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Abstract In the model of local computation algorithms (LCAs), we aim to compute
the queried part of the output by examining only a small (sublinear) portion of the
input. Many recently developed LCAs on graph problems achieve time and space
complexities with very low dependence on n, the number of vertices. Nonetheless,
these complexities are generally at least exponential in d, the upper bound on the
degree of the input graph. Instead, we consider the case where parameter d can be
moderately dependent on n, and aim for complexities with subexponential dependence
on d, while maintaining polylogarithmic dependence on n. We present:

– a randomized LCA for computingmaximal independent sets whose time and space
complexities are quasi-polynomial in d and polylogarithmic in n;

– for constant ε > 0, a randomized LCA that provides a (1 − ε)-approximation to
maximummatching with high probability, whose time and space complexities are
polynomial in d and polylogarithmic in n.
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1 Introduction

In the face of massive data sets, classical algorithmic models, where the algorithm
reads the entire input, performs a full computation, then reports the entire output,
are rendered infeasible. To handle these data sets, the model of local computation
algorithms (LCAs) has been proposed. As defined in [37], these algorithms compute
the queried part of the output by examining only a small (sublinear) portion of the
input. Let us consider the problem of finding a maximal independent set (MIS) as
an example. The algorithm A is given access to the input graph G, then it is asked
a question: “is vertex v in the MIS?” The algorithm then explores only a small por-
tion of G, and answers “yes” or “no.” The set of vertices {v : A answers “yes” on v}
must indeed form a valid MIS of G. LCAs have been constructed for many problems,
includingMIS, maximal matching, approximate maximummatching, vertex coloring,
and hypergraph coloring [4,14,27,28,36,37]. In our paper, we studyMIS and approx-
imate maximum matching; these are fundamental graph problems, well-studied in
many frameworks, and moreover, tools and results for these problems have proven to
be useful as building blocks for more sophisticated and specialized problems in the
field.

The LCA framework is motivated by the circumstances where we focus on comput-
ing a small, specified portion of the output. This key characteristic of LCAs generalizes
many other models from various contexts. For instance, LCAs may take the form of
local filters and reconstructors [1,9–11,20,21,23,38]. Important applications include
locally decodable codes (e.g., [40]), local decompression [13,30], and locally com-
putable decisions for online algorithms and mechanism design [17,27]. There are a
number of works on related models of local computation (e.g., [5,8,33,39]) as well
as lower bounds for the LCA framework and other models (e.g., [16]).

Many recently developed LCAs on graph problems achieve time and space com-
plexities with very low dependence on n, the number of vertices. Nonetheless, these
complexities are at least exponential in d, the upper bound on the degree of the input
graph. While these papers often consider d to be a constant, the large dependence on d
may forbid practical uses of these algorithms. In this work we consider the case where
the parameter d can bemoderately dependent on n, and provide LCAs for complexities
that have quasi-polynomial and even polynomial dependence on d, while maintaining
polylogarithmic dependence on n. As noted in [27], whether there exist LCAs with
polynomial dependence on d for these problems is an interesting open question. Our
paper answers this question for the approximate maximum matching problem in the
affirmative, and aims at providing techniques useful towards resolving other problems.

1.1 Our Contribution

This paper addresses the maximal independent set problem and the approximate max-
imummatching problem. The comparison between our results and other approaches is
given in Table 1. All prior work on these problems only achieve time and query com-
plexities with exponential dependence on d. Our paper provides the first LCAs whose
complexities are quasi-polynomial and polynomial in d for these respective prob-
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Table 1 The summary of complexities of various LCAs

Problem Citation Type Time Space

MIS [37] Randomized 2O(d log2 d) log n O(n)

[4] Randomized 2O(d log2 d) log3 n 2O(d log2 d) log2 n

[14] Deterministic 2O(d2 log2 d) log∗ n† None

[36] Randomized 2O(d) log2 n 2O(d) log n log log n

2O(d) log n log log n 2O(d) log2 n

This paper Randomized 2O(log3 d) log3 n 2O(log3 d) log2 n

Approximate
maximum
matching

[28] Randomized O(log4 n)‡ O(log3 n)‡

[14] Deterministic 2poly(d)poly(log∗ n)† None

This paper Randomized poly{d, log n} poly{d, log n}
For the approximate maximum matching problem, ε is assumed to be constant
† Query complexity, when time complexity is not explicitly given in the paper
‡ Hidden dependence on d, which is at least 2O(d) but not explicitly known

lems, while maintaining polylogarithmic dependence on n. More concretely, when
d is non-constant, previously known LCAs have complexities with polylogarithmic
dependence on n only when d = O(log log n). Our LCAs maintain this dependence
even when d = exp(Θ((log log n)1/3)) for the MIS problem and d = poly(log n) for
the approximatemaximummatching problem. It is worthmentioning that our LCA for
the MIS problem may be extended to handle other problems with reductions to MIS,
such as maximal matching or (d + 1)-coloring, while maintaining similar asymptotic
complexities.

1.2 Our Approaches

1.2.1 Maximal Independent Set

We provide an LCA for computing a MIS whose time and query complexities are
quasi-polynomial in d. We construct a two-phase LCA similar to that of [37], which
is based on Beck’s algorithmic approach to Lovász local lemma [7]. In the first phase,
we find a large partial solution that breaks the original graph into small connected
components. The LCA for the first phase is obtained by applying the Parnas–Ron
reduction which locally simulates distributed algorithms [34]. We improve upon the
distributed algorithm used by [37] by occupying new insights from [6]. Via the Parnas–
Ron reduction, the time and query complexities of the first phase of our algorithm
remain subexponential in d. Then, in the second phase, we explore each component
and solve our problems deterministically; the complexities of this phase are bounded
by the component sizes. By employing a technique from [4], we reduce the amount
of space required by our LCA so that it has roughly the same asymptotic bound as its
time and query complexities.
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1.2.2 Approximate Maximum Matching

We provide an LCA for computing a (1− ε)-approximate maximum matching whose
time and query complexities are polynomial in d. Our algorithm locally simulates the
global algorithm based on Hopcroft and Karp’s lemma [18]. This global algorithm
begins with an empty matching, then for Θ(1/ε) iterations, augments the maintained
matchingwith amaximal set of vertex-disjoint augmenting paths of increasing lengths.
Yoshida et al. [41] show that this global algorithm has an efficient local simulation in
expectation on the queries and the random tapes. We derive from their analysis that,
on most random tapes, this simulation induces small query trees on most vertices.
From this observation, we construct an efficient two-phase LCA as follows. In the
first phase, we repeatedly check random tapes until we find a good tape such that the
query trees for most vertices are small. This test can be performed by approximating
the number of vertices whose query trees are significantly larger than the expected
size through random sampling. In the second phase, we simulate the aforementioned
algorithm using the acquired random tape. On queries for which the query trees are
significantly large, we stop the computation and report that those edges do not belong
to the matching. Our good tape from the first phase limits the number of such edges,
allowing us to acquire the desired approximation with high probability.

