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ABSTRACT
We present an algorithm that, with high probability, generates a

random spanning tree from an edge-weighted undirected graph in

Õ (n5/3m1/3) time. The tree is sampled from a distribution where

the probability of each tree is proportional to the product of its

edge weights. This improves upon the previous best algorithm due

to Colbourn et al. that runs in matrix multiplication time, O (nω ).
For the special case of unweighted graphs, this improves upon the

best previously known running time of Õ (min{nω ,m
√
n,m4/3})

for m � n7/4 (Colbourn et al. ’96, Kelner-Madry ’09, Madry et al.

’15).

The e�ective resistance metric is essential to our algorithm, as

in the work of Madry et al., but we eschew determinant-based

and random walk-based techniques used by previous algorithms.

Instead, our algorithm is based on Gaussian elimination, and the

fact that e�ective resistance is preserved in the graph resulting

from eliminating a subset of vertices (called a Schur complement).

As part of our algorithm, we show how to compute ϵ-approximate

e�ective resistances for a set S of vertex pairs via approximate Schur

complements in Õ (m+(n+ |S |)ϵ−2) time, without using the Johnson-

Lindenstrauss lemma which requires Õ (min{(m+ |S |)ϵ−2,m+nϵ−4+
|S |ϵ−2}) time. We combine this approximation procedure with an

error correction procedure for handling edges where our estimate

isn’t su�ciently accurate.
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• Theory of computation → Generating random combinato-
rial structures; Continuous optimization; Divide and conquer ; •

Mathematics of computing → Trees;
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1 INTRODUCTION
Random spanning trees are one of the most well-studied proba-

bilistic structures in graphs. Their history goes back to the classic

matrix-tree theorem due to Kirchho� in 1840s that connects the

spanning tree distribution to matrix determinants [14]. The task of

algorithmically sampling random spanning trees has been studied

extensively [1, 3, 6, 9, 10, 12, 17, 22].

Over the past decade, sampling random spanning trees have

found a few surprising applications in theoretical computer science

– they were at the core of the breakthroughs in approximating

the traveling salesman problem in both the symmetric [7] and

the asymmetric case [2]. Goyal et al. [8] showed that one could

construct a cut sparsi�er by sampling random spanning trees.

Given an undirected, weighted graphG (V ,E,w ), the algorithmic

task is to sample a tree with a probability that is proportional to the

product of the weights of the edges in the tree. We give an algorithm

for this problem, that, for a given δ > 0, outputs a random spanning

tree from this distribution with probability 1 − δ in expected time

Õ (n5/3m1/3
log

4
1/δ )1.

For weighted graphs, a series of works building on the connection

between matrix trees and determinants, culminated in an algorithm

due to Colbourn, Myrvold, and Neufeld [6] that generates a random

spanning tree in matrix multiplication time (O (n2.37.. ) [25]). Our

result is the �rst improvement on this bound for more than twenty

years! It should be emphasized that the applications to traveling

salesman problem [2, 7] require sampling trees on graphs with

arbitrary weights.

A beautiful connection, independently discovered by Broder [3]

and [1] proved that one could sample a random spanning tree,

by simply taking a random walk in the graph until it covers all

1
The Õ ( ·) notation hides poly(logn) factors
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nodes, and only keeping the �rst incoming edge at each vertex. For

graphs with unit-weight edges, this results in an O (mn) algorithm.

The work of Kelner-Madry [12] and Madry et al. [22] are based

on trying to speed up these walks. These works together give a

previously best running time of Õ (min{nω ,m
√
n,m4/3}) for unit-

weighted graphs. Our algorithm is an improvement for all graphs

withm & n7/4.
The above works based on random walks seem challenging to

generalize to weighted graphs. The key challenge being that, in

weighted graphs, random walks can take a very long time to cover

the graph. We take an approach based on another intimate and

beautiful connection; one between random spanning trees and

Laplacians.

Random Spanning Trees and the Laplacian Paradigm. A by-now

well-known but beautiful fact states that the marginal probability

of an edge being in a random spanning tree is exactly equal to the

product of the edge weight and the e�ective resistance of the edge

(see Fact 3.7). Our algorithm will be roughly based on estimating

these marginals, and sampling edges accordingly. The key challenge

we overcome here, is that these sampling probabilities change every

time we condition on an edge being present or absent in the tree.

Taking this approach of computing marginals allows us to utilize

fast Laplacian solvers and the extensive tools developed therein [4,

13, 15, 16, 18–20, 24]. As part of our algorithm for generating

random spanning trees, we give a procedure to estimate all pair-

wise e�ective resistances in the graph without using the Johnson-

Lindenstrauss lemma. Our procedure is also faster if we only want

to compute e�ective resistances for a smaller subset of pairs.

Our procedure for estimating e�ective resistances is recursive.

If we focus on a small subset of the vertices, for the purpose of

computing e�ective resistances, we can eliminate the remaining

vertices, and compute the resulting Schur complement. Computing

the Schur complement exactly is costly and results in an O (nω )
algorithm (similar to [10]). Instead, we develop a fast algorithm for

approximating the Schur complement. Starting from a graph with

m edges, we can compute a Schur complement onto k vertices with

at most ϵ error (in the spectral sense), in Õ (m + nϵ−2) time. The

resulting approximation has only Õ (kϵ−2) edges.

We hope that faster generation of random spanning trees and

the tools we develop here will �nd further applications, and become

an integral part of the Laplacian paradigm.

1.1 Prior Work
One of the �rst major results in the study of spanning trees was

Kircho�’s matrix-tree theorem, which states that the total number

of spanning trees for general edge weighted graphs is equal to any

cofactor of the associated graph Laplacian [14].

Much of the earlier algorithmic study of random spanning trees

heavily utilized these determinant calculations by taking a random

integer between 1 and the total number of trees, then e�ciently

mapping the integer to a unique tree. This general technique was

originally used in [9, 17] to give an O (mn3)-time algorithm, and

ultimately was improved to anO (nω )-time algorithm by [6], where

m,n are the numbers of edges and vertices in the graph, respectively,

and ω ≈ 2.373 is the matrix multiplication exponent [25]. These

determinant-based algorithms have the advantage that they can

handle edge-weighted graphs, where the weight of a tree is de�ned

as the product of its edge weights.
2

Despite further improvements

for unweighted graphs, no algorithm prior to our work improved

upon this O (nω ) runtime in the general weighted case in over 20

years since this work. Even for unweighted graphs, nothing faster

than O (nω ) was known for dense graphs with m ≥ n1.78.

We now give a brief overview of the improvements for un-

weighted graphs along with a recent alternative O (nω ) algorithm

for weighted graphs.

Around the same time as the O (nω )-time algorithm was dis-

covered, Broder and Aldous independently showed that spanning

trees could be randomly generated with random walks, where each

time a new vertex is visited, the edge used to reach that vertex is

added to the tree [1, 3]. Accordingly, this results in an algorithm

for generating random spanning trees that runs in the amount of

time proportional to the time it takes for a random walk to cover

the graph. For unweighted this cover time is O (mn) in expectation

is better than O (nω ) in su�ciently sparse graphs and worse in

dense ones. However, in the more general case of edge-weighted

graphs, the cover time can be exponential in the number of bits

used to describe the weights. Thus, this algorithm does not yield

any improvement in worst-case runtime for weighted graphs.

Kelner and Madry improved upon this result by showing how to

simulate this random walk more e�ciently. They observed that one

does not need to simulate the portions of the walk that only visit

previously visited vertices. Then, they use a low diameter decom-

position of the graph to partition the graph into components that

are covered quickly by the random walk and do pre-computation

to avoid explicitly simulating the random walk on each of these

components after each is initially covered. This is done by calcu-

lating the probability that a random walk entering a component at

each particular vertex exits on each particular vertex, which can

be determined by solving Laplacian linear systems. This approach

yields an expected runtime of Õ (m
√
n) for unweighted graphs [12].

This was subsequently improved for su�ciently sparse graphs

with an algorithm that also uses shortcutting procedures to obtain

an expected runtime of Õ (m4/3) in unweighted graphs [22]. Their

algorithm uses a new partition scheme based on e�ective resistance

and additional shortcutting done by recursively �nding trees on

smaller graphs that correspond to random forests in the original

graph, allowing the contraction and deletion of many edges.

Recently, Harvey and Xu [10] gave a simpler deterministicO (nω )
time algorithm that uses conditional e�ective resistances to decide

whether each edge is in the tree, contracting the edge in the graph

if the edge will be in the tree and deleting the edge from the graph

if the edge will not.
3

Updating the e�ective resistance of each edge

is done quickly by using recursive techniques similar to those in

[5] and via an extension of the Sherman-Morrison formula.

