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Abstract

A conditional sampling oracle for a probability distribu-
tion D returns samples from the conditional distribution
of D restricted to a specified subset of the domain. A
recent line of work [7, 6] has shown that having ac-
cess to such a conditional sampling oracle requires only
polylogarithmic or even constant number of samples to
solve distribution testing problems like identity and uni-
formity. This significantly improves over the standard
sampling model where polynomially many samples are
necessary.

Inspired by these results, we introduce a computa-
tional model based on conditional sampling to develop
sublinear algorithms with exponentially faster runtimes
compared to standard sublinear algorithms. We focus
on geometric optimization problems over points in high
dimensional Euclidean space. Access to these points is
provided via a conditional sampling oracle that takes
as input a succinct representation of a subset of the
domain and outputs a uniformly random point in that
subset. We study two well studied problems: k-means
clustering and estimating the weight of the minimum
spanning tree. In contrast to prior algorithms for the
classic model, our algorithms have time, space and sam-
ple complexity that is polynomial in the dimension and
polylogarithmic in the number of points.

Finally, we comment on the applicability of the
model and compare with existing ones like streaming,
parallel and distributed computational models.

1 Introduction

Consider a scenario where you are given a dataset of in-
put points X , from some domain Ω, stored in a random
access memory and you want to estimate the number of
distinct elements of this (multi-)set. One obvious way
to do so is to iterate over all elements and use a hash
table to find duplicates. Although simple, this solution
becomes unattractive if the input is huge and it is too
expensive to even parse it. In such cases, one natural
goal is to get a good estimate of this number instead
of computing it exactly. One way to do that is to pick
some random points from X and estimate, based on

those, the total number of distinct elements in the set.
This is equivalent to getting samples from a probabil-
ity distribution where the probability of each element is
proportional to the number of times it appears in X . In
the context of probability distributions, this is a well un-
derstood problem, called support estimation, and tight
bounds are known for its sampling complexity. More
specifically, in [22], it is shown that the number of sam-
ples needed is Θ(n/ log n) which, although sublinear,
still has a huge dependence on the input size n = |X |.

In several situations, more flexible access to the
dataset might be possible, e.g. when data are stored in
a database, which can significantly reduce the number
of queries needed to perform support estimation or
other tasks. One recent model, called conditional
sampling, introduced by [7, 6] for distribution testing,
describes such a possibility. In that model, there
is an underlying distribution D, and a conditional
sampling oracle takes as input a subset S of the domain
and produces a sample from D conditioned to a set
S. [7] and [6] study several problems in distribution
testing obtaining surprising results: Using conditional
queries it is possible to avoid polynomial lower bounds
that exist for the sampling complexity in the standard
distribution testing framework and get testers with
only polylogarithmic or even constant query complexity.
Their results were further improved by [13] for identity
and closeness testing. In follow up work, [2, 21] consider
the support estimation problem we described above and
prove that it can be solved using only O(poly log log n)
conditional samples. This is a doubly exponentially
better guarantee compared to the optimal classical
algorithm which requires Θ(n/ log n) samples [22].

Inspired by the power of these results, we introduce
a computational model based on conditional sampling
where the dataset is provided as a distribution and
algorithms have access to a conditional sampling oracle
that returns datapoints at random from a specified set.
More precisely, an algorithm is given access to an oracle
Cond(C) that takes as input a function C : Ω→ {0, 1}
and returns a tuple (i, xi) with C(xi) = 1 with i chosen
uniformly at random from the subset {j ∈ [n] | C(xj) =
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1}. If no such tuple exists the oracle returns ⊥. The
function C is represented as a binary circuit. We assume
that queries to the conditional sampling oracle Cond
take time linear in the circuit size. Equivalently, we
could assume constant time, as we are already paying
linear cost in the size of the circuit to construct it.

Most works in conditional sampling, measure the
performance of algorithms only by their query complex-
ity. The work of [6] considers the description complexity
of the query set S by examining restricted conditional
queries that either specify pairs of points or intervals.
Similarly, the work of [10] provides property testing al-
gorithms in a model similar to conditional sampling
that allows querying arbitrary subsets of a Euclidean
space. To keep description complexity small they focus
on queries of the form of axis parallel boxes or simplices.
However, in many cases, such simple queries might not
be sufficient to obtain efficient algorithms. We use the
circuit size of a sets description as a measure of simplic-
ity to allow for richer queries which is naturally counted
towards the runtime of our algorithms.