1.3 Related Work

In our work we build on the Parnas–Ron reduction, proposed in their paper on approx-
imating the size of a minimum vertex cover (VC) [34]. This reduction turns a k-round
distributed algorithm into an LCA by examining all vertices at distance up to k from
the queried vertex, then simulating the computation done by the distributed algo-
rithm, invoking dO(k) queries to the input graph in total. Applying this technique
on distributed subroutines with O((log d)/ε3) and O(log d) rounds, they obtain a
2-approximation for the size of a minimum VC (with εn additive error) with query
complexity dO((log d)/ε3), and a c-approximation for c > 2 using dO(log d)/ε2 queries,
respectively. Marko and Ron later improve this result to a (2+ ε)-approximation with
query complexity dO(log(d/ε)) [29]. Rubinfeld et al. apply the same method on a sub-
routine for the MIS problem that requires O(d log d) rounds, which yields an LCA
with query and time complexities dO(d log d) log n in [37].

Many useful techniques for designing LCAs originate from algorithms for approx-
imating the solution size in sublinear time via random sampling. For example, if we
wish to approximate the size of theminimumVC, wemay sample a number of vertices
and check whether each of them belongs to the minimum VC or not. The main dif-
ference, however, is that an LCA must be able to compute the answer to every query,
while an approximation algorithm is not required to produce a consistent answer for
every sample, and may use other properties of the problem to infer its answer. We
make use of a number of common techniques from these approximation algorithms.

A powerful technique for bounding the query and time complexities for these
approximation algorithms is the query tree method from the Nguyen–Onak algorithm
[31]. This method aims to convert global algorithms that operate on the entire input
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into local algorithms that adaptively make queries when a new piece of information
is needed. To illustrate this approach, let us consider the MIS problem as an example.
Recall the sequential greedy algorithm where we maintain an initially empty set I ,
then iterate through the vertex set in a certain order, adding each vertex to I if it does
not already have a neighbor in I . Each vertex v will be in the resulting MIS if and
only if none of v’s neighbors that precede v in our order is already in the MIS. From
this observation, we may create a local simulation of this algorithm as follows. To
determine whether v is in the MIS, we make recursive queries on each of v’s neigh-
bors that precede v in our order, and check whether each of them is in the MIS. Then,
return YES if none of the queries on these neighbors returns YES; otherwise, return
NO. The structure of our recursive queries forms a query tree, whose size governs the
complexities of our local simulation.

Nguyen and Onak apply this approach on a random order of vertices so that the
size of the query tree, which determines the time and query complexities, can be
probabilistically bounded. This method is used in [4,17,27,28,36], giving query com-
plexities with polylogarithmic dependence on n for various problems. Unfortunately,
the expected query tree size is exponential in d, which is considered constant in these
papers. For certain problems, a slight modification of the Nguyen-Onak algorithm
reduces the expected query tree size to O(d̄), where d̄ is the average degree of the
input graph [32,41]. This gives algorithms with poly(d̄) query complexity for approx-
imating the sizes of maximum matching and minimum VC with multiplicative and
additive errors. These sublinear-time algorithms for approximating solution sizes do
not actually compute explicit approximate solutions, and thus do not lead directly to
LCAs. Nonetheless, we build on the query tree method in order to obtain an LCA for
the approximate maximum matching problem whose query and time complexities are
polynomial in d.

Recently, a newmethod for bounding the query tree sizes using graph orientation is
given in [14] based on graph coloring, which improves upon LCAs for several graph
problems. They reduce the query complexity of their algorithm for the MIS problem
to dO(d2 log d) log∗ n, giving the lowest dependence on n currently known, as well as a
new direction for developing deterministic LCAs. This approach can also be extended
back to improve distributed algorithms for certain cases [15].

While all of these LCAs have complexities with exponential dependence on d for
the problems studied in this paper, there has been no significant lower bound. To the
best of our knowledge, the only lower bound is of Ω(d̄), which can be derived from
the lower bound for approximation algorithms for the minimum VC problem, given
by Parnas and Ron [34].

2 Preliminaries

2.1 Graphs

The input graph G = (V, E) is a simple undirected graph with |V | = n vertices and
a bound on the degree d, which is allowed to be dependent on n. Both parameters
n and d are known to the algorithm. Let d̄ denote the average degree of the graph.
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Each vertex v ∈ V is represented as a unique positive ID from [n] = {1, . . . , n}. For
v ∈ V , let degG(v) denote the degree of v, ΓG(v) denote the set of neighbors of v, and
Γ +
G (v) = ΓG(V ) ∪ {v}. For U ⊆ V , define Γ +

G (U ) = ∪u∈UΓ +
G (u). The subscript G

may be omitted when it is clear from the context.
We assume that the input graph G is given through an adjacency list oracle OG

which answers neighbor queries: given a vertex v ∈ V and an index i ∈ [d], the
i th neighbor of v is returned if i ≤ deg(v); otherwise, ⊥ is returned. For simplicity,
we will also allow a degree query which returns deg(v) when v is given; this can be
simulated via a binary-search on O(log d) neighbor queries.

An independent set I is a set of vertices such that no two vertices in I are adjacent.
An independent set I is a maximal independent set if no other vertex can be added to
I without violating this condition.

Amatching M is a set of edges such that no two distinct edges inM share a common
endpoint. A matching is a maximal matching if no other edge can be added to M out
violating this condition. Let V (M) denote the set of matched vertices, and |M | denote
the size of thematching, defined to be the number of edges inM . Amaximummatching
is a matching of maximum size.

2.2 Local Computation Algorithms

We adopt the definition of local computation algorithms from [37], in the context of
graph computation problems given an access to the adjacency list oracle OG .

Definition 1 A local computation algorithm A for a computation problem is a (ran-
domized) algorithm with the following properties.A is given access to the adjacency
list oracle OG for the input graph G, a tape of random bits, and local read-write com-
putation memory. When given an input (query) x , A must compute an answer for x .
This answer must only depend on x , G, and the random bits. The answers given byA
to all possible queries must be consistent; namely, all answers must constitute some
valid solution to the computation problem.

The complexities of an LCA A can be measured in various different aspects, as
follows.

– The query complexity is the maximum number of queries thatA makes to OG in
order to compute an answer (to the computation problem) for any single query.1

– The time complexity is the maximum amount of time that A requires to compute
an answer to any single query. We assume that each query to OG takes a constant
amount of time.

– The space complexity is the maximum total size of the random tape and the local
computation memory used by A to answer any single query.

– The success probability is the probability thatA consistently answers all queries.

1 Some recent work on LCAs uses the alternative term “probe” to refer to queries that A makes to OG ,
in order to distinguish them from queries that we ask A to answer; the corresponding complexity is
called the probe complexity. We choose not to adopt this notation since both types of queries will often be
indistinguishable when we construct oracles for intermediate graphs during the execution of our algorithms.
It will also contradict with the term “query tree,” which is unanimously used in other work on this method.
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In this paper, we refer to the time and query complexities rather exchangeably:
while the time complexity may be much larger than the query complexity in certain
cases, for all LCAs considered here, the time complexities are only roughly a factor of
O(log n) larger than the query complexities. The space complexity of our LCAs are
dominated by the size of the random tape, so we often refer to the space complexity
as seed length instead. As for the success probability, we consider randomized LCAs
that succeed with high probability; that is, the success probability can be amplified
to reach 1 − n−c for any positive constant c without asymptotically increasing other
complexities.

