Hardness Amplification for Entangled Games via Anchoring

Mohammad Bavarian
Massachusetts Institute of Technology
Cambridge, MA, USA
bavarian@mit.edu

ABSTRACT

We study the parallel repetition of one-round games involving
players that can use quantum entanglement. A major open question
in this area is whether parallel repetition reduces the entangled
value of a game at an exponential rate — in other words, does
an analogue of Raz’s parallel repetition theorem hold for games
with players sharing quantum entanglement? Previous results only
apply to special classes of games.

We introduce a class of games we call anchored. We then intro-
duce a simple transformation on games called anchoring, inspired in
part by the Feige-Kilian transformation, that turns any (multiplayer)
game into an anchored game. Unlike the Feige-Kilian transforma-
tion, our anchoring transformation is completeness preserving.

We prove an exponential-decay parallel repetition theorem for
anchored games that involve any number of entangled players. We
also prove a threshold version of our parallel repetition theorem
for anchored games.

Together, our parallel repetition theorems and anchoring trans-
formation provide the first hardness amplification techniques for
general entangled games. We give an application to the games
version of the Quantum PCP Conjecture.

CCS CONCEPTS

« Theory of computation — Quantum complexity theory;

KEYWORDS
Entangled games, parallel repetition, hardness amplification

ACM Reference format:

Mohammad Bavarian, Thomas Vidick, and Henry Yuen. 2017. Hardness
Amplification for Entangled Games via Anchoring. In Proceedings of 49th
Annual ACM SIGACT Symposium on the Theory of Computing, Montreal,
Canada, June 2017 (STOC’17), 14 pages.

DOI: 10.1145/3055399.3055433

1 INTRODUCTION

Hardness amplification is a central method in complexity theory
and cryptography for reducing the soundness error of interactive
proofs and argument systems. Often, it is easier to construct an
interactive protocol with soundness error bounded away from 1,
and then apply hardness amplification on the protocol to reduce the
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soundness error to an arbitrarily small §. Furthermore, one would
often like the hardness amplification method to maintain important
structural features of the protocol, such as the number of rounds
or the number of parties involved. The simplest operation which
achieves this is parallel repetition, where multiple independent in-
stances of the original protocol are executed in parallel. However,
despite the independence between instances, the parties in the pro-
tocol may not treat them independently. Because of this, showing
that parallel repetition reduces the soundness error is generally a
difficult task, which has been the focus of a long line of research in
complexity theory and cryptography [19, 22, 23, 25, 27, 39, 41].

In this paper, we study the parallel repetition of games involving
players sharing entanglement. For simplicity we first consider two-
player games. A two-player one-round game is specified by finite
question sets X, Y, finite answer sets A, B, a probability distribu-
tion p over X XY, and a verification predicate V : X XY X AXB —
{0, 1} that determines the acceptable question and answer combi-
nations. The game is played as follows: a referee samples questions
(x,y) € X X Y according to p and sends x to the first player and y
to the second. Each player replies with an answer,a € A and b € B
respectively. The referee accepts if and only if V(x,y,a,b) = 1, in
which case we say that the players win the game. The extension to
three or more players is straightforward.

Multiplayer games arise naturally in settings ranging from hard-
ness of approximation [24, 49] and interactive proof systems [7,
22] to the study of Bell inequalities and non-locality in quantum
physics [6, 13].

The main quantity associated with a multiplayer game G is its
value: the maximum acceptance probability achievable by the play-
ers, where the probability is taken over the questions, as chosen
by the referee, and the players’ answers. Different notions of value
arise from different restrictions on allowed strategies for the play-
ers. The most important for us are the classical value (denoted by
val(G)) and the entangled value (denoted by val*(G)). The former
is obtained by restricting the players to classical strategies, where
each player’s answer is a function of its question only!. The latter
allows for quantum strategies, in which each player’s answer is
obtained as the outcome of a local measurement performed on a
quantum state shared by the players. The use of quantum states
does not allow communication between the players, but it does
allow for correlations between their questions and answers that
cannot be reproduced by any classical strategy [6].

We study the behavior of val(G) and val*(G) under parallel
repetition. In the n-fold parallel repetition G" of a game G the
referee samples (x1,y1),. .., (xn, yn) independently from y, and
sends (x1,...,xp) to the first player and (yi,...,yn) to the sec-
ond. The players respond with answer tuples (ai,...,an) and

!Both private and shared randomness are in principle allowed, but easily seen not to
help.
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(b1, . .., bn) respectively, and they win if and only if their answers
satisfy V(x;i, y;, a;, bj) = 1 for all i.

Clearly, if the players play each instance of G in G" indepen-
dently of each other (i.e. according to a product strategy), their
success probability is the n-th power of their success probability
in G. The main obstacle to proving a parallel repetition theorem is
that players need not employ product strategies — their answers
for the i-th instance of G may depend on their questions in the j-th
instance for j # i. Indeed, it is known that there are games G for
which non-product strategies enable the players to win G" with
probability significantly greater than val(G)” [20, 43].

Nevertheless, the parallel repetition theorem of Raz [41] estab-
lishes that if G is a two-player game such that val(G) < 1 the value
val(G") decays exponentially with n. Thus, Raz’s theorem shows
that parallel repetition is a good hardness amplification technique
for two-player one-round games. The two following decades have
seen a substantial amount of research on this question, connect-
ing the problem of parallel repetition to topics such as the Unique
Games conjecture, hardness of approximation, communication com-
plexity, and more [3, 10, 24, 40].

Recently, there has been much interest in obtaining hardness
amplification techniques for games involving players sharing en-
tanglement — in particular, obtaining an analogue of Raz’s theorem
for entangled games. The study of entangled games has recently
been a prominent focus of quantum complexity theory and quan-
tum information, for its role in quantum interactive proofs [29, 45],
quantum cryptography [47, 48], and for its aid in studying funda-
mental aspects of quantum entanglement [34, 35]. However, this
has proved challenging, for a variety of reasons. For one, there is
no a priori upper bound on the amount of entanglement needed to
play a given game optimally. Secondly, our toolbox for analyzing
quantum entanglement in multiprover interactive proofs is still
quite limited. Thus, in addition to its application to hardness ampli-
fication, the question of parallel repetition for entangled games is
a challenging proving ground for analyzing entanglement in the
complexity theoretic setting.

In spite of much research—and partial results, as surveyed in
Section 1.3—it remains an open question as to whether an analogue
of Raz’s theorem holds for entangled games. In this paper, we make
progress on this question.

1.1 Our Results

We give the first hardness amplification method for general entan-
gled games, involving any number of players. Prior to this work,
parallel repetition theorems were only known for special classes
of entangled two-player games, but not all games. Our main result
can be summarized as follows; see Theorems 5.1 and 6.1 for precise
statements.

THEOREM 1.1 (MAIN THEOREM, INFORMAL). There exists a polynomial-

time transformation (called anchoring) that takes the description of
an arbitrary k-player game G and returns a game G, with the fol-
lowing properties:

(1) (Classical hardness amplification)
Ifval(G) = 1 — ¢ then val(G,) = 1 — 3¢ and val(G?)
exp(—Q(&3 - n)).
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(2) (Quantum hardness amplification)
Ifval*(G) =1 -6 thenval*(G,) =1 — %5 and val*(G")
exp(—Q(8% - n)).

The implied constants in the Q(-) only depend on the number of
players k and the cardinality of the answer sets of G.

We obtain an efficient hardness amplification method from this
theorem in the following way: suppose given a k-player game
G whose entangled value is either 1 or at most 1 — §. By letting
n = poly(log f71,671), the game G” (the n-fold repetition of the
anchored game G, ) has value either 1 or at most 8. An important
aspect of our anchoring transformation is that it preserves quantum
completeness, meaning that if val*(G) = 1, then val*(G,) = 1. Simi-
lar game transformations in previous works (such as the one given
by Feige and Kilian [19]) do not preserve quantum completeness,
and thus cannot be used for hardness amplification in the same
way.

We remark that our theorem applies to games with any number
of players, with or without entanglement. Whether Raz’s theorem
can be extended to games with more than two players is a notorious
open problem (even without entanglement).

We also obtain a threshold version of the theorem above, which
states that the probability that the players win more than an val* (G)+
y fraction of the n instances of G, in G” goes to 0 exponentially
fastin n:

THEOREM 1.2 (THRESHOLD THEOREM, INFORMAL). Let G be a k-
player game with val*(G) = 1 — 8, and G, the anchored version of
G. Then for all integer n > 1 the probability that in the game G"
the players can win more than (1 — %5 + y)n instances of G, is at
most exp(—Q(y°n)), where the implied constant only depends on the
number of players k and the cardinality of the answer sets of G.