Except for its theoretical interest, it is practically
useful to consider algorithms that perform well in the
conditional sampling model. This is because efficient
algorithms for the conditional sampling model can di-
rectly be implemented in a number of different compu-
tational models that arise when we have to deal with
huge amount of data. In particular, let’s assume that
we have an algorithm A that solves a problem P using
q conditional queries where the description of the sets
used has size s and the additional computational time
needed is r.

Parallel Computing: We notice that the com-
putation of one conditional sample can be very easily
parallelized because it suffices to assign to each proces-
sor a part of the input and send to each of them the
description of the circuit. Each processor can compute
which of its points satisfy the circuit and pick one at
random among them. Then, we can select as output
the sample of one processor chosen at random. The
probability of choosing one processor in this phase is
proportional to the number of points in the input as-
signed to this processor that belong to the conditioning
set. This way we can implement in just a few steps
a conditional sampling query. If the input is divided
evenly among m processors the load on each of them
is n/m. Combining the answers can be done in logm
steps and therefore, the running time of A in the parallel
computation model is O(q · s · (n/m+ logm) + r) which
gives a non-trivial parallelization of the problem P . Ex-
cept for the running time, one important issue that can
decrease the performance of a parallel algorithm is the
communication that is needed among the processors as

described in the work of Afrati et. al. [3]. This commu-
nication cost can be bounded by the size s of the circuit
at each round plus the communication for the partition
of the input that happens only once in the beginning.

Streaming Algorithms: The implementation of
a conditional query in the streaming model where we
want to minimize the number of passes of the input
is pretty straightforward. With one pass of the input
we can select one point uniformly at random from
the points that belong to the conditioning set using
standard streaming techniques. The space that we need
for each of these passes is just s and we need q passes
of the input.

Distributed Computing: The implementation
of a conditional query in the distributed computational
model can follow the same ideas as in the parallel
computational model.

The surprising result in all the above cases is that
one has to deal with transferring appropriately the con-
ditional sampling model to the wanted computational
model and then we can get high performance algorithms
once q, s and r are small. In this work we design algo-
rithms that achieve all these quantities to be only poly-
logarithmic in the size of the input, which leads to very
efficient algorithms in all the above models.

1.1 Previous Work on Sublinear Algorithms
We consider two very well studied combinatorial prob-
lems: k-means clustering and minimum spanning tree.
For these problems we know the following about the
sublinear algorithms in the classical setting.

1.1.1 k-means Clustering Sublinear algorithms for
k-median and k-means clustering first studied by Indyk
[15]. In this work, given a set of n points from a metric
space, an algorithm is given that computes a set of
size O(k) that approximates the cost of the optimal
clustering within a constant factor and runs in time
O(nk). Notice that the algorithm is sublinear as the
input contains all the pairwise distances between the
points which have total size O(n2).

In followup work, Mettu and Plaxton [17] gave a
randomized constant approximation algorithm for the
k-median problem with running time O(n(k + logn))
subject to the constraint R ≤ 2O(n/ log(n/k)), where
R denotes the ratio between the maximum and the
minimum distance between any pair of distinct points in
the metric space. Also Meyerson et. al. [18] presented
a sublinear algorithm for the k-median problem with
running time O((k2/ε) log(k/ε)) under the assumption
that each cluster has size Ω(nε/k).

In a different line of work Mishra, Oblinger and Pitt
[19] and later Czumaj and Sohler [12] assume that the

1744 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/3

0/
17

 to
 1

28
.3

0.
51

.1
77

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



diameter ∆ of the set of points is bounded and known.
The running time of the algorithm by Mishra et. al. [19]
is only logarithmic in the input size n but is polynomial
in ∆. Their algorithm is very simple since it just picks
uniformly at random a subset of points and solves the
clustering problem on that subset. Following similar
ideas, Czumaj and Sohler [12] gave a tighter analysis
of the same algorithm proving that the running time
depends only on the diameter ∆ and is independent
of n. The dependence on ∆ is still polynomial in
this work. The guarantee in both these works is a
constant multiplicative approximation algorithm with
an additional additive error term.

1.1.2 Minimum Spanning Tree in Euclidean
metric space There is a large body of work on sub-
linear algorithms for the minimum spanning tree. In
[15], given n points in a metric space Ω an algo-
rithm is provided that outputs a spanning tree in time
Õ(n/δ) achieving a (1/2− δ)-approximation to the op-
timum. When considering only the task of estimating
of the weight of the optimal spanning tree, Czumaj and
Sohler [11] provided an algorithm that gets an (1 + ε)-
approximation. The running time of this algorithm is
Õ(n · poly(1/ε)).