2.3 Parnas–Ron Reduction

Some of our algorithms apply the reduction from distributed algorithms to LCAs
proposed by Parnas andRon [34]. This reductionwas originally created as a subroutine
for approximation algorithms. The model of distributed computation they consider is
theLOCAL model, informally described as follows. The input graph G, which is
the input of our computation problem, also describes the network graph on which the
distributed algorithm operates: computation can be performed locally at each vertex,
and each edge connects a pair of vertices that may communicate directly with each
other. The algorithmoperates in synchronous communication rounds. In a single round,
each vertex may send an arbitrarily large message to each of its neighbors; once a
vertex receive all messages from its neighbors, it may perform an unlimited amount of
computation based on the information it currently has. The goal is to design distributed
algorithms that minimize the number of rounds required for every vertex to determine
its answer (e.g., whether it is in the MIS).

Suppose that when a distributed algorithmA is executed on a graph G with degree
bounded by d, each vertex v is able to compute some function f within k communi-
cation rounds. Then this function f must only depend on the subgraph of G induced
by vertices at distance at most k from v. We can then create an LCAA ′ that computes
f by simulating A . Namely, A ′ first queries the oracle to learn the structure of this
subgraph, then makes the same decision on this subgraph as A would have done. In
total, this reduction requires dO(k) queries to OG .

2.4 Construction of Random Bits and Orderings

While our LCAs rely on random bits and orderings, we do not require all bits or
orderings to be truly random: LCAs tolerate some dependence or bias, as they only
access a small portion of such random instance in each query. We now provide some
definitions and theorems we will use to construct our LCAs.

2.4.1 Random Bits

We will use the following construction to generate k-wise independent random bits
from the seed (truly random bits) given on the random tape.
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Theorem 1 ([3]) For 1 ≤ k ≤ m, there is a construction of k-wise independent
random bits x1, . . . , xm with seed length O(k logm). Furthermore, for 1 ≤ i ≤ m,
each xi can be computed in space O(k logm).

Note here that each random bit generated from this construction is either 0 or 1 with
equal probability. Nonetheless, for any positive integer q, we may generate a random
bit that is 1 with probability exactly 1/q using O(log q) such truly random bits.

2.4.2 Random Orderings

For n ≥ 1, let Sn denote the set of all permutations on [n]. Some of our LCAs make
use of random permutations of the vertex set. Generating such uniformly random
permutations requiresΩ(n log n) truly randombits. Nonetheless, we apply themethod
from [4] to construct good random permutations for our LCAs.

We generate our permutations by assigning a random value r(v) to each element
v, and rank our elements according to these values. More formally, an ordering of
[n] is an injective function r : [n] → R where R is some totally ordered set. Let
v1, . . . , vn be the elements of [n] arranged according to their values mapped by r ;
that is, r(v1) < · · · < r(vn). We call the permutation π = (v1, . . . , vn) of [n]
corresponding to this ordering the projection of r onto Sn . We may refer to r(v) as the
rank of v. In our construction, the size of the range of R is polynomial in n.

A random orderingD of [n] is a distribution over a family of orderings on [n]. For
any integer 2 ≤ k ≤ n, we say that a random ordering D is k-wise independent if
for any subset S ⊆ [n] of size k, the restriction of the projection onto Sn of D over
S is uniform over all the k! possible orderings among the k elements in S. A random
ordering D ′ is ε-almost k-wise independent if there exists some k-wise independent
random ordering D such that the statistical distance between D and D ′ is at most ε.

We shall use the following construction from Alon et al. [4].

Theorem 2 ([4]) Let n ≥ 2 be an integer and let 2 ≤ k ≤ n. Then there is a
construction of (1/n2)-almost k-wise independent random ordering over [n] whose
seed length is O(k log2 n).

3 Maximal Independent Set

3.1 Overview

Our algorithm consists of two phases. The first phase of our algorithm computes a
large MIS, using a variation of Luby’s randomized distributed algorithm [26]. Luby’s
algorithm can be briefly described as follows. We begin with an initially empty inde-
pendent set I , then repeatedly add more vertices to I . In each round, each vertex v

tries to put itself into I with some probability. It succeeds if none of its neighbors also
tries to do the same in that round; in this case, v is added to I , and Γ +(v) is removed
from the graph.

By repeating this process with carefully chosen probabilities, we show that once the
first phase terminates, the remaining graph contains no connected component of size
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larger than d4 log n with high probability. This phase is converted into an LCA via the
Parnas–Ron reduction. Lastly, in the second phase, we locally compute an MIS of the
remaining graph by simply exploring the component containing the queried vertex.

3.2 Distributed Algorithm: Phase 1

The goal of the first phase is to find an independent set I such that removing Γ +(I )
breaks G into components of small sizes. We design our variation of Luby’s algorithm
based on Beck’s algorithmic approach to Lovász local lemma [7]; this approach has
been widely applied in many contexts (e.g., [2,6,22,37]). We design our algorithm
based on the degree reduction idea from [6].2 Our algorithm turns out to be very similar
to the Weak- MIS algorithm from a recent paper by Chung et al. [12]. We state their
version, given in Algorithm 1, so that we may cite some of their results.

Let us say that a vertex v is active if v /∈ Γ +(I ); otherwise v is inactive. As similarly
observed in [35], applying a round of Luby’s algorithm with selection probability
1/(d + 1) on a graph with maximum degree at most d makes each vertex of degree at
least d/2 inactivewith constant probability. To apply this observation, in each iteration,
we first construct a graph G ′ of active vertices. Next, we apply Luby’s algorithm so
that each vertex of degree at least d/2 becomes inactive with constant probability.
We then remove the remaining high-degree vertices from G ′ (even if they may still
be active). As the maximum degree of G is halved, we repeat this similar process for
�log d� stages until G ′ becomes edgeless, where every vertex can be added to I . Since
each vertex becomes high-degree with respect to the maximum degree of G ′ at some
stage, each iteration gives every vertex a constant probability to become inactive.

Algorithm 1 Chung et al.’sWeak- MIS algorithm
1: procedure Weak- MIS(G, d)
2: I ← ∅
3: for iteration i = 1, . . . , c1 log d do � c1 is a sufficiently large constant
4: G′ ← G[V \ Γ +(I )]
5: for stage j = 1, . . . , �log d� do
6: Vj ← {v ∈ V (G′) : degG′ (v) ≥ d/2 j }
7: each v ∈ V (G′) selects itself with probability p j = 1/( d

2 j−1 + 1)

8: if v is the only vertex in Γ +
G′ (v) that selects itself then

9: add v to I and remove Γ +
G′ (v) from G′

10: remove Vj from G′
11: add V (G′) to I
12: return I

Chung et al. use Weak- MIS to construct an independent set such that the prob-
ability that each vertex remains active is only 1/poly(d) [12]. We cite the following

2 Applying a similar reduction on the unmodified version gives an LCA with complexities

2O(log3 d+log d log log n).
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useful lemma that captures the key idea explained earlier, and include their proof for
completeness.