The advantage of having a threshold theorem is that it also
implies that parallel repetition reduces the completeness error in
addition to the soundness error. This is useful in situations where
we are trying to distinguish between, say, val*(G) > 0.99 and
val®(G) < 0.5. The entangled value of G” in both cases is exponen-
tially small. However, if the referee instead checks that the number
of instances won in G? is above a certain threshold, then we can
obtain a new game where either the value is exponentially close to
1 or exponentially close to 0. See Theorem 5.6 for a more precise
statement.

Finally, we present an application of our threshold theorem
to the so-called Quantum PCP Conjecture. The main application
of Raz’s parallel repetition theorem is to amplify the complete-
ness/soundness gap of probabilistically checkable proofs, in order
to obtain stronger hardness of approximation results (see, e.g., [24]).
Similarly, our threshold bound would perform the same function
for the multiprover games formulation of the Quantum PCP Con-
jecture. It is crucial that our threshold bound applies to games with
any number of players; so far, it appears that the types of games
that arise in approaches to the Quantum PCP Conjecture (games
version) involve more than two players [29, 37]. We discuss this in
more detail in Section 2.
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1.2 The Anchoring Transformation

The idea of modifying the game to facilitate its analysis under par-
allel repetition originates in work of Feige and Kilian [19] which
predates Raz’s parallel repetition theorem. Feige and Kilian in-
troduce a transformation that converts an arbitrary game G to
a so-called miss-match game Grg. The transformation is value-
preserving in the sense that there is a precise affine relationship
val(Grk) = (2 + val(G))/3. Furthermore Feige and Kilian are able
to show that the value of the n-fold repetition of Grx decays poly-
nomially in n whenever val(G) < 1. This enables them to establish
a general hardness amplification result without having to prove a
parallel repetition theorem for arbitrary games. This is sufficient
for many applications, including to hardness of approximation, for
which it is enough that the hardness amplification procedure be
efficient and value-preserving.

Theorem 1.1 adopts a similar approach to that of Feige and Kilian
by providing an arguably even simpler transformation, anchoring,
which preserves both the classical and entangled value of a game
and for which we are able to prove an exponential decay under
parallel repetition. In contrast, the transformation considered by
Feige and Kilian does not in general preserve the entangled value.
We proceed to describe our transformation and then discuss the role
it plays in facilitating the proof of our parallel repetition theorem.

Definition 1.3 (Basic anchoring). Let G be a two player game
with question distribution p on X x Y, and verification predicate
V.Let 0 < a < 1. In the a-anchored game G, the referee chooses
a question pair (x,y) € X X Y according to y, and independently
and with probability a replaces each of x and y with an auxiliary
“anchor” symbol 1 to obtain the pair (x/,y") € (X U{.}) X (Y U{.})
which is sent to the players as their respective questions. If any
of x”,y’ is 1 the referee accepts regardless of the players’ answers;
otherwise, the referee checks the players’ answers according to the
predicate V.

For a choice of & = 1— ‘/75 it holds that both val(G,) = %val(G) +
i and val*(G,) %val* (G) + %. One can think of G, as playing
the original game G with probability 3/4, and a trivial game with
probability 1/4. The term “anchored” refers to the fact that question
pairs chosen according to y are all “anchored” by a common ques-
tion (1, +). Though the existence of this anchor question makes the
game G, easier to play than the game G, it facilitates showing that
the repeated game G is hard. At a high level, the anchor questions
provide a convenient way to handle the complicated correlations
that may arise when the players use non-product strategies in the
repeated game.

Our parallel repetition results more generally apply to a class
of games we call anchored. The anchoring transformation of The-
orem 1.1 produces games of this type; however, anchored games
can be more general. We give a full definition of anchored games
in Section 3. We note that the class of anchored games includes the
class of free games, a class of games for which quantum parallel
repetition theorems were previously shown in [11, 12, 28].

1.3 Related Work

We refer to the surveys by Feige and Raz [18, 42] for an extensive
historical account of the classical parallel repetition theorem and
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its connections to the hardness of approximation and multiprover
interactive proof systems, and instead focus on more recent results,
specifically those pertaining to the quantum or multiplayer parallel
repetition.

The first result on the parallel repetition of entangled-player
games was obtained by Cleve et al. [14] for XOR games. This was
extended to the case of unique games by Kempe, Regev and Toner
[31]. Kempe and Vidick [32] studied a Feige-Kilian type repetition
for the entangled value of two-player games, and obtained a poly-
nomial rate of decay. The Feige-Kilian transformation does not
in general preserve the entangled value, and their result does not
provide a hardness amplification technique for arbitrary entangled
games.

Dinur et al. [17] extend the analytical framework of Dinur and
Steurer [16] to obtain an exponential-decay parallel repetition the-
orem for the entangled value of two-player projection games. How-
ever their techniques appear to heavily rely on symmetries of
projection games, and it is unclear how to extend them to gen-
eral games. Chailloux and Scarpa [11] and Jain et al. [28] prove
exponential-decay parallel repetition for free two-player games, i.e.
games with a product question distribution. Their analysis, as well
as the follow-up work Chung et al. [12], is based on extending the
information-theoretic approach of Raz and Holenstein.

Much less is known about the multiplayer setting than the quan-
tum setting. The only parallel repetition bound that applies to all
multiplayer games is due to Verbitsky [50], but the rate of decay
proved there is very slow - it is essentially an inverse Ackermann-
like function. Prior to this work, exponential-decay bounds were
only known for multiplayer free games; this was long a folklore
result.

Subsequent work. Since the original posting of this work, several
relevant papers have emerged [5, 15, 26, 53]. First, [5] analyzed a dif-
ferent hardness amplification method called “fortification”, which
was first introduced by Moshkovitz [36] in the context of classical
parallel repetition. They obtained exponential-decay parallel repe-
tition bounds for quantum as well as multiplayer games, although
with the caveat that decay only holds for a bounded number of
rounds. Later, Yuen [53] showed that the entangled value of a gen-
eral repeated game must decay to 0 polynomially fast (provided the
base game has entangled value less than one), whereas no general
decay bound was known for repeated entangled games. Finally,
Dinur et al. [15] establish exponential-decay bounds for expander
games, which includes anchored games and free games as a special
case. However, although the multiplayer parallel repetition theorem
of [15] is more general than the one proved in this paper, the proof
for the special case of anchored games given here is simpler.

1.4 Organization

In Section 2 we give a brief discussion of the Quantum PCP Conjec-
ture, and an application of our threshold theorem (Theorem 5.6) to
it. In Section 3 we give an overview of the techniques underlying
our main results, mainly focusing on the general ideas and leav-
ing the specifics to each subsequent section. Section 4 introduces
some preliminaries, including the definition of anchored games. In
Section 5 we present the proof of the quantum parallel repetition
theorem for anchored games, as well as the threshold theorem. In
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Section 6 we present the result on the parallel repetition of mul-
tiplayer classical anchored games. We conclude in Section 7 by
recounting a few open problems related to parallel repetition.

2 APPLICATION TO THE QUANTUM PCP
CONJECTURE

Just as the the classical parallel repetition theorem is useful for
proving hardness of approximation results, one might expect that
a quantum parallel repetition theorem would be useful for proving
quantum hardness of approximation results. However, we do not
(yet) have a Quantum PCP theorem; as of writing this is an active
field of research. Furthermore, while the classical PCP theorem has
three equivalent formulations — one in terms of probabilistically
checkable proofs, one in terms of hardness of approximation for
constraint satisfaction problems (CSP), and one in terms of games —
only two out of the three corresponding formulations of the Quan-
tum PCP Conjecture are known to be equivalent.

The following is the formulation of the Quantum PCP Conjecture
that is analogous to the classical CSP formulation. (We refer to the
survey [2] for further background on the conjecture, including
explanations of the standard technical terms we use below.)

CoNJECTURE 2.1 (QUANTUM PCP CONJECTURE, CONSTRAINT SAT-
ISFACTION FORMULATION). There exists a constant 0 < y < 1 and
integer k > 2 and d > 2 for which the following problem is QMA-
hard: Givena, b € [0,1] such thata—b > y and ak-local Hamiltonian
H = Hy + - + Hp, acting on n qudits of local dimension d such that
0 < H <1, decide whether the smallest eigenvalue of H is at least a
or at most b, promised that one is the case.

This problem is known as the k-LocAL HAMILTONIAN problem
with constant promise gap, where by promise gap we mean the gap
y between the thresholds a and b. The problem is only known to
be QMA-hard for gaps y that are inverse polynomial in n [33].

A games version of the conjecture is introduced in [21]:

CoNJECTURE 2.2 (QUANTUM PCP CONJECTURE, GAMES FORMULA-
TION). There exists a constanty € (0, 1) and integerss > 1,k > 2 for
which the following problem is QMA-hard: Given a,b € [0, 1] such
thata — b > y, and a k-player game G where each player answers
with s bits, decide whether val*(G) > a or val*(G) < b, promised
that one is the case.