2
To see why this de�nition is natural, note that this corresponds precisely to thinking

of an edge with weight k as representing k parallel edges and then associating all

spanning trees that di�er only in which parallel edges they use.

3
Note that for any edge e , there is a bijection between spanning trees of the graph in

which e is contracted and spanning trees of the original graph that contain e . Similarly,

there is a bijection between spanning trees of the graph in which e is deleted and

spanning trees of the original graph that do not contain e .
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2 OUR RESULTS
2.1 Random Spanning Trees

Theorem 2.1. For any 0 < δ < 1, the routine
GenerateSpanningTree (Algorithm 1) outputs a random spanning
tree from the w-uniform distribution with probability at least 1 − δ
and takes expected time Õ (n5/3m1/3

log
4
1/δ ).

Our algorithm samples edges according to their conditional ef-

fective resistance as in [5, 6, 10]. We repeatedly use the well known

fact that the e�ective resistance multiplied by the edge weight,

which we will refer to as the leverage score of the edge, is equal

to the probability that the edge belongs to a randomly generated

spanning tree. To generate a uniformly random spanning tree, one

can sample edges in an iterative fashion. In every iteration, the edge

being considered is added to the spanning tree with probability

exactly equal to its leverage score. If it is added to the tree, the

graph is updated by contracting that edge, otherwise, the edge is

removed from the graph. Though using fast Laplacian solvers [24]

one can compute the leverage score of a single edge in Õ (m) time,

since one needs to potentially do thism times (and the graph keeps

changing every iteration), this can take Õ (m2) time if done in a

naive way. It therefore becomes necessary to compute the leverage

scores in a more clever manner.

The algorithms in [5, 6, 10] get a speed up by a clever recursive

structure which enables one to work with much smaller graphs to

compute leverage scores at the cost of building such a structure. This

kind of recursion will be the starting point of our algorithm which

will randomly partition the vertices into two equally sized sets, and

compute Schur complements onto each set. It crucially uses the fact

that Schur complement, which can be viewed as block Gaussian

elimination, preserves e�ective resistances of all the edges whose

incident vertices are not eliminated. It �rst recursively samples

edges contained in both these sets, contracting or deleting every

edge along the way, and then the edges that go across the partition

are sampled. This starting point to our algorithm is then a very

close variant of the algorithms in [6, 10], and they prove that it

takes O (nω ).
In order to improve the running time, the main workhorse we

use is derived from the recent paper [19] on fast Laplacian solvers

which provided an almost linear time algorithm for performing

an approximate Gaussian elimination of Laplacians. We generalize

the statement in [19] to show that one can compute an approxi-

mate Schur complement of a set of vertices in a Laplacian quickly.

Accordingly, one of our primary results, discussed in Section 2.2,

will be that a spectrally approximate Schur complement can be

e�ciently computed, and we will leverage this result to achieve a

faster algorithm for generating random spanning trees.

Since we compute approximate Schur complements, the lever-

age scores of edges are preserved only approximately. But we set

the error parameter such that we can get a better estimate of the

leverage score if we move up the recursion tree, at the cost of pay-

ing more for the computing leverage score of an edge in a bigger

graph. We give a sampling procedure that samples edges into the

random spanning tree from the true distribution by showing that

approximate leverage score can be used to make the right decisions

most of the times.

Subsequently, we are presented with a natural trade-o� for our

error parameter choice in the ApproxSchur routine: larger errors

speed up the runtime of ApproxSchur, but smaller errors make

moving up the recursion to obtain a more exact e�ective resistance

estimate less likely. Furthermore, the recursive construction will

cause the total vertices across each level to double making small

error parameters even more costly as we recurse down. Our choice

of the error parameter will balance these trade-o�s to optimize

running time.

The routine ApproxSchur produced an approximate Schur com-

plement only with high probability. We are not aware of a way to

certify that a graph sparsi�er is good quickly. Therefore, we condi-

tion on the event that the ApproxSchur produces correct output

on all the calls, and show ultimately show that it is true with high

probability.

Our algorithm for approximately generating random spanning

trees, along with a proof of Theorem 2.1 is given in Section 4

and 4.2.1

2.2 Approximating the Schur Complement
Theorem 2.2. Given a connected undirected multi-graph G =

(V ,E), with positive edges weights w : E → R+, and associated
Laplacian L, a set vertices C ⊂ V , and scalars 0 < ϵ ≤ 1/2, 0 <
δ < 1, the algorithm ApproxSchur(L,C,ϵ ,δ ) returns a Laplacian
matrix S̃. With probability ≥ 1 − δ , the following statements all
hold: S̃ ≈ϵ S, where S is the Schur complement of L w.r.t elimina-
tion of F = V − C . S̃ is a Laplacian matrix whose edges are sup-
ported on C . Let k = |C | = n − |F |. The total number of non-zero
entries S̃ is O (kϵ−2 log(n/δ )). The total running time is bounded by
O ((m logn log2 (n/δ ) + nϵ−2 logn log4 (n/δ )) polyloglog(n)).

The proof of this appears in Section 5.

As indicated earlier, the algorithm ApproxSchur builds on the

tools developed in [19]. Roughly speaking, the algorithm in [19]

produces an ϵ-approximation to a Cholesky decomposition of the

Laplacian in Õ (mϵ 2 ) time. Our algorithm for approximating Schur

complements is based on three key modi�cations to the algorithm

from [19]: Firstly, we show that the algorithm can be used to elim-

inate an arbitrary subset U ⊂ V of the vertices, giving a approxi-

mate partial Cholesky decomposition. Part of this decomposition is

an approximate Schur complement w.r.t. elimination of the set of

vertices U . Secondly, we show that although the spectral approxi-

mation quality of this decomposition is measured in terms of the

whole Laplacian, in fact it implies a seemingly stronger guarantee

on the approximate Schur complement: Its quadratic form resem-

bles the true Schur complement up to a small multiplicative error.

Thirdly, we show that the algorithm from [19] can utilize lever-

age score estimates (constant-factor approximations) to produce

an approximation in only Õ (m + nϵ−2) time. Additionally, we also

sparsify the output to ensure that the �nal approximation has only

Õ ((n−|U |)ϵ−2) edges. The leverage score estimates can be obtained

by combining a Laplacian solver with Johnson-Lindenstrauss pro-

jection. It is worth noting that the Laplacian solver from [18] is

also based on approximating Schur complements. However, their

algorithm can only approximate the Schur complement obtained
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by eliminating very special subsets of vertices. The above theorem,

in contrast, applies to an arbitrary set of vertices. This algorithm

also had a much worse dependence on ϵ−1, making it unsuitable

for our applications where ϵ−1 is Ω(nc ) for some small constant c .

2.3 Computing E�ective Resistance
Our techniques also enable us to develop a novel algorithm for

computing the e�ective resistances of pairs of vertices. In con-

trast with prior work, our algorithm does not rely on the Johnson-

Lindenstrauss lemma, and it achieves asymptotically faster running

times in certain parameter regimes.

Theorem 2.3. When given a graph G, a set S of pairs of vertices,
and an error parameter ϵ , the function EstimateRe� (Algorithm 5
in Section 6) returns e±ϵ -multiplicative estimates of the e�ective re-
sistance of each of the pairs in S in time Õ

(
m + n+ |S |

ϵ 2
)
with high

probability.

By e±ϵ -multiplicative estimates here, we mean that

e−ϵRef f (u,v ) ≤ R̃ef f (u,v ) ≤ eϵRef f (u,v ), where Ref f (u,v ) and

R̃ef f (u,v ) are the actual and estimated e�ective resistance of (u,v ),
respectively. One can compare this runtime with what can be ob-

tained using (now standard) linear system solving machinery intro-

duced in [24]. Using such machinery, one obtains an algorithm for

this same problem with runtime
4 Õ

(
(min

(m+ |S |
ϵ 2 ,m +

n
ϵ 4 +

|S |
ϵ 2

))
.

When the number of pairs |S | and the error parameter ϵ are both

small, the runtime of our algorithm is asymptotically smaller than

this existing work.

3 NOTATION
3.1 Graphs
We assume we are given a weighted undirected graphG = (V ,E,w),
with the vertices are labelled V = {1,2, ...,n}. Let AG be its adja-

cency matrix. The (i, j )’th entry of the adjacency matrix AG (i, j ) =
wi,j is the weight of the edge between the vertices i and j. Let

DG is the diagonal matrix consisting of weighted degrees of the

vertices, i.e., DG (i,i ) =
∑
j∼i wi,j . The Laplacian matrix is de�ned

as LG = DG − AG .We drop the subscript G when the underlying

graph is clear from the discussion.