Lemma 1 ([12]) In Algorithm 1, if v ∈ Vj , then v remains active after stage j with
probability at most p = 1 − 1/4e2.

Proof For each u ∈ ΓG ′(v), let Eu denote the event where u is the only vertex in
Γ +
G ′({u, v}) that selects itself. Since the maximum degree in G ′ is at most d/2 j−1,

then

Pr[Eu] = p j (1 − p j )
|Γ +

G′ ({u,v})| ≥ p j (1 − p j )
2d/2 j−1 ≥ p j

e2
.

Notice that Eu is disjoint for each u ∈ ΓG ′(v). Since v ∈ Vj , then degG ′(v) ≥ d/2 j .
Thus v becomes inactive with probability at least

∑

u∈ΓG′ (v)

Pr[Eu] ≥ degG ′(v) ·
( p j

e2

)
≥ 1

4e2
,

as desired. ��
Observe that for v to remain active until the end of an iteration, it must be removed

in step 10 due to its high degree. (If v were removed in line 9 or line 11, then v would
have become inactive since either v or one of its neighbors is added to I .) Therefore,
v must belong to one of the sets Vj . So, each vertex may remain active throughout
the iteration with probability at most p. After Ω(log d) iterations, the probability that
each vertex remains active is only 1/poly(d), as desired.

Now we follow the analysis inspired by that of [6] to prove the guarantee on the
maximum size of the remaining active components. Consider a set S ⊆ V such that
distG(u, v) ≥ 5 for every distinct u, v ∈ S. We say that S is active if every v ∈ S is
active. As a generalization of the claim above, we show the following lemma.

Lemma 2 Let S ⊆ V be such that distG(u, v) ≥ 5 for every distinct u, v ∈ S, then
S remains active until Weak- MIS terminates with probability at most d−c′

1|S| where
c′
1 = −c1 log p.

Proof First let us consider an individual stage. Suppose that S is active at the beginning
of this stage. By Lemma 1, each vertex v ∈ S ∩ Vj remains active after this stage
with probability at most p. Notice that for each round of Luby’s algorithm, whether v

remains active or not only depends on the random choices of vertices within distance
2 from v: we need to know whether each u ∈ Γ +(v) is added to I , which can be
determined based on the random choices of all vertices of Γ +(u). Since the vertices
in S are at distance at least 5 away from one another, the events for all vertices in S
are independent. Thus, the probability that S remains active after this stage is at most
p|S∩Vj |.

Now we consider an individual iteration. Suppose that S is active at the beginning
of this iteration. By applying an inductive argument on each stage, the probability that
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S remains active at the end of this iteration is at most p
∑�log d�

j=1 |S∩Vj |. Recall that for
S to remain active after this iteration, every v ∈ S must belong to some set Vj . So,∑�log d�

j=1 |S ∩ Vj | = |S|. Thus, S remains active with probability at most p|S|.
Lastly, we apply the inductive argument on each iteration to obtain the desired

bound of (p|S|)c1 log d = d |S|(c1 log p) = d−c′
1|S|. ��

Now we are ready to apply Beck’s approach to prove the upper bound on the max-
imum size of the remaining active components ([7]; see also [37]). For completeness,
we also provide the proofs that we adopt from other work.

Theorem 3 Weak- MIS(G, d) computes an independent set I of an input graph G
within O(log2 d) communication rounds, such that the subgraph of G induced by
active vertices contains no connected component of size larger than d4 log n with
probability at least 1 − 1/poly(n).

Proof Let T be a tree embedded on the distance-5 graph, defined as (V, {(u, v) :
distG(u, v) = 5}), such that distG(u, v) ≥ 5 for every distinct u, v ∈ V (T ). Let
S = V (T ) be its vertex set, and s = |S| denote its size. By Lemma 2, the probability
that S remains active is d−c′

1s . First we give the following claim that bounds the number
of distinct possible trees. ��
Claim 3 ([37]) There are at most n(4d5)s distinct trees T of size s embedded on the
distance-5 graph.

Proof of Claim 3 First, recall that the Catalan numbers count non-isomorphic ordered
trees (rooted trees such that the children of each vertex are ordered; also known as
(rooted) plane trees). Specifically, the number of such trees with s vertices is

Cs−1 = 1

s − 1

(
2s − 2

s − 1

)
< 4s,

where Cs−1 denote the (s − 1)th Catalan number.
Consider a specific rooted tree T ∗ on s vertices. Let us bound the number of distinct

trees T on the distance-5 graph that are isomorphic to T ∗. Consider the vertices of
T ∗ in pre-order. The root of T ∗ can be mapped to any of the n vertices. Each of its
s − 1 subsequent vertices must be adjacent to the previously chosen vertex of T that
corresponds to its parent in T ∗, so the number of possible choices for each vertex
is bounded by the maximum degree. Recall that the distance-5 graph has maximum
degree at most d(d − 1)4 < d5. Thus there are at most n(d5)s possible trees T
isomorphic to T ∗.

Since there are less than 4s non-isomorphic ordered trees on s vertices, and we may
construct up to n(d5)s trees on the distance-5 graph according to each structure, then
there are at most n(4d5)s distinct possible trees T , as desired. ��

Since there are at most n(4d5)s distinct trees of size s embedded on the distance-5
graph, the expected number of such trees whose vertex sets remain active is at most
n(4d5)s · d−c′

1s . Note that we may obtain any arbitrary large constant c′
1 by increasing
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the constant c1 in Algorithm 1. Thus, for s = log n, this quantity is bounded above
by 1/poly(n). By Markov’s inequality, all such sets S are inactive with probability at
least 1 − 1/poly(n).

Next, we consider the following observation from [7].

Claim 4 ([7]) Any connected subgraph H ⊆ G of size at least sd4 contains some set
S of size s such that distG(u, v) ≥ 5 for every distinct u, v ∈ S.

Proof of Claim 4 We prove this claim by constructing S = {v1, . . . , vs} for the con-
nected subgraph H as follows. We choose the first vertex v1 from H arbitrarily. Next,
we choose each subsequent vertex v j so that the maximum distance from v j to the pre-
viously chosen vertices v1, . . . , v j−1 is exactly 5. To show that such vertex v j exists,
notice that the number of vertices that are at distance at most 4 from every previously
chosen vertex is at most ( j − 1)(1 + d + d(d − 1) + d(d − 1)2 + d(d − 1)3) < sd4

(for d ≥ 2). Since there are at least sd4 vertices in H , then there exists some vertex
u ∈ H at distance at least 5 from all previously chosen vertices. As H is connected,
there exists a path in H from v1 to u. Then one of the vertices on this path must be at
distance exactly 5 from {v1, . . . , v j−1}, satisfying the required condition for v j .