When val*(-) is replaced with val(-), the above conjecture is ex-
actly equivalent to the classical PCP theorem. For constant gap y it
was proved by [51] that the problem of approximating the entan-
gled value of a game is at least NP-hard. For inverse polynomial y
the problem was shown QMA-hard [29], and very recently it was
even shown to be NEXP-hard [30].

Though neither Conjecture 2.1 nor Conjecture 2.2 has been
solved, we can nonetheless explore the consequences if they were
true. We give a simple application of our parallel repetition for
anchored games: assuming the truth of Conjecture 2.2, we can
boost its hardness to any desired gap between completeness and
soundness.

ProprosITION 2.3. If Conjecture 2.2 is true, then for all § > 0 the
following problem is QMA-hard: given a description of a k-player
game G with answer size that depends only on &, distinguish between
val*(G) > 1 - 6 orval®(G) < 6, promised that one is the case.
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PrROOF. Let 0 < b < a < 1 be a promise gap satisfying the
conditions of Conjecture 2.2. Define a’ = (1 + 3a)/4, and b’
(1 + 3b)/4. Consider the following reduction: given a description of
a k-player game G, promised that either val*(G) < b or val*(G) > a,
outputs the description of the following threshold game G =7 : the
referee plays G/, the t-fold repetition of G, the anchored version of

G, but instead accepts iff the players win at least 7 := (a’ — #)t
games. We set parameters A = (¢’ —b’)/4and t = % - %
where s is the length of the players’ answers in G, and c is the
universal constant from Theorem 5.6.

We get that if val*(G) > a, then val*(G,) > a’. One strategy for
G527 is for the players to play each coordinately independently
using the optimal strategy for G, . By a Chernoff-Hoeffding bound,

the probability that they win at least r games is at least

1
’11’13,

val*(G27) > 1 — exp(—tA%/2) > 1 - 6.

Otherwise, val*(G) < b. Applying Theorem 5.6, we get that

crt/s

val*(GP=7) < (1-A%/2) <.

Observe that this reduction is efficient: the size of the description of
Gh27 is O(|G|!); assuming the truth of Conjecture 2.2 this means
that a’ = b’ = Q(a — b) = Q(1), and thus since § and s are con-
stant, t is constant. The answer size of the new game is still O(1).
Thus the reduction runs in time polynomial in the input instance
size, so if there were an algorithm that could distinguish between
val* (G ZT) > 1-8 orval*(G"27) < §, then this would distinguish
between whether val*(G) > a or val*(G) < b, respectively. O

We point out that we used two features of the anchoring transfor-
mation: first, that it allows us to analyze the repetition of arbitrary
k-player games; second, it yields threshold theorems for parallel
repetition.

3 TECHNICAL OVERVIEW

We give a technical overview of anchored games and their parallel
repetition. For concreteness we focus on the case of two-player
games. For the full definition of k-player anchored games, see Sec-
tion 4.3.

Definition 3.1 (Two-player anchored games). Let G be a two-player
game with question alphabet X X Y and distribution p. For any
0 < a < 1 we say that G is a-anchored if there exists subsets
X, € X and Y, C Y such that, denoting by p the respective
marginals of p on both coordinates,

(1) Both p(X,), u(Y,) > a,
(2) Whenever x € X, or y € Y, it holds that u(x,y) = u(x) -

H(Y).

Informally, a game is anchored if each player independently
has a significant probability of receiving a question from the set
of “anchor questions” X, and Y, . An alternative way of thinking
about the class of anchored games is to consider the case where
4 is uniform over a set of edges in a bipartite graph on vertex set
X x Y; then the condition is that the induced subgraph on X, x Y,
is a complete bipartite graph that is connected to the rest of X x Y
and has weight at least a. In other words, a game G is anchored if
it contains a free game that is connected to the entire game.
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It is easy to see that the games G, output by the anchoring trans-
formation given in Definition 1.3 are a-anchored. Free games are
automatically 1-anchored (set X, = X and Y, = YY), but the class
of anchored games is much broader; indeed assuming the Expo-
nential Time Hypothesis it is unlikely that there exists a similar
(efficient) reduction from general games to free games [1]. Addition-
ally, since free games are anchored games, our parallel repetition
theorems automatically reproduce the quantum and multiplayer
parallel repetition of free games results of [11, 12, 28], albeit with
worse parameters.

Dependency-breaking variables and states. Essentially all known
proofs of parallel repetition proceed via reduction, showing how
a “too good” strategy for the repeated game G" can be “rounded”
into a strategy for G with success probability strictly greater than
val(G), yielding a contradiction.

Let S™ be a strategy for G” that has a high success probability.
By an inductive argument one can identify a set of coordinates C
and an index i such that Pr(Players win round i|W) > val(G) + &,
where W is the event that the players’ answers satisfy the predicate
V in all instances of G indexed by C. Given a pair of questions (x, y)
in G the strategy S embeds them in the i-th coordinate of a n-tuple
of questions

X1 X2, X1 X XD -
X[n]Y[n] =

Y, Y2, .- Yi-1L Y Yitls - - s Un

that is distributed according to P X () Yim) 1Xi=x, Yizy, W - The players
then simulate S” on x[,] and y[,] respectively to obtain answers
(a1,...,an)and (by,...,by), and return (a;, b;) as their answers in
G. The strategy S succeeds with probability precisely Pr(Win i|W)
in G, yielding the desired contradiction.

As S™ need not be a product strategy, conditioning on W may
introduce correlations that make P X Yim) | Xi=x, Yi=y, W impossible

»Xn

to sample exactly. A key insight in Raz’ proof of parallel repetition
is that it is still possible for the players to approximately sample
from this distribution. Drawing on the work of Razborov [44], Raz
introduced a dependency-breaking variable Q with the following
properties:
(a) Given @ ~ Pgq the players can locally sample x[,] and y[p
according to P X () Vi IXi=x, Yi=y, W>
(b) The players can jointly sample from Pg using shared ran-
domness.

In [27] Q is defined so that a sample w fixes at least one of {x;/, y;/}
for each i’ # i. It can then be shown that conditioned on x, Q is
nearly (though not exactly) independent of y, and vice-versa. In
other words,

1

where denotes closeness in statistical distance. Eq. (1) suffices
to guarantee that the players can approximately sample the same
o from Pq|x,=x, v,=y, w With high probability, achieving point (b)
above. This sampling is accomplished through a technique called
correlated sampling.

This argument relies heavily on the assumption that there are
only two players who employ a deterministic strategy. With more
than two players, it is not known how to design an appropriate
dependency-breaking variable Q that satisfies requirements (a) and

Paix,=x,w * Paixi=x,Yi=y,w % Pajy;=y.w

« »
~
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(b) above: in order to be jointly sampleable, Q needs to fix as few
inputs as possible; in order to allow players to locally sample their
inputs conditioned on Q, the variable needs to fix as many inputs
as possible. These two requirements are in direct conflict as soon
as there are more than two players.

In the quantum case the rounding argument seems to require that
Alice and Bob jointly sample a dependency-breaking state |Qy, y),
which again depends on both their inputs. Although it is technically
more complicated, as a first approximation |Qy, ;) can be thought
of as the players’ post-measurement state, conditioned on W. De-
signing a state that simultaneously allows Alice and Bob to (a)
simulate the execution of the i-th game in G" conditioned on W,
and (b) locally generate |Qy, ) without communication is the main
obstacle to proving a fully general parallel repetition theorem for
entangled games.

It has long been known that in the free games case (i.e. games
with product question distributions) these troubles with the
dependency-breaking variable disappear, and consequently we have
parallel repetition theorems for free games for the multiplayer and
quantum settings [12]. With free games involving more than two
players, it can be shown that

@)
on average over question tuples (x, y, z, . . .). In the quantum case, [11,
12, 28] showed how to construct dependency-breaking
states |Qx,=x,v;=y, w) and local unitaries Uy and V;, such that

(Ux ® Vy)|Q> =~ |QXL-=x, Y,~=y,W> (3)

for some fixed quantum state |Q). This eliminates the need for
the players to use correlated sampling, as they can simply share a
sample from Pq |y or the quantum state |Q) from the outset.

PQ|X1‘:X, Yi=y,Zi=z,....W ~ PQ|W’

Breaking correlations in repeated anchored games. Rather than
providing a complete extension of the framework of Raz and Holen-
stein to the multiplayer and quantum settings, we interpolate be-
tween the case of free games and the general setting by showing
how the same framework of dependency-breaking variables and
states can be extended to anchored games — without using corre-
lated sampling. We introduce dependency-breaking variables Q
and states |®y, ) so that we can prove analogous statements to (2)
and (3) in the anchored games setting.

