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ABSTRACT
We study the parallel repetition of one-round games involving

players that can use quantum entanglement. A major open question

in this area is whether parallel repetition reduces the entangled

value of a game at an exponential rate — in other words, does

an analogue of Raz’s parallel repetition theorem hold for games

with players sharing quantum entanglement? Previous results only

apply to special classes of games.

We introduce a class of games we call anchored. We then intro-

duce a simple transformation on games called anchoring, inspired in

part by the Feige-Kilian transformation, that turns any (multiplayer)

game into an anchored game. Unlike the Feige-Kilian transforma-

tion, our anchoring transformation is completeness preserving.

We prove an exponential-decay parallel repetition theorem for

anchored games that involve any number of entangled players. We

also prove a threshold version of our parallel repetition theorem

for anchored games.

Together, our parallel repetition theorems and anchoring trans-

formation provide the �rst hardness ampli�cation techniques for

general entangled games. We give an application to the games

version of the Quantum PCP Conjecture.
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1 INTRODUCTION
Hardness ampli�cation is a central method in complexity theory

and cryptography for reducing the soundness error of interactive

proofs and argument systems. Often, it is easier to construct an

interactive protocol with soundness error bounded away from 1,

and then apply hardness ampli�cation on the protocol to reduce the
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soundness error to an arbitrarily small δ . Furthermore, one would

often like the hardness ampli�cation method to maintain important

structural features of the protocol, such as the number of rounds

or the number of parties involved. The simplest operation which

achieves this is parallel repetition, where multiple independent in-

stances of the original protocol are executed in parallel. However,

despite the independence between instances, the parties in the pro-

tocol may not treat them independently. Because of this, showing

that parallel repetition reduces the soundness error is generally a

di�cult task, which has been the focus of a long line of research in

complexity theory and cryptography [19, 22, 23, 25, 27, 39, 41].

In this paper, we study the parallel repetition of games involving

players sharing entanglement. For simplicity we �rst consider two-

player games. A two-player one-round game is speci�ed by �nite

question sets X,Y , �nite answer sets A,B, a probability distribu-

tion µ overX×Y , and a veri�cation predicateV : X×Y×A×B →

{0, 1} that determines the acceptable question and answer combi-

nations. The game is played as follows: a referee samples questions

(x ,y) ∈ X × Y according to µ and sends x to the �rst player and y
to the second. Each player replies with an answer, a ∈ A and b ∈ B
respectively. The referee accepts if and only if V (x ,y,a,b) = 1, in

which case we say that the players win the game. The extension to

three or more players is straightforward.

Multiplayer games arise naturally in settings ranging from hard-

ness of approximation [24, 49] and interactive proof systems [7,

22] to the study of Bell inequalities and non-locality in quantum

physics [6, 13].

The main quantity associated with a multiplayer game G is its

value: the maximum acceptance probability achievable by the play-

ers, where the probability is taken over the questions, as chosen

by the referee, and the players’ answers. Di�erent notions of value

arise from di�erent restrictions on allowed strategies for the play-

ers. The most important for us are the classical value (denoted by

val(G )) and the entangled value (denoted by val
∗ (G )). The former

is obtained by restricting the players to classical strategies, where

each player’s answer is a function of its question only
1
. The latter

allows for quantum strategies, in which each player’s answer is

obtained as the outcome of a local measurement performed on a

quantum state shared by the players. The use of quantum states

does not allow communication between the players, but it does

allow for correlations between their questions and answers that

cannot be reproduced by any classical strategy [6].

We study the behavior of val(G ) and val
∗ (G ) under parallel

repetition. In the n-fold parallel repetition Gn
of a game G the

referee samples (x1,y1), . . . , (xn ,yn ) independently from µ, and

sends (x1, . . . ,xn ) to the �rst player and (y1, . . . ,yn ) to the sec-

ond. The players respond with answer tuples (a1, . . . ,an ) and

1
Both private and shared randomness are in principle allowed, but easily seen not to

help.
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(b1, . . . ,bn ) respectively, and they win if and only if their answers

satisfy V (xi ,yi ,ai ,bi ) = 1 for all i .
Clearly, if the players play each instance of G in Gn

indepen-

dently of each other (i.e. according to a product strategy), their

success probability is the n-th power of their success probability

in G. The main obstacle to proving a parallel repetition theorem is

that players need not employ product strategies – their answers

for the i-th instance of G may depend on their questions in the j-th
instance for j , i . Indeed, it is known that there are games G for

which non-product strategies enable the players to win Gn
with

probability signi�cantly greater than val(G )n [20, 43].

Nevertheless, the parallel repetition theorem of Raz [41] estab-

lishes that if G is a two-player game such that val(G ) < 1 the value

val(Gn ) decays exponentially with n. Thus, Raz’s theorem shows

that parallel repetition is a good hardness ampli�cation technique

for two-player one-round games. The two following decades have

seen a substantial amount of research on this question, connect-

ing the problem of parallel repetition to topics such as the Unique

Games conjecture, hardness of approximation, communication com-

plexity, and more [3, 10, 24, 40].

Recently, there has been much interest in obtaining hardness

ampli�cation techniques for games involving players sharing en-

tanglement — in particular, obtaining an analogue of Raz’s theorem

for entangled games. The study of entangled games has recently

been a prominent focus of quantum complexity theory and quan-

tum information, for its role in quantum interactive proofs [29, 45],

quantum cryptography [47, 48], and for its aid in studying funda-

mental aspects of quantum entanglement [34, 35]. However, this

has proved challenging, for a variety of reasons. For one, there is

no a priori upper bound on the amount of entanglement needed to

play a given game optimally. Secondly, our toolbox for analyzing

quantum entanglement in multiprover interactive proofs is still

quite limited. Thus, in addition to its application to hardness ampli-

�cation, the question of parallel repetition for entangled games is

a challenging proving ground for analyzing entanglement in the

complexity theoretic setting.

In spite of much research—and partial results, as surveyed in

Section 1.3—it remains an open question as to whether an analogue

of Raz’s theorem holds for entangled games. In this paper, we make

progress on this question.

1.1 Our Results
We give the �rst hardness ampli�cation method for general entan-

gled games, involving any number of players. Prior to this work,

parallel repetition theorems were only known for special classes

of entangled two-player games, but not all games. Our main result

can be summarized as follows; see Theorems 5.1 and 6.1 for precise

statements.

Theorem 1.1 (Main theorem, informal). There exists a polynomial-
time transformation (called anchoring) that takes the description of
an arbitrary k-player game G and returns a game G⊥ with the fol-
lowing properties:

(1) (Classical hardness ampli�cation)
If val(G ) = 1 − ε then val(G⊥) = 1 − 3

4
ε and val(Gn

⊥ ) =

exp(−Ω(ε3 · n)).

(2) (Quantum hardness ampli�cation)
If val∗ (G ) = 1 − δ then val

∗ (G⊥) = 1 − 3

4
δ and val∗ (Gn

⊥ ) =

exp(−Ω(δ8 · n)).

The implied constants in the Ω(·) only depend on the number of
players k and the cardinality of the answer sets of G.

We obtain an e�cient hardness ampli�cation method from this

theorem in the following way: suppose given a k-player game

G whose entangled value is either 1 or at most 1 − δ . By letting

n = poly(log β−1,δ−1), the game Gn
⊥ (the n-fold repetition of the

anchored game G⊥) has value either 1 or at most β . An important

aspect of our anchoring transformation is that it preserves quantum
completeness, meaning that if val

∗ (G ) = 1, then val
∗ (G⊥) = 1. Simi-

lar game transformations in previous works (such as the one given

by Feige and Kilian [19]) do not preserve quantum completeness,

and thus cannot be used for hardness ampli�cation in the same

way.

We remark that our theorem applies to games with any number

of players, with or without entanglement. Whether Raz’s theorem

can be extended to games with more than two players is a notorious

open problem (even without entanglement).

We also obtain a threshold version of the theorem above, which

states that the probability that the players win more than an val
∗ (G )+

γ fraction of the n instances of G⊥ in Gn
⊥ goes to 0 exponentially

fast in n:

Theorem 1.2 (Threshold theorem, informal). Let G be a k-
player game with val

∗ (G ) = 1 − δ , and G⊥ the anchored version of
G. Then for all integer n ≥ 1 the probability that in the game Gn

⊥

the players can win more than (1 − 3

4
δ + γ )n instances of G⊥ is at

most exp(−Ω(γ 9n)), where the implied constant only depends on the
number of players k and the cardinality of the answer sets of G.

The advantage of having a threshold theorem is that it also

implies that parallel repetition reduces the completeness error in

addition to the soundness error. This is useful in situations where

we are trying to distinguish between, say, val
∗ (G ) ≥ 0.99 and

val
∗ (G ) ≤ 0.5. The entangled value of Gn

⊥ in both cases is exponen-

tially small. However, if the referee instead checks that the number

of instances won in Gn
⊥ is above a certain threshold, then we can

obtain a new game where either the value is exponentially close to

1 or exponentially close to 0. See Theorem 5.6 for a more precise

statement.

Finally, we present an application of our threshold theorem

to the so-called Quantum PCP Conjecture. The main application

of Raz’s parallel repetition theorem is to amplify the complete-

ness/soundness gap of probabilistically checkable proofs, in order

to obtain stronger hardness of approximation results (see, e.g., [24]).

Similarly, our threshold bound would perform the same function

for the multiprover games formulation of the Quantum PCP Con-

jecture. It is crucial that our threshold bound applies to games with

any number of players; so far, it appears that the types of games

that arise in approaches to the Quantum PCP Conjecture (games

version) involve more than two players [29, 37]. We discuss this in

more detail in Section 2.
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1.2 The Anchoring Transformation
The idea of modifying the game to facilitate its analysis under par-

allel repetition originates in work of Feige and Kilian [19] which

predates Raz’s parallel repetition theorem. Feige and Kilian in-

troduce a transformation that converts an arbitrary game G to

a so-called miss-match game GFK . The transformation is value-
preserving in the sense that there is a precise a�ne relationship

val(GFK ) = (2 + val(G ))/3. Furthermore Feige and Kilian are able

to show that the value of the n-fold repetition of GFK decays poly-
nomially in n whenever val(G ) < 1. This enables them to establish

a general hardness ampli�cation result without having to prove a

parallel repetition theorem for arbitrary games. This is su�cient

for many applications, including to hardness of approximation, for

which it is enough that the hardness ampli�cation procedure be

e�cient and value-preserving.