Notice that from our construction, all vertices in S must be at distance at least 5
from one another. Since each vertex v j is at distance exactly 5 from some previously
chosen vertex vi , then vi and v j are adjacent in the distance-5 graph. Thus, S is a
vertex set for some tree T embedded on the distance-5 graph. ��

Recall that all such sets S are inactive with probability at least 1−1/poly(n). Since
a connected subgraph of G of size at least d4 log n must contain some such set S,
the probability that any large connected component remains active after Weak- MIS
terminates is also bounded above by 1/poly(n). ��

3.3 Constructing the LCA: Phase 1

Wenowprovide the Parnas–Ron reduction ofWeak- MIS inAlgorithm1 into anLCA.
Let us start with a single stage, given as procedure LC- MIS- Stage in Algorithm 2.
The given parameters are the graph G ′ (via oracle access), the degree bound d, the
queried vertex v, the iteration number i and the stage number j . Given a vertex v, this
procedure returns one of the three states of v at the end of iteration i , stage j :

– YES if v ∈ I (so it is removed from G ′)
– NO if v /∈ I and it is removed from G ′
– ⊥ otherwise, indicating that v is still in G ′

For simplicity, we assume that the local algorithm has access to random bits in
the form of a publicly accessible function B : V × [c1 log d] × [�log d�] → {0, 1}
such that B(v, i, j) returns 1 with the selection probability p j (from Algorithm 1, line
7) and returns 0 otherwise. This function can be replaced by a constant number of
memory accesses to the random tape, and we will explore how to reduce the required
amount of random bits in Sect. 3.5. Note also that we are explicitly giving the oracle
OG ′

as a parameter rather than the actual graph G ′. This is because we will eventually

123



Algorithmica (2017) 77:971–994 983

Algorithm 2 LCA of Phase 1 for a single stage of Weak- MIS

1: procedure LC- MIS- Stage(OG′
, d, v, i, j)

2: if j = 0 then return ⊥
3: if LC- MIS- Stage(OG′

, d, v, i, j − 1) �= ⊥ then
4: return LC- MIS- Stage(OG′

, d, v, i, j − 1)
5: for each u within distance 2 from v on G′ do
6: if LC- MIS- Stage(OG′

, d, u, i, j − 1) �= ⊥ then
7: status(u) ← removed
8: else
9: if B(u, i, j) = 1 then status(u) ← selected
10: else status(u) ← not selected
11: if status(v) = selected AND ∀u ∈ ΓG′ (v): status(u) �= selected then
12: return YES
13: if status(v) = not selected then
14: if ∃u ∈ ΓG′ (v): status(u) = selected AND ∀w ∈ ΓG′ (u): status(w) �= selected then
15: return NO
16: if |{u ∈ ΓG′ (v) : status(u) �= removed}| ≥ d/2 j then
17: return NO
18: return ⊥

simulate oracles for other graphs, but we never concretely create such graphs during
the entire computation. Observe that each call to LC- MIS- Stage on stage j invokes
up to O(d2) calls on stage j − 1. Simulating all stages by invoking this function with
j = �log d� translates to dO(log d) queries to the the base level j = 0.
Next we give the LCA LC- MIS- Iteration for computing a single iteration in

Algorithm 3. The parameters are similar to that of LC- MIS- Stage, but the return
values are slightly different:

– YES if v ∈ I (so it is inactive)
– NO if v ∈ Γ +

G (I ) \ I (so it is inactive)
– ⊥ otherwise, indicating that v is still active

In case v is still active by the end of iteration i − 1, we must simulate iteration i
using LC- MIS- Stage. We must return YES if v ∈ I (line 7 of Algorithm 1); which
may occur in two cases. It can be added to I in some stage, making LC- MIS- Stage
returns YES (corresponding to line 9 of Algorithm 1). It may also remain inG ′ through
all iterations, making LC- MIS- Stage return ⊥; v is then added to I because it is
isolated in G ′ (line 11 of Algorithm 1). We note that the conditions in lines 6 and 8 of
Algorithm 3 handle both cases, and are written abbreviately as “�= NO.”

To implement this LCA, we must simulate an adjacency list oracle for G ′ using
the given oracle for G, which can be done as follows. For a query on vertex v, we
call LC- MIS- Iteration(OG , d, u, i − 1) on all vertices u at distance at most 2
away from v. This allows us to determine whether each neighbor of v is still active at
the beginning of iteration i , as well as providing degree queries. We then modify the
ordering of the remaining neighbors (by preserving the original ordering, for example)
to consistently answer neighbor queries. That is,OG ′

can be simulated through at most
O(d2) function calls of the form LC- MIS- Iteration(OG , d, u, i − 1).

Using this subroutine, the LCA LC- MIS- Phase1 for Weak- MIS can be written
compactly as given in Algorithm 2. Via a similar inductive argument, we can show that
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Algorithm 3 LCA of Phase 1 for a single iteration of Weak- MIS

1: procedure LC- MIS- Iteration(OG , d, v, i)
2: if i = 0 then return ⊥
3: if LC- MIS- Iteration(OG , d, v, i − 1) �= ⊥ then
4: return LC- MIS- Iteration(OG , d, v, i − 1)
5: OG′ ← oracle for the subgraph induced by {u : LC- MIS- Iteration(OG , d, u, i − 1) = ⊥}
6: if LC- MIS- Stage(OG′

, d, v, i, �log d�) �= NO then
7: return YES
8: else if ∃u ∈ ΓG′ (v): LC- MIS- Stage(OG′

, d, u, i, �log d�) �= NO then
9: return NO
10: return ⊥

each call to LC- MIS- Phase1 translates to dO(log2 d) = 2O(log3 d) calls to the original
oracle OG . The running time for the LCA is clearly given by the same bound. The
memory usage is given by the amount of random bits of B, which is O(n log2 d). We
summarize the behavior of this LCA through the following lemma.

Lemma 5 LC- MIS- Phase1 is a local computation algorithm that computes the dis-
tributed Weak- MIS algorithm with time complexity 2O(log3 d) and space complexity
O(n log2 d).

Algorithm 4 LCA of Phase 1 (Weak- MIS)
1: procedure LC- MIS- Phase1(OG , d, v)
2: return LC- MIS- Iteration(OG , d, v, c1 log d)

3.4 Constructing the LCA: Phase 2 and the Full LCA

Let G ′′ be graph G induced by active vertices after Weak- MIS terminates. By The-
orem 3, with high probability, G ′′ contains no component of size exceeding d4 log n.
Therefore, to determine whether an active vertex v is in the MIS, we first apply a
breadth-first search until all vertices in Cv , the component containing v, are reached.
Then we compute an MIS deterministically and consistently (by choosing the lexico-
graphically first MIS, for instance). This procedure is summarized as LC- Phase2 in
Algorithm 5.

Algorithm 5 LCA of Phase 2

1: procedure LC- Phase2(OG′′
, d, v)

2: breadth-first search for d4 log n steps on G′′ to find Cv , the component of G′′ containing v

3: if |Cv | > d4 log n then report ERROR
4: deterministically compute an MIS ICv of Cv

5: if v ∈ ICv then return YES
6: else return NO

The algorithm only reports ERROR when the component size exceeds the bound
from Theorem 3. Clearly, a call to LC- Phase2 makes at most poly(d) log n queries
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to OG ′′
in total. The lexicographically first maximal independent set of Cv can be

computed via a simple greedy algorithm with O(d · |Cv|) time complexity. Overall,
both time and query complexities are poly{d, log n}.