De�nition 3.1 (Induced Graph). Given a graph G = (V ,E) and

a set of vertices V1 ⊆ V , we use the notation G (V1) to mean the

induced graph on V1.

De�nition 3.2. Given a set of edges E on vertices V , and V1,V2 ⊆
V , we use the notation E ∩ (V1,V2) to mean the set of all edges in E
with one end point in V1 and the other in V2.

De�nition 3.3 (Contraction and Deletion). Given a graph G =
(V ,E) and a set of edges E1 ⊂ E, we use the notation G\E1 to

denote the graph obtained by deleting the edges in E1 from G and

G/E1 to denote the graph obtained by contracting the edges in E1
within G and deleting all the self loops.

4
The �rst runtime in the min expression comes from applying JL with the original

Laplacian. The second runtime comes from sparsifying the Laplacian �rst and then

applying JL.

3.2 Spanning Trees
Let TG denote the set of all spanning subtrees of G .We now de�ne

a probability distribution on these trees.

De�nition 3.4 (w-uniform distribution on trees). Let DG be a

probability distribution on TG such that

Pr (X = T | X ∼ DG ) ∝ Πe ∈Twe .

We refer to DG as the w-uniform distribution on TG . When the

graphG is unweighted, this corresponds to the uniform distribution

on TG .

De�nition 3.5 (E�ective Resistance). The e�ective resistance of a

pair of vertices u,v ∈ VG is de�ned as

Ref f (u,v ) = bTu,vL
†bu,v .

where bu,v is an all zero vector corresponding to VG , except for

entries of 1 at u and v

De�nition 3.6 (Leverage Score). The statistical leverage score, which

we will abbreviate to leverage score, of an edge e = (u,v ) ∈ EG is

de�ned as

le = weRef f (u,v ).

Fact 3.7 (Spanning Tree Marginals). The probability Pr(e )
that an edge e ∈ EG appears in a tree sampledw-uniformly randomly
from TG is given by

Pr(e ) = le ,

where le is the leverage score of the edge e (see for eg. Cor 4.4 in [21]).

3.3 Schur Complement
De�nition 3.8 (Schur Complement). Let M be a block matrix

M =
[

A B
BT C

]
. (1)

We use Schur(M,A) to denote the Schur complement of C onto A
in M; ie.,

Schur(M,A) = A − BC−1BT .

Equivalently, this is simply the result of running Gaussian elimina-

tion of the block C.

When the matrix M = L is a Laplacian of a graph G = (V ,E)
and V1 ⊆ V is a set of vertices, we abuse the notation and use

Schur(L,V1) or Schur(G,V1) to denote the Schur complement of L
onto the submatrix of L corresponding toV1; i.e., onto the submatrix

of L consisting of all entries whose coordinates (i, j ) satisfy i, j ∈ V1.

Fact 3.9. LetG = (V ,E) be a graph andV = V1∪V2 be a partition
of the vertices. Then Schur(G,V1) is Laplacian matrix of a graph on
vertices in V1.

This means that Schur complement in a graph G = (V ,E) onto

a set of vertices V1 can be viewed as a graph on V1. Furthermore,

we can view this as a multigraph obtained by adding (potentially

parallel) edges to G (V1), the induced graph on V1. We take this

view in this paper: whenever we talk about Schur complements, we

separate out the edges of the original graph from the ones created

during Schur complement operation.
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We now provide some basic facts about how Schur complements

relate to spanning trees. This �rst lemma says that edge deletions

and contractions commute with taking Schur complements.

Fact 3.10. (Lemma 4.1 of [5]) Given G with any vertex partition
V1,V2, for any edge e ∈ E ∩ (V1,V1) we have:

Schur(G \ e,V1) = Schur(G,V1) \ e

Schur(G/e,V1) = Schur(G,V1)/e

Fact 3.11. Given G with any vertex partition V1,V2, for any edge
e ∈ E ∩ (V1,V1), the leverage score of e in G is same as that in
Schur(G,V1).

Proof. Note that for

e ∈ (V1,V1),b
T
e L
−1
G be = (be [V1])

T (L−1G [V1,V1]) (be [V1]).Here,be [V1]

corresponds to a vector restricted to indices in V1 and L−1G [V1,V1]

is similarly the minor of the matrix L−1G corresponding to indices

in V1. By a standard property of Schur complements (see [11]), we

have L−1G [V1,V1]) = (Schur(G,V1))
−1. This proves the fact. �

Spectral Approximation
De�nition 3.12. Given two graphs G,H on identical vertex sets,

and respective Laplacians LG and LH . We say G ≈ϵ H if

exp(−ϵ )LH � LG � exp(ϵ )LH .

De�nition 3.13 (Approximate Schur Complement). Given a graph

G = (V ,E) and vertex set U ⊂ V , let SU be the Laplacian of

Schur(G,V \ U ) − G (V \ U ); ie., the set of edges added to the

induced subgraph G (V \U ) by the Schur complement operation.

We call a matrix S̃U an ϵ-approximate Schur complement if it satis�es

S̃U ≈ϵ SU .

Furthermore, S̃U is a Laplacian.

4 ALGORITHM FOR SAMPLING SPANNING
TREES

It is well known that for any edge of a graph, the probability of that

edge appearing in a random spanning tree is equal to it’s leverage

score. We can iteratively apply this fact to sample a w-uniform

random tree. We can consider the edges in an arbitrary sequential

order, say e1, ...,em ∈ E, and make decisions on whether they

belong to tree. Having decided for edges e1, ...,ei , one computes the

probability pi+1, conditional on the previous decisions, that edge

ei+1 belongs to the tree. Edge ei+1 is then added to the tree with

probability pi+1.
To estimate the probability that edge ei+1 belongs to the tree

conditional on the decisions made on e1, ...,ei , we can use Fact 3.7.

Let ET ⊂ {e1, ...,ei } be the set of edges that were included in the

tree, and FT ⊂ {e1, ...,ei } the subset of edges that were not included.

Then, pi+1 is equal to the leverage score of edge ei+1 in the graph

G (i+1)
:= (G\FT ) /ET obtained by deleting edges ET from G and

then contracting edges ET c . In other words, we get G (i+1)
from

G (i )
by either deleting the edge ei or contracting it, depending on if

ei was not added to the tree or added to the tree, respectively. Note

that as we move along the sequence, some of the original edges

may no longer exist in the updated graph due to edge contractions.

In that case, we just skip the edge and move to the next one.

There are known routines for computing leverage score of an

edge, with ϵ multiplicative error, which require Õ (m log 1/ϵ ) run-

time. Since we potentially have to compute leverage score of every

edge, this immediately gives a total runtime of Õ (m2).
Algorithms in [5, 6, 10] will similarly make decisions on edges

in a sequential order. Where they di�er from the above algorithm

is the graph they use to compute the leverage score of the edge.

Instead of computing the leverage score of an edge in the original

graph updated with appropriate contractions and deletions, they

deal with potentially much smaller graphs containing the edge

such that the e�ective resistance of the edge in the smaller graph

is approximately same as in the original graph.

In this section, we �rst describe the close variant of these algo-

rithms that our recursive structure will follow. We then invoke the

routine described in Section 2.2 to obtain access to a cheap but ap-

proximate routine for computing the sampling probability. Finally,

we give a procedure for dealing with the errors incurred from the

approximate routine, and by careful analysis of these errors will

achieve our desired running time.

4.1 Structure of the Recursion
We now describe the recursive structure of the algorithm given in

Algorithm 1. The structure of the recursion is same as in [6, 10].