Theorem 1.1 adopts a similar approach to that of Feige and Kilian

by providing an arguably even simpler transformation, anchoring,

which preserves both the classical and entangled value of a game

and for which we are able to prove an exponential decay under

parallel repetition. In contrast, the transformation considered by

Feige and Kilian does not in general preserve the entangled value.

We proceed to describe our transformation and then discuss the role

it plays in facilitating the proof of our parallel repetition theorem.

De�nition 1.3 (Basic anchoring). Let G be a two player game

with question distribution µ on X ×Y , and veri�cation predicate

V . Let 0 < α < 1. In the α-anchored game G⊥ the referee chooses

a question pair (x ,y) ∈ X × Y according to µ, and independently

and with probability α replaces each of x and y with an auxiliary

“anchor” symbol ⊥ to obtain the pair (x ′,y′) ∈ (X∪ {⊥})× (Y∪ {⊥})
which is sent to the players as their respective questions. If any

of x ′,y′ is ⊥ the referee accepts regardless of the players’ answers;

otherwise, the referee checks the players’ answers according to the

predicate V .

For a choice of α = 1−

√
3

2
it holds that both val(G⊥) =

3

4
val(G )+

1

4
and val

∗ (G⊥) =
3

4
val
∗ (G ) + 1

4
. One can think of G⊥ as playing

the original game G with probability 3/4, and a trivial game with

probability 1/4. The term “anchored” refers to the fact that question

pairs chosen according to µ are all “anchored” by a common ques-

tion (⊥, ⊥). Though the existence of this anchor question makes the

game G⊥ easier to play than the game G, it facilitates showing that

the repeated gameGn
⊥ is hard. At a high level, the anchor questions

provide a convenient way to handle the complicated correlations

that may arise when the players use non-product strategies in the

repeated game.

Our parallel repetition results more generally apply to a class

of games we call anchored. The anchoring transformation of The-

orem 1.1 produces games of this type; however, anchored games

can be more general. We give a full de�nition of anchored games

in Section 3. We note that the class of anchored games includes the

class of free games, a class of games for which quantum parallel

repetition theorems were previously shown in [11, 12, 28].

1.3 Related Work
We refer to the surveys by Feige and Raz [18, 42] for an extensive

historical account of the classical parallel repetition theorem and

its connections to the hardness of approximation and multiprover

interactive proof systems, and instead focus on more recent results,

speci�cally those pertaining to the quantum or multiplayer parallel

repetition.

The �rst result on the parallel repetition of entangled-player

games was obtained by Cleve et al. [14] for XOR games. This was

extended to the case of unique games by Kempe, Regev and Toner

[31]. Kempe and Vidick [32] studied a Feige-Kilian type repetition

for the entangled value of two-player games, and obtained a poly-

nomial rate of decay. The Feige-Kilian transformation does not

in general preserve the entangled value, and their result does not

provide a hardness ampli�cation technique for arbitrary entangled

games.

Dinur et al. [17] extend the analytical framework of Dinur and

Steurer [16] to obtain an exponential-decay parallel repetition the-

orem for the entangled value of two-player projection games. How-

ever their techniques appear to heavily rely on symmetries of

projection games, and it is unclear how to extend them to gen-

eral games. Chailloux and Scarpa [11] and Jain et al. [28] prove

exponential-decay parallel repetition for free two-player games, i.e.

games with a product question distribution. Their analysis, as well

as the follow-up work Chung et al. [12], is based on extending the

information-theoretic approach of Raz and Holenstein.

Much less is known about the multiplayer setting than the quan-

tum setting. The only parallel repetition bound that applies to all

multiplayer games is due to Verbitsky [50], but the rate of decay

proved there is very slow – it is essentially an inverse Ackermann-

like function. Prior to this work, exponential-decay bounds were

only known for multiplayer free games; this was long a folklore

result.

Subsequent work. Since the original posting of this work, several

relevant papers have emerged [5, 15, 26, 53]. First, [5] analyzed a dif-

ferent hardness ampli�cation method called “forti�cation”, which

was �rst introduced by Moshkovitz [36] in the context of classical

parallel repetition. They obtained exponential-decay parallel repe-

tition bounds for quantum as well as multiplayer games, although

with the caveat that decay only holds for a bounded number of

rounds. Later, Yuen [53] showed that the entangled value of a gen-
eral repeated game must decay to 0 polynomially fast (provided the

base game has entangled value less than one), whereas no general

decay bound was known for repeated entangled games. Finally,

Dinur et al. [15] establish exponential-decay bounds for expander
games, which includes anchored games and free games as a special

case. However, although the multiplayer parallel repetition theorem

of [15] is more general than the one proved in this paper, the proof

for the special case of anchored games given here is simpler.

1.4 Organization
In Section 2 we give a brief discussion of the Quantum PCP Conjec-

ture, and an application of our threshold theorem (Theorem 5.6) to

it. In Section 3 we give an overview of the techniques underlying

our main results, mainly focusing on the general ideas and leav-

ing the speci�cs to each subsequent section. Section 4 introduces

some preliminaries, including the de�nition of anchored games. In

Section 5 we present the proof of the quantum parallel repetition

theorem for anchored games, as well as the threshold theorem. In
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Section 6 we present the result on the parallel repetition of mul-

tiplayer classical anchored games. We conclude in Section 7 by

recounting a few open problems related to parallel repetition.

2 APPLICATION TO THE QUANTUM PCP
CONJECTURE

Just as the the classical parallel repetition theorem is useful for

proving hardness of approximation results, one might expect that

a quantum parallel repetition theorem would be useful for proving

quantum hardness of approximation results. However, we do not

(yet) have a Quantum PCP theorem; as of writing this is an active

�eld of research. Furthermore, while the classical PCP theorem has

three equivalent formulations – one in terms of probabilistically

checkable proofs, one in terms of hardness of approximation for

constraint satisfaction problems (CSP), and one in terms of games –

only two out of the three corresponding formulations of the Quan-

tum PCP Conjecture are known to be equivalent.

The following is the formulation of the Quantum PCP Conjecture

that is analogous to the classical CSP formulation. (We refer to the

survey [2] for further background on the conjecture, including

explanations of the standard technical terms we use below.)

Conjecture 2.1 (�antum PCP Conjecture, constraint sat-

isfaction formulation). There exists a constant 0 < γ < 1 and
integer k ≥ 2 and d ≥ 2 for which the following problem is QMA-
hard: Given a,b ∈ [0, 1] such that a−b ≥ γ and ak-local Hamiltonian
H = H1 + · · · +Hm acting on n qudits of local dimension d such that
0 ≤ H ≤ I, decide whether the smallest eigenvalue of H is at least a
or at most b, promised that one is the case.

This problem is known as the k-Local Hamiltonian problem

with constant promise gap, where by promise gap we mean the gap

γ between the thresholds a and b. The problem is only known to

be QMA-hard for gaps γ that are inverse polynomial in n [33].

A games version of the conjecture is introduced in [21]:

Conjecture 2.2 (�antum PCP Conjecture, games formula-

tion). There exists a constant γ ∈ (0, 1) and integers s ≥ 1,k ≥ 2 for
which the following problem is QMA-hard: Given a,b ∈ [0, 1] such
that a − b ≥ γ , and a k-player game G where each player answers
with s bits, decide whether val∗ (G ) ≥ a or val∗ (G ) ≤ b, promised
that one is the case.

When val
∗ (·) is replaced with val(·), the above conjecture is ex-

actly equivalent to the classical PCP theorem. For constant gap γ it

was proved by [51] that the problem of approximating the entan-

gled value of a game is at least NP-hard. For inverse polynomial γ
the problem was shown QMA-hard [29], and very recently it was

even shown to be NEXP-hard [30].

Though neither Conjecture 2.1 nor Conjecture 2.2 has been

solved, we can nonetheless explore the consequences if they were

true. We give a simple application of our parallel repetition for

anchored games: assuming the truth of Conjecture 2.2, we can

boost its hardness to any desired gap between completeness and

soundness.

Proposition 2.3. If Conjecture 2.2 is true, then for all δ > 0 the
following problem is QMA-hard: given a description of a k-player
gameG with answer size that depends only on δ , distinguish between
val
∗ (G ) ≥ 1 − δ or val∗ (G ) ≤ δ , promised that one is the case.

Proof. Let 0 ≤ b < a ≤ 1 be a promise gap satisfying the

conditions of Conjecture 2.2. De�ne a′ = (1 + 3a)/4, and b ′ =
(1+ 3b)/4. Consider the following reduction: given a description of

a k-player gameG , promised that either val
∗ (G ) ≤ b or val

∗ (G ) ≥ a,

outputs the description of the following threshold game Gt,≥τ
⊥ : the

referee playsGt
⊥, the t-fold repetition ofG⊥, the anchored version of

G , but instead accepts i� the players win at least τ := (a′ − a′−b′
4

)t

games. We set parameters ∆ = (a′ − b ′)/4 and t = s
c ·

2

∆9
· ln 1

δ ,

where s is the length of the players’ answers in G, and c is the

universal constant from Theorem 5.6.

We get that if val
∗ (G ) ≥ a, then val

∗ (G⊥) ≥ a′. One strategy for

Gt,≥τ
⊥ is for the players to play each coordinately independently

using the optimal strategy for G⊥. By a Cherno�-Hoe�ding bound,

the probability that they win at least τ games is at least

val
∗ (Gt,≥τ

⊥ ) ≥ 1 − exp(−t∆2/2) ≥ 1 − δ .