To achieve better guarantees several assumptions
could be made. One first assumption is that we are
given a graph that has bounded average degree deg and
the weights of the edges are also bounded byW . For this
case, the work of Chazelle et. al. [8] provides a sublinear
algorithm with running time Õ(deg · W · 1/ε2) that
returns the weight of the minimum spanning tree with
relative error ε. Although the algorithm completely
gets rid of the dependence in the number of points n
it depends polynomially in the maximum weight W .
Also in very dense graphs deg is polynomial in n and
therefore we also have a polynomial dependence on n.

Finally, another assumption that we could make is
that the points belong to the d-dimensional Euclidean
space. For this case, the work of Czumaj et. al.
[9] provide an (1 + ε)-approximation algorithm that
requires time Õ(

√
n · (1/ε)d). Note that in this case

the size of the input is O(n) and not O(n2) since given
the coordinates of the n points we can calculate any
distance. Therefore, the algorithms described before
that get running time O(n) are not sublinear anymore.
Although Czumaj et. al. [9] manage to achieve a
sublinear algorithm in this case they cannot escape from
the polynomial dependence on n. Additionally, their
algorithm has exponential dependence on the dimension
of the Euclidean space.

1.2 Our Contribution The main result of our work
is that on the conditional sampling framework we can
get exponentially faster sublinear algorithms compared
to the sublinear algorithms in the classical framework.

We first provide some basic building blocks – useful
primitives for the design of algorithms. These building
blocks are:

a. Compute the size of a set given its description,
Section 3.1.

b. Compute the maximum of the weights of the points
of a set given the description of the set and the
description of the weights, Section 3.2.

c. Compute the sum of the weights of the points
of a set given the description of the set and the
description of the weights, Section 3.3.

d. Get a weighted conditional sample from the input
set of points given the description of the weights,
Section 3.4.

e. Get an `0-sample given the description of labels to
the points Section 3.5.

For all these primitives, we give algorithms that
run in time polylogarithmic in the domain size and the
value range of the weights. We achieve this by querying
the conditional sampling oracle with random subsets
produced by appropriately chosen distribution on the
domain. Intuitively, this helps to estimate the density
of the input points on different parts of the domain.
One important issue of conditioning on random sets in
that the description complexity of the set can be almost
linear on the domain size. To overcome this difficulty
we replace the random sets with pseudorandom ones
based on Nisan’s pseudorandom generator [20]. The
implementation of these primitives is of independent
interest and especially the fourth one since it shows
that the weighted conditional sample, which is similar to
sampling models that have been used in the literature
[1], can be simulated by the conditional sampling model
with only a polylogarithmic overhead in the query
complexity and the running time.

After describing and analyzing these basic primi-
tives, we use them to design fast sublinear algorithms
for the k-means clustering and the minimum spanning
tree.

1.2.1 k-means Clustering Departing from the
works of Mishra, Oblinger and Pitt [19] and Czumaj
and Sohler [12] where the algorithms start by choos-
ing a uniform random subset, we start by choosing a
random subset based on weighted sampling instead of
uniform. In the classical computational model we need
at least linear time to get one conditional sample and
thus it is not possible to use the power of weighted sam-
pling to get sublinear time algorithms for the k-means
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problem. But when we are working in the conditional
sampling model, then the weighted sampling can be im-
plemented in polylogarithmic time and queries. This
enables us to use all the known literature about the
ways to get efficient algorithms using conditional sam-
pling [5]. Quantitatively the advantage from the use of
the weighted sampling is that we can get sublinear algo-
rithms with running times O(poly(log ∆, log n)) where
∆ is the diameter of the metric space and n the number
of points on the input. This is exponentially better from
Indyk [15] in terms of n and exponentially better from
Czumaj and Sohler [12] in terms of ∆. This shows the
huge advantage that one can get from the ability to use
or implement conditional sampling queries. We develop
these ideas in detail in Section 4.

