localization equation can be expressed as 

∂ ξ δu = � ·
(〈 �〉 −1 · 〈 � � n : C 〉 − n · C 

)
: E + c m 

� ·
(〈 �〉 −1 · 〈 ρ�〉 − ρI 

)
· V . (21) 

3.5. Macroscopic motion and constitutive equations 

The macroscopic motion equation is obtained by averaging the scaled motion Eq. (16) and keeping leading order terms

those proportional to ε0 , 

∇ · � = ∂ t P 

where � and P are identified as the macroscopic stress and momentum fields. They are given by 

� = 

〈
C : ( n ∂ ξ �

s δu + E ) 
〉
, P = 

〈
ρ(−c m 

∂ ξ δu + V ) 
〉
. 

The macroscopic constitutive law follows from these by using the localization Eq. (21) of the previous paragraph. It takes

the form 

� = C e : E + S 1 · V , 

P = S 2 : E + ρe · V , (22) 

where the fourth order effective stiffness tensor C e , the third order Willis coupling tensors S 1 and S 2 , and the second order

effective mass density tensor ρe have the analytical closed form expressions 

C e = 〈 C 〉 + 〈 C : n � �〉 · 〈 �〉 −1 · 〈 � � n : C 〉 − 〈 C : n � � � n : C 〉 , 
S 1 = c m 

〈 C : n � �〉 · 〈 �〉 −1 · 〈 ρ�〉 − c m 

〈 ρC : n � �〉 , 
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S 2 = −c m 

〈 ρ�〉 · 〈 �〉 −1 · 〈 � � n : C 〉 + c m 

〈 ρ� � n : C 〉 , 
ρe = 〈 ρ〉 I − c 2 m 

〈 ρ�〉 · 〈 �〉 −1 · 〈 ρ�〉 + c 2 m 

〈
ρ2 �

〉
. (23)

The macroscopic constitutive law (22) couples stress to velocity and momentum to strain and is therefore of Willis form

( Willis, 1997 ). There are however a number of properties that distinguish the present constitutive relation from the ones

usually derived according to the Willis homogenization theory. 

1. The present macroscopic constitutive law is derived and is valid in the rigorous homogenization limit where there is a

clear scale separation as was demonstrated earlier. 

2. The macroscopic constitutive parameters are all local in both space and time and, as such, are independent of the fre-

quency and the wavenumber of the propagating waves. 

3. These parameters are unique, 

4. and real valued. 

Most notably, the coupling tensors do not vanish in general at infinitely low frequencies. 

On the other hand, due to the symmetry of C , � and ρI , the present macroscopic constitutive parameters satisfy the

same symmetry properties as the Willis parameters: 

C e = ( C e ) T , ρe = ( ρe ) T , S 1 = −( S 2 ) T . (24)

Using index notation, these become C e 
i jkl 

= C e 
kli j 

, ρe 
i j 

= ρe 
ji 

and S 1 
i jk 

= −S 2 
i jk 

. In addition, the symmetry of stress and strain

imposes the constraints C e 
i jkl 

= C e 
jikl 

and S 1 
i jk 

= S 1 
jik 

. All of these properties follow from the analytical expressions (23) . 

Note that the Willis coupling vanishes when either ρ or C is uniform. Conversely, the existence of a non-vanishing Willis

coupling requires that both C and ρ are modulated. The effective density remains unchanged with ρe = ρI if ρ is uniform;

hence, anisotropic density requires modulation of the density. The standard macroscopic constitutive behaviour of a laminate

is recovered in the absence of time modulations, i.e., for c m 

= 0 we obtain the spatially averaged homogenization result. In

the opposite extreme of infinite modulation speeds, c m 

→ ∞ , the calculated macroscopic behaviour is exact rather than

asymptotic and the macroscopic constitutive parameters simplify to the alternative averages 

C e = 〈 C 〉 , S 1 = S 2 = 0 , ρe = 〈 ρ−1 〉 −1 I . 

3.6. Example: slow modulation of isotropic layers 

A 1D example was thoroughly investigated in Section 2 . In higher dimensions d > 1, it is of interest to see how the

formulae (23) can be applied for, say, a slowly modulated laminate. In this case, C e is simply the macroscopic stiffness

tensor of the non-modulated laminate and its calculation is extensively discussed in the literature. As for the macroscopic

mass density, it reduces to the arithmetic mean of mass densities. Explicit expressions for the Willis coupling tensors S 1 and

S 2 are derived next for the particular example of isotropic layers. 

The elastic stiffness tensor of an isotropic medium is, using index notations, 

C i jkl = μ(δik δ jl + δil δ jk ) + λδi j δkl , 

where δ is the Kronecker delta and ( μ, λ) the Lamé coefficients. The acoustic tensor in direction n is therefore 

n · C · n = (μ + λ) n � n + μI . 