Let the input graph be G = (VG ,EG ). Suppose at some stage of the

algorithm, we have a graph G̃ . The task is to make decisions on

edges in EG ∩ EG̃ .We initially divide the vertex set into two equal

sized sets VG̃ = V1 ∪ V2. Recursively, we �rst make decisions on

edges in G̃ (V1)∩EG , then make decisions on edges in G̃ (V2)∩EG and

�nally make decisions on the remaining edges. To make decisions

on G̃ (V1) ∩EG ,we use the fact that the e�ective resistance of edges

are preserved under Schur complement. We work with the graph

G1 = ApproxSchur(G̃,V1,ϵ ) and recursively make decisions on

edges in EG ∩G (V1). Having recursively made decisions on edges

in EG ∩ G̃ (V1), let ET be the set of tree edges from this set. We now

need to update the graph G̃ by contracting edges in ET and deleting

all the edges in EcT ∩ G̃ (V1) ∩ EG . Then we do the same for the

edges in EG ∩ G̃ (V2).
Finally, we treat the edges EG ∩ (V1,V2) that cross V1,V2 in a

slightly di�erent way, and is handled by the subroutine

SampleAcross in the algorithm. If we just consider the edges in

EG , this is trivially a bipartite graph. This property is maintained

in all the recursive calls by the routine SampleAcross. The routine

SampleAcross works by dividing V1,V2 both into two equal sized

setsV1 = L1 ∪ L2 andV2 = R1 ∪R2 and making four recursive calls,

one each for edges in EG ∩ (Li ,Rj ),i = 1,2; j = 1,2. To make deci-

sions on edges in EG ∩ (Li ,Rj ), it recursively calls SampleAcross

on the graphGi j = ApproxSchur(G̃, (Li ,Rj )
c ,ϵ ) obtained by com-

puting approximate Schur complement on to vertices in (Li ,Rj ) of

vertices outside it.

4.2 Approximate Schur Complement and
Expected Õ (n5/3m1/3) Time Algorithm

The recursion gives an O (nω ) time algorithm as shown in [6, 10],

which we speed up O (nω ) algorithm by computing approximate

Schur complements faster. Having access only to approximate Schur
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complements, which preserves leverage score only approximately,

introduces an issue with computing sampling probability. It is a-

priori not clear how to make decisions on edges when we preserve

leverage scores only approximately during the recursive calls. The

key idea here is as follows. Suppose we want to decide if a par-

ticular edge e belongs to the tree. Tracing the recursion tree pro-

duced by Algorithm 1, we see that we have a sequence of graphs

G,G1,G2, ...,Gk all containing the edge e, starting from the original

input graphG all the way down toGk which has a constant number

of vertices. We also have V (Gi ) ⊂ V (Gi−1) for all k ≥ i ≥ 1, all

of them being subsets of V (G ). We set the error parameter ϵ in

ApproxSchur as follows. Let n = |V (G ) |,m = |EG | be the number

of vertices and edges in the input graph, then we de�ne ϵ in terms

of the level i as

ϵ (i ) =




(
m
n

)−2/3
for i ∈ [0,t1]

4
i−t1

(
m
n

)−2/3
for i ∈ [t1,t1 + t2]

log
−2 n otherwise

(2)

The two threshold values t1 and t2 are such that 2
t1 = n2

m and

2
t2 = (mn )1/3 1

logn .

Our ϵ (·) function will ensure for all i, le (G ) ∈ [(1−ϵi )le (Gi ), (1+
ϵi )le (Gi )] for an appropriate ϵi . We sample a uniform random

number r ∈ [0,1], and initially compute le (Gk ). If r lies outside

the interval [(1 − ϵi )le (Gk ), (1 + ϵi )le (Gk )], then we can make a

decision on the edge e . Otherwise, we estimate le (G ) to a higher

accuracy by computing le (Gk−1). We continue this way, and if r
lies inside the interval [(1 − ϵi )le (Gi ), (1 + ϵi )le (Gi )] for every i ,
then we compute le (G ) in the input graph G . In the next section

we describe SampleEdge in more detail.

At this point, we �nd it important to mention that the spectral

error guarantees from the ApproxSchur subroutine only hold with

probability ≥ 1−δ . The explanation of the SampleEdge subroutine

above relied on these spectral guarantees, and the error in our

algorithm for generating random spanning trees will be entirely

due to situations in which the sparsi�cation routine does not give

a spectrally similar Schur complement. For the time being we will

work under the following assumption and later use the fact that it

is true w.h.p. to bound the error of our algorithm.

Assumption 4.1. Every call to ApproxSchur with error parameter
ϵ always computes an ϵ-approximate Schur Complement

Sampling Scheme: SampleEdge. In this section we describe the

routine SampleEdge(e ) for an edge e ∈ G in the input graph. By

keeping track of the recursion tree, we have G0,G1, ...,Gk and e ∈
Gi for all i .

Lemma 4.2. For graphG andGi , the respective conditional leverage
scores le and l

(i )
e for edge e are such that le ∈ [(1−2ϵ (i ) logn)l

(i )
e , (1+

2ϵ (i ) logn)l
(i )
e ]

This will now allow us to set ϵi = 2ϵ (i ) logn. We will delay the

proof of Lemma 4.2 until later in this section in favor of �rst giv-

ing the sampling procedure. The sampling procedure is as follows.

We generate a uniform random number in r ∈ [0,1].We want to

sample edge e if r ≤ le (G ). Instead, we use le (Gk ) as a proxy. Note

that using fast Laplacian solvers, we can in Õ (no. of edges) time

Algorithm 1: GenerateSpanningTree(G̃ = (EG̃ ,Ṽ )) : Re-

curse using Schur Complement

Input: Graph G̃. Let EG , a global variable, denote the edges in

the original (input) graph G.

Output: ET is the set of edges in the sampled tree.

1 ET ← SampleWithin(G ) ;

2 return ET ;

3 Procedure SampleWithin(G̃ )
4 Set ET ← {} ;

5 if |Ṽ | = 1 then
6 return;

7 else
8 Divide V into equal sets V = V1 ∪V2. ;

9 for i = 1,2 do
10 Compute Gi = ApproxSchur(G̃,Vi ,ϵ (level)) (see

Equation 2) ;

11 ET ← ET ∪ SampleWithin(Gi ) ;

12 Update G̃ by deleting edges in G̃ (Vi ) ∩ EcT and

contracting edges in G̃ (Vi ) ∩ ET . (Note the

convention EcT := EG\ET ) ;

13 ET ← ET ∪ SampleAcross(G̃, (V1,V2)) ;

14 return ET ;

15 Procedure SampleAcross(G̃, (L,R))
16 if |L| = |R | = 1 then
17 ET = SampleEdge(G̃, (L,R) ∩ EG ) ;

18 return ET ;

19 Divide L,R into two equal sized sets: L = L1 ∪ L2,

R = R1 ∪ R2. ;

20 for i = 1,2 do
21 for j = 1,2 do
22 G̃i j ← ApproxSchur(G̃, (Li ∪ Rj ),ϵ (level)) (see

Equation 2) ;

23 ET ← ET ∪ SampleAcross(G̃i j , (Li ,Rj )) ;

24 Update G̃ by contracting edges ET and deleting

edges in EcT ∩ (Li ,Rj ) ;

25 return ET ;

compute leverage score of an edge up to a factor of 1 + 1/poly(n).
Since le (G ) ∈ [(1 − ϵk )le (Gk ), (1 + ϵk )le (Gk )],we include the edge

in the tree if r ≤ (1−ϵk )le (Gk ), otherwise if r > (1+ϵk )le (Gk ),we

don’t include it in the tree. If r ∈ [(1 − ϵk )le (Gk ), (1 + ϵk )le (Gk )],
which happens with probability 2ϵk le (Gk ), we get a better esti-

mate of le (G ) by computing le (Gk−1). We can make a decision

as long as r < [(1 − ϵk−1)le (Gk−1), (1 + ϵk−1)le (Gk−1)], other-

wise, we consider the bigger graph Gk−2. In general, if r < [(1 −
ϵi )le (Gi ), (1 + ϵi )le (Gi )], then we can make a decision on e, other-

wise we get a better approximation of le (G ) by computing le (Gi−1).
If we can’t make a decision in any of the k steps, which happens

if r ∈ [(1 − ϵi )le (Gi ), (1 + ϵi )le (Gi )] for all i , then we compute

735



Sampling Random Spanning Trees Faster Than Matrix Multiplication STOC’17, June 2017, Montreal, Canada

the leverage score of e in G updated with edge deletions and con-

tractions resulting from decisions made on all the edges that were

considered before e .

Recall that ϵ (i ) is a function that is only changing for i ∈ [t1,t1 +
t2], and it follows that the process above should only look a graph

one level up if the estimate is better. Accordingly, we will only

iterate this process from i = t1 + t2 to i = t1.

Finally, note that in the �nal step, we can compute le (G ) up to

an approximation factor of 1+ ρ in Õ (m log 1/ρ).We can therefore

start with δ0 = 1/n and if r ∈ [(1 − ρ )̃le (G ), (1 + ρ )̃le (G )], we

set ρ = ρ0/2 and repeat. This terminates in Õ (m) expected (over

randomness in r ) time.

For our algorithm, assume that we have an e�cient data structure

that gives access to each graph G0, ...Gk in which e appears.