1.2.2 Minimum Spanning Tree in Euclidean
metric space Based on the series of works on sub-
linear algorithms for minimum spanning trees, we de-
velop algorithms that exploit the power of conditional
sampling and achieve polylogarithmic time with respect
to the number of input points n and only polynomial
with respect to the dimension of the Euclidean space.
This is very surprising since in the classical model there
seems to exist a polynomial barrier that we cannot es-
cape from. Compared to the algorithm by Czumaj et.
al. [9], we get running time O(poly(d, log n, 1/ε)) which
is exponential improvement with respect to both the
parameters n and d.

We present our algorithm at Section 5. From a
technical point of view, we use a gridding technique
similar to [9] but prove that using a random grid can
significantly reduce the runtime of the algorithm as we
avoid tricky configurations that can happen in worst
case.

2 Model and Preliminaries

Notation For m ∈ N we denote the set {1, · · · ,m}
by [m]. We use Õ(N) to denote O(N logO(1)N) algo-
rithms.

Given a function f that takes values over the ratio-
nals we use Cf to denote the binary circuit that takes as
input the binary representation of the input x of f and
outputs the binary representation of the output f(x). If
the input or the output are rational numbers then the
representation is the pair (numerator, denominator).

Suppose we are given an input ~x = (x1, x2, · · · , xn)
of length n, where every xi belongs in some set Ω. In this
work, we will fix Ω = [D]d for some D = nO(1) to be the
discretized d-dimensional Euclidean space. Our goal is
to compute the value of a symmetric function f : Ωn →
R+ in input ~x ∈ Ωn. We assume that all xi are distinct
and define X ⊆ Ω as the set X = {xi : i ∈ [n]}. Since

we consider symmetric functions f , it is convenient to
extend the definition of f to sets f(X ) = f(x).

A randomized algorithm that estimates the value
f(x) is called sublinear if and only if its running time is
o(n). We are interested in additive or multiplicative ap-
proximation. A sublinear algorithm Alg for computing
f has (ε, δ)-additive approximation if and only if

P [|Alg(x)− f(x)| ≥ ε] ≤ δ

and has (ε, δ)-multiplicative approximation if and only
if

P [(1− ε)f(x) ≤ Alg(x) ≤ (1 + ε)f(x)] ≤ δ.

We usually refer to (ε, δ)-approximation and is clear
from the context if we refer to the additive or the
multiplicative one.

2.1 Conditional Sampling as Computational
Model The standard sublinear model assumes that the
input is stored in a random access memory that has no
further structure. Since f is symmetric in the input
points, the only reasonable operation is to uniformly
sample points from the input. Equivalently, the input
can be provided by an oracle Sub that returns a tuple
(i, xi) where i is chosen uniformly at random from the
set [n] = {1, . . . , n}.

When the input has additional structure (i.e. points
stored in a database), more complex queries can be
performed. The conditional sampling model allows such
queries of small description complexity to be performed.
In particular, the algorithm is given access to an oracle
Cond(C) that takes as input a function C : Ω→ {0, 1}
and returns a tuple (i, xi) with C(xi) = 1 with i chosen
uniformly at random from the subset {j ∈ [n] | C(xj) =
1}. If no such tuple exists the oracle returns ⊥. The
function C is represented as a sublinear sized binary
circuit. All the results presented in this paper use
polylogarithmic circuit sizes.

We assume that queries to the conditional sampling
oracle Cond take time linear in the circuit size. Equiva-
lently, we could assume constant time, as we are already
paying linear cost in the size of the circuit to construct
it.

2.2 k-means Clustering Let d(·, ·) be distance met-
ric function d : Ω × Ω → R, i.e. d(x, y) represents
the distance between x and y. Given a set of centers
P we define the distance of a point x from P to be
d(x, P ) = minc∈P d(x, c). Now given a set of n input
points X ⊆ Ω and a set of centers P ⊆ Ω we define
the cost of P for X to be d(X , P ) =

∑
x∈X d(x, P ).

The k-means problem is the problem of minimizing
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the squared cost d2(X , P ) =
∑
x∈X d

2(x, P ) over the
choice of centers P subject to the constraint |P | = k.
We assume that the diameter of the metric space is
∆ = maxx,y∈X d(x, y).

2.3 Minimum spanning tree in Euclidean space
Given a set of points X in d dimensions, the minimum
spanning tree problem in Euclidean space ask to com-
pute a spanning tree T on the points minimizing the
sum of weights of the edges. The weight of an edge
between two points is equal to their Euclidean distance.

We will focus on a simpler variant of the prob-
lem which is to compute the weight of the best
possible spanning tree, i.e. estimate the quantity
mintree T

∑
(x,x′)∈T ‖x− x′‖2.