Combining both phases, we obtain the LCA LC- MIS for computing an MIS as
given in Algorithm 6. We now prove the following theorem.

Algorithm 6 LCA for computing a maximal independent set

1: procedure LC- MIS(OG , d, v)
2: if LC- MIS- Phase1(OG , d, v) �= ⊥ then
3: return LC- MIS- Phase1(OG , d, v)

4: OG′′ ← oracle for the subgraph induced by {u : LC- MIS- Phase1(OG , d, u) = ⊥}
5: return LC- MIS- Phase2(OG′′

, d, v)

Theorem 4 There exists a randomized local computation algorithm that computes a
maximal independent set of G with time complexity 2O(log3 d) log n and space com-
plexity O(n log2 d).

Proof To obtain the time complexity, recall from Lemma 5 that each call to LC-
Phase1 can be answered within 2O(log3 d) time using 2O(log3 d) queries to OG . Thus
the adjacency list oracle OG ′′

can be simulated with the same complexities. The LCA
for Phase 2 makes poly(d) log n queries to OG ′′

, resulting in 2O(log3 d) log n total
computation time and queries. The required amount of space is dominated by the
random bits used in Phase 1. The algorithm only fails when it finds a component
of size larger than d4 log n, which may only occur with probability 1/poly(n) as
guaranteed by Theorem 3. ��

3.5 Reducing Space Usage

In this section, we directly apply the approach from [4] to reduce the amount of random
bits used by our LCA, thus proving the following theorem.

Theorem 5 thmresmem There exists a randomized local computation algorithm that
computes a maximal independent set of G with seed of length 2O(log3 d) log2 n and
time complexity 2O(log3 d) log3 n.

Proof Observe that the MIS algorithm in Theorem 4 constructed throughout this
section does not require fully independent random bits in function B. Our algorithm
can answer a query for any vertex v by exploring up to q = 2O(log3 d) log n vertices
in total. So, random bits used by vertices not explored by a query do not affect our
answer. One bit is used by each vertex in each round of Phase 1, and thus we only
create b = O(log2 d) random bits for each vertex. Therefore, out of O(n log2 d) bits
from function B, only q · b bits are relevant for each query.

To generate random bits for function B, we will apply Theorem 2.4.2. As we
may require bits of function B to be 1 with probability as low as 1/(d + 1), we
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will need up to �log d� bits from this construction to obtain one bit for function
B. So in our case, we have k = �log d� · q · b = 2O(log3 d) log n and m = �log d� ·
O(n log2 d) = O(n log3 d). Thus the amount of space can be reduced to O(k logm) =
2O(log3 d) log n · log(n log3 d) = 2O(log3 d) log2 n. Similarly, the required amount of
time for computing each random bit becomes 2O(log3 d) log2 n. ��

3.6 Other Remarks

The proposed LCA for the maximal independent set problem can be used as a building
block for other problems. For example, a (d+1)-coloring can be computed by finding
a maximal independent set ofG×Kd+1 where Kd+1 is a clique of size d+1, resulting
in an LCA within the same asymptotic complexities (see also [24]).

We may apply our MIS algorithm to the line graph L(G) in order to compute
a maximal matching on G within the same asymptotic complexities as Theorem 5.
Nonetheless, in [19], Israeli and Itai proposed a randomized distributed algorithm
which takes O(log n) rounds to compute a maximal matching. Similarly to the MIS
problem, Barenboim et al. also create a variant of this algorithm that, within O(log d)

rounds, finds a large matching that breaks the remaining graph into small connected
components [6]. Specifically, by running Algorithm 7, the remaining graph satisfies
the following lemma.

Algorithm 7 Barenboim et al.’s variant of Israeli and Itai’s algorithm for computing
a partial matching (simplified)
1: procedure Distributed- MM- Phase1(G, d)
2: initialize matching M = ∅
3: for i = 1, . . . , c2 log d do � c2 is a sufficiently large constant
4: initialize directed graphs F1 = (V, ∅) and F2 = (V, ∅)

5: each vertex s chooses a neighbor t (if any) uniformly at random,
then add (s, t) to E(F1)

6: each vertex t with positive in-degree in F1 chooses a vertex s ∈ {s′ : (s′, t) ∈ E(F1)}
with highest ID, then add (s, t) to E(F2)

7: each node v with positive degree in F2 chooses a bit b(v) as follows:
if v has an outgoing edge but no incoming edge, b(v) = 0
if v has an ingoing edge but no outcoming edge, b(v) = 1
otherwise, chooses b(v) ∈ {0, 1} uniformly at random

8: add every edge (s, t) ∈ E(F2) such that b(s) = 0 and b(t) = 1 to M ,
and remove matched vertices from G

Lemma 6 ([6]) Distributed- MM- Phase1(G, d) computes a partial matching M
of an input graph G within O(log d) communication rounds, such that the remaining
graph contains no connected component of size larger than O(d4 log n) with proba-
bility at least 1 − 1/poly(n).

The proof of this lemma also makes use of Beck’s analysis, but contains a more
complicated argument which shows that with constant probability, each vertex loses
some constant fraction of its neighbors in every round. Thus, applying such matching
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subroutine for O(log d) rounds suffices to remove or isolate each vertex with probabil-
ity 1− 1/poly(d). Converting this lemma into a two-phase LCA in a similar fashion,
we obtain an LCA with a better dependence on d:

Theorem 6 There exists a randomized local computation algorithm that computes
a maximal matching of G with seed of length 2O(log2 d) log2 n and time complexity
2O(log2 d) log3 n.

4 Approximate Maximum Matching

In this section, we aim to construct an LCA that provides a (1 − ε)-approximation to
maximum matching. To do so, we first address the simpler problem of computing a
(1−ε)-approximation toMIS.We say that a set of vertices Ĩ is a (1−ε)-approximation
toMIS if it is a subset of somemaximal independent set I and satisfies | Ĩ | ≥ (1−ε)|I |.
We present this LCA because it allows us to explain our LCA for the approximate
maximum matching problem in a much clearer manner, as they share both their main
principles and the two-phase structure. Moreover, this LCA is useful as a subroutine
for other problems. For example, an approximation to MIS of the line graph L(G)

readily yields a (1/2 − ε)-approximation to maximum matching of G.

4.1 LCA for Computing an Approximate Maximal Independent Set

We now describe an LCA that provides a (1− ε)-approximation to MIS. More specif-
ically, with high probability, the set of vertices Ĩ that our LCA answers YES must
be a (1 − ε)-approximation to MIS as defined above. Our algorithm is based on a
local simulation of the classical greedy algorithm for computing an MIS. This greedy
algorithm iterates over the vertex set according to some arbitrary order and adds a
vertex to the constructed independent set if and only if none of its neighbors has been
added previously.

Algorithm 8 summarizes the local simulation of the greedy algorithm as suggested
by Nguyen and Onak and further analyzed by Yoshida et al. [31,41]. In addition to the
adjacency list oracle OG and the queried vertex v, LS- MIS also receives as an input
a permutation π on the vertices. The set of vertices v such that LS- MIS(OG, π, v)

returns YES is the lexicographically first MIS according to π , which is also the MIS
outputted by the greedy algorithm when the vertices are iterated in this order.