The analysis for anchored games is more intricate than for free
games. Proofs of the analogous statements for free games in [11, 12,
28] make crucial use of the fact that all possible question tuples are
possible. An anchored game can be far from having this property.
Instead, we use the anchors as a “home base” that is connected to
all questions. Intuitively, no matter what question tuple (x, y, z, . . .)
we are considering, it is only a few replacements away from the set
of anchor questions. Thus the dependency of the variable Q or state
|y, y) on the questions can be iteratively removed by “switching”
each players’ question to an anchor as

Pa|x;=x, Y=y, Zi=z,w ~ PQ|X;=x,Y;=y, Z;eL, W
~ Po|x;=x,YV;en, Zier,w ® Po|Xiel, Yie, Ze, W
where “X; € 1” is shorthand for the event that X; € X, .
Dealing with quantum strategies adds another layer of complex-

ity to the argument. The local unitaries Uy and Vy, involved in (3)
are quite important in the arguments of [11, 12, 28]. The difficulty
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in extending the argument for free games to the case of general
games is to show that these local unitaries each only depend on the
input to a single player. In fact with the definition of |Qy, 4) used
in these works it appears likely that this statement does not hold,
thus a different approach must be found.

When the game is anchored, however, we are able to use the
anchor question in order to show the existence of unitaries Uy and
Vy that achieve (3) and depend only on a single player’s question
each. Achieving this requires us to introduce dependency-breaking
states |Qy,y) that are more complicated than those used in the
free games case; in particular they include information about the
classical dependency-breaking variables of Raz and Holenstein.

We prove (3) for anchored games by proving a sequence of
approximate equalities: first we show that for most x there ex-
ists Uy such that (Uy ® )|Q,,,) = |Qx,,), where |Q, ,) denotes
the dependency-breaking state in the case that both Alice and
Bob receive the anchor question “1”, and |[Qy, , ) denotes the state
when Alice receives x and Bob receives “1”. Then we show that
for all y such that p(y|x) > 0 there exists a unitary V;, such that
(I® Vy)IQux,1) = |Qx,y). Accomplishing this step requires ideas
and techniques going beyond those in the free games case. Interest-
ingly, a crucial component of our proof is to argue the existence
of a local unitary Ry  that depends on both inputs x and y. The
unitary Ry, is not implemented by Alice or Bob in the simulation,
but it is needed to show that V;; maps |Qy, ,) onto [Qy, ).

One can view our work as pushing the limits of arguments for
parallel repetition that do not require some form of correlated
sampling, a procedure that seems inherently necessary to analyze
the general case. Our results demonstrate that such procedure is
not needed for the purpose of achieving strong gap amplification
theorems for multiplayer and quantum games.

4 PRELIMINARIES

4.1 Probability Distributions

We largely adopt the notational conventions from [27] for probabil-
ity distributions. We let capital letters denote random variables and
lower case letters denote specific samples. We will use subscripted
sets to denote tuples, e.g., Xin] = (X1,...,Xn), X[n] = (X1, -++»%n),
and if C C [n] is some subset then X will denote the sub-tuple
of X|,] indexed by C. We use Px to denote the probability distri-
bution of random variable X, and Px (x) to denote the probability
that X = x for some value x. For multiple random variables, e.g.,
X,Y,Z, Pxyz(x,y,z) denotes their joint distribution with respect
to some probability space understood from context.

We use Py |x=x(y) to denote the conditional distribution
Pyx (y,x)/Px (x), which is defined when Px (x) > 0. When condi-
tioning on many variables, we usually use the shorthand Py, .
to denote the distribution Px|y=y, z=,. For example, we write
PViw_ixi,y; to denote Py o = ; X;=x;,v;=y;- For an event W we
let Pxyw denote the distribution conditioned on W. We use the
notation Ex f(x) and Ep,, f(x) to denote the expectation
Yx Px () f (%)

Let Px, be a distribution of X, and for every x in the support of
Px,, let Py|x,— be a conditional distribution defined over Y. We
define the distribution Px, Py|x, over X X Y as

(Px,Pyx,)(x,y) = Px,(x) - Py|x,=x(1)-
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Additionally, we write Px, zPy|x, to denote the distribution
(Px,zPy|x,) (%, 2,y) == Px,z(x,2) - Py|x,=x ().

For two random variables Xo and X over the same set X, Px, ~,
Px, indicates that the total variation distance between Px, and Px,,

1
IPx, =Pxll = 5 > IPx,(x) = Px, (@)1,
xeX
is at most &.
The following simple lemma will be used repeatedly.

LEMMA 4.1. Let Qp and Sg be two probability distributions of
some random variable F, and let Rg|F be a conditional probability
distribution for some random variable G, conditioned on F. Then

IQrRG|F — SFRGFIl = IQF — SFl.

4.2 Quantum Information Theory

For comprehensive references on quantum information we refer
the reader to [38, 52].

For a vector |/), we use |||¢/)|| to denote its Euclidean length. For
a matrix A, we will use ||Al|; to denote its trace norm Tr(\/m).
A density matrix is a positive semidefinite matrix with trace 1.
The fidelity between two density matrices p and o is defined as
F(p,0) = |l/pVolli. The Fuchs-van de Graaf inequalities relate
fidelity and trace norm as

1= F(p.0) < Sllp ol < 1~ F(p. o). (4)

For Hermitian matrices A, B we write A < B to indicate that A — B
is positive semidefinite. We use I to denote the identity matrix. For
an operator X and a density matrix p, we write X[p] for XpXT. A
positive operator valued measurement (POVM) with outcome set A
is a set of positive semidefinite matrices {E?} labeled by a € A that
sum to the identity.

We will use the convention that, when |{/) is a pure state, ¢/
refers to the rank-1 density matrix |/Xy/|. We use subscripts to
denote system labels; so pap will denote the density matrix on the
systems A and B. A classical-quantum state pxg is classical on X
and quantum on E if it can be written as pxg = Y, p(x)|xXx|x ®
PE|x=x for some probability measure p(-). The state pg|x— is by
definition the E part of the state px g, conditioned on the classical
register X = x. We write pxg|x=y to denote the state [xXx|x ®
PE|X=x- We often write expressions such as pg|, as shorthand for
PE|x=x When it is clear from context which registers are being
conditioned on. This will be useful when there are many classical
variables to be conditioned on.

For two positive semidefinite operators p, o, the relative entropy
S(pllo) is defined to be Tr(p(log p—log o)). The relative min-entropy
Seo(pllo) is defined as min{A : p < 22}

Let pap be a bipartite state. The mutual information I(A : B),
is defined as S(pAB||pA ® pB). For a classical-quantum state px 4B
that is classical on X and quantum on AB, we write I(A; B|x), to
indicate I(A; B)p, .

The following technical lemmas will be used in Section 5.

PROPOSITION 4.2 (PINSKER’S INEQUALITY). For all density matri-
ces p,o, Llip—oll? < S(pllo).
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LEmMA 4.3 ([28],FAcTIL8). Letp = Y, Pz (2)|zXz|®pz, and p’ =
Y2 Pz (2)2Xzl® py. Then S(p’llp) = S(Pz/|IPZ) + Bz [S(pzlIpz)]-
In particular, S(pllp) = Ez [S(pLllpz)].

We will also use the following Lemma from [12].2

LEMMA 4.4 ([12], QuANTUM RAZ’S LEMMA). Let p and o be two

CQ states with px A = px,X,..X,A and 0 = oxA = 0x, ® 0x, ®
...®o0x, ®o withX = X1X5 ... Xy classical in both states. Then

n

D IXi : A)p < S(pxa lloxa)-
i=1

®)

4.3 Games, Parallel Repetition, and Anchoring

We formally define k-player one-round games, their parallel repeti-
tion, and anchored games.

Multiplayer games. A k-player game G = (X, A, u, V) is spec-
ified by a question set X = X! x X% x --- x X, answer set
A = A x A2 x --- x AF, a probability measure y on X, and
a verification predicate V : X X A — {0, 1}. Throughout this paper,
we use superscripts in order to denote which player an input/output
symbol is associated with. For example, we write x! to denote the in-
put to the first player, and a’ to denote the output of the ¢-th player.
Finally, to denote the tuple of questions/answers to all k players we
write x = (x!,...,x*)and a = (d', ...,d") respectively.

The classical value of a game G is denoted by val(G) and defined
as

[V (e ) (e D)

su E
L fk (x},...,xk)~p
where the supremum is over all functions f; : X; — Aj; these
correspond to deterministic strategies used by the players. It is easy
to see that the classical value of a game is unchanged if we allow
the strategies to take advantage of public or private randomness.
The entangled value of G is denoted by val*(G) and defined as

sup E
A (R (x1,..,xk)~p
M., MK
Z <¢|Ml(x17al)®"'®Mk(xk,ak)|¢>
(aly--.,ak):

V((xl,...,xk),(al,...,ak)):l
(6)
where the supremum is over all integer d > 2, k-partite pure states
ly) in (C4)®% and M, ..., M for each player. Each M! is a set

of POVM measurements {M(x?, a’)},c 4+ acting on €4, one for
each question x! € X?.