3 Basic Primitives

In this section, we describe some primitive operations
that can be efficiently implemented in this model. We
will use these primitives as black boxes in the algorithms
for the combinatorial problems we consider. We make
this separation as these primitives are commonly used
building blocks and will make the presentation of our
algorithms cleaner.

A lot of the algorithmic primitives are based on con-
structing random subsets of the domain and querying
the random oracle Cond with a description of this set.
A barrier is that such subsets have description complex-
ity that is linear in the domain size. For this reason, we
will use a pseudorandom set whose description is poly-
logarithmic in the domain size. The main tool to do
this is Nisan’s pseudorandom generator [20] which pro-
duces pseudorandom numbers that appear as perfectly
random to algorithms running in polylogarithmic time.

Theorem 3.1. Let UN and U` denote uniformly ran-
dom binary sequences of length N and ` respectively.
There exists a map G : {0, 1}` → {0, 1}N such that
for any algorithm A : {0, 1}N → {0, 1}, with A ∈
SPACE(S), where S = S(N), it holds that

|P(A(UN ) = 1)− P(A(G(U`)) = 1)| ≤ 2−S

for ` = Θ(S logN).

Nisan’s pseudorandom generator is a simple recur-
sive process that starts with Θ(S logN) random bits
and generates a sequence ofN bits. The sequence is gen-
erated in blocks of size S and every block can be com-
puted given the seed of size Θ(S logN) using O(logN)
multiplications on S bit numbers. The overall time and
space complexity to compute the k-th block of S bits is
Õ(S logN) and there exists a circuit of size Õ(S logN)
that performs this computation.

Using Nisan’s theorem, we can easily obtain pseu-
dorandom sets for conditional sampling. We are inter-
ested in random sets where every element appears with
probability g(x) for some given function g.

Corollary 3.1. Let R be a random set, described by
a circuit CR, that is generated by independently adding
each element x ∈ Ω with probability g(x), where g
is described by a circuit Cg. For any δ ≤ |Ω|−1,

there exists a random set R′ described by a Õ(|Cg| +
log |Ω| log(1/δ))-sized circuit CR′ such that

|P(Cond(C ∧ CR) = x)−
P(Cond(C ∧ CR′) = x)| ≤ δ

for all circuits C and elements x ∈ Ω.

Proof. The corollary is an application of Nisan’s pseu-
dorandom generator for conditional sampling. A simple
linear time algorithm that performs conditional sam-
pling based on a random set R is as follows. We keep
two variables, cntmatched which keeps track of the num-
ber of elements that pass the criteria of selection and
is initialized at value 0, and the selected element. For
every element x in the domain Ω in order, we perform
the following:

1. Draw k random bits ~b ∈ {0, 1}k and check whether
the number b · 2−k > g(x).

2. If yes, skip x and continue in the next element.

3. Otherwise if C(x) = 1, increment cntmatched and
with probability cnt−1

matched change the selected
element to x.

Note that here, we have truncated the probabili-
ties g(x) to 2−k accuracy, so the random set R̄ used
is slightly different than R. However, picking k =
O(log(|Ω|/δ)), we have that

|P(Cond(C ∧ CR) = x)−

P(Cond(C ∧ CR̄) = x)| ≤ δ

2

for all circuits C and elements x ∈ Ω.
To prove the statement, we will use Nisan’s pseu-

dorandom generator to generate the sequence of bits
for the algorithm. The algorithm requires only mem-
ory to store the two variables which is equal to
Θ(log |Ω|). Moreover, the total number of random
bits used is k|Ω| and thus by applying Theorem 3.1
for S = Θ(log(1/δ)) = Ω(log |Ω|) and N = k|Ω|,
we can create a sequence of random bits R′ based on
a seed of size O(S logN) and give them to the al-
gorithm. This sequence can be computed in blocks
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of size S = Θ(log(1/δ)) using a circuit Cr of size
Õ(log(k|Ω|)) log(1/δ)) = Õ(log(|Ω|) log(1/δ)). We align
blocks of bits with points x ∈ Ω and thus the circuit Cr

gives for input x the k bits needed in the first step of
the above algorithm. This implies that the circuit CR′
that takes the output of Cr and compares them with
Cg satisfies:

|P(Cond(C ∧ CR̄) = x)−

P(Cond(C ∧ CR′) = x)| ≤ δ

2

for all circuits C and elements x ∈ Ω. By triangular
inequality, we get the desired error probability with
respect to the circuit CR.