Let m span the directions orthogonal to n in an orthonormal basis of the d -dimensional space, such that I = n � n + m � m

with m summed over d − 1 dimensions. Then, 

n · C · n = (2 μ + λ) n � n + μm � m . 

Since c 2 m 

is neglected, the inverse of this expression yields the explicit result 

� = 

1 

2 μ + λ
n � n + 

1 

μ
m � m . 

The preliminary calculations 

n � � = 

1 

2 μ + λ
n � n � n + 

1 

μ
n � m � m , 

C : ( a � b ) = 2 μa �
s b + λ( a · b ) I , 

together yield 

C : n � � = 

1 

2 μ + λ
(2 μn � n + λI ) � n + 

1 

μ
(2 μn �

s m ) � m 

= n � n � n + 

λ

2 μ + λ
m � m � n + 2 n �

s m � m . 



26 H. Nassar et al. / Journal of the Mechanics and Physics of Solids 101 (2017) 10–29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Upon calculating in the same manner the remaining terms in the expression of S 1 , it can be concluded that 

S 1 /c m 

= 

( 〈 ρ/ (2 μ + λ) 〉 
〈 1 / (2 μ + λ) 〉 − 〈 ρ〉 

)
n � n � n + 

( 〈 λ/ (2 μ + λ) 〉 〈 ρ/ (2 μ + λ) 〉 
〈 1 / (2 μ + λ) 〉 − 〈 ρλ/ (2 μ + λ) 〉 

)
m � m � n 

+2 

( 〈 ρ/μ〉 
〈 1 /μ〉 − 〈 ρ〉 

)
n �

s m � m . 

A macroscopic velocity oriented in the direction of the modulation n therefore generates normal stresses in all directions n

and m whereas a macroscopic velocity normal to the direction of modulation will generate shear stresses in all the planes ( n ,

m ). Each time, the generated stresses are proportional to the calculated coupling parameters which in turn are proportional

to some contrast measure and to the modulation speed c m 

. 

3.7. Macroscopic dispersion relation 

In terms of the macroscopic displacement field, the macroscopic motion equation is 

∇ · [ C e : ( ∇ �
s U ) + S 1 · ∂ t U ] = ∂ t [ S 

2 : ( ∇ �
s U ) + ρe · ∂ t U ] . 

For a plane wave of wavenumber k and frequency ω, the amplitude U is a solution to the eigenvalue problem (
k · C e · k − 2 ω k · S − ω 

2 ρe 
)

· U = 0 . 

We have combined the coupling tensors S 1 and S 2 into one tensor with components 

S i jk = 

1 

2 

(
S 1 i jk − S 2 jik 

)
= 

1 

2 

(
S 1 i jk + S 1 ik j 

)
(25) 

implying k · S = ( k · S ) T . The macroscopic dispersion relation follows as 

det ( k · C e · k − 2 ω k · S − ω 

2 ρe ) = 0 . 

Thus, non-reciprocity caused by time modulations on the microscale is generally enforced on the macroscale by the Willis

coupling tensor S . 

The 1D examples treated in the first section show that the macroscopic dispersion equation does admit solutions. In the

general case however, the existence of propagating macroscopic modes at arbitrarily low non-null frequencies is not obvious

at all from the above macroscopic dispersion relation. The bounds we obtain in the next section will help prove that a

modulated periodic laminate in fact does allow low-frequency wave propagation. 

4. Energy considerations 

Even though formulae (23) are sufficient for calculation purposes, some general properties satisfied by the macroscopic

constitutive parameters are better understood from simple approximations or bounds derived next. An adapted version of

the Hill–Mandel relation ( Zaoui, 2002 ) will provide a first bound. A second bound stems from convexity/concavity of the po-

tential energy. Positive-definiteness, or lack thereof, of the macroscopic stiffness tensor and of the macroscopic mass density

as well as the existence of real macroscopic phase velocities are discussed and the conservation of energy is considered. 

4.1. Hill-Mandel relation: a first elementary bound 

The microscopic states of strain and velocity, to leading order, follow from Eq. (19) as 

ε = n ∂ ξ �
s δu + E , v = −c m 

∂ ξ δu + V , 

whereas the corresponding states of stress and momentum are called σ (= C ε ) and p (= ρv ) as before. Let ( δu , E , V ) and

( δu 

′ , E 

′ , V 

′ ) be two sets of solutions, with similar notations for ε ′ , v ′ , σ′ and p 

′ . A direct application of the virtual work

theorem to Eq. (19) yields 〈(
n ∂ ξ �

s δu 

′ ) : σ
〉
= 

〈
−c m 

∂ ξ δu 

′ · p 

〉
, 

or, 〈(
ε 

′ − E 

′ ) : σ
〉
= 

〈(
v ′ − V 

′ ) · p 

〉
. 