Otherwise, val
∗ (G ) ≤ b. Applying Theorem 5.6, we get that

val
∗ (Gt,≥τ

⊥ ) ≤
(
1 − ∆9/2

)ck t/s
≤ δ .

Observe that this reduction is e�cient: the size of the description of

Gt,≥τ
⊥ is O ( |G |t ); assuming the truth of Conjecture 2.2 this means

that a′ − b ′ = Ω(a − b) = Ω(1), and thus since δ and s are con-

stant, t is constant. The answer size of the new game is still O (1).
Thus the reduction runs in time polynomial in the input instance

size, so if there were an algorithm that could distinguish between

val
∗ (Gt,≥τ

⊥ ) ≥ 1−δ or val
∗ (Gt,≥τ

⊥ ) ≤ δ , then this would distinguish

between whether val
∗ (G ) ≥ a or val

∗ (G ) ≤ b, respectively. �

We point out that we used two features of the anchoring transfor-

mation: �rst, that it allows us to analyze the repetition of arbitrary

k-player games; second, it yields threshold theorems for parallel

repetition.

3 TECHNICAL OVERVIEW
We give a technical overview of anchored games and their parallel

repetition. For concreteness we focus on the case of two-player

games. For the full de�nition of k-player anchored games, see Sec-

tion 4.3.

De�nition 3.1 (Two-player anchored games). LetG be a two-player

game with question alphabet X × Y and distribution µ. For any

0 < α ≤ 1 we say that G is α-anchored if there exists subsets

X⊥ ⊆ X and Y⊥ ⊆ Y such that, denoting by µ the respective

marginals of µ on both coordinates,

(1) Both µ (X⊥), µ (Y⊥) ≥ α ,

(2) Whenever x ∈ X⊥ or y ∈ Y⊥ it holds that µ (x ,y) = µ (x ) ·
µ (y).

Informally, a game is anchored if each player independently

has a signi�cant probability of receiving a question from the set

of “anchor questions” X⊥ and Y⊥. An alternative way of thinking

about the class of anchored games is to consider the case where

µ is uniform over a set of edges in a bipartite graph on vertex set

X ×Y ; then the condition is that the induced subgraph on X⊥ ×Y⊥

is a complete bipartite graph that is connected to the rest of X ×Y

and has weight at least α . In other words, a game G is anchored if

it contains a free game that is connected to the entire game.
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It is easy to see that the gamesG⊥ output by the anchoring trans-

formation given in De�nition 1.3 are α-anchored. Free games are

automatically 1-anchored (set X⊥ = X and Y⊥ = Y), but the class

of anchored games is much broader; indeed assuming the Expo-

nential Time Hypothesis it is unlikely that there exists a similar

(e�cient) reduction from general games to free games [1]. Addition-

ally, since free games are anchored games, our parallel repetition

theorems automatically reproduce the quantum and multiplayer

parallel repetition of free games results of [11, 12, 28], albeit with

worse parameters.

Dependency-breaking variables and states. Essentially all known

proofs of parallel repetition proceed via reduction, showing how

a “too good” strategy for the repeated game Gn
can be “rounded”

into a strategy for G with success probability strictly greater than

val(G ), yielding a contradiction.

Let Sn be a strategy for Gn
that has a high success probability.

By an inductive argument one can identify a set of coordinates C
and an index i such that Pr(Players win round i |W ) > val(G ) + δ ,

whereW is the event that the players’ answers satisfy the predicate

V in all instances ofG indexed byC . Given a pair of questions (x ,y)
in G the strategy S embeds them in the i-th coordinate of a n-tuple

of questions

x
[n]y[n] =

(
x1,x2, . . . ,xi−1,x ,xi+1, . . . ,xn
y1,y2, . . . ,yi−1,y,yi+1, . . . ,yn

)
that is distributed according to PX

[n]Y[n] |Xi=x,Yi=y,W . The players

then simulate Sn on x
[n] and y

[n] respectively to obtain answers

(a1, . . . ,an ) and (b1, . . . ,bn ), and return (ai ,bi ) as their answers in

G. The strategy S succeeds with probability precisely Pr(Win i |W )
in G, yielding the desired contradiction.

As Sn need not be a product strategy, conditioning onW may

introduce correlations that make PX
[n]Y[n] |Xi=x,Yi=y,W impossible

to sample exactly. A key insight in Raz’ proof of parallel repetition

is that it is still possible for the players to approximately sample

from this distribution. Drawing on the work of Razborov [44], Raz

introduced a dependency-breaking variable Ω with the following

properties:

(a) Given ω ∼ PΩ the players can locally sample x
[n] and y

[n]
according to PX

[n]Y[n] |Xi=x,Yi=y,W ,

(b) The players can jointly sample from PΩ using shared ran-

domness.

In [27] Ω is de�ned so that a sample ω �xes at least one of {xi′ ,yi′ }
for each i ′ , i . It can then be shown that conditioned on x , Ω is

nearly (though not exactly) independent of y, and vice-versa. In

other words,

PΩ |Xi=x,W ≈ PΩ |Xi=x,Yi=y,W ≈ PΩ |Yi=y,W (1)

where “≈” denotes closeness in statistical distance. Eq. (1) su�ces

to guarantee that the players can approximately sample the same

ω from PΩ |Xi=x,Yi=y,W with high probability, achieving point (b)

above. This sampling is accomplished through a technique called

correlated sampling.

This argument relies heavily on the assumption that there are

only two players who employ a deterministic strategy. With more

than two players, it is not known how to design an appropriate

dependency-breaking variable Ω that satis�es requirements (a) and

(b) above: in order to be jointly sampleable, Ω needs to �x as few

inputs as possible; in order to allow players to locally sample their

inputs conditioned on Ω, the variable needs to �x as many inputs

as possible. These two requirements are in direct con�ict as soon

as there are more than two players.

In the quantum case the rounding argument seems to require that

Alice and Bob jointly sample a dependency-breaking state |Ωx,y 〉,

which again depends on both their inputs. Although it is technically

more complicated, as a �rst approximation |Ωx,y 〉 can be thought

of as the players’ post-measurement state, conditioned onW . De-

signing a state that simultaneously allows Alice and Bob to (a)

simulate the execution of the i-th game in Gn
conditioned onW ,

and (b) locally generate |Ωx,y 〉 without communication is the main

obstacle to proving a fully general parallel repetition theorem for

entangled games.

It has long been known that in the free games case (i.e. games

with product question distributions) these troubles with the

dependency-breaking variable disappear, and consequently we have

parallel repetition theorems for free games for the multiplayer and

quantum settings [12]. With free games involving more than two

players, it can be shown that

PΩ |Xi=x,Yi=y,Zi=z, ...,W ≈ PΩ |W , (2)

on average over question tuples (x ,y, z, . . .). In the quantum case, [11,

12, 28] showed how to construct dependency-breaking

states |ΩXi=x,Yi=y,W 〉 and local unitaries Ux and Vy such that

(Ux ⊗ Vy ) |Ω〉 ≈ |ΩXi=x,Yi=y,W 〉 (3)

for some �xed quantum state |Ω〉. This eliminates the need for

the players to use correlated sampling, as they can simply share a

sample from PΩ |W or the quantum state |Ω〉 from the outset.

Breaking correlations in repeated anchored games. Rather than

providing a complete extension of the framework of Raz and Holen-

stein to the multiplayer and quantum settings, we interpolate be-

tween the case of free games and the general setting by showing

how the same framework of dependency-breaking variables and

states can be extended to anchored games – without using corre-

lated sampling. We introduce dependency-breaking variables Ω
and states |Φx,y 〉 so that we can prove analogous statements to (2)

and (3) in the anchored games setting.

The analysis for anchored games is more intricate than for free

games. Proofs of the analogous statements for free games in [11, 12,

28] make crucial use of the fact that all possible question tuples are

possible. An anchored game can be far from having this property.

Instead, we use the anchors as a “home base” that is connected to

all questions. Intuitively, no matter what question tuple (x ,y, z, . . .)
we are considering, it is only a few replacements away from the set

of anchor questions. Thus the dependency of the variable Ω or state

|Φx,y 〉 on the questions can be iteratively removed by “switching”

each players’ question to an anchor as

PΩ |Xi=x,Yi=y,Zi=z,W ≈ PΩ |Xi=x,Yi=y,Zi ∈⊥,W

≈ PΩ |Xi=x,Yi ∈⊥,Zi ∈⊥,W ≈ PΩ |Xi ∈⊥,Yi ∈⊥,Zi ∈⊥,W ,

where “Xi ∈ ⊥” is shorthand for the event that Xi ∈ X⊥.

Dealing with quantum strategies adds another layer of complex-

ity to the argument. The local unitaries Ux and Vy involved in (3)

are quite important in the arguments of [11, 12, 28]. The di�culty
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in extending the argument for free games to the case of general

games is to show that these local unitaries each only depend on the

input to a single player. In fact with the de�nition of |Ωx,y 〉 used

in these works it appears likely that this statement does not hold,

thus a di�erent approach must be found.

When the game is anchored, however, we are able to use the

anchor question in order to show the existence of unitaries Ux and

Vy that achieve (3) and depend only on a single player’s question

each. Achieving this requires us to introduce dependency-breaking

states |Ωx,y 〉 that are more complicated than those used in the

free games case; in particular they include information about the

classical dependency-breaking variables of Raz and Holenstein.

We prove (3) for anchored games by proving a sequence of

approximate equalities: �rst we show that for most x there ex-

ists Ux such that (Ux ⊗ I) |Ω⊥,⊥〉 ≈ |Ωx,⊥〉, where |Ω⊥,⊥〉 denotes

the dependency-breaking state in the case that both Alice and

Bob receive the anchor question “⊥”, and |Ωx,⊥〉 denotes the state

when Alice receives x and Bob receives “⊥”. Then we show that

for all y such that µ (y |x ) > 0 there exists a unitary Vy such that

(I ⊗ Vy ) |Ωx,⊥〉 ≈ |Ωx,y 〉. Accomplishing this step requires ideas

and techniques going beyond those in the free games case. Interest-

ingly, a crucial component of our proof is to argue the existence

of a local unitary Rx,y that depends on both inputs x and y. The

unitary Rx,y is not implemented by Alice or Bob in the simulation,

but it is needed to show that Vy maps |Ωx,⊥〉 onto |Ωx,y 〉.