Algorithm 8 Local simulation of the greedy MIS algorithm

1: procedure LS- MIS(OG , π, v)
2: query OG for all neighbors of v

3: let v1, . . . , vk be the neighbors of v sorted according to π

4: for i = 1, . . . , k do
5: if vi precedes v in π then
6: compute LS- MIS(OG , π, vi )

7: if LS- MIS(OG , π, vi ) = YES then return NO
8: return YES
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We now give an overview of the construction of our LCA. From the analysis of
Yoshida et al. we obtain that in expectation over the queries and the random permuta-
tions, the query complexity of Algorithm 8 is polynomial in d, the degree bound [41].
More formally, let RG

π (v) denote the number of (recursive) calls to LS- MIS during
the evaluation of LS- MIS(OG, π, v). This result fromYoshida et al. can be succinctly
stated as follows.

Theorem 7 ([41]) For any graph G = (V, E) with n vertices and m edges,

Eπ∈Sn ,v∈V [RG
π (v)] ≤ 1 + m

n
.

However, the query complexity of an LCA is determined by the maximum number
of queries invoked in order to answer any single query, so this expected bound does
not readily imply an efficient LCA. We may alter Algorithm 8 so that it computes an
independent set that is relatively large but not necessarily maximal as follows. If a
query on a vertex v recursively invokes too many other queries, then the simulation is
terminated and the algorithm immediately returnsNO, i.e., that v does not belong to our
independent set. We show that Theorem 7 implies that for at least a constant fraction
of the orderings, this modification yields a good approximation ratio. Nonetheless, an
LCA must succeed with high probability rather than only a constant probability. We
resolve this issue by repeatedly sampling permutations until we obtain a sufficiently
good one.

While generating a truly randompermutationπ requiresΩ(n) randombits,we show
that we may generate sufficiently good permutations by projecting random orderings
from a distribution of small entropy onto Sn . Using the construction fromAlon et al. as
stated in Theorem 2, it follows that a small seed whose size is polylogarithmic in n
suffices for our algorithm. From these outlined ideas, we are now ready to prove the
following result.

Theorem 8 There exists a randomized (1−ε)-approximation local computation algo-
rithm for maximal independent set with random seed of length O((d2/ε2) log2 n log
log n + (d3/ε) log3 n) and query complexity O((d4/ε2) log2 n log log n).

Proof Our algorithm builds on Algorithm 8 and consists of two phases as follows.
The input of the algorithm is a random seed (tape) s and a queried vertex v ∈ V . In
the first phase, using s and graph queries, we find a good permutation π = πG(s)
over the vertex set. Note that this good permutation π is dependent only on s and G,
and therefore must be identical for any query. Then in the second phase, we decide
whether v belongs to our independent set using the altered local simulation that limits
the number of invoked queries.

Formally, we say that π ∈ Sn is good if Prv∈V
[
RG

π (v) > �
] ≤ γ where γ = ε/d,

� = 6t/γ and t = m/n+1. Let δ denote the error probability of the algorithm. (For our
purposes, we will later substitute δ = 1/poly(n) to obtain an LCA that succeeds with
high probability.) We claim that, given access to orderings which are drawn from an �-
wise independent family of orderings, D�, Algorithm 9 computes a good permutation
π with the desired success probability. This algorithm checks for each constructed
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permutation πi whether it is good by approximating the fraction pπi of vertices whose
induced query trees have size exceeding �. The set S of sampled vertices is sufficiently
large that we obtain a good approximation p̃πi of pπi , and note that checking whether
RG

πi
(v) > � can be accomplished by simply simulating Algorithm 8 until � recursive

calls are invoked.

Algorithm 9 Phase 1 of the LCA for the approximate MIS algorithm (finding a good
ordering)

1: procedure LC- AMIS- Phase1(OG , s)
2: let S be a multi-set of Θ(log(1/δ) log log(1/δ)/γ 2) vertices chosen uniformly at random.
3: for i = 1, . . . , h = Θ(log(1/δ)) do
4: let πi be the projection of an ordering independently drawn from D�

5: let p̃πi denote the fraction of vertices v ∈ S for which RG
πi

(v) > �

6: if p̃πi < 3γ /4 then
7: return π = πi
8: report ERROR

Now we show that with probability at least 1− δ, Algorithm 9 finds a good π . Let
Hπ,v be the indicator variable such that Hπ,v = 1 when RG

π (v) > �, and Hπ,v = 0
otherwise. By Markov’s inequality and Theorem 7 it holds that

Prπ∈Sn ,v∈V [RG
π (v) > �] ≤ γ /6 .

That is,

Ev∈V [Eπ∈Sn [Hπ,v]] ≤ γ /6 . (1)

Next we aim to justify that we may obtain our random permutations by projecting
orderings from D�d instead of drawing directly from Sn . More specifically, we claim
that for a fixed v, Hπ,v is identically distributed regardless of whether π is drawn
uniformly from Sn or obtained by projecting an ordering r drawn from D�d . To estab-
lish this claim, consider the evaluation of Hπ,v by a decision tree TG,v , where each
inner vertex of TG,v represents a query to the rank r(u) identified with the queried
vertex u ∈ V . In order to evaluate Hπ,v we proceed down the tree TG,v according to
π until we reach a leaf. After at most �d queries to π , the value of the indicator Hπ,v

is determined. Therefore, the depth of TG,v is at most �d, and each leaf is associated
with either 0 or 1. In other words, each leaf is identified with a sequence of at most �d
vertices and their corresponding ranks.

Let s1 and s2 be a pair of leaves such that: (1) s1 and s2 are identified with the same
sequence of vertices, v1, . . . , vk ; and (2) the ranks of v1, . . . , vk in s1 and s2 induce the
same permutation on v1, . . . , vk . Clearly the values corresponding to leaves s1 and s2
are identical. Therefore, our claim follows from the definition of k-wise independent
ordering. Thus, from Eq. (1), we obtain
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Ev∈V [Er∈D�
[Hπ,v]] ≤ γ /6 . (2)

Next, we say that π ∈ Sn is very good if Prv∈V
[
RG

π (v) > �
] ≤ γ /2. By Markov’s

inequality and Equation (2), an ordering r drawn from D� induces a very good per-
mutation with probability at least 2/3. Therefore an ordering r drawn according to
a distribution that is (1/n2)-almost (�d)-wise independent random ordering over [n]
induces a very good permutation with probability at least 2/3−1/n2. So by generating
Θ(log(1/δ)) permutations πi ’s from such random orderings, with probability greater
than 1 − δ/2, at least one of them must be very good.