In conclusion, the Hill–Mandel relation stating the equality between the microscopic and macroscopic virtual works, 4 to

leading order, holds in the form 〈
ε 

′ : σ − v ′ · p 

〉
= 

〈
ε 

′ 〉 : 〈 σ〉 − 〈
v ′ 

〉
· 〈 p 〉 = E 

′ : � − V 

′ · P 

where the final identity follows from the definitions E = 〈 ε 〉 , etc. 
4 Or Lagrangian densities more accurately. 
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Incidentally, note that the symmetry of the left-most term, namely ε ′ : σ = ε ′ : σ′ and v ′ · p = v · p 

′ , induces a similar

symmetry on the right-most term. It follows immediately that 

E 

′ : � − V 

′ · P = E : �′ − V · P ′ . (26)

This provides a second proof of the symmetry properties of the macroscopic constitutive law in Eq. (24) . 

In order to obtain a first elementary bound, let V 

′ = V and 

E 

′ = E = − 1 

c m 

n �
s V . 

Expanding the various terms in the Hill–Mandel relation (26) and factoring leads to 〈(
−c m 

∂ ξ δu + V 

)
· �−1 ·

(
−c m 

∂ ξ δu + V 

)〉
= V ·

(
n · C e · n − 2 c m 

n · S − c 2 m 

ρe 
)

· V . 

This expression therefore has the same sign as � and is positive definite in the subsonic regime and negative definite in the

supersonic regime. Accordingly, a first elementary bound on the macroscopic constitutive parameters is 

n · C e · n − 2 c m 

n · S − c 2 m 

ρe > (< )0 . 

Above and below, when inequalities are written with two signs, it means that the first sign applies in the subsonic regime

whereas the second, parenthesised, applies in the supersonic regime. 

4.2. A second elementary bound 

The quadratic form n · C · n − c 2 m 

ρI (= �−1 ) defines a strictly convex (resp. concave) potential in the subsonic (resp. su-

personic) regime. Therefore, the solution δu to Eq. (19) minimizes (resp. maximizes) the energy functional 〈 
1 

2 

∂ ξ δu 

′ · �−1 · ∂ ξ δu 

′ + ( n ∂ ξ �
s δu 

′ ) : C : E + c m 

∂ ξ δu 

′ · (ρV ) 
〉 

among all periodic continuous fields δu 

′ . Taking δu 

′ = 0 in particular yields 〈 
1 

2 

∂ ξ δu · �−1 · ∂ ξ δu + ( n ∂ ξ �
s δu ) : C : E + c m 

∂ ξ δu · (ρV ) 
〉 

≤ (≥)0 . 

Then, with the help of the virtual work theorem, 〈
( n ∂ ξ �

s δu ) : C : E + c m 

∂ ξ δu · (ρV ) 
〉
≤ (≥)0 , 

or 

〈 ( σ − C : E ) : E − ( p − ρV ) · V 〉 ≤ (≥)0 . 

Finally, 

� : E − P · V ≤ (≥) E : 〈 C 〉 : E − 〈 ρ〉 V · V . 

Written in terms of constitutive laws, the second elementary bound is [
C e S 1 

−S 2 −ρe 

]
≤ (≥) 

[〈 C 〉 0 

0 −〈 ρ〉 I 
]
. 

This bound guarantees positive-definiteness for the macroscopic mass density tensor in the subsonic regime and for the

macroscopic stiffness tensor in the supersonic regime. Conversely, the macroscopic stiffness can become singular or even

negative in the subsonic regime. The same conclusion holds for the macroscopic density in the supersonic regime. Examples

were given in Section 2.6 . 

4.3. Repercussions on the macroscopic dispersion curve 

In non-modulated media, the existence of low-frequency macroscopic waves is a consequence to the positivity of the

macroscopic elastic stiffness tensor and of mass density. In resonant metamaterials for instance, it is known that a negative

stiffness or a negative mass density introduces a bandgap in the dispersion curve. In contrast, for the modulated laminate,

we prove in this subsection that no total bandgaps appear even when the macroscopic stiffness or mass density becomes

negative. 

More specifically, let U be a macroscopic plane wave of frequency ω and wavenumber k propagating in the modulation

direction n . The phase velocity V = ω/k is therefore a solution to the dispersion equation 

det 
(V ) = 0 , 

where 
( V ) is the second order tensor 


(V ) = n · C e · n − 2 V n · S − V 

2 ρe . 
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Our purpose is to prove that this equation has real solutions. The argument below is presented for subsonic modulations. A

similar argument is available for supersonic modulations but is skipped. 