Algorithm 2: SampleEdge(e ) : Sample an edge using condi-

tional leverage score

Input: An edge e and access to graphs G0, ...Gk in which e
appears

Output: Returns {e} if edge belongs to the tree, and {} if it

doesn’t

1 Generate a uniform random number r in [0,1] ;

2 le ← EstimateLeverageScore(e )

3 if r < le then
4 return {e}
5 else
6 return {}

7 Procedure EstimateLeverageScore(e )
8 Compute l

(k )
e to error 1/n ;

9 if isGood(l (k )e ,ϵ ) then
10 return l

(k )
e

11 for i = t1 + t2 to t1 do
12 Compute l , an estimate for l

(i )
e with error 1/n;

13 if isGood(l ,ϵ (i )) then
14 return l

15 for i = 0 to∞ do
16 Compute l , an estimate for l

(0)
e with error 1/2in;

17 if isGood(l ,1/2in) then
18 return l

19 Procedure isGood(le ,ϵ )
20 if r < (1 − ϵ )le or r > (1 + ϵ )le then
21 return True

22 return False

Proof of Lemma 4.2. This edge sampling scheme relies upon

the error in the leverage score estimates remaining small as we

work our way down the subgraphs and remaining small when

we contract and delete edges. Theorem 2.2 implies leverage score

estimates will have small error between levels, so we will only have

compounding of small errors. However, it does not imply that these

errors remain small after edge contractions and deletions, which

becomes necessary to prove in the following lemma.

Lemma 4.3. Given a graphG = (V ,E), vertex partitionV1,V2, and
edges e ∈ E ∩ (V1,V1), then

ApproxSchur(G,V1,ϵ )/e ≈ϵ Schur(G/e,V1)

ApproxSchur(G,V1,ϵ ) \ e ≈ϵ Schur(G \ e,V1)

Proof. ApproxSchur(G,V1,ϵ )/e ≈ϵ Schur(G,V1)/e because

spectral approximations are maintained under contractions. Fur-

thermore, ApproxSchur(G,V1,ϵ ) = LV1
+ ˜SV2

where LV1
is the

Laplacian of the edges inE∩(V1,V1). Similarly, write Schur(G,V1) =
LV1
+SV2

, and because ˜SV2
≈ϵ SV2

then LV1
\e+ ˜SV2

≈ϵ LV1
\e+SV2

.

Combining these facts with Fact 3.10 gives the desired result.

�

Proof. (of Lemma 4.2)

By construction, ϵ (i ) ≤ ϵ (k ) for every i ≤ k . Iteratively applying

Theorem 2.2 and Lemma 4.3, gives

le ∈ [e−ϵ (k )k l
(k )
e ,e

ϵ (k )k l
(k )
e ], and using ϵ (k ) ≤ 1/ log2 n for all k ,

and k ≤ logn �nishes the proof

�

Correctness. Under Assumption 4.1, we were able to prove Lemma

4.2. This, in turn, implies the correctness of our algorithm, which

is to say that it generates a tree from a w-uniform distribution on

trees. We now remove Assumption 4.1, and prove the approximate

correctness of our algorithm, and the �rst part of Theorem 2.1.

Theorem 2.1. For any 0 < δ < 1, the routine
GenerateSpanningTree (Algorithm 1) outputs a random spanning
tree from the w-uniform distribution with probability at least 1 − δ
and takes expected time Õ (n5/3m1/3

log
4
1/δ ).

Proof. Each subgraph makes at most 6 calls to

ApproxSchur, and there are logn recursive levels, so O (n3) to-

tal calls are made to ApproxSchur. Setting δ ′ = δ
O (n3 )

for each

call to ApproxSchur, Assumption 4.1 holds with probability (1 −

δ ′)O (n3 ) = 1−δ , and log
4 O (n3 )

δ = Õ (log4 1/δ ). Therefore, our algo-

rithm will only fail to generate a random tree from the w-uniform

distribution on trees with probability at most δ
�

4.2.1 Runtime Analysis. We will now analyze the runtime of

the algorithm. Let T (n) be the time taken by SampleWithin on

input a graph G̃ with n vertices and let B (n) be the time taken by

SampleAcross on a graph with n vertices. We recall that the recur-

sive structure then gives T (n) = 2T (n/2) + 4B (n/2) and B (n/2) =
4B (n/4). To compute the total runtime, we separate out the work

done in the leaves of the recursion tree from the rest. Note that

SampleEdge is invoked only on the leaves.

First we bound the total number of nodes of the recursion tree

as a function of the depth in the tree.

Lemma 4.4. Level i of the recursion tree has at most 4i+1−2i nodes,
the number of vertices in the graphs at each of the nodes is at most
n/2i .

736



STOC’17, June 2017, Montreal, Canada David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, and Sushant Sachdeva

Proof. It is clear that the size of the graph at a node at depth

i is at most n/2i . We will bound the number of nodes by induc-

tion. There are two types of nodes in the recursion tree due to

the recurrence having two kinds of branches corresponding to

T (n),B (n). We will call the nodes corresponding to T (n) as the

�rst type and it is clear from the recurrence relation that there

are 2
i

such nodes. Let us call the other type of nodes the second

type, and it is clear that every node (both �rst and second type)

at depth i − 1 branches into four type two nodes. Therefore, if ai
is the total number of nodes at level i , then ai = 4ai−1 + 2

i
. We

will now prove by induction that ai ≤ 4
i+1 − 2i . Given a0 = 1, the

base case follows trivially. Suppose it is true for i − 1, then we have

ai = 4ai−1 + 2
i ≤ 4(4i − 2i−1) + 2i = 4

i+1 − 2i , proving the lemma.

�

Now we will compute the total work done at all levels other than

the leaves. We recall the error parameter in ApproxSchur calls is

a function of the depth in the tree, see Equation 2.

Lemma 4.5. The total work done at all levels of the recursion tree
excluding the leaves is bounded by
Õ (n5/3m1/3

log
4
1/δ ).

Proof. From Theorem 2.2 the work done in a node at depth i is

Õ
(
((n/2i )2 + n/2iϵ (i )2) log4 1/δ

)
. The log

4
1/δ factor is removed

from the remaining analysis for simplicity. By Lemma 4.4, the total

work done at depth i is

Õ
(
n2 + 2in/ϵ (i )2

)
. Finally, bound for the total running time across

all levels follows from

logn∑
i=0

n2 + 2i
n

ϵ (i )2
= n2 logn +

t1∑
i=0

2
in
m4/3

n4/3

+

t1+t2∑
i=t1

2
in

m4/3

n4/34i−t1
+

logn∑
i=t1+t2

2
in

1

log
4 n

= O (n2 logn + n5/3m1/3 + n5/3m1/3 + n2/ log4 n).

Therefore, the total work done is Õ (n5/3m1/3). �

We will now analyze the total work done at the leaves of the

recursion tree. We �rst state a lemma which gives the probability

that approximate leverage score of an edge can be used to decide if

the edge belongs to the tree.

Corollary 4.6. If r is drawn uniformly randomly from [0,1],
then the probability that r ∈ [1 − ϵ̂ ˆle log2 n,1 + ϵ̂ ˆle log2 n] is Õ (ϵ̂le )
w.h.p.

Proof. The exact probability is 2ϵ̂ ˆle log
2 n, and from Lemma

5.8, we know le ≤ 2
ˆle w.h.p.

�

We now consider the expected work done at a single leaf of the

recursion tree.

Lemma 4.7. Let le be the leverage score of an edge e in theG which
is obtained by updating the input graph based on the decisions made
on all the edges considered before e . The routine SampleEdge takes

Õ (1 + len
2/3m1/3).

Proof. It takesO (1) time to compute the leverage score at a leaf

of the recursion tree. The routine SampleEdge successively climbs

up the recursion tree to compute the leverage score if the leverage

score estimation at the current level is not su�cient. The probability

that the outcome of r is such that we cannot make a decision at

level i is Õ (ϵ (i )le ). The time required to compute the leverage score

of edge e in the graph at a node at depth i in the recursion tree is

Õ ((n/2i )2). Finally, with probability

(
m
n

)−2/3
,we need to compute

the leverage score in the input graph and the expected running

time is Õ (m). Therefore, the total expected running time is

Õ *.
,

(m
n

)−2/3
mle + le

i=t1+t2∑
i=t1

ϵ (i )
n2

4
i

+/
-
= Õ

(
1 + len

2/3m1/3
)
.

�

We now want to give the runtime cost over all edges. Let us label

the edges e1, ...,em in the order in which the decisions are made on

them. In the following, when we talk about leverage score lei of

an edge ei ,we mean the leverage score of the edge ei in the graph

obtained by updatingG based on the decisions made on e1, ...,ei−1.