Repeated games. Let G = (X, A, u, V) be a k-player game, with
X=X'x---xXkand A = A' x --- x Ak, Let u®" denote
the product probability distribution over X®" = ®?:1 Xi, where
each X; is a copy of X. Similarly let A®" = ®?=1 A; where each
Aj is a copy of A. 3 Let V& : X®" x A®" — (0,1} denote the
verification predicate that is 1 on question tuple (x1, . . ., xn) € X®"

2Some versions of this lemma, though in a less compact form, also appear in [11, 28].
3We will use the tensor product notation (“&”) to denote product across coordinates
in a repeated game, and the traditional product notation (“X”) to denote product across
players.
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and answer tuple (a1, . ..,an) € A®" iff for all i, V(x;, a;) = 1. We
define the n-fold parallel repetition of G to be the k-player game
G" = (X®n’ ﬂ®n"u®n, V®n).

When working with games with more than 2 players, we use sub-
scripts to denote which game round/coordinate a question/answer
symbol is associated with. For example, by xl.t we mean the question
to the t-th player in the i-th round. While this is overloading nota-
tion slightly (because superscripts are meant to indicate tuples), we
use this convention for the sake of readability. When x™ refers to a
tuple (xi,...,x,) and when x! refers to the ¢-th player’s question
in the i-th coordinate should be clear from context.

Anchored games. We give the general definition of an anchored
game.

Definition 4.5 (Multiplayer Anchored Games). A game
G = (X, A, p,V) is called a-anchored if there exists X! € X! for
all t € [k] where
(1) p(X!) 2 aforallt € [k], and
(2) forall x € X,
p() = plxlz ) - [ e

t €Fy

7)
where for all question tuples x = (x!,x?%,... ,xk)y e X, Fy C [n]
denotes the set of coordinates of x that lie in the anchor, i.e.

Fy={te[k] :x' e X!}
and l?x denotes the complement, i.e., [n] — Fy.

Here for a set S C [n], p(x|s) denotes the marginal probability
of the question tuple x restricted to the coordinates in S, i.e.

pixls) = > px).
x|s=x|s
When k = 2 this definition coincides with the definition of two-
player anchored games in Definition 3.1. Additionally, just like the
two-player case, one can easily extend the anchoring transforma-
tion given in Definition 1.3 to arbitrary k-player games:

PROPOSITION 4.6. Let G = (X, A, u, V) be a k-player game. Let
G, be the k-player game where the referee samples (x!,x2, ..., x)
according to , replaces each x' with an auxiliary symbol 1 indepen-
dently with probability a, and checks the players’ answers according
toV ifall x* # 1, and otherwise the referee accepts. Then G, is an
a-anchored game satisfying

val(G,) =1 - (1 —a)* - (1 - val(G))
val*(G,) = 1 - (1 — )F - (1 = val*(G)).

5 PARALLEL REPETITION OF ANCHORED
GAMES WITH ENTANGLED PLAYERS

This section is devoted to the analysis of the entangled value of
repeated anchored games. The main theorem we prove is the fol-
lowing:

THEOREM 5.1. Let G be a k-player a-anchored game satisfying
val*(G) =1 — ¢. Then

v poly(@®) - - n
val*(G") < eXP('Q(W))
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where s is the total length of the answers output by the players.

For clarity we will focus on the k = 2 (two-player) case; we will
describe how to extend the proof to arbitrary k at the end. We fix
an a-anchored two-player game G = (X X Y, A x B, 1, V) with
entangled value val*(G) = 1 — ¢ and anchor sets X, C X, Y, C Y
for Alice and Bob, respectively. We also fix an optimal strategy for
G", consisting of a shared entangled state |i/)EAF8 and POVMs
{A;Z} and {Bly’Z} for Alice and Bob respectively. Without loss of
generality we assume that |¢/) is invariant under permutation of
the two registers, i.e. there exist basis vectors {|v;)}; such that

19y = Zj VA loplvp).
5.1 Setup

We introduce the random variables, entangled states and operators
that play an important role in the proof of Theorem 5.1. The section
is divided into three parts: first we define the dependency-breaking
variable Q. Then we state useful lemmas about conditioned distri-
butions. Finally we describe the states and operators used in the
proof.

Dependency-breaking variables. Let C C [n] a fixed set of co-
ordinates for the repeated game G”. We will assume that C =
{m+1,m+ 2,...,n}, where m = n — |C|, as this will easily be
seen to hold without loss of generality. Let (X, Y") be distributed
according to " and (A", B") be defined from X" and Y as follows:

PA"B" ‘anxn’ynzyn (a", bn) = <¢|A)acn ® BZ" |lﬁ>

Let (X¢, Ye) and Z = (Ac, B¢) denote the players’ questions and
answers respectively associated with the coordinates indexed by
C. For i € [n] let W; denote the event that the players win round i
while playing G". Let We = Ajec Wi.

We use the same dependency-breaking variable Q that is used
in Holenstein’s proof of parallel repetition. In those works, for all
i € [n], Q; fixes at least one of X; or Y; (and sometimes both, if
i € C). Thus, conditioned on Q, X" and Y" are independent of each
other.

In more detail, let Dy, ..., Dy, be independent and uniformly
distributed over {A, B}. Let My, ..., My, be independent random
variables defined in the following way. If D; = A, then M; is
coupled to X; (that is, takes the same value as X;). Otherwise,
if D; = B, then M; is coupled to Y;. Then Q; = (D;, M;), and
Q=(Q1,...,9m, Xc, Yo).

Conditioned distributions. Define

1
8¢ = — (log 1/ Pr(Wc) + |Cl log | ]| B]) .

For notational convenience we often use the shorthand X; € .
and Y; € 1 to stand for X; € X, and Y; € Y, respectively. The
following lemma essentially follows from the classical arguments
used in [27].
LEmMA 5.2. The following statements hold on, average over i cho-

sen uniformly in [m]:

(1) Ei llPp,a,x;v;1we — PoiM;x,v: |l < O({éc)

(2) EillPazx,y;iwe — PaziwePx,v;10ll < O(éc)

(3) EillPx;v;Pa_,zixie,vienwe — PxiviPo_zixiviwell <

O(foc/a?)
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4) E; ||PXL-Y,»PQ,,-Z|X,»Y,»WC - PX,»Y,-Q,,»Z|W|| < 0(y/5¢c/a?)

Quantum states and operators. Recall that we have fixed an op-
timal strategy for Alice and Bob in the game G". This specifies a
shared entangled state |{/), and measurement operators {Af;i} for
Alice and {BZ:} for Bob.

Operators. Define, for all ac, be, x™, y™:

A= ) Al

a"lac

be ._ b"
By" - Z By”
b"|bc

where a"|ac (resp. b"|bc) indicates summing over all tuples a”
consistent with the suffix ac (resp. b" consistent with suffix be).
For all i, w—;, x;, and y; define:

ac _ Aac
OBXE T Xn gk X
be be
B, ., = B
Yy y Y

where recall that Exn|,,_, , is shorthand for Exn|q_,=«x_; X;=x;-
Intuitively, these operators represent the “average” measurement
that Alice and Bob apply, conditioned on Q_; = w—;, and X; = x;
and Y; = y;. Next, define

ac — E ac
w_j, L n

! X" Q_j=w-ijAX;eL x
be . _ bc
wW_j, L T

Yr Q= inYiel Y7

These operators represent the “average” measurement performed
by Alice and Bob, conditioned on Q_; = w_; and M; = .. Finally,
forall x; € X and y; € Y, define

1 1
ac _ Zpac e
w_i,1/xi T 214(’J—isi zAw—i’xi
be N 1 be
B ity = P+ 5B

Intuitively, these operators represent the “average” measurements
conditioned on Q_; = w—_; and when X; is x; with probability 1/2
and 1 with probability 1/2 (or when Y; = y; with probability 1/2
and . with probability 1/2).

For notational convenience we often suppress the dependence
on (i, w-i,z = (ac, bc)) when it is clea from context. Thus, when

we refer to an operator such as A x> We really mean the operator
ac
w_j, 1/ x;"

States. For all x € X and y € Y, define the following (unnormal-
ized) states:

sy = VAx ® \[By 1)
|®x,,) = VAx ® VBLIY)
1.7, = Ay ® VIV
[,75.4) = \JAusx ® [Byl9)

@, ,):= VA, ® VB.Iy)
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together with the normalization factors
Yx,y = H|q)x,y>||
Yiyx,0 = |||CDJ_/X,J_>||
Yoo =1Ll

Note that these normalization factors are the square-roots of the
probabilities that a certain pair of answers z = (ac, bc) occurred,
given the specified inputs and the dependency-breaking variables.
For example, revealing the depencies on w_; and z, we have

y(;f);li/zz T PZleo-ixiy; (2).