One can view our work as pushing the limits of arguments for

parallel repetition that do not require some form of correlated

sampling, a procedure that seems inherently necessary to analyze

the general case. Our results demonstrate that such procedure is

not needed for the purpose of achieving strong gap ampli�cation

theorems for multiplayer and quantum games.

4 PRELIMINARIES
4.1 Probability Distributions
We largely adopt the notational conventions from [27] for probabil-

ity distributions. We let capital letters denote random variables and

lower case letters denote speci�c samples. We will use subscripted

sets to denote tuples, e.g.,X
[n] := (X1, . . . ,Xn ), x[n] = (x1, . . . ,xn ),

and if C ⊂ [n] is some subset then XC will denote the sub-tuple

of X
[n] indexed by C . We use PX to denote the probability distri-

bution of random variable X , and PX (x ) to denote the probability

that X = x for some value x . For multiple random variables, e.g.,

X ,Y ,Z , PXYZ (x ,y, z) denotes their joint distribution with respect

to some probability space understood from context.

We use PY |X=x (y) to denote the conditional distribution

PYX (y,x )/PX (x ), which is de�ned when PX (x ) > 0. When condi-

tioning on many variables, we usually use the shorthand PX |y,z
to denote the distribution PX |Y=y,Z=z . For example, we write

PV |ω−i ,xi ,yi to denote PV |Ω−i=ω−i ,Xi=xi ,Yi=yi . For an eventW we

let PXY |W denote the distribution conditioned onW . We use the

notation EX f (x ) and EPX f (x ) to denote the expectation∑
x PX (x ) f (x ).
Let PX0

be a distribution of X, and for every x in the support of

PX0
, let PY |X1=x be a conditional distribution de�ned over Y . We

de�ne the distribution PX0
PY |X1

over X ×Y as

(PX0
PY |X1

) (x ,y) := PX0
(x ) · PY |X1=x (y).

Additionally, we write PX0Z PY |X1
to denote the distribution

(PX0Z PY |X1
) (x , z,y) := PX0Z (x , z) · PY |X1=x (y).

For two random variablesX0 andX1 over the same setX, PX0
≈ε

PX1
indicates that the total variation distance between PX0

and PX1
,

‖PX0
− PX1

‖ :=
1

2

∑
x ∈X

|PX0
(x ) − PX1

(x ) |,

is at most ε .
The following simple lemma will be used repeatedly.

Lemma 4.1. Let QF and SF be two probability distributions of
some random variable F , and let RG |F be a conditional probability
distribution for some random variable G, conditioned on F . Then

‖QFRG |F − SFRG |F ‖ = ‖QF − SF ‖.

4.2 Quantum Information Theory
For comprehensive references on quantum information we refer

the reader to [38, 52].

For a vector |ψ 〉, we use ‖ |ψ 〉‖ to denote its Euclidean length. For

a matrix A, we will use ‖A‖1 to denote its trace norm Tr(
√
AA†).

A density matrix is a positive semide�nite matrix with trace 1.

The �delity between two density matrices ρ and σ is de�ned as

F (ρ,σ ) = ‖
√
ρ
√
σ ‖1. The Fuchs-van de Graaf inequalities relate

�delity and trace norm as

1 − F (ρ,σ ) ≤
1

2

‖ρ − σ ‖1 ≤
√
1 − F (ρ,σ )2. (4)

For Hermitian matrices A,B we write A � B to indicate that A − B
is positive semide�nite. We use I to denote the identity matrix. For

an operator X and a density matrix ρ, we write X [ρ] for XρX †. A

positive operator valued measurement (POVM) with outcome set A

is a set of positive semide�nite matrices {Ea } labeled by a ∈ A that

sum to the identity.

We will use the convention that, when |ψ 〉 is a pure state, ψ
refers to the rank-1 density matrix |ψ 〉〈ψ |. We use subscripts to

denote system labels; so ρAB will denote the density matrix on the

systems A and B. A classical-quantum state ρXE is classical on X
and quantum on E if it can be written as ρXE =

∑
x p (x ) |x〉〈x |X ⊗

ρE |X=x for some probability measure p (·). The state ρE |X=x is by

de�nition the E part of the state ρXE , conditioned on the classical

register X = x . We write ρXE |X=x to denote the state |x〉〈x |X ⊗
ρE |X=x . We often write expressions such as ρE |x as shorthand for

ρE |X=x when it is clear from context which registers are being

conditioned on. This will be useful when there are many classical

variables to be conditioned on.

For two positive semide�nite operators ρ, σ , the relative entropy
S (ρ‖σ ) is de�ned to be Tr(ρ (log ρ−logσ )). The relative min-entropy
S∞ (ρ‖σ ) is de�ned as min{λ : ρ � 2

λσ }.
Let ρAB be a bipartite state. The mutual information I (A : B)ρ

is de�ned as S (ρAB ‖ρA ⊗ ρB ). For a classical-quantum state ρXAB
that is classical on X and quantum on AB, we write I (A;B |x )ρ to

indicate I (A;B)ρx .

The following technical lemmas will be used in Section 5.

Proposition 4.2 (Pinsker’s ineqality). For all density matri-
ces ρ,σ , 1

2
‖ρ − σ ‖2

1
≤ S (ρ‖σ ).
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Lemma 4.3 ([28], Fact II.8). Let ρ =
∑
z PZ (z) |z〉〈z |⊗ρz , and ρ ′ =∑

z PZ ′ (z) |z〉〈z | ⊗ ρ ′z . Then S (ρ
′‖ρ) = S (PZ ′ ‖PZ )+EZ ′

[
S (ρ ′z ‖ρz )

]
.

In particular, S (ρ ′‖ρ) ≥ EZ ′
[
S (ρ ′z ‖ρz )

]
.

We will also use the following Lemma from [12].
2

Lemma 4.4 ([12], �antum Raz’s Lemma). Let ρ and σ be two
CQ states with ρXA = ρX1X2 ...XnA and σ = σXA = σX1

⊗ σX2
⊗

. . . ⊗ σXn ⊗ σA with X = X1X2 . . .Xn classical in both states. Then
n∑
i=1

I (Xi : A)ρ ≤ S (ρXA ‖σXA ). (5)

4.3 Games, Parallel Repetition, and Anchoring
We formally de�ne k-player one-round games, their parallel repeti-

tion, and anchored games.

Multiplayer games. A k-player game G = (X,A, µ,V ) is spec-

i�ed by a question set X = X1 × X2 × · · · × Xk , answer set

A = A1 × A2 × · · · × Ak
, a probability measure µ on X, and

a veri�cation predicateV : X ×A → {0, 1}. Throughout this paper,

we use superscripts in order to denote which player an input/output

symbol is associated with. For example, we write x1 to denote the in-

put to the �rst player, and at to denote the output of the t-th player.

Finally, to denote the tuple of questions/answers to all k players we

write x = (x1, . . . ,xk ) and a = (a1, . . . ,ak ) respectively.

The classical value of a gameG is denoted by val(G ) and de�ned

as

sup

f 1, ...,f k
E

(x 1, ...,xk )∼µ

[
V

(
(x1, . . . ,xk ), ( f 1 (x1), . . . , f k (xk )

)]

where the supremum is over all functions fi : Xi → Ai ; these

correspond to deterministic strategies used by the players. It is easy

to see that the classical value of a game is unchanged if we allow

the strategies to take advantage of public or private randomness.

The entangled value of G is denoted by val
∗ (G ) and de�ned as

sup

|ψ 〉∈(Cd )⊗k

M1, ...,Mk

E
(x 1, ...,xk )∼µ

∑
(a1, ...,ak ):

V
(
(x 1, ...,xk ), (a1, ...,ak )

)
=1

〈ψ |M1 (x1,a1) ⊗ · · · ⊗ Mk (xk ,ak ) |ψ 〉

(6)

where the supremum is over all integer d ≥ 2, k-partite pure states

|ψ 〉 in (Cd )⊗k , and M1, . . . ,Mk
for each player. Each Mt

is a set

of POVM measurements {M (xt ,at )}at ∈At acting on Cd , one for

each question xt ∈ Xt .

Repeated games. Let G = (X,A, µ,V ) be a k-player game, with

X = X1 × · · · × Xk and A = A1 × · · · × Ak
. Let µ⊗n denote

the product probability distribution over X⊗n =
⊗n

i=1 Xi , where

each Xi is a copy of X. Similarly let A⊗n =
⊗n

i=1Ai where each

Ai is a copy of A.
3

Let V ⊗n : X⊗n × A⊗n → {0, 1} denote the

veri�cation predicate that is 1 on question tuple (x1, . . . ,xn ) ∈ X
⊗n

2
Some versions of this lemma, though in a less compact form, also appear in [11, 28].

3
We will use the tensor product notation (“

⊗
”) to denote product across coordinates

in a repeated game, and the traditional product notation (“×”) to denote product across

players.

and answer tuple (a1, . . . ,an ) ∈ A
⊗n

i� for all i ,V (xi ,ai ) = 1. We

de�ne the n-fold parallel repetition of G to be the k-player game

Gn = (X⊗n ,A⊗n , µ⊗n ,V ⊗n ).
When working with games with more than 2 players, we use sub-

scripts to denote which game round/coordinate a question/answer

symbol is associated with. For example, by xti we mean the question

to the t-th player in the i-th round. While this is overloading nota-

tion slightly (because superscripts are meant to indicate tuples), we

use this convention for the sake of readability. When xn refers to a

tuple (x1, . . . ,xn ) and when xti refers to the t-th player’s question

in the i-th coordinate should be clear from context.

Anchored games. We give the general de�nition of an anchored

game.