Lemma 4.8. Let ei be the �rst edge sampled to be in the tree, and
X = le1 + le2 + le3 + ... + lei be a random variable. Then,

Pr(X > C ) ≤ e−C .

Proof. Let pj = lej , we have 0 ≤ pj ≤ 1. If

∑
j pj ≥ C , then the

probability that the edges e1, ...,ei−1 is deleted is

i∏
j=1

(1 − pj ) ≤
(
1 −

C

i

)i
≤ e−C .

�

We thus have E (X ) = O (1), and also, with probability at least

1− 1/poly(n) we have X = O (logn). Applying this iteratively until

n − 1 edges are sampled to be in the tree, we have that the expected

sum of conditional leverage scores is O (n), and is O (n logn) with

probability 1 − 1/poly(n).

Corollary 4.9. The total expected work done over all the leaves
of the recursion tree is Õ (n5/3m1/3).

Proof. This immediately follows from Lemma 4.7 by plugging

in

∑
e le = O (n logn), which holds with probability at least 1 −

1/poly(n), and observing that the work done at the leaves is poly(n)
in the worst case.

�

5 SCHUR COMPLEMENT APPROXIMATION
In this section, we give an algorithm for spectral approximation of

the Schur complement of a Laplacian matrix. Our approach closely

follows that in [19], with the main distinction being: We show that

if their algorithm is used to eliminate only part of the original set of

vertices, then the remaining matrix is a good spectral approximation

of the Schur complement. This requires showing the somewhat

surprising fact that spectral approximation between a Laplacian

and an approximate partial factorization of the Laplacian implies

spectral approximation between their Schur complements.
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We also improve the performance of their algorithm by combin-

ing it with additional leverage score estimation and sparsi�cation

to produce a sparser output.

5.1 Preliminaries
This subsection is mostly replicated from [19] for the sake of com-

pleteness. We start by introducing Cholesky factorizations and

Schur complements. Conventionally, these matrix operations are

understood in terms of factorizations into lower triangular matri-

ces. We will instead present an an equivalent view where the Schur

complement is obtained by iteratively subtracting rank one terms

from a matrix. Let L be the Laplacian of a connected graph. Let

L(:,i ) denote the ith column of L.

S(1) def

= L −
1

L(1,1)
L(:,1)L(:,1)>,

is called the Schur complement of L with respect to vertex 1. S(1) are

identically 0, and thus this is e�ectively a system in the remaining

n − 1 indices.

More generally, we can compute the Schur complement w.r.t. any

single vertex (row and column index) of L. Suppose we want the

Schur complement w.r.t. vertex v1. Letting α1
def

= L(v1,v1),c1
def

=
1

α1 L(:,v1),we have L = S(1) + α1c1c>
1
.

We can also perform a sequence of eliminations, where in the

ith step, we select a vertex vi ∈ V \ {v1, . . . ,vi−1} and eliminate

the vertex vi .We de�ne

αi = S(i−1) (vi ,vi )

ci =
1

αi
S(i−1) (:,vi )

S(i ) = S(i−1) − αicic>i .

If at some step i , S(i−1) (vi ,vi ) = 0, then we de�neαi = 0, and ci = 0.

However, when the original matrix is the Laplacian of a connected

graph, it can be shown that every choice of vi gives a non-zero

αi , and that the resulting matrix S(i ) is always the Laplacian of a

connected graph.

While it does not follow immediately from the above, it is a

well-known fact that the Schur complement S(i ) w.r.t. a sequence

of variables v1, . . . ,vi does not depend on the order in which the

vertices are eliminated (but the ci and αi do depend on the order).

Consequently it makes sense to de�ne S(i ) as the Schur complement

w.r.t. elimination of the set of vertices {v1, . . . ,vi } (see Fact 5.3).

Suppose we eliminate a sequence of vertices v1, . . . ,vj Let L

be the n × j matrix with ci as its ith column, and D be the n × j
diagonal matrixD(i,i ) = αi , then

L = S(j ) +
j∑

i=1
αicic>i = S(j ) +LDL>.

This decomposition is known a partial Cholesky factorization. Let

us write F =
{
v1, . . . ,vj

}
, and C = V − F . We can then write

L =

(
LF F
LCF

)
. If we abuse notation and also identify S(j ) if the

matrix restricted to its non-zero support C , then we can also write

L =
(
LF F 0
LCF ICC

) (
D 0
0 S(j )

) (
LF F 0
LCF ICC

)>
(3)

Clique Structure of the Schur Complement. Given a Laplacian L,

let (L)v ∈ Rn×n denote the Laplacian corresponding to the edges

incident on vertex v , i.e.

(L)v
def

=
∑

e ∈E :e 3v
w (e )beb>e . (4)

For example, we denote the �rst column of L by

(
d
−aaa

)
, then (L)

1
=

[
d −aaa>

−aaa diag(aaa)

]
.We can write the Schur complement S(1) w.r.t. a

vertex v1 as S(1) = L − (L)v1

+ (L)v1

− 1

L(v1,v1 )
L(:,v1)L(:,v1)>. It

is immediate that L − (L)v1

is a Laplacian matrix, since L− (L)v1

=∑
e ∈E :e=v1

w (e )beb>e . A more surprising (but well-known) fact is

that

Cv1
(L) def= (L)v1

−
1

L(v1,v1)
L(:,v1)L(:,v1)> (5)

is also a Laplacian, and its edges form a clique on the neighbors

of v1. It su�ces to show it for v1 = 1. We write i ∼ j to denote

(i, j ) ∈ E. Then

C1 (L) = L1 −
1

L(1,1)
L(:,1)L(:,1)>

=

[
0 0>

0 diag(aaa) − aaaaaa>
d

]
=

∑
i∼1

∑
j∼1

w (1,i )w (1, j )

d
b(i,j )b

>
(i,j ) .

Thus S(1) is a Laplacian since it is a sum of two Laplacians. By

induction, for all k , S(k ) is a Laplacian. Thus:

Fact 5.1. The Schur complement of a Laplacian w.r.t. vertices
v1, . . . ,vk is a Laplacian.

5.2 Further Properties of the Schur
Complement and Other Factorizations

Consider a general PSD matrix of the form

M =
(
A 0
B I

) (
R 0
0 T

) (
A 0
B I

)>
(6)

where A is invertible and I is the identity matrix on a subset of the

indices of M. It is easy to show the following well-known fact:

Fact 5.2. SupposeX is a non-singular matrix andA is a symmetric
matrix, and P is the orthogonal projection to the complement of the
null space of XAX>. Then (XAX>)+ = PX−1A+X−>P .

Based on Fact 5.2 for vectors orthogonal to null space of M we

have

x>M+x = x>
(
A 0
B I

)−> (
R+ 0
0 T+

) (
A 0
B I

)−1
x
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By applying the general formula for blockwise inversion and sim-

plifying, we get (
A 0
B I

)−1
=

(
A−1 0
−BA−1 I

)
So

x>M+x = x>
(

A−1 0
−BA−1 I

)> (
R+ 0
0 T+

) (
A−1 0
−BA−1 I

)
x.

Suppose x =
(
0
y

)
, and again x is orthogonal to the null space of M.

Then

x>M+x

=

(
0
y

)> (
A−1 0
−BA−1 I

)> (
R+ 0
0 T+

) (
A−1 0
−BA−1 I

) (
0
y

)
= y>T+y. (7)

Consider a partial Cholesky decomposition of a connected Lapla-

cian Lw.r.t. elimination of the sequence of verticesv1, . . . ,vj , where

we write F =
{
v1, . . . ,vj

}
and C = V − F . Recall that the resulting

Schur complement S is another Laplacian. We can write L in terms

of the Schur complement S as

L =
(
LF F 0
LCF ICC

) (
D 0
0 S

) (
LF F 0
LCF ICC

)>
(8)

Note that as S is a connected Laplacian on a subset of the vertices

of L. In the full version of the paper, we prove the two standard

facts stated below.

Fact 5.3. The Schur complement of a connected Laplacian L w.r.t.
to a sequence of vertices v1, . . . ,vj does not depend on the order of
elimination of these vertices. LetC = V −

{
v1, . . . ,vj

}
, then the Schur

complement is equivalent to the Schur complement Schur(G,C ) as
stated in De�nition 3.8.

Fact 5.4. Consider a connected Laplacian L and a subset F ⊆ V of
its vertices, and let S be the Schur complement of L w.r.t. elimination

of F . Let C = V − F . Suppose x =
(
xF
xC

)
is a vector orthogonal to the

null space of L, and xF = 0.
Then x>L+x = x>CS

+xC .