We denote the normalized states by ICTDX,y) = Dx,y)/Yx,ys @x,L) =

1= |||¢X,L>||

Hixa = 12

Poe, ), 10 1Dy, ) = 1D ) Vg, o 1P, ) = 1@y )Y iy
and |q>J_,J_> = |q)J.,J.>/YJ.,J_'

5.2 Proof of the Parallel Repetition Theorem

LEMMA 5.3. Let G be an a-anchored two-player game. Let C C [n]
be a set of coordinates. Then

B Pr(Wi[We) < val*(G) + (8% /a?)

where the expectation is over a uniformly chosen i € [n]\C and
8c = 7; (log 1/ Pr(Wc) + [Cl log | Al BI).

Proor. For every w_;, z = (ac,bc),xi € X,yi € Y,a; € A
and b,— € B, define

-1/2 1/2
=L Al )AL Al )T
a"la;,ac
Ebi — (BbC ) l/sz ( ) 1/2
w-i,Yi T W-i,Yi wW-i,Yi w—hyl
b" b, be

where a"|a;, ac (resp. b"|b;, bc) denotes summing over tuples a”
that are consistent with ac and a; (resp. b" that are consistent with
bc and b;). Note that the {A { x;}a; and {B (B w i }p, are positive
semidefinite operators that sum to identity, so form valid POVMs.

Consider the following strategy to play game G. Alice and Bob
share classical public randomness, and for every setting of i, w—;, z,
the bipartite state |(I>w_, z). Upon receiving questions x € X and

y € Y respectively they perform the following:
(1) Alice and Bob use public randomness to sample (i, w—;, z)
conditioned on We. _
Alice applies U,_;, z, x to her register of |®Pw_;,z).
1,1

)
®)
4

Bob applies V,_;, z,y to his register of |5w_,-,z>.
1,1

Alice measures with POVM operators {AZLL., « )} and returns
the outcome as her answer.
Bob measures with POVM operators {BZ ,y) and returns

the outcome as his answer.

®)

Suppose that, upon receiving questions (x, y) and after jointly pick-
ing a uniformly random i € [m], Alice and Bob could jointly sample
®-j,z from Pq_,7|w,. and locally prepare the state |<I>a)_, z). For a

fixed (x,y), w-; and z, the distribution of outcomes (a,, b;) after

measuring {A w,i,x®Bff,,~,y }a;,b; Willbe identicalto P4, B, 0.,z x,y
(where we mean conditioning on X; = x and Y; = y). Averaging
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over (x,y) ~ {4, i, w—j, and z, the above-defined strategy will win
game G with probability at least E; Pr(W;|W¢).

Next we show that Alice and Bob are able to approximately
prepare |<I>w :,z) with high probability, and thus produce answers

that are approxlmately distributed according to P4;B;|w_;,zx,y>
allowing them to win game G with probability greater than 1 — ¢ —
a contradiction.

For the remainder of the proof, we will fix C and implicitly carry
it around. Let § = §¢. We use the following lemma:

LEMMA 5.4. ForeveryC,i,w—;i,z = (ac,bc), xi andy; there exists
unitaries Uy,_;, 7, x; actingon Eq and Vy,_; 2 y, acting on Ep such that

E E Ew_i,z>
Xi,Yi

i X;Y;,Q,Z|lW
= 0(8"*/a*).

— 2
H(Uw—i,zvxi ® Vf/)—ivz»yi) @wi_,-iz> - ‘

The proof of Lemma 5.4 can be found in the full version of
this paper [4]. Using the fact that for two pure states |¢/) and |¢),
[l —¢ll1 < V2| [y — |9)l, as well as Jensen’s inequality,

E E (Uw_lzx®Vwlzy)[(bw,z]—cbw,lz

i XYQ,Z|We x7
51/8

-o(=;). (10)
(24

where the second expectation is over (x,y) drawn from py, and
(U ® V)[®@] denotes (U ® V)®(U ® V)'. Conditioned on a given
pair of questions (x, y) and the players sampling (i, w—;, z) in Step
1., the state that the players prepare after Step 3. in the protocol
is precisely (Uw_;,z,x ® Vor_;,z, y)[CDa)_, z]. Let 8@-, z denote the
XYy
quantum-classical channel on den51ty matrices that performs the
measurement {Awl_,-, x ®Bf)_i,y }a,,b;» and outputs a classical register
with the measurement outcome (a;, b;). Applying Ew_;,z to the
Y

expression inside the trace norm in (10), using that the trace norm
is non-increasing under quantum operations,

IIE XYQ_I?Z“/VC ||PAiBi |w,i,v,x,y - PAiBi |w,i,v,x,y”

<0(5Y3/a?%).

where EAiBilwi,z,x,y(ai, b;) denotes the probability of outcome
(ai, bi) in the above strategy, conditioned on questions (x, y) and
the players sampling (i, w—;, z) in Step 1. Thus

Pr-Po_,ziwe - Pxy 'FAL-B,-lQ,L-ZXL-Y,»
o187y P1-Pa_ziwe - Pxy - Pa;Bi10,2x,v;
~o18/a?) P1-Pazx,v;\we - PaBi1o zx,Y;

where the X;Y; in the conditionals is shorthand for X; = x,Y; = y.

The last approximate equality follows from Lemma 5.2. Marginaliz-
ing Q_;Z, we get

(11)

Pr-Pxy - Pa;B|x;v, ~O(5Y8/a?) Pr-Px,v,a,B;|we-
Under the distribution Px,y, 4, B, |w. the probability that
V(xi,yi, aj, bi) is 1 is precisely Pr(W;|W¢). On the other hand,
(11) implies that using the protocol described above the players
win G with probability at least E; Pr(W;|We) — O(6'/8/a?). This
concludes the proof of the lemma. O
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Given Lemma 5.3, the proof of Theorem 5.1 (at least the two
player case) follows using a standard inductive argument (see, e.g.,
the argument for Theorem 6.1 given in Section 6). In the next section,
we sketch the changes necessary to adapt the proof to handle an
arbitrary number of players.

5.3 Extending the Argument to More Than
Two Players

We extend the argument from the previous sections to games with
k > 2 entangled players. We describe the required modifications
to the case of k = 3; the only hurdle in handling larger number
of players is notational. Furthermore we restrict our attention to
the repetition of the game G, obtained by applying the anchor
transformation to a game G.

Let G be an arbitrary game involving three players Alice, Bob
and Charlie. The players’ questions are denoted by X, Y, Z, and
their outputs are denoted as A, B, C. We will let pi(x, y, z) denote the
question distribution of the game G. Let G, be the anchoring trans-
formation applied to G (for some «), and let y, (x,y, z) denote the
question distribution of G, . We analyze the behavior of val*(G").
Consider an optimal strategy for G”, involving a tripartite state
¥y e 4 @ C4 ® C? and POVM for each of the players: {A}“c',;} for
Alice, {BZ: } for Bob, and {C;Z } for Charlie. The entangled state |1))
is supported on three registers E 4, Ep, and Ec.

The subset of coordinates that we condition on winning (for-
merly called C) will be denoted by S. The answers to rounds in S
that we condition on will be denoted together as Q = (Ag, Bs,Cs)
(formerly called Z = (Ac, Bc)).

The idea behind the proof of the multiplayer extension is to
reduce to the two-player case by “combining” two of the three
players and treating them as a single player.

Dependency-breaking variable. The dependency-breaking vari-
able Q is constructed so that for each coordinate i ¢ S, Q; fixes
2 out of 3 questions. That is, D; is uniformly distributed over
{{A, B}, {A, C}, {B, C}}. The variable D; indicates which questions
M; is coupled to. For example, if D; = {A, B}, then M; is cou-
pled to the pair (Xj, Y;). The dependency breaking variable sat-
isfies the property that for all w, for all i, Px,y, 7, |0=0 (%,y,2) =
Px;10=0 (%) ' Py,j0=0 (1Y) - Pz, |0=0 (2)-

Operators and states. We define the states and operators in a
nearly identical way to the two-player case. We also introduce oper-
ators corresponding to the third player, Cy . ,.,Cgy . |, C™%
etc., defined in the obvious manner.

The states are also defined in a similar way:

|¢’x,y,z> = VAx ® \/E® ‘/C_ZW)

where x, y, and z can be “normal” questions from X, Y, or Z, or
they can be . or a hybrid such as +/x.