In the subsonic regime, ρe is a positive definite tensor as it is larger than 〈 ρ〉 I by the second elementary bound. Thus,

when V approaches ± ∞ , 
( V ) becomes asymptotic to −V 2 ρe and has only negative eigenvalues. On the other hand, we

know that 
( c m 

) is a positive definite tensor thanks to the first elementary bound. Consequently, when V goes from −∞ ,

to c m 

, to + ∞ , the eigenvalues of 
( V ) go from negative, to positive then to negative again. Hence, by continuity, each

eigenvalue of 
( V ) vanishes twice and det 
(V ) vanishes 2 d times (counted with multiplicity). In conclusion, a modulated

laminate has d acoustic branches. The phase velocity directions associated with these branches remain however undeter-

mined and are in general unevenly distributed due to the breaking of time-reversal symmetry. 

This existence result is how the inequality s 2 + ρe c e ≥ 0 seen in Section 2.6 generalizes to arbitrary dimensions. 

4.4. A remark on energy conservation 

The equation of conservation of energy reads 

∂ t E − ∇ · ( v · σ) = 

1 

2 

ε : ∂ t C : ε − 1 

2 

∂ t ρv · v , 

where E is the total potential and kinetic energy, −v · σ is energy flux and the right-hand term is an energy source/sink due

to the time modulation of the constitutive properties. 

As for the macroscopic scale, a pseudo-energy density F similar to E can be defined through 

F = 

1 

2 

� : E + 

1 

2 

P · V . 

Then, the macroscopic motion equation along with the symmetries satisfied by the macroscopic constitutive parameters

guarantee that the equation of conservation of pseudo-energy 

∂ t F − ∇ · ( V · �) = 0 

holds. At first sight, it looks like the microscopic energy source/sink has no effects on the macroscopic scale. This is not true

however. In fact, the macroscopic equation of conservation of energy is 

∂ t 〈 E 〉 − ∇ · 〈 v · σ〉 = 

〈 
1 

2 

ε : ∂ t C : ε − 1 

2 

∂ t ρv · v 
〉 
, 

and, in general, 

F � = 〈 E 〉 , V · � � = 〈 v · σ〉 , 
〈 

1 

2 

ε : ∂ t C : ε − 1 

2 

∂ t ρv · v 
〉 

� = 0 . 

A side effect is that the macroscopic energy velocity obtained as the ratio of the macroscopic energy flux to the macroscopic

energy density, i.e., 

−〈 v · σ〉 
〈 E 〉 , 

is different from the macroscopic group velocity, previously denoted V , and equal to the ratio of the pseudo-energy flux to

the pseudo-energy density 

−V · �
F 

. 

Indeed, the latter can become infinite whereas the former is necessarily finite as was discussed in Section 2.6 . 

5. Conclusion 

A periodic wave-like modulation of the constitutive parameters of a medium is sometimes referred to as a “pump wave”.

A wave propagating with the modulating pump wave is scattered differently than when it is propagating against it. This bias

is equivalent to the breaking of time reversal symmetry and reciprocity of wave propagation in the modulated medium. To

first order, i.e., for low-amplitude slow modulations, non-reciprocity is only visible near the edges of the different Brillouin

zones. In a modulated medium, Bragg reflection occurs at different frequencies for left-going and right-going waves. In other

words, a wave that is totally reflected when incident from the right can be totally transmitted if incident from the left and

vice versa. In terms of bandgaps, total bandgaps are “sheared” into directional bandgaps. 

As modulation speed and amplitude increase, non-reciprocity becomes visible at lower frequencies. Most remarkably, 

when both elastic moduli and mass density are strongly modulated, non-reciprocity manifests in the homogenization limit

so that left- and right-going waves have different group velocities. These predicted anomalous wave phenomena were also

verified by numerical simulations. The corresponding macroscopic constitutive behaviour turns out to be of the Willis type

where the Willis stress-velocity and momentum-strain coupling tensor directly quantifies non-reciprocity and the bias in

group velocities. Closed form analytical expressions of the macroscopic constitutive stiffness, mass density and coupling
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tensors are obtained for modulated laminates in arbitrary dimensions extending thus the standard results for periodic (non-

modulated) laminates. Finally, some elementary energy bounds based on extensions of the Hill–Mandel relation and the

potential energy principle allow us to gain further insight into the structure of the macroscopic Willis constitutive law. 

To the best of the authors’ knowledge, the studied modulated laminates provide the first example of a genuine Willis

behaviour, i.e., with a substantial Willis coupling, valid in the strictly scale-separated homogenization limit. Furthermore,

the existence of simple closed-form analytical expressions makes it possible to tackle inverse problems, say, for cloaking

applications, whereby the Willis parameters are given and the microstructure and the modulation are solved for. On the

other hand, the practical feasibility of these modulated media, where stiffness and mass density change in time, is yet to be

demonstrated. To that end, techniques such as magnetic stimuli in magnetorheological elastomers, trains of shock waves in

soft materials, the photo-elastic effect, programmable piezoelectric circuits or a combination thereof could be exploited. 
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