De�nition 4.5 (Multiplayer Anchored Games). A game

G = (X,A, µ,V ) is called α-anchored if there exists Xt⊥ ⊆ X
t

for

all t ∈ [k] where

(1) µ (Xt⊥ ) ≥ α for all t ∈ [k], and

(2) for all x ∈ X,

µ (x ) = µ (x |F x
) ·

∏
t ∈Fx

µ (xt ) (7)

where for all question tuples x = (x1,x2, . . . ,xk ) ∈ X, Fx ⊆ [n]
denotes the set of coordinates of x that lie in the anchor, i.e.

Fx = {t ∈ [k] : xt ∈ Xt⊥ }

and Fx denotes the complement, i.e., [n] − Fx .

Here for a set S ⊆ [n], µ (x |S ) denotes the marginal probability

of the question tuple x restricted to the coordinates in S , i.e.

µ (x |S ) =
∑

x ′ |S=x |S

µ (x ′).

When k = 2 this de�nition coincides with the de�nition of two-

player anchored games in De�nition 3.1. Additionally, just like the

two-player case, one can easily extend the anchoring transforma-

tion given in De�nition 1.3 to arbitrary k-player games:

Proposition 4.6. Let G = (X,A, µ,V ) be a k-player game. Let
G⊥ be the k-player game where the referee samples (x1,x2, . . . ,xk )
according to µ, replaces each xt with an auxiliary symbol ⊥ indepen-
dently with probability α , and checks the players’ answers according
to V if all xt , ⊥, and otherwise the referee accepts. Then G⊥ is an
α-anchored game satisfying

val(G⊥) = 1 − (1 − α )k · (1 − val(G ))

val
∗ (G⊥) = 1 − (1 − α )k · (1 − val∗ (G )).

(8)

5 PARALLEL REPETITION OF ANCHORED
GAMES WITH ENTANGLED PLAYERS

This section is devoted to the analysis of the entangled value of

repeated anchored games. The main theorem we prove is the fol-

lowing:

Theorem 5.1. Let G be a k-player α-anchored game satisfying
val
∗ (G ) = 1 − ε . Then

val
∗ (Gn ) ≤ exp

*
,
−Ω *

,

poly(αk ) · ε8 · n

poly(k ) · s
+
-

+
-
,
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where s is the total length of the answers output by the players.

For clarity we will focus on the k = 2 (two-player) case; we will

describe how to extend the proof to arbitrary k at the end. We �x

an α-anchored two-player game G = (X × Y,A × B, µ,V ) with

entangled value val
∗ (G ) = 1 − ε and anchor sets X⊥ ⊆ X, Y⊥ ⊆ Y

for Alice and Bob, respectively. We also �x an optimal strategy for

Gn
, consisting of a shared entangled state |ψ 〉EAEB and POVMs

{Aa
n

xn } and {Bb
n

yn } for Alice and Bob respectively. Without loss of

generality we assume that |ψ 〉 is invariant under permutation of

the two registers, i.e. there exist basis vectors {|vj 〉}j such that

|ψ 〉 =
∑
j
√
λj |vj 〉|vj 〉.

5.1 Setup
We introduce the random variables, entangled states and operators

that play an important role in the proof of Theorem 5.1. The section

is divided into three parts: �rst we de�ne the dependency-breaking

variable Ω. Then we state useful lemmas about conditioned distri-

butions. Finally we describe the states and operators used in the

proof.

Dependency-breaking variables. Let C ⊆ [n] a �xed set of co-

ordinates for the repeated game Gn
. We will assume that C =

{m + 1,m + 2, . . . ,n}, where m = n − |C |, as this will easily be

seen to hold without loss of generality. Let (Xn ,Yn ) be distributed

according to µn and (An ,Bn ) be de�ned fromXn
andYn as follows:

PAnBn |Xn=xn,Y n=yn (a
n ,bn ) = 〈ψ |Aa

n

xn ⊗ Bb
n

yn |ψ 〉.

Let (XC ,YC ) and Z = (AC ,BC ) denote the players’ questions and

answers respectively associated with the coordinates indexed by

C . For i ∈ [n] letWi denote the event that the players win round i
while playing Gn

. LetWC =
∧
i ∈CWi .

We use the same dependency-breaking variable Ω that is used

in Holenstein’s proof of parallel repetition. In those works, for all

i ∈ [n], Ωi �xes at least one of Xi or Yi (and sometimes both, if

i ∈ C). Thus, conditioned on Ω, Xn
and Yn are independent of each

other.

In more detail, let D1, . . . ,Dm be independent and uniformly

distributed over {A,B}. Let M1, . . . ,Mm be independent random

variables de�ned in the following way. If Di = A, then Mi is

coupled to Xi (that is, takes the same value as Xi ). Otherwise,

if Di = B, then Mi is coupled to Yi . Then Ωi = (Di ,Mi ), and

Ω = (Ω1, . . . ,Ωm ,XC ,YC ).

Conditioned distributions. De�ne

δC :=
1

m
(log 1/Pr(WC ) + |C | log |A||B|) .

For notational convenience we often use the shorthand Xi ∈ ⊥

and Yi ∈ ⊥ to stand for Xi ∈ X⊥ and Yi ∈ Y⊥, respectively. The

following lemma essentially follows from the classical arguments

used in [27].

Lemma 5.2. The following statements hold on, average over i cho-
sen uniformly in [m]:

(1) Ei ‖PDiMiXiYi |WC − PDiMiXiYi ‖ ≤ O (
√
δC )

(2) Ei ‖PΩZXiYi |WC − PΩZ |WC PXiYi |Ω ‖ ≤ O (
√
δC )

(3) Ei ‖PXiYi PΩ−iZ |Xi ∈⊥,Yi ∈⊥,WC − PXiYi PΩ−iZ |XiYiWC ‖ ≤

O (
√
δC/α

2)

(4) Ei



PXiYi PΩ−iZ |XiYiWC − PXiYiΩ−iZ |W




 ≤ O (
√
δC/α

2)

Quantum states and operators. Recall that we have �xed an op-

timal strategy for Alice and Bob in the game Gn
. This speci�es a

shared entangled state |ψ 〉, and measurement operators {Aa
n

xn } for

Alice and {Bb
n

yn } for Bob.

Operators. De�ne, for all aC ,bC ,x
n ,yn :

AaCxn :=
∑

an |aC

Aa
n

xn

BbCyn :=
∑

bn |bC

Bb
n

yn

where an |aC (resp. bn |bC ) indicates summing over all tuples an

consistent with the su�x aC (resp. bn consistent with su�x bC ).

For all i , ω−i , xi , and yi de�ne:

AaCω−i ,xi = E
Xn |ω−i ,xi

AaCxn

BbCω−i ,yi = E
Y n |ω−i ,yi

BbCyn

where recall that EXn |ω−i ,xi is shorthand for EXn |Ω−i=ω−i ,Xi=xi .

Intuitively, these operators represent the “average” measurement

that Alice and Bob apply, conditioned on Ω−i = ω−i , and Xi = xi
and Yi = yi . Next, de�ne

AaCω−i ,⊥ := E
Xn |Ω−i=ω−i∧Xi ∈⊥

AaCxn

BbCω−i ,⊥ := E
Y n |Ω−i=ω−i∧Yi ∈⊥

BbCyn .

These operators represent the “average” measurement performed

by Alice and Bob, conditioned on Ω−i = ω−i and Mi = ⊥. Finally,

for all xi ∈ X and yi ∈ Y , de�ne

AaCω−i ,⊥/xi
:=

1

2

AaCω−i ,⊥ +
1

2

AaCω−i ,xi

dBbCω−i ,⊥/yi
:=

1

2

BbCω−i ,⊥ +
1

2

BbCω−i ,yi .

Intuitively, these operators represent the “average” measurements

conditioned on Ω−i = ω−i and when Xi is xi with probability 1/2

and ⊥ with probability 1/2 (or when Yi = yi with probability 1/2

and ⊥ with probability 1/2).

For notational convenience we often suppress the dependence

on (i,ω−i , z = (aC ,bC )) when it is clea from context. Thus, when

we refer to an operator such as A⊥/x , we really mean the operator

AaCω−i ,⊥/xi
.

States. For all x ∈ X and y ∈ Y , de�ne the following (unnormal-

ized) states:

|Φx,y 〉 :=
√
Ax ⊗

√
By |ψ 〉

|Φx,⊥〉 :=
√
Ax ⊗

√
B⊥ |ψ 〉

|Φ⊥/x,⊥〉 :=
√
A⊥/x ⊗

√
B⊥ |ψ 〉

|Φ⊥/x,y 〉 :=
√
A⊥/x ⊗

√
By |ψ 〉 (9)

|Φ⊥,⊥〉 :=
√
A⊥ ⊗

√
B⊥ |ψ 〉
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together with the normalization factors

γx,y :=



|Φx,y 〉




 γx,⊥ := 

|Φx,⊥〉


γ⊥/x,⊥ :=




|Φ⊥/x,⊥〉



 γ⊥/x,y :=




|Φ⊥/x,y 〉





γ⊥,⊥ := 

|Φ⊥,⊥〉


Note that these normalization factors are the square-roots of the

probabilities that a certain pair of answers z = (aC ,bC ) occurred,

given the speci�ed inputs and the dependency-breaking variables.

For example, revealing the depencies on ω−i and z, we have

γω−i ,z
xi ,yi

=
√
P
Z |ω−i ,xi ,yi (z).

We denote the normalized states by |Φ̃x,y 〉 = |Φx,y 〉/γx,y , |Φ̃x,⊥〉 =

|Φx,⊥〉/γx,⊥, |Φ̃⊥/x,⊥〉 = |Φ⊥,⊥〉/γ⊥/x,⊥, |Φ̃⊥/x,⊥/y 〉 = |Φ⊥/x,y 〉/γ⊥/x,y ,

and |Φ̃⊥,⊥〉 = |Φ⊥,⊥〉/γ⊥,⊥.

5.2 Proof of the Parallel Repetition Theorem
Lemma 5.3. LetG be an α -anchored two-player game. LetC ⊂ [n]

be a set of coordinates. Then

E
i<C

Pr(Wi |WC ) ≤ val
∗ (G ) +O (δ1/8C /α

2)

where the expectation is over a uniformly chosen i ∈ [n]\C and
δC =

1

m (log 1/Pr(WC ) + |C | log |A||B|).