The analogue of Lemma 5.4 in the three-player setting is the
following. We use simplified notation to maximize clarity, and
suppress mention of i, w—;, and q = (as, bs, cs).

w-i, 1 [(xi,yi)’
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LEMMA 5.5. For all (x,y,z) € X X Y X Z, there exist unitaries
Ux, Vy, and Wy acting on E4, Eg, and Ec respectively such that

B |0x o vy @ W)l )~ 10 = 0614 /a).

PRrROOF SKETCH. Lemma 5.5, as in the two-player case, is proved
in two steps. The first step is to establish the existence of uni-
taries Uy, Vy, and W, such that Ux D, | 1) =[x, 1 1), Vx|®L, 1 1) =
|@.,y,.), and We|®, , ) = [P, -), with the unitaries acting on
the appropriate spaces.

To prove, say, the existence of Uy, we treat Bob and Charlie as a
single player — call him “SuperBob” - and use the analysis from the
two-player case where the game G is a two player game involving
Alice and SuperBob. Using the same reasoning as in the two-player
case, we get that

2
E |Wx o vy @D, ..) ~ 0wy ) = 0614/a).

It then only remains to show that, on average over (x,y,z), (I®I®
W2)|@x, y, ) is close to [Dy, 4, 2):

[Wel®x y.0) = 1@y
—1/2
| sy, o) = CoCT 210 )

~ ‘

w,C,c”1/?

1/z

Hyy,z ® wchc:/lZ/ﬂq;x’ yoijz) — Hyyz ® CzC:}Z/Zfbx, yoi/z)

WoC O, 1) = CCT 0, e

= ”WZl(I)L,L,L) - |q>L,L,Z>||
~ 0,

where Hy, y,; is a unitary acting on E4Ep jointly such that

Hx,y,z|q)x,y,i/z> ~ |q)L,L,L/Z>'

[m]

The main theorem for the case of k > 2 entangled players follows
from Lemma 5.5 using the same steps as in the two-player case.

5.4 A Threshold Theorem

We also observe that our proof nearly immediately yields a threshold
version of our parallel repetition theorem: we can give an exponen-
tially small bound on the probability that the players are able to
win significantly more than a (1 — €)n coordinates in the repeated
game G, where val*(G, ) = 1 —¢. In [40], Rao shows how a Lemma
of the form Lemma 5.3 yields not only a parallel repetition theorem,
but also gives a concentration bound. Using essentially the same
argument, we get the following theorem:

THEOREM 5.6. Let G be an a-anchored k-player game withval*(G) <
1 — ¢. Then for all integer n > 1 the probability that in the game G™
the players can win more than (1 — ¢ + y)n games is at most

8k

(1 _ yg/z)ca

where c is a universal constant and s is the length of the players’
answers.

n/s
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6 CLASSICAL MULTIPLAYER GAMES

Perhaps the most well-known open problem about the classical
parallel repetition of games is whether an analogue of Raz’s theorem
holds for games with more than two players. While the two-player
case already presented a number of non-trivial difficulties, proving
a parallel repetition theorem for three or more players is believed
to require substantially new ideas.*

In this section we show that multiplayer anchored games satisfy
a classical parallel repetition theorem. Thus, the anchoring trans-
formation along with parallel repetition yields a general hardness
amplification technique for classical multiplayer games involving
any number of players.?

THEOREM 6.1. Let G = (X, A, u, V) be a k-player a-anchored
game such that val(G) < 1 — ¢. Then

For the remainder of this section we fix a k-player a-anchored
game G = (X, A, 1, V), an integer n, and a deterministic strategy
for the k players in the repeated game G™ that achieves success prob-
ability val(G"). In Section 6.1 we introduce the notation, random
variables and basic lemmas for the proof. The proof of Theorem 6.1
itself is given in Section 6.2.

2k | .3

- &
384 -s5-k2

*h

val(G") < exp (— (12)

where s = log | Al.

6.1 Breaking Classical Multipartite
Correlations

We refer to Section 4.3 for basic notation related to multiplayer

games.
Let C C [n] afixed set of coordinates for the repeated game G™ of
size |C| = n—m. It will be convenient to fix C = {m+1,m+2,...,n};

the symmetry of the problem will make it clear that this is without

loss of generality. Let Z = Ac = (Al ,AZC, . ,Alé) denote the

players’ answers associated with the coordinates indexed by C.
Fort € [k]letY! = (X*\X!)U{.}, and define a random variable

Yyt = X',
-1

Let Y = Y!'xY2x...xY*andY = (Y}, Y2,...,Y¥). For G" we
write

Yo = ((v],.. . YF), ()Y ) s (Yo ) -

Note that each k-tuple Y; is a deterministic function of X;. Further-
more, we will write Yl._t to denote Y; with the t-th coordinate Yit
omitted.

Xt e X\ X!

13
Xt e Xt (13)

4This is mainly because the Raz/Holenstein framework, if extended to a multiplayer
parallel repetition theorem in full generality, would likely also yield new lower bound
techniques for multiparty communication complexity, an area that has long resisted
progress (especially for the important multiparty direct sum/product problems).
SThere are other ways to perform hardness amplification of classical multiplayer games,
including transforming a k-player game G into an equivalent two-player projection
game G’ (where one player simulates the original k players, and the second player is
used to consistently check the answers of the new “super-player”), and then applying
Raz’s parallel repetition theorem to G’. However, this k-to-2 transformation does
not preserve quantum completeness, in general, which may be a useful feature. The
anchoring transformation, on the other hand, preserves quantum completeness, and
simultaneously supports both classical and quantum hardness parallel repetition.
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For i € [n] let D; be a subset of [k] of size k — 1 chosen uniformly
at random, and D; € [k] its complement in [k]. Let M; = Yl.Di
denote the coordinates of Y associated to indices in D;. Define the

dependence-breaking random variable Q; as
(Di, M;) ieC
ieC’

Qi (14)

Xi
The importance of Q is captured in the following lemma.

LEmMMA 6.2. (Local Sampling) Let X, Z, Q be as above. Then
Px_,1x;9_,7 is a product distribution across the players:

k

Pxixioz = | | Pxejar zext-
t=1

Proor. Conditioned on M; = Yl.Di each X; = (X}, X7, .. ,Xg‘)
is a product distribution, hence Px ,|q_,x, is product. Since for
t € [k] Z! is a deterministic function of X* the same holds of

Px_;10.,7x; m]

Lemma 6.2 crucially relies on the sets D; being of size k—1: if two
or more of the players’ questions are unconstrained in a coordinate
it is no longer necessarily true that Py ;| ,7zx, is product across
all players.

Let W = W = /\ic=1 W; denote the event that the players’
answers Z to questions in the coordinates indexed by C satisfy the
predicate V. Let

5 |C| log | Al +logm

(15)

m

The following lemma and its corollary are direct consequences
of analogous lemmas used in the analysis of repeated two-player
games, as stated in e.g. [27, Lem. 5] and [27, Cor. 6]. They do not
depend on the structure of the game, and only rely on W being an
event defined only on (X¢, Z).

LEMMA 6.3. We have

(1) E IPx,v,0,iw — Px;vio;ll < V8.

ie[m]
| IPx;v,za_;jw = Px;1v;Pyiza_;wil < Vs

(i)

IPy,zo|w — Py;j0;Pzaiwll < V8.

E
ie[m

(iii) E
ie[m

]

Proor. Item (i) follows directly from [27, Lem. 5] by taking
Ui = X;Y;Q;. For (ii) apply [27, Cor. 6] with U; = X; and T =

(Y1,Y2,..., Yy, Xc) to get
B Px,z¥Xe W — Pxi v, PYiz ¥ Xewll < Vo, (16)
i€[m]

which is stronger than (ii); (ii) follows by marginalizing Yl.ﬁi in each
term. Finally, the same corollary applied with U; = Y; and T = Q
shows (iii). O

COROLLARY 6.4.
k

D IPY,Pza jwy, = PyiPzojwyo ]l < 3k - V6.

E
i€[m] =
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Proor. We have PY[|Q,'PZQ|W = PYi\QiPQi|WPZQ,i|WQ,>' Ap-
plying Lemma 4.1 with Qr = Pq,|w, SF = Pq;, and Rg|r =
Pyi 1Q; PZQ,i IwQ,;, we see that

" E |IPy,10,Pzoiw — Py;0,Pza_;jwa;ll
i€[m]
= E |Po,jw —Po,ll < V3,

i€[m]

where the last inequality follows from Lemma 6.3, item (i). Com-
bining the above with item (iii) of the same Lemma, we have

(17)

" E |IPy,zow = Py;q;Pza_;jwao;ll < 2Vs.
i€[m]

Noting that Q; is determined by Y; (the D; are completely indepen-
dent of everything else), (17) implies

E E ||Py, 1w — Py.P ) -
ity e P YiZ0-1W = PYiPza_wy«|
= E IPy,za_;jw — Py;Pza_;jwa;ll

i€[m]
< 2Vs.