The total size of the circuit CR′ is Õ(|Cg| +
log |Ω| log(1/δ)) which completes the proof.

3.1 Point in Set and Support Estimation

3.1.1 Point in Set The point in set function takes
a set S ⊆ Ω given as a circuit C and returns one point
x ∈ S or ⊥ if there is no such point in the set of input
points, i.e. X∩S = ∅. The notation that we use for this
function is EP(·) and takes as input the description C of
S. Obviously the way to implement this function in the
conditional sampling model is trivial. Since the point in
set returns any point in the described set S a random
point also suffices. Therefore we just call the oracle
Cond(C) and we return this as a result to EP(C).

We can test whether there is a unique point in a set
by setting x∗ = EP(C) and querying EP(C ∧ Ix6=x∗).
Similarly, if the set has k points, we can get all points
in the set in time O(|C|k + k2) by querying k times,
excluding every time the points that have been found.

3.1.2 Support Estimation The support estimation
function takes as input a description C of a set S ⊆ Ω
and outputs an estimation for the size of the set
SX = S ∩ X . We call this function SE(C).

The first step is to define a random subset R ⊆
Ω by independently adding every element x ∈ Ω
with probability 1

α for some integer parameter α that
corresponds to a guess of the support size. Let CR be
the description of R. We will later use Corollary 3.1
to show that an approximate version of CR can be
efficiently constructed. We then use the Point-In-Set
primitive and we query EP(C∧CR). This tests whether

SX ∩R
?
= ∅ which happens with probability

P[SX ∩R = ∅] =

P[(s1 /∈ R) ∧ (s2 /∈ R) ∧ · · · ∧ (sk /∈ R)] =(
1− 1

α

)k
where |SX | = k.

Using this query, we can distinguish whether |SX | ≤
(1− ε)α or |SX | ≥ (1 + ε)α. The probabilities of these

events are P1 ≥
(
1− 1

α

)α(1+ε)
and P2 ≤

(
1− 1

α

)α(1−ε)

respectively. The total variation distance in the two
cases is

P1 − P2 = P1

(
1− P2

P1

)
≥(

1− 1

α

)α(1−ε)
(

1−
(

1− 1

α

)α·2ε)
≥

(
1

4

)1−ε (
1− e−2ε

)
≥ ε

2e

where for the second to last inequality we assumed
α ≥ 21.

We can therefore conclude that for we can distin-
guish with probability δ between |SX | ≤ (1 − ε)α and
|SSupport| ≥ (1 + ε)α using O(log 1

δ /ε
2) queries of the

form EP(C ∧ CR). Binary searching over possible α’s,
we can compute an (1 ± ε) approximation of the sup-
port size by repeating O(log n) times, as there are n
possible values for α. A more efficient estimator, since
we care about multiplicative approximation, only con-
siders values for α of the form (1 + ε)i. There are are
log1+ε n = O( 1

ε log n) possible such values, so doing a
binary search over them takes O(log 1

ε + log log n) it-
erations. Thus, overall, the total number of queries is
Õ(log 1

δ log logn/ε2).
To efficiently implement each query, we produce a

circuit CR′ using Corollary 3.1 with parameter δ′ for
error and a constant function g(x) = 1/α. The only
change is that at every comparison the probabilities P1

and P2 are accurate to within δ′. Choosing δ′ = ε
|Ω|

implies that |P1 − P2| is still Ω(ε) and thus the same
analysis goes through. The circuit C ∧ CR′ has size
Õ(|C|+log2(|Ω|)+log(|Ω|) log(1/ε)) which implies that
the total runtime for Õ(log 1

δ log logn/ε2) queries is

Õ
(
(|C|+ log2(|Ω|)) log 1

δ /ε
2
)

as n = O(|Ω|).
Using our conditional sampling oracle, we are able

to obtain the following lemma:

1The case a = 1 can be trivially handled by listing few points
from SX .
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Lemma 3.1. There exists a procedure SE(C) that takes
as input the description C of a set S and computes
an (ε, δ)-multiplicative approximation of the size of S
using Õ(log logn log(1/δ)/ε2) conditional samples in
time Õ

(
(|C|+ log2 |Ω|) log(1/δ)/ε2

)
.