5.3 Spectral Approximation of the Schur
Complement

Theorem 2.2, stated below, characterizes the performance of our

algorithm ApproxSchur. This algorithm computes a spectral ap-

proximation of the Schur complement of a Laplacian w.r.t elimina-

tion of a set of vertices F = V −C . The algorithm relies on three

procedures:

• LevScoreEst, which computes approximate leverage scores

of all edges in a graph; The guarantees of LevScoreEst

are given in Lemma 5.5.

• GraphSparsify, which sparsi�es a graph. GraphSparsify

is characterized in Lemma 5.5.

• CliqeSample which returns a sparse Laplacian matrix

approximating a clique created by elimination (see [19],

Algorithm 2).

The pseudocode for ApproxSchur is given in Algorithm 3.

Theorem 2.2. Given a connected undirected multi-graph G =
(V ,E), with positive edges weights w : E → R+, and associated
Laplacian L, a set vertices C ⊂ V , and scalars 0 < ϵ ≤ 1/2, 0 <
δ < 1, the algorithm ApproxSchur(L,C,ϵ ,δ ) returns a Laplacian
matrix S̃. With probability ≥ 1 − δ , the following statements all
hold: S̃ ≈ϵ S, where S is the Schur complement of L w.r.t elimina-
tion of F = V − C . S̃ is a Laplacian matrix whose edges are sup-
ported on C . Let k = |C | = n − |F |. The total number of non-zero
entries S̃ is O (kϵ−2 log(n/δ )). The total running time is bounded by
O ((m logn log2 (n/δ ) + nϵ−2 logn log4 (n/δ )) polyloglog(n)).

Lemma 5.5 stated below follows immediately from using the

Laplacian solver of [16] in the e�ective resistance estimation pro-

cedure of [23].

Lemma 5.5. Given a connected undirected multi-graphG = (V ,E),
with positive edges weights w : E → R+, and associated Laplacian
L, and a scalar 0 < δ < 1 the algorithm LevScoreEst(L,δ ) returns
estimates τ̂e for all the edges such that with probability ≥ 1 − δ

(1) For each edge e , we have τe ≤ τ̂e ≤ 1 where τe is the true
leverage score of e in G.

(2)
∑
e τ̂e ≤ 2n.

The algorithm runs in time O (m log
2 (n/δ ) polyloglog(n)).

Lemma 5.5 stated below follows immediately from using the

Laplacian solver of [16] in the sparsi�cation routine of [23].

Lemma 5.6. Given a connected undirected multi-graphG = (V ,E),
with positive edges weights w : E → R+, and associated Laplacian
L, and scalars 0 < ϵ ≤ 1/2, 0 < δ < 1, GraphSparsify(L,ϵ ,δ )
returns a Laplacian L̃ s.t. with probability ≥ 1 − δ it holds that
L̃ ≈ϵ L and L̃ has O (nϵ−2 log(n/δ )) edges. The algorithm runs in
time O (m log

2 (n/δ ) polyloglog(n) + nϵ−2 log(n/δ )).

Our proof of Theorem 2.2 relies on the following lemma which

provides a similar, but seemingly weaker guarantee about the out-

put of the algorithm ApxPartialCholesky. Its pseudo-code is

given in Figure 4.

Lemma 5.7. Given a connected undirected multi-graphG = (V ,E),
with positive edges weights w : E → R+, and associated Laplacian
L, a set vertices C ⊂ V , and scalars 0 < δ < 1, 0 < ϵ ≤ 1/2, the
algorithm
ApxPartialCholesky(L,C,ϵ ) returns a decomposition (L̃,D̃, S̃). With
probability ≥ 1 − δ , the following statements all hold:

L ≈ϵ L̃ (9)

where F = V −C and

L̃ =
(
L̃F F
L̃CF

)
D̃

(
L̃F F
L̃CF

)>
+

(
0F F 0FC
0CF S̃

)
.

Here S̃ is a Laplacian matrix whose edges are supported onC . Let k =
|C | = n−|F |. The total number of non-zero entries S̃ isO (kϵ−2 log(n/δ )).
L̃F F is an invertible matrix. The total number of non-zero entries in
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Algorithm 3: ApproxSchur(L,C,ϵ ,δ )

1 Call LevScoreEst(L,δ/3) to compute leverage score estimates

τ̂e for every edge e;

2 for every edge e do
3 S̃

(0)
← L̃ with multi-edges split into

ρe =
⌈
τ̂e · 12

(
ϵ
2

)−2
ln
2 (3n/δ )

⌉
copies with 1/ρe of the

original weight;

4 Let F = V −C;

5 Label the vertices in F by {1, . . . , |F |} and the remaining

vertices C by {|F | + 1, . . . ,n} ;

6 Let π be a uniformly random permutation on {1, . . . , |F |};

7 for i = 1 to |F | do
8 C̃i ← CliqeSample (̃S

(i−1)
,π (i ));

9 S̃
(i )
← S̃

(i−1)
−

(̃
S
(i−1)

)
π (i )
+ C̃i ;

10 S̃ ← GraphSparsify (̃S
( |F |)
,ϵ ,δ/3);

11 return S̃;

L̃F F and L̃FC isO (m+nϵ−2 logn log(n/δ )2). The total running time
is bounded byO ((m logn log2 (n/δ )+nϵ−2 logn log4 (n/δ )) polyloglog(n)).

A proof of Lemma 5.7 appears in the full version.

Algorithm 4: ApxPartialCholesky(L,C,ϵ ,δ )

1 Call LevScoreEst(L,δ/3) to compute leverage score estimates

τ̂e for every edge e;

2 for every edge e do
3 S̃

(0)
← L̃ with multi-edges split into

ρe =
⌈
τ̂e · 12

(
ϵ
2

)−2
ln
2 (3n/δ )

⌉
copies with 1/ρe of the

original weight;

4 Let F = V −C;

5 De�ne the diagonal matrix D̃ ← 0 |F |× |F | ;
6 Label the vertices in F by {1, . . . , |F |} and the remaining

vertices C by {|F | + 1, . . . ,n} ;

7 Let π be a uniformly random permutation on {1, . . . , |F |};

8 for i = 1 to |F | do
9 D̃(i,i ) ← (π (i ),π (i )) entry of S̃

(i−1)
;

10 eci ← π (i )th column of S̃
(i−1)

divided by D̃(i,i ) if

D̃(i,i ) , 0, or zero otherwise;

11 C̃i ← CliqeSample (̃S
(i−1)
,π (i ));

12 S̃
(i )
← S̃

(i−1)
−

(̃
S
(i−1)

)
π (i )
+ C̃i ;

13 L̃ ←
(
c1 c2 . . . c |F |

)
;

14 S̃ ← GraphSparsify (̃S
( |F |)
,ϵ ,δ/3);

15 return (L̃,D̃, S̃);

Proof. (of Theorem 2.2) Note, given the elimination ordering

π (v1), . . . ,π (v |F | ) we can do a partial Cholesky factorization of L
as

L =
(
LF F 0
LCF ICC

) (
D 0
0 S

) (
LF F 0
LCF ICC

)>
(10)

where S is the Schur complement of L w.r.t. F .

We note that ApproxSchur and ApxPartialCholesky perform

exactly the same computations, with the exception that

ApxPartialCholesky records the values L̃ and D̃. This means

we can establish a simple coupling between the algorithms by con-

sidering them executing based on the same source of randomness:

They must then return the same matrix S̃. Thus, if we can show for

the matrix S̃ returned by ApxPartialCholesky that S̃ ≈ϵ S, then

the same must be true for the S̃ returned by ApproxSchur.

We can write the matrix L̃ constructed from the output of

ApxPartialCholesky as

L̃ =
(
L̃F F 0
L̃CF ICC

) (
D̃ 0
0 S̃

) (
L̃F F 0
L̃CF ICC

)>
(11)

We now suppose that ApxPartialCholesky succeeds and returns

L̃ ≈ϵ L. These two matrices must have the same null space, namely

the span of 1. Consider x =
(
0
y

)
, where y is orthogonal to 1C and

hence x is orthogonal to 1. By Equation (7), x>L̃+x = y>S̃
+
y, and

x>L+x = y>S+y. L̃ ≈ϵ L implies L̃+ ≈ϵ L+, and so

exp(−ϵ )y>S+y ≤ y>S̃
+
y ≤ exp(ϵ )y>S̃

+
y. (12)

Furthermore, both S and S̃ have a null space that is exactly the

span of 1C . We can see this in two steps: Firstly, both are Laplacian

matrices, so their null spaces must include the span of 1C . Secondly,

from the product forms in Equations (10) and (11), if either had null

space of rank strictly larger than 1, then the rank of L or L̃ would

be strictly less than 1, which is false. So by contradiction, both S
and S̃ have a null space that is exactly the span of 1C . From this and

Equation (12), which holds for all y orthogonal to 1C , we conclude

S̃
+
≈ϵ S+. This in turn implies S̃ ≈ϵ S.