Proof. For every ω−i , z = (aC ,bC ), xi ∈ X, yi ∈ Y , ai ∈ A
and bi ∈ B, de�ne

Âaiω−i ,xi :=
∑

an |ai ,aC

(AaCω−i ,xi )
−1/2Aa

n

ω−i ,xi (A
aC
ω−i ,xi )

−1/2

B̂biω−i ,yi :=
∑

bn |bi ,bC

(BbCω−i ,yi )
−1/2Bb

n

ω−i ,yi (B
bC
ω−i ,yi )

−1/2

where an |ai ,aC (resp. bn |bi ,bC ) denotes summing over tuples an

that are consistent with aC and ai (resp. bn that are consistent with

bC and bi ). Note that the {Âaiω−i ,xi }ai and {B̂biω−i ,yi }bi are positive

semide�nite operators that sum to identity, so form valid POVMs.

Consider the following strategy to play game G. Alice and Bob

share classical public randomness, and for every setting of i,ω−i , z,

the bipartite state |Φ̃ω−i ,z
⊥,⊥
〉. Upon receiving questions x ∈ X and

y ∈ Y respectively they perform the following:

(1) Alice and Bob use public randomness to sample (i,ω−i , z)
conditioned onWC .

(2) Alice applies Uω−i ,z,x to her register of |Φ̃ω−i ,z
⊥,⊥
〉.

(3) Bob applies Vω−i ,z,y to his register of |Φ̃ω−i ,z
⊥,⊥
〉.

(4) Alice measures with POVM operators {Âaiω−i ,x } and returns

the outcome as her answer.

(5) Bob measures with POVM operators {B̂biω−i ,y } and returns

the outcome as his answer.

Suppose that, upon receiving questions (x ,y) and after jointly pick-

ing a uniformly random i ∈ [m], Alice and Bob could jointly sample

ω−i , z from PΩ−iZ |WC and locally prepare the state |Φ̃ω−i ,z
x,y
〉. For a

�xed (x ,y), ω−i and z, the distribution of outcomes (ai ,bi ) after

measuring {Âaiω−i ,x⊗B̂
bi
ω−i ,y }ai ,bi will be identical to PAiBi |ω−i ,z,x,y

(where we mean conditioning on Xi = x and Yi = y). Averaging

over (x ,y) ∼ µ, i , ω−i , and z, the above-de�ned strategy will win

game G with probability at least Ei Pr(Wi |WC ).
Next we show that Alice and Bob are able to approximately

prepare |Φ̃ω−i ,z
x,y
〉 with high probability, and thus produce answers

that are approximately distributed according to PAiBi |ω−i ,z,x,y ,

allowing them to win game G with probability greater than 1 − ε —

a contradiction.

For the remainder of the proof, we will �xC and implicitly carry

it around. Let δ = δC . We use the following lemma:

Lemma 5.4. For everyC , i ,ω−i , z = (aC ,bC ), xi andyi there exists
unitariesUω−i ,z,xi acting on EA andVω−i ,z,yi acting on EB such that

E
i

E
XiYi ,Ω−iZ |W





(Uω−i ,z,xi ⊗ Vω−i ,z,yi )
����Φ̃ω−i ,z⊥,⊥

〉
−

�����
Φ̃ω−i ,z
xi ,yi

〉 




2

= O (δ1/4/α4).

The proof of Lemma 5.4 can be found in the full version of

this paper [4]. Using the fact that for two pure states |ψ 〉 and |ϕ〉,

‖ψ − ϕ‖1 ≤
√
2‖ |ψ 〉 − |ϕ〉‖, as well as Jensen’s inequality,

E
i

E
XYΩ−iZ |WC





(Uω−i ,z,x ⊗ Vω−i ,z,y )
[
Φ̃ω−i ,z
⊥,⊥

]
− Φ̃ω−i ,z

x,y





1

= O
(δ1/8
α2

)
, (10)

where the second expectation is over (x ,y) drawn from µ, and

(U ⊗ V )[Φ̃] denotes (U ⊗ V )Φ̃(U ⊗ V )†. Conditioned on a given

pair of questions (x ,y) and the players sampling (i,ω−i , z) in Step

1., the state that the players prepare after Step 3. in the protocol

is precisely (Uω−i ,z,x ⊗ Vω−i ,z,y )[Φ̃ω−i ,z
⊥,⊥

]. Let Eω−i ,z
x,y

denote the

quantum-classical channel on density matrices that performs the

measurement {Âaiω−i ,x ⊗B̂
bi
ω−i ,y }ai ,bi , and outputs a classical register

with the measurement outcome (ai ,bi ). Applying Eω−i ,z
x,y

to the

expression inside the trace norm in (10), using that the trace norm

is non-increasing under quantum operations,

E
i

E
XYΩ−iZ |WC




P̃AiBi |ω−i ,v,x,y − PAiBi |ω−i ,v,x,y





≤ O (δ1/8/α2).

where P̃AiBi |ωi ,z,x,y (ai ,bi ) denotes the probability of outcome

(ai ,bi ) in the above strategy, conditioned on questions (x ,y) and

the players sampling (i,ω−i , z) in Step 1. Thus

PI · PΩ−iZ |WC · PXY · P̃AiBi |Ω−iZXiYi
≈O (δ 1/8/α 2 ) PI · PΩ−iZ |WC · PXY · PAiBi |Ω−iZXiYi

≈O (δ 1/8/α 2 ) PI · PΩ−iZXiYi |WC · PAiBi |Ω−iZXiYi

where the XiYi in the conditionals is shorthand for Xi = x ,Yi = y.

The last approximate equality follows from Lemma 5.2. Marginaliz-

ing Ω−iZ, we get

PI · PXY · P̃AiBi |XiYi ≈O (δ 1/8/α 2 ) PI · PXiYiAiBi |WC . (11)

Under the distribution PXiYiAiBi |WC , the probability that

V (xi ,yi ,ai ,bi ) is 1 is precisely Pr(Wi |WC ). On the other hand,

(11) implies that using the protocol described above the players

win G with probability at least Ei Pr(Wi |WC ) − O (δ1/8/α2). This

concludes the proof of the lemma. �
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Given Lemma 5.3, the proof of Theorem 5.1 (at least the two

player case) follows using a standard inductive argument (see, e.g.,

the argument for Theorem 6.1 given in Section 6). In the next section,

we sketch the changes necessary to adapt the proof to handle an

arbitrary number of players.

5.3 Extending the Argument to More Than
Two Players

We extend the argument from the previous sections to games with

k > 2 entangled players. We describe the required modi�cations

to the case of k = 3; the only hurdle in handling larger number

of players is notational. Furthermore we restrict our attention to

the repetition of the game G⊥ obtained by applying the anchor

transformation to a game G.

Let G be an arbitrary game involving three players Alice, Bob

and Charlie. The players’ questions are denoted by X ,Y ,Z , and

their outputs are denoted asA,B,C . We will let µ (x ,y, z) denote the

question distribution of the game G . Let G⊥ be the anchoring trans-

formation applied to G (for some α ), and let µ⊥ (x ,y, z) denote the

question distribution of G⊥. We analyze the behavior of val
∗ (Gn

⊥ ).
Consider an optimal strategy for Gn

⊥ , involving a tripartite state

|ψ 〉 ∈ Cd ⊗ Cd ⊗ Cd and POVM for each of the players: {Aa
n

xn } for

Alice, {Bb
n

yn } for Bob, and {Cc
n

zn } for Charlie. The entangled state |ψ 〉

is supported on three registers EA, EB , and EC .

The subset of coordinates that we condition on winning (for-

merly called C) will be denoted by S . The answers to rounds in S
that we condition on will be denoted together as Q = (AS ,BS ,CS )
(formerly called Z = (AC ,BC )).

The idea behind the proof of the multiplayer extension is to

reduce to the two-player case by “combining” two of the three

players and treating them as a single player.

Dependency-breaking variable. The dependency-breaking vari-

able Ω is constructed so that for each coordinate i < S , Ωi �xes

2 out of 3 questions. That is, Di is uniformly distributed over

{{A,B}, {A,C}, {B,C}}. The variable Di indicates which questions

Mi is coupled to. For example, if Di = {A,B}, then Mi is cou-

pled to the pair (Xi ,Yi ). The dependency breaking variable sat-

is�es the property that for all ω, for all i , PXiYiZi |Ω=ω (x ,y, z) =
PXi |Ω=ω (x ) · PYi |Ω=ω (y) · PZi |Ω=ω (z).

Operators and states. We de�ne the states and operators in a

nearly identical way to the two-player case. We also introduce oper-

ators corresponding to the third player,CcSω−i ,zi ,C
cS
ω−i ,⊥,CcSω−i ,⊥/(xi ,yi )

,

etc., de�ned in the obvious manner.

The states are also de�ned in a similar way:

|Φx,y,z 〉 =
√
Ax ⊗

√
By ⊗

√
Cz |ψ 〉

where x , y, and z can be “normal” questions from X, Y , orZ, or

they can be ⊥ or a hybrid such as ⊥/x .

The analogue of Lemma 5.4 in the three-player setting is the

following. We use simpli�ed notation to maximize clarity, and

suppress mention of i , ω−i , and q = (aS ,bS , cS ).

Lemma 5.5. For all (x ,y, z) ∈ X × Y × Z, there exist unitaries
Ux , Vy , andWz acting on EA, EB , and EC respectively such that

E
XYZ




(Ux ⊗ Vy ⊗Wz ) |Φ⊥,⊥,⊥〉 − |Φx,y,z 〉




2

= O (δ1/4/α2k ).