Let E1 denote the event that none of the permutations in {πi }hi=1 is very good, so
E1 occurs with probability smaller than δ/2. Let E2 denote the event that there exists
j ∈ [h] such that |pπ j − p̃π j | > γ/4. By Chernoff’s bound and the union bound,
E2 occurs with probability at most δ/2. Henceforth, we assume that neither E1 nor
E2 occur. Thus for every j ∈ [h] such that p̃π j ≤ 3γ /4, it holds that π j is good;
i.e., pπ j ≤ γ . Therefore, the algorithm does not report an error and the permutation
returned by the algorithm is good. By the union bound, this happens with probability
at least 1 − δ, as desired.

Theorem 2 implies that a random seed of length O((d3/ε) log2 n) suffices in order
to obtain a (1/n2)-almost (�d)-wise independent random ordering over [n]. Since
Algorithm 9 draws O(log(1/δ)) such random orderings, overall a seed of length
O((d3/ε) log(1/δ) log2 n) suffices. Additionally, we need O((d2/ε2) log(1/δ) log
log(1/δ) log n) more random bits to determine the set S of sampled vertices for eval-
uating p̃π . For Algorithm 9 to succeed with high probability, it suffices to substitute
δ = 1/poly(n), which yields the seed length claimed in the theorem statement.

Finally, we now turn to describe the second phase of the algorithm. Let Iπ denote
the maximal independent set greedily created by π ∈ Sn , as defined by Algorithm 8.
Consider the following LCA Lπ for a good permutation π . On query v, Lπ sim-
ulates the execution of LS- MIS(OG , π, v) until it performs up to � recursive calls
to LS- MIS. If LS- MIS(OG , π, v) terminates within � steps, Lπ returns the answer
given by LS- MIS(OG, π, v). Otherwise it simply returns NO.

Let I ′
π = Iπ ∩ V ′

π where V ′
π = {v : RG

π (v) ≤ �}, and notice thatLπ answers YES
precisely on I ′. Since π is good, we have that V ′

π ≥ (1−γ )n and so |I ′
π | ≥ |Iπ |−γ n.

Since for any maximal independent set I it holds that |I | ≥ n/d, we obtain |I ′
π | ≥

(1− ε)|Iπ |. In other words,Lπ computes a (1− ε)-approximate MIS, as required. ��

4.2 LCA for Computing an Approximate Maximum Matching

Now we turn to describe an LCA that provides a (1− ε)-approximation to maximum
matching with high probability. Our LCA locally simulates the global algorithm based
on the following theorem by Hopcroft and Karp:

Lemma 7 [18] Let M and M∗ be a matching and a maximum matching in G. If the
shortest augmenting path with respect to M has length 2i − 1, then |M | ≥ (1 −
1/ i)|M∗|.
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This global algorithm is used in themany contexts, including distributed computing
and approximation (e.g., [25,31,41]). This algorithm can be summarized as follows.
Let M0 be an empty matching, and let k = �1/ε�. We repeat the following process
for each i = 1, . . . , k. Let Pi denote the set of augmenting paths of length 2i − 1
with respect to Mi−1. We compute a maximal set Ai of vertex-disjoint augmenting
paths, then augment these paths to Mi−1 to obtain Mi ; that is, we set Mi = Mi−1⊕ Ai

where ⊕ denotes the symmetric difference between two sets. As a result, Mk will be
a (1 − ε)-approximate maximum matching.

The local simulation of this algorithm uses the formula Mi = Mi−1 ⊕ Ai to
determine whether the queried edge e is in Mk in a recursive fashion. To determine
Ai , consider the following observation. Let Hi = (Pi , Ei ) be the graph whose vertex
set corresponds to the augmenting paths, and (u, v) ∈ Ei if and only if the augmenting
paths u and v share some vertex. Ai is a maximal set of vertex-disjoint augmenting
paths; that is, Ai is an MIS of Hi . In order to compute locally whether a path is in Ai

or not, Yoshida et al. apply Algorithm 8 on Hi . They show that in expectation over the
queries and the random permutations of paths in P1, . . . , Pk , the query complexity is
polynomial in d. More formally, let π = (π1, . . . , πk) where π i is a permutation of
vertices (augmenting paths) in Pi , and let QG

π,k(e) denote the query complexity of this
local simulation when queried on e ∈ E . Yoshida et al. prove the following theorem.

Theorem 9 ([41]) For any graph G = (V, E) with n vertices and maximum degree
d,

E[QG
π,k(e)] ≤ d6k

2
kO(k),

where π = (π1, . . . , πk) and the expectation is taken over the uniform distribution
over S|P1| × . . . × S|Pk | × |E |.

Based on this theorem, we convert the aforementioned local simulation into an
LCA as similarly done in the previous section for the approximate MIS problem. We
now prove the following theorem.

Theorem 10 There is a randomized (1 − ε)-approximation local computation algo-
rithm for maximum matching with random seed of length O(d6k

2+1kO(k) log3 n
log log n) and query complexity O(d6k

2+2kO(k) log2 n log log n) where k = Θ(1/ε).

Proof Webuild on the local algorithmofYoshida et al. ([41])wherewe take k = �2/ε�
so that Mk is a (1−ε/2)-approximate maximummatching. The proof for this theorem
follows the structure of the proof of Theorem 8. Our LCA contains two phases: the first
phase finds a sequence of good permutations, then the second phase locally simulates
the approximate maximum matching algorithm using those permutations. We say
that a sequence of permutations π = (π1, . . . , πk) ∈ S|V1| × . . . × S|Vk | is good if

Pre∈E
[
QG

π (e) > �
] ≤ γ where γ = ε/(2d), � = 6t/γ and t = d6k

2
kO(k).

In the first phase, rather than individually generating a permutation πk of π on
each Pi , we create a single permutation π over [mn,k] where mn,k = ∑k

i=1

(n
k

) ≥∑k
i=1 |Pi |. In terms of constructing random orderings, this simply implies extending
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the domain of our orderings to cover all augmenting paths from all k iterations. Then
for each i ∈ [k], the permutation πk of paths Pi can be obtained by restricting π

to Pi (i.e., considering the relative order among paths in Pi ). Since the algorithm
queries π on at most � locations, we conclude that Theorem 9 holds for any π that
is �-wise independent. Similarly to the proof of Theorem 10, with probability at least
1− 1/poly(n), we shall find a good π by testing Θ(log n) random orderings obtained
via the construction of Alon et al. in Theorem 2. Therefore, to this end we need at
most O(� log3 n + (d2/ε2) log2 n log log n) random bits, as required.

Now thatweobtain a good sequence of permutationsπ from thefirst phase,we again
perform the altered version of local algorithm that returnsNO as soon as the simulation
invokes too many queries. Let Mπ denote the matching obtained by the algorithm of
Yoshida et al. when executed with the permutations from π . Let M ′

π = Mπ ∩ E ′
π

where E ′
π = {e : QG

π (e) ≤ �}. Similarly to the proof of Theorem 8, given π , we
obtain an LCA that answers according to M ′

π with query complexity �. If π is good,
we have that E ′

π ≥ (1− γ )|E | and so |M ′
π | ≥ |Mπ |− γ |E | ≥ (1− ε/2)|M∗|− γ |E |

where M∗ denotes a maximummatching. Since for any maximal matching M it holds
that |M | ≥ |E |/(2d) we obtain |M ′

π | ≥ (1 − ε)|M∗|, as required. ��
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