Finally, notice that Lemmas 4.1 and 6.3 imply E;¢[m) lIPy,za_;jw —
Py.Pzo_;iwy; |l = Eiem] IPy; = Py, jwll < V3; the desired result
follows. o

6.2 Proof of the Parallel Repetition Theorem

This section is devoted to the proof of Theorem 6.1. The main
ingredient of the proof is given in the next proposition.

ProPOSITION 6.5. Let C C [n] and X,Z,Q_; be defined as in
Section 6.1. Then

B [Pxio 2w = PxiPazw,vimur ]| < GkaF + VB, (19)

where § is defined in (15).

Theorem 6.1 follows from this proposition in a relatively standard
fashion; this is done at the end of this section. Let us now prove
Proposition 6.5 assuming a certain technical statement, Lemma 6.6.
This lemma is proved immediately after.

ProOOF OF PROPOSITION 6.5. First observe that

||Px,»Q,,~Z|W - Px;Pq 71w, Yi:Lk”
= ||Pxiy,»Q,iZ|w - PXiYiPQ,iZ|W,Yi=Lk||
as Y; is a deterministic function of X;. Applying Lemma 6.3, item

(ii) we get

E

_ “PX,«YiQ,izlw - PXilYiPYiELiZ\WH < Vs.
i€[m]

The latter distribution can be written as Py, |wPx,; v,Pa_,zjwy;-
Applying Lemma 4.1 with Qr = Py, |y and S = Py, we see that

||Px,»|y,»PY,-Q,,»Z|w - Px;y; PQ,,»Z|WYL-| = ||PY,»|W - PY,-|

s
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which is bounded by V& on average over i by Lemma 6.3, item (i).
Hence

l'eI[Em] ||PXiinZ|W - PXi PinZ|W, Yi:Lk||

<2V6+ E |Px,v,Po ziwy, - Px.v.Po_,ziw. vi—.k |
ie[m]

= 2‘/34- . E ||PY,~PQ4Z‘WYI. - PYiPQ,iZ\W,Yisz |’

i€[m]
where the equality follows from Lemma 4.1 applied with Rg|r =
Px,|v,- Applying the triangle inequality,

E HPX,-Y,- Po_,ziwy, — PXiYiPQ,,-Z|W,Yi=J.k||
i€[m]

= E ||Py.Po . . —Py.P _
2 IPriPoziwy = PriPa_zjw. vt
k
< iEI[Em] ; ||PYz Po ziwyst=rt-1yze — PYiPQ_,-Z|WYiS‘:ﬁ,Yi>‘||
(19)
< 6ka™* - V3, (20)

where (19) is proved by Lemma 6.6 below and (20) follows from

Corollary 6.4. O
LEMMA 6.6. LetS C [k] andt € S. Then
||PYiPQ,iZ|WYiS:LS, yS o PYiPQ_,-ZlWYiSU(”:LSU(”,Yig\m”
—(IS]+1
<20 Py, Pzo jwy, = Py,Pzo_ |- (21)

Proor. In the proof for ease of notation we omit the subscript
i and write Y instead of Y;. After relabeling we may assume S =
{1,2,...,r —1} and t = r where 1 < r < k. Expanding the expec-
tation over Y explicitly we can rewrite the left-hand side of (21)
as

)

Next we use a symmetrization argument to bound the above ex-
pression. Consider a random variable ¥ that is a copy of Y, and is
coupled to Y in the following way: Y™ = Y™, and conditioned on
any setting of Y” = ", Y" and Y” are independent. Using the fact
that Pr[Y" = 1] > & conditioned on any value of Y7 = U™" =y,
we get that the expression in (22) is at most

”PY ’ (PinZIW,yZ’,y“:ﬂ-1 - PQ,iZ|W,y>',y5r=lr)

-1
o ||Py—rpyr|y—rp?r‘y,r~
(PQ_iZ|W,y>r,y’,y<’:L”1 bl PQ-,-ZlW,y>V,yr,y<r:Lr’l)”'
Using the triangle inequality and symmetry of Y and ¥, this expres-
sion can be bounded by
-1
2a N ||PY N (PQ_,-Z|W,y>r,y’,y<r:Lr71 - PQ_iZ|W’y>r,y<r:Lr71)H 5
which after noting that the quantity \Pq_, 7w, y>r, yr y<r=.r-1 =
Pa_,z\w,y>r,y<r=.r |l is independent of the variable Y<", can be
rewritten as
-1
2a 'przr . (PQ,iZIW,y”,y’,y“:J“ - PQ#ZIW,y”,y“:J‘l)“ .

Using that the event that Y<" = ."~! occurs with probability at
least a”~! and Pysr|y<r=,r-1 = Pyzr by the anchor property, we
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can finally bound (22) by

207" - |IPyPzq ,jwy — PyPzo_,jwy-|l,

which is the desired result. |

We prove Theorem 6.1 by iteratively applying Proposition 6.5 as
follows.

ProOF OF THEOREM 6.1. Let Cy = () and &y = 0. While (6ka_k +
1)V8s < ¢/2, by Proposition 6.5, we can choose i € Cs with
[Px.0-ziw = Px,Pa_zjw.yv,=.k|| < €/2-Set Ceiq = C5 U i} and
Os+1 = (ICs+1llog [A| + log 1/ Pr(Wc,,,))/m. First we show that
throughout this process the bound

Pr[We,] < (1 —¢/2)!C5! (23)

holds. Since by the choice of i one has

||PX,~Q,,»Z|WC - Px; PQﬂ.Z|WC7Yi=lk“ <e¢/2,
to establish (23) it will suffice to show that

Pr(WilWe) < val(G) +||Px,a_,ziwe —Px;Pa_ziwe.vimok || (24)

The proof of (24) is based on a rounding argument. Consider the
following strategy for G: First, the players use shared randomness
to obtain a common sample from P, 7,y y,=, k- After receiving
her question x}, player ¢ € [k] samples questions for the remaining
coordinates according to Px: ot 7:xt, forming the tuple Xt

(Xfi,xf). She determines her answer af € ﬂf according to the

strategy for G". The distribution over questions X implemented by
players following this strategy is

k
PXiPo_ziweyi—it | | Pxt 0t ztxts
t=1

which by Lemma 6.2 is equal to

Px; PQ_iZ|Wc‘Yi:Lk Px 10z
On the other hand from the definition of Q_; we have
Pxa_,ziwe = Px;0.,21wePx_;10_,zwe = Px;0_,z1wePx_;10.,2-

Applying Lemma 4.1 with R = Px_,|q_,7 it follows that
IPxzo_iiwe = PX.Pa_ ziwevi=ukPX_ilo-iz

= [Pxio-izive = PxiPa_ziwe, vi=it -
Now by definition the winning probability of the extracted strategy
for G is at most val(G), and (24) follows.
Let now C be the final set of coordinates when the above-described
process stops; at this point we must have
s |C|log | Al + log a2k,
- n—|C| 48 - k2’
If |C| = n/2 we are already done by (23). Suppose

1
) 2k 2

azkez

96 - k2’

|Cllog |A| + log( )

n
1 n-ake? : .

If lOg(—Pr(WC)) > So5 s Weare again done; hence, we can assume

a2k g2

192 - k%

ICllog | Al
n
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Now plugging the lower bound on the size of C in (23) we get

|

aZk-£3~n
1(G") < Pr(W¢) < -
val(G") < Pr(We) exp( ST

where s = log | A|, which completes the proof.

7 OPEN PROBLEMS

Many interesting problems about the parallel repetition of multi-
player and entangled games remain open. Perhaps the most obvious
and pressing is the problem of obtaining a complete extension of
Raz’s theorem for general entangled two-player games. For exam-
ple, obtaining a fully quantum analogue of Raz’s theorem, as was
the case for Raz’s theorem itself, is likely to have important impli-
cations in the setting of communication complexity. One promising
candidate approach could be to leverage the recent ideas related to
quantum information complexity [9, 46].

Similarly, the problem of obtaining a parallel repetition with
exponential decay for general multiplayer games remain a fascinat-
ing challenge. In our view, however, this problem (even classically)
seems more challenging than the two-player entangled case, as its
difficulties are related to communication complexity and circuit
complexity lower bounds.

One limitation of our result is that it is essentially most suitable
in the case of games with value close to 1, in the sense that if
val(G), val*(G) are already subconstant, our bounds do not take
advantage of this fact. Indeed, even if G originally has a value close
to 0, the anchoring operation itself pushes the value up to Q(1). It
remains open to find a hardness amplification result that replicates
the strength of similar theorems obtained recently in the classical
setting [8, 16].
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