Proof sketch. Lemma 5.5, as in the two-player case, is proved

in two steps. The �rst step is to establish the existence of uni-

tariesUx ,Vy , andWz such thatUx |Φ⊥,⊥,⊥〉 ≈ |Φx,⊥,⊥〉,Vx |Φ⊥,⊥,⊥〉 ≈
|Φ⊥,y,⊥〉, and Wz |Φ⊥,⊥,⊥〉 ≈ |Φ⊥,⊥,z 〉, with the unitaries acting on

the appropriate spaces.

To prove, say, the existence of Ux , we treat Bob and Charlie as a

single player – call him “SuperBob” – and use the analysis from the

two-player case where the game G is a two player game involving

Alice and SuperBob. Using the same reasoning as in the two-player

case, we get that

E
XY




(Ux ⊗ Vy ⊗ I) |Φ⊥,⊥,⊥〉 − |Φx,y,⊥〉




2

= O (δ1/4/α2k ).

It then only remains to show that, on average over (x ,y, z), (I ⊗ I ⊗
Wz ) |Φx,y,⊥〉 is close to |Φx,y,z 〉:




Wz |Φx,y,⊥〉 − |Φx,y,z 〉





=




WzC⊥C

−1/2
⊥/z |Φx,y,⊥/z 〉 −CzC

−1/2
⊥/z |Φx,y,⊥/z 〉






=





Hx,y,z ⊗WzC⊥C
−1/2
⊥/z |Φx,y,⊥/z 〉 − Hx,y,z ⊗ CzC

−1/2
⊥/z |Φx,y,⊥/z 〉






≈





WzC⊥C
−1/2
⊥/z |Φ⊥,⊥,⊥/z 〉 −CzC

−1/2
⊥/z |Φ⊥,⊥,⊥/z 〉






= 

Wz |Φ⊥,⊥,⊥〉 − |Φ⊥,⊥,z 〉


≈ 0,

where Hx,y,z is a unitary acting on EAEB jointly such that

Hx,y,z |Φx,y,⊥/z 〉 ≈ |Φ⊥,⊥,⊥/z 〉.

�

The main theorem for the case of k > 2 entangled players follows

from Lemma 5.5 using the same steps as in the two-player case.

5.4 A Threshold Theorem
We also observe that our proof nearly immediately yields a threshold
version of our parallel repetition theorem: we can give an exponen-

tially small bound on the probability that the players are able to

win signi�cantly more than a (1 − ε )n coordinates in the repeated

gameGn
⊥ , where val

∗ (G⊥) = 1−ε . In [40], Rao shows how a Lemma

of the form Lemma 5.3 yields not only a parallel repetition theorem,

but also gives a concentration bound. Using essentially the same

argument, we get the following theorem:

Theorem 5.6. LetG be anα -anchoredk-player gamewith val∗ (G ) ≤
1 − ε . Then for all integer n ≥ 1 the probability that in the game Gn

the players can win more than (1 − ε + γ )n games is at most(
1 − γ 9/2

)c α 8k n/s

where c is a universal constant and s is the length of the players’
answers.
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6 CLASSICAL MULTIPLAYER GAMES
Perhaps the most well-known open problem about the classical

parallel repetition of games is whether an analogue of Raz’s theorem

holds for games with more than two players. While the two-player

case already presented a number of non-trivial di�culties, proving

a parallel repetition theorem for three or more players is believed

to require substantially new ideas.
4

In this section we show that multiplayer anchored games satisfy

a classical parallel repetition theorem. Thus, the anchoring trans-

formation along with parallel repetition yields a general hardness

ampli�cation technique for classical multiplayer games involving

any number of players.
5

Theorem 6.1. Let G = (X,A, µ,V ) be a k-player α-anchored
game such that val(G ) ≤ 1 − ε . Then

val(Gn ) ≤ exp
*
,
−
α2k · ε3 · n

384 · s · k2
+
-
, (12)

where s = log |A|.

For the remainder of this section we �x a k-player α-anchored

game G = (X,A, µ,V ), an integer n, and a deterministic strategy

for thek players in the repeated gameGn
that achieves success prob-

ability val(Gn ). In Section 6.1 we introduce the notation, random

variables and basic lemmas for the proof. The proof of Theorem 6.1

itself is given in Section 6.2.

6.1 Breaking Classical Multipartite
Correlations

We refer to Section 4.3 for basic notation related to multiplayer

games.

LetC ⊆ [n] a �xed set of coordinates for the repeated gameGn
of

size |C | = n−m. It will be convenient to �xC = {m+1,m+2, . . . ,n};
the symmetry of the problem will make it clear that this is without

loss of generality. Let Z = AC = (A1

C ,A
2

C , . . . ,A
k
C ) denote the

players’ answers associated with the coordinates indexed by C .

For t ∈ [k] letYt = (Xt \Xt⊥ )∪{⊥}, and de�ne a random variable

Y t =



X t , X t ∈ Xt \ Xt⊥
⊥, X t ∈ Xt⊥

. (13)

LetY = Y1 ×Y2 × . . . ×Yk
and Y = (Y 1,Y 2, . . . ,Yk ). ForGn

we

write

Y ⊗n =
((
Y 1

1
, . . . ,Yk

1

)
,
(
Y 1

2
, . . . ,Yk

2

)
, . . . ,

(
Y 1

n , . . . ,Y
k
n
))
.

Note that each k-tuple Yi is a deterministic function of Xi . Further-

more, we will write Y−ti to denote Yi with the t-th coordinate Y ti
omitted.

4
This is mainly because the Raz/Holenstein framework, if extended to a multiplayer

parallel repetition theorem in full generality, would likely also yield new lower bound

techniques for multiparty communication complexity, an area that has long resisted

progress (especially for the important multiparty direct sum/product problems).

5
There are other ways to perform hardness ampli�cation of classical multiplayer games,

including transforming a k -player game G into an equivalent two-player projection

game G′ (where one player simulates the original k players, and the second player is

used to consistently check the answers of the new “super-player”), and then applying

Raz’s parallel repetition theorem to G′. However, this k -to-2 transformation does

not preserve quantum completeness, in general, which may be a useful feature. The

anchoring transformation, on the other hand, preserves quantum completeness, and

simultaneously supports both classical and quantum hardness parallel repetition.

For i ∈ [n] let Di be a subset of [k] of size k −1 chosen uniformly

at random, and Di ∈ [k] its complement in [k]. Let Mi = YDi
i

denote the coordinates of Y associated to indices in Di . De�ne the

dependence-breaking random variable Ωi as

Ωi =



(Di ,Mi ) i ∈ C

Xi i ∈ C
. (14)

The importance of Ω is captured in the following lemma.

Lemma 6.2. (Local Sampling) Let X ,Z,Ω be as above. Then
PX−i |XiΩ−iZ is a product distribution across the players:

PX−i |XiΩ−iZ =

k∏
t=1

PX t
−i |Ω

t
−iZ

tX t
i
.

Proof. Conditioned on Mi = Y
Di
i each Xi = (X 1

i ,X
2

i , . . . ,X
k
i )

is a product distribution, hence PX−i |Ω−iXi is product. Since for

t ∈ [k] Zt is a deterministic function of X t
the same holds of

PX−i |Ω−iZXi . �

Lemma 6.2 crucially relies on the setsD j being of size k−1: if two

or more of the players’ questions are unconstrained in a coordinate

it is no longer necessarily true that PX−i |Ω−iZXi is product across

all players.

Let W = WC =
∧C
i=1Wi denote the event that the players’

answers Z to questions in the coordinates indexed by C satisfy the

predicate V . Let

δ =
|C | log |A| + log 1

Pr(WC )

m
. (15)

The following lemma and its corollary are direct consequences

of analogous lemmas used in the analysis of repeated two-player

games, as stated in e.g. [27, Lem. 5] and [27, Cor. 6]. They do not

depend on the structure of the game, and only rely onW being an

event de�ned only on (XC ,Z).

Lemma 6.3. We have

(i ) E
i ∈[m]

‖PXiYiΩi |W − PXiYiΩi ‖ ≤
√
δ .

(ii ) E
i ∈[m]

‖PXiYiZΩ−i |W − PXi |Yi PYiZΩ−i |W ‖ ≤
√
δ

(iii ) E
i ∈[m]

‖PYiZΩ |W − PYi |Ωi PZΩ |W ‖ ≤
√
δ .

Proof. Item (i) follows directly from [27, Lem. 5] by taking

Ui = XiYiΩi . For (ii) apply [27, Cor. 6] with Ui = Xi and T =
(Y1,Y2, . . . ,Ym ,XC ) to get

E
i ∈[m]

‖PXiZY[m]
XC |W − PXi |Yi PYiZY[m]\{i }XC |W ‖ ≤

√
δ , (16)

which is stronger than (ii); (ii) follows by marginalizingYDi
i in each

term. Finally, the same corollary applied with Ui = Yi and T = Ω
shows (iii). �

Corollary 6.4.

E
i ∈[m]

k∑
t=1
‖PYi PZΩ−i |WYi − PYi PZΩ−i |WY −ti

‖ ≤ 3k ·
√
δ .
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Proof. We have PYi |Ωi PZΩ |W = PYi |Ωi PΩi |W P
ZΩ−i |W Ωi . Ap-

plying Lemma 4.1 with QF = PΩi |W , SF = PΩi , and RG |F =
PYi |Ωi PZΩ−i |W Ωi , we see that

E
i ∈[m]

‖PYi |Ωi PZΩ |W − PYiΩi PZΩ−i |W Ωi ‖

= E
i ∈[m]

‖PΩi |W − PΩi ‖ ≤
√
δ ,

where the last inequality follows from Lemma 6.3, item (i). Com-

bining the above with item (iii) of the same Lemma, we have

E
i ∈[m]

‖PYiZΩ |W − PYiΩi PZΩ−i |W Ωi ‖ ≤ 2

√
δ . (17)

Noting that Ωi is determined by Yi (the Di are completely indepen-

dent of everything else), (17) implies

E
i ∈[m]

E
t ∈[k]

‖PYiZΩ−i |W − PYi PZΩ−i |WY −ti
‖

= E
i ∈[m]

‖PYiZΩ−i |W − PYi PZΩ−i |W Ωi ‖

≤ 2

√
δ .