The guarantees of success probability, running time and spar-

sity of S̃ for ApproxSchur now follow from the guarantees for

ApxPartialCholesky given in Lemma 5.7. �

6 EFFECTIVE RESISTANCE ESTIMATION
Recalling the statement of Theorem 2.3, we will give our algorithm

and show the following.

Theorem 2.3. When given a graph G, a set S of pairs of vertices,
and an error parameter ϵ , the function EstimateRe� (Algorithm 5
in Section 6) returns e±ϵ -multiplicative estimates of the e�ective re-
sistance of each of the pairs in S in time Õ

(
m + n+ |S |

ϵ 2
)
with high

probability.

First, we give our algorithm for estimating the e�ective resis-

tance of a set of pairs S that achieves an improved running time

(ignoring log(n) factors) over algorithms that are based on the

Johnson-Lindenstrauss Lemma, for a su�ciently small set of pairs

and error parameter. The algorithm EstimateR
e�

(Algorithm 5) is

given below. The main tool it uses is the ability to quickly compute
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a sparse spectral approximation of the Schur complement of a graph

onto a subset of its vertices, along with the following observations:

(1) An approximate Schur complement of a graph onto a sub-

set Vi of the vertices approximately preserves e�ective

resistances between elements of Vi
(2) If the number of vertex pairs we wish to compute the

e�ective resistances of is much smaller than the number of

vertices, then there must be a large number of vertices that

are not part of any pair, and these vertices can be removed

by taking a Schur complement, shrinking the size of the

graph.

Our proof of Theorem 2.3 relies on Theorem 6.1, which gives guaran-

tees for the purely combinatorial Schur complement approximation

algorithm CombApproxSchur that are almost as strong as the guar-

antees for the ApproxSchur algorithm given in Theorem 2.2. We

prove Theorem 6.1 in the full version of this paper.

Theorem 6.1. Given a connected undirected multi-graph G =
(V ,E), with positive edges weights w : E → R+, and associated
Laplacian L, a set vertices C ⊂ V , and and scalars 0 < ϵ ≤ 1/2,
0 < δ < 1, the algorithm CombApproxSchur(L,C,ϵ ,δ ) returns a
Laplacian matrix S̃. With probability ≥ 1−δ the following statements
hold: S̃ ≈ϵ S, where S is the Schur complement of L w.r.t elimination
of F = V − C . S̃ is a Laplacian matrix whose edges are supported
on C . Let k = |C | = n − |F |. The total number of non-zero entries
S̃ is O (kϵ−2 polylog(n/δ )). The total running time is bounded by
O ((m + nϵ−2) polylog(n/δ )).

Algorithm 5: EstimateR
e�
(G = (V ,E),S ,ϵ )

Input: A graph G = (V ,E), a set S ⊆ V ×V of vertex pairs, and an

error tolerance 0 < ϵ ≤ 1

Output: Estimates of the e�ective resistances of each of the pairs

in S accurate to within a factor of e±ϵ with high

probability

1 ϵ ′ ← ϵ
log

2
n .

2 return HelpEstimateRe� (G,S ,ϵ ′)

We now prove that this algorithm quickly computes e�ective

resistances. In doing this analysis, we did not try to optimize log

factors, and we believe that at least some of them can likely be

eliminated through a more careful martingale analysis.

Proof. (of Theorem 2.3) First we prove correctness. In any re-

cursive call of HelpEstimateR
e�

(Algorithm 6), let L denote the

Schur complement of the graph onto (say) V1. Fact 5.4 says that

the Schur complement of a graph onto a subset of its vertices V1
exactly preserves e�ective resistances between vertices inV1. How-

ever, the algorithm we are analyzing does not take an exact Schur

complement. Instead, it takes an approximate Schur complement L̃
which by Theorem 6.1, satis�es e−ϵ

′

L � L̃ � eϵ
′

L. We also know

that the e�ective resistance between i and j in the approximate

Schur complement is given by (~1i −~1j )
ᵀL̃† (~1i −~1j ), where~1z is the

zth standard basis vector. These two facts imply that the e�ective

resistance between i and j in L̃ is within an e±ϵ
′

factor of what it

Algorithm 6: HelpEstimateR
e�
(G = (V ,E),S ,ϵ )

Input: A graph G = (V ,E), a set S ⊆ V ×V of vertex pairs, and an

error tolerance 0 < ϵ ≤ 1

Output: Estimates of the e�ective resistances of each of the pairs

in S accurate to within a factor of e±ϵ log2 n with high

probability

1 if S = ∅ then
2 return ∅

3 Let V0 denote the set of all vertices that are part of at least one

pair in S .

4 G ← CombApproxSchur (G,V0,ϵ ,with high probability)
(see Theorem 6.1) V ← V0

5 if |S | = 1 (or equivalently, |V | = 2) then
6 Let z denote the pair in S or equivalently, the only two

vertices in the graph.

7 return the estimate 1/wz , wherewz is the weight of the
only edge in G.

8 Partition V into V1,V2 with |V1 | = bn/2c and |V2 | = bn/2c.

9 Partition S into subsets S1,S2,S3 with:

10 S1 ← pairs with both elements in V1
11 S2 ← pairs with both elements in V2
12 S3 ← pairs with one element in V1 and the other in V2.

13 Let

G1 ← CombApproxSchur (G,V1,ϵ ,with high probability).
14 Let

G2 ← CombApproxSchur (G,V2,ϵ ,with high probability).
15 Concatenate and return the estimates given by:

16 HelpEstimateR
e�
(G1,S1,ϵ )

17 HelpEstimateR
e�
(G2,S2,ϵ )

18 HelpEstimateR
e�
(G,S3,ϵ )

was before taking the approximate Schur complement. Applying

this inductively over the depth of the recursion, we get that the

approximate e�ective resistances R̃
e�

returned by the algorithm

satisfy

e−ϵ
′ ( dlog

2
n e−1)R

e�
≤ R̃

e�
≤ eϵ

′ ( dlog
2
n e−1)R

e�

e−ϵR
e�
≤ R̃

e�
≤ eϵR

e�

For runtime, let n,m be the number of vertices and edges in the

original graph, before any recursion is done. Consider any recursive

call c . Let nc be the number of vertices of the graph G that is given

to c as an argument, before any modi�cations within c have been

done. Let sc denote the number of pairs in the argument S passed

to the recursive call c . Finally, let n′c denote the number of vertices

in G after G has been replaced with its Schur complement onto

V0 in the call. By Theorem 6.1, the actual amount of work done

in a recursive call of HelpEstimateR
e�

(other than the top level

call) is Õ (nc/ϵ
2). Here and for the rest of this proof, Õ hides factors
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polylogarithmic in n, but does not hide anything that explicitly

depends on on n′c or ϵ .

We claim that with proper amortization, the amount of work

done in each recursive call is Õ (n′c/ϵ
2). To show this, de�ne a

potential function ϕc which is Θ̃(n′c/ϵ
2). Then de�ne the amortized

cost of a recursive call as its true cost plus (ϕc −ϕparent(c )/3). Since

the recursion tree has branching factor 3, the sum of the amortized

costs of the calls upper bounds the total true cost.

Then we have that the amortized cost of a call c is

Õ (nc/ϵ
2) + (ϕc − ϕparent(c )/3) =

Õ (nc/ϵ
2) + (ϕc − ϕparent(c ) )/3 + (2/3)ϕc ≤ Õ (n′c/ϵ

2).

Recall that n′c is the number of vertices in the graph given to the

call that are part of at least one pair in S . Thus,n′c ≤ 2sc . Putting this

all together, we get that the total amortized work done in the �rst

level of HelpEstimateR
e�

is Õ (m + n/ϵ2), and for any subsequent

level, it is given by

∑
calls c in the level

Õ (nc/ϵ
2)+(ϕc−ϕparent(c )/3) ≤∑

calls c in the level
Õ (sc/ϵ

2) ≤ Õ ( |S |/ϵ2). Summing over all levels

gives the claimed bound of

Õ
(
m + n+ |S |

ϵ 2
)
. �
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