Finally, notice that Lemmas 4.1 and 6.3 imply Ei ∈[m]
‖PYiZΩ−i |W −

PYi PZΩ−i |WYi ‖ = Ei ∈[m]
‖PYi − PYi |W ‖ ≤

√
δ ; the desired result

follows. �

6.2 Proof of the Parallel Repetition Theorem
This section is devoted to the proof of Theorem 6.1. The main

ingredient of the proof is given in the next proposition.

Proposition 6.5. Let C ⊆ [n] and X ,Z,Ω−i be de�ned as in
Section 6.1. Then

E
i ∈[m]




PXiΩ−iZ |W − PXi PΩ−iZ |W ,Yi=⊥k



 ≤ (6kα−k + 1)

√
δ , (18)

where δ is de�ned in (15).

Theorem 6.1 follows from this proposition in a relatively standard

fashion; this is done at the end of this section. Let us now prove

Proposition 6.5 assuming a certain technical statement, Lemma 6.6.

This lemma is proved immediately after.

Proof of Proposition 6.5. First observe that




PXiΩ−iZ |W − PXi PΩ−iZ |W ,Yi=⊥k





=



PXiYiΩ−iZ |W − PXiYi PΩ−iZ |W ,Yi=⊥k






as Yi is a deterministic function of Xi . Applying Lemma 6.3, item

(ii) we get

E
i ∈[m]




PXiYiΩ−iZ |W − PXi |Yi PYiΩ−iZ |W



 ≤
√
δ .

The latter distribution can be written as PYi |W PXi |Yi PΩ−iZ |WYi .

Applying Lemma 4.1 with QF = PYi |W and SF = PYi we see that




PXi |Yi PYiΩ−iZ |W − PXiYi PΩ−iZ |WYi



 =




PYi |W − PYi



,

which is bounded by

√
δ on average over i by Lemma 6.3, item (i).

Hence

E
i ∈[m]




PXiΩ−iZ |W − PXi PΩ−iZ |W ,Yi=⊥k





≤ 2

√
δ + E

i ∈[m]




PXiYi PΩ−iZ |WYi − PXiYi PΩ−iZ |W ,Yi=⊥k





= 2

√
δ + E

i ∈[m]




PYi PΩ−iZ |WYi − PYi PΩ−iZ |W ,Yi=⊥k



,

where the equality follows from Lemma 4.1 applied with RG |F =
PXi |Yi . Applying the triangle inequality,

E
i ∈[m]




PXiYi PΩ−iZ |WYi − PXiYi PΩ−iZ |W ,Yi=⊥k





= E
i ∈[m]




PYi PΩ−iZ |WYi − PYi PΩ−iZ |W ,Yi=⊥k





≤ E
i ∈[m]

k∑
t=1




PYi PΩ−iZ |WY <t
i =⊥

t−1,Y ≥ti
− PYi PΩ−iZ |WY ≤ti =⊥

t ,Y >t
i





(19)

≤ 6kα−k ·
√
δ , (20)

where (19) is proved by Lemma 6.6 below and (20) follows from

Corollary 6.4. �

Lemma 6.6. Let S ⊂ [k] and t ∈ S . Then



PYi PΩ−iZ |WY S

i =⊥
S ,Y S

i
− PYi PΩ−iZ |WY S∪{t }

i =⊥S∪{t },Y S\{t }
i






≤ 2α−( |S |+1) · 


PYi PZΩ−i |WYi − PYi PZΩ−i |WY −ti



. (21)

Proof. In the proof for ease of notation we omit the subscript

i and write Y instead of Yi . After relabeling we may assume S =
{1, 2, . . . , r − 1} and t = r where 1 ≤ r < k . Expanding the expec-

tation over Y explicitly we can rewrite the left-hand side of (21)

as




PY ·
(
PΩ−iZ |W ,y≥r ,y<r=⊥r−1 − PΩ−iZ |W ,y>r ,y≤r=⊥r

)


 . (22)

Next we use a symmetrization argument to bound the above ex-

pression. Consider a random variable Ŷ that is a copy of Y , and is

coupled to Y in the following way: Ŷ−r = Y−r , and conditioned on

any setting of Y r = yr , Ŷ r and Y r are independent. Using the fact

that Pr[Ŷ r = ⊥] ≥ α conditioned on any value of Y−r = U −r = y−r ,

we get that the expression in (22) is at most

α−1 


PY −r PY r |Y −r PŶ r |Y −r ·(
PΩ−iZ |W ,y>r ,yr ,y<r=⊥r−1 − PΩ−iZ |W ,y>r ,ŷr ,y<r=⊥r−1

)


.

Using the triangle inequality and symmetry of Y and Ŷ , this expres-

sion can be bounded by

2α−1 · 


PY ·
(
PΩ−iZ |W ,y>r ,yr ,y<r=⊥r−1 − PΩ−iZ |W ,y>r ,y<r=⊥r−1

)


 ,

which after noting that the quantity ‖PΩ−iZ |W ,y>r ,yr ,y<r=⊥r−1 −

PΩ−iZ |W ,y>r ,y≤r=⊥r ‖ is independent of the variable Y <r
, can be

rewritten as

2α−1·


PY ≥r ·
(
PΩ−iZ |W ,y>r ,yr ,y<r=⊥r−1 − PΩ−iZ |W ,y>r ,y<r=⊥r−1

)


 .

Using that the event that Y <r = ⊥
r−1

occurs with probability at

least αr−1 and PY ≥r |Y <r=⊥r−1 = PY ≥r by the anchor property, we
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can �nally bound (22) by

2α−r · ‖PY PZΩ−i |WY − PY PZΩ−i |WY −r ‖,

which is the desired result. �

We prove Theorem 6.1 by iteratively applying Proposition 6.5 as

follows.

Proof of Theorem 6.1. LetC0 = ∅ and δ0 = 0. While (6kα−k +
1)
√
δs ≤ ε/2, by Proposition 6.5, we can choose i ∈ Cs with




PXiΩ−iZ |W − PXi PΩ−iZ |W ,Yi=⊥k



 ≤ ε/2. Set Cs+1 = Cs ∪ {i} and

δs+1 = ( |Cs+1 | log |A| + log 1/Pr(WCs+1 ))/m. First we show that

throughout this process the bound

Pr[WCs ] ≤ (1 − ε/2) |Cs | (23)

holds. Since by the choice of i one has




PXiΩ−iZ |WC − PXi PΩ−iZ |WC ,Yi=⊥k



 ≤ ε/2,

to establish (23) it will su�ce to show that

Pr(Wi |WC ) ≤ val(G )+


PXiΩ−iZ |WC −PXi PΩ−iZ |WC ,Yi=⊥k



. (24)

The proof of (24) is based on a rounding argument. Consider the

following strategy for G: First, the players use shared randomness

to obtain a common sample from PΩ−iZ |WC ,Yi=⊥k . After receiving

her question x∗t , player t ∈ [k] samples questions for the remaining

coordinates according to PX t
−i |Ω

t
−iZ

tX t
i

, forming the tuple X t =

(X t
−i ,x

∗
t ). She determines her answer ati ∈ A

t
i according to the

strategy for Gn
. The distribution over questions X implemented by

players following this strategy is

PXi PΩ−iZ |WCYi=⊥k

k∏
t=1

PX t
−i |Ω

t
−iZ

tX t
i
,

which by Lemma 6.2 is equal to

PXi PΩ−iZ |WCYi=⊥k PX−i |Ω−iZ.

On the other hand from the de�nition of Ω−i we have

PXΩ−iZ |WC = PXiΩ−iZ |WC PX−i |Ω−iZWC = PXiΩ−iZ |WC PX−i |Ω−iZ.

Applying Lemma 4.1 with R = PX−i |Ω−iZ it follows that




PXZΩ−i |WC − PXi PΩ−iZ |WCYi=⊥k PX−i |Ω−iZ





=



PXiΩ−iZ |WC − PXi PΩ−iZ |WC ,Yi=⊥k




 .
Now by de�nition the winning probability of the extracted strategy

for G is at most val(G ), and (24) follows.

Let nowC be the �nal set of coordinates when the above-described

process stops; at this point we must have

δ =
|C | log |A| + log 1

Pr(WC )

n − |C |
>
α2kε2

48 · k2
.

If |C | ≥ n/2 we are already done by (23). Suppose

|C | log |A| + log( 1

Pr[WC ]
)

n
>
α2kϵ2

96 · k2
.

If log( 1

Pr(WC ) ) ≥
n ·α 2k ϵ 2
192·k2

we are again done; hence, we can assume

|C | log |A|

n
>

α2kε2

192 · k2
.

Now plugging the lower bound on the size of C in (23) we get

val(Gn ) ≤ Pr(WC ) ≤ exp
*
,
−
α2k · ε3 · n

384 · k2 · s
+
-

where s = log |A|, which completes the proof. �

7 OPEN PROBLEMS
Many interesting problems about the parallel repetition of multi-

player and entangled games remain open. Perhaps the most obvious

and pressing is the problem of obtaining a complete extension of

Raz’s theorem for general entangled two-player games. For exam-

ple, obtaining a fully quantum analogue of Raz’s theorem, as was

the case for Raz’s theorem itself, is likely to have important impli-

cations in the setting of communication complexity. One promising

candidate approach could be to leverage the recent ideas related to

quantum information complexity [9, 46].

Similarly, the problem of obtaining a parallel repetition with

exponential decay for general multiplayer games remain a fascinat-

ing challenge. In our view, however, this problem (even classically)

seems more challenging than the two-player entangled case, as its

di�culties are related to communication complexity and circuit

complexity lower bounds.

One limitation of our result is that it is essentially most suitable

in the case of games with value close to 1, in the sense that if

val(G ), val∗ (G ) are already subconstant, our bounds do not take

advantage of this fact. Indeed, even if G originally has a value close

to 0, the anchoring operation itself pushes the value up to Ω(1). It

remains open to �nd a hardness ampli�cation result that replicates

the strength of similar theorems obtained recently in the classical

setting [8, 16].
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