3.1.3 Distinct Values One function that is highly
related to support estimation is the distinct values
function, which we denote by DV. The input of this
function is a description C of a set S together with a
function f : Ω → [M ] described by a circuit Cf . The
output of DV is the total number of distinct values
taken by f on the subset SX = S ∩ X , i.e.

DV(C,Cf ) = |{f(x) | x ∈ SX }|

To implement the distinct values function we per-
form support estimation on the range [M ] of the func-
tion f . This is done as before by computing random sets
R ⊆ [M ] and performing the queries EP(C∧(CR◦Cf )),
where CR is the circuit description of the set R and the
circuit CR ◦Cf takes value 1 on input x if f(x) ∈ R and
0 otherwise.

Lemma 3.2. There exists a procedure DV(C, f) that
takes as input the description C of a set S and a
function f : Ω → [M ] given as a circuit Cf and
computes an (ε, δ)-multiplicative approximation to the
number of distinct values of f on the set S ∩X in time
Õ((|C| + |Cf | + log2M) log(1/δ)/ε2). The number of

conditional samples used is Õ(log logn log(1/δ)/ε2).

3.2 Point of Maximum Weight The point of
maximum weight function takes as input a description
C of a set S together with a function f : Ω → [M ]
given by a circuit Cf . Let SX = S ∩ X . The output of
the function is the value maxx∈SX f(x). We call this
function Max(C,Cf ). Sometimes we are interested
also in finding a point where this maximum is achieved,
i.e. arg maxx∈SX f(x) which we call ArgMax(C,Cf ).

This is simple to implement by binary search for the
value Max(C,Cf ). At every step, we make a guess m
for the answer and test whether there exists a point in
the set SX ∩ {f(x) ≥ m}. This requires logM queries
and the runtime is O((|C|+ |Cf |) logM).

Lemma 3.3. There exists a procedure Max(C,Cf ) that
takes as input the description C of a set S and a func-
tion f : Ω→ [M ] given as a circuit Cf and computes the
value maxx∈SX f(x) using O(logM) conditional sam-
ples in time O((|C|+ |Cf |) logM).

An alternative algorithm solves this task in
Õ(log n log(1/δ)) queries with probability δ. The al-
gorithm starts with the lowest possible value m for the

answer, i.e. m = 1. At every step, it asks the Cond
oracle for a random point with f(x) > m. If such a
point x∗ exists, the algorithm updates the estimate by
setting m = f(x∗). Otherwise, if no such point exists,
the guessed value of m is optimal. It is easy to see that
every step, with probability 1/2, half of the points are
discarded. Repeating log(logn/δ) times we get that the
points are halfed with probability 1− δ/ log n. Thus af-
ter O(log n log(log n/δ)) steps, the points will be halfed
log n times and the maximum will be identified with
probability 1 − δ. Thus, the total number of queries is
Õ(log n log(1/δ)) and we obtain the following lemma.

Lemma 3.4. There exists a procedure Max(C,Cf ) that
takes as input the description C of a set S and a func-
tion f : Ω → [M ] given as a circuit Cf and computes

the value maxx∈SX f(x) using Õ(log n log(1/δ)) condi-
tional samples in time Õ((|C|+|Cf |) log n log(1/δ)) with
probability of error δ.

3.3 Sum of Weights of Points The sum of weights
of points function takes as input a description C of
a set S together with a function f : Ω → [M ]. The
output of the function is an (1 ± ε) approximation of
the sum of all f(x) for every x in SX = S ∩ X , i.e.∑
x∈SX f(x). We call this function Sum(C,Cf ).

To implement this function in the conditional sam-
pling model, we first compute Max = Max(C,Cf )
(Lemma 3.4). We then create k = log1+ε(n/ε) =
O(log n/ε) sets Si = {x ∈ S : f(x) ∈ ((1 + ε)−i, (1 +
ε)1−i] ·Max} for i ∈ [k], by grouping together points
whose values are close. Let CSi

denote the circuit de-
scription of every set Si. The circuit CSi

can be imple-
mented using the circuit Cf and an implementation of
a comparison gate.

We can get an estimate for the overall sum as

Sum(C,Cf ) =
k∑
i=1

SE (CSi
)

Max

(1 + ε)i−1

To see why this is an accurate estimate we rewrite
the summation in the following form:
(3.1)∑
x∈SX

f(x) =
∑
x∈SX :

f(x)≤Max·(1+ε)−k

f(x) +
k∑
i=1

∑
x∈Si∩X

f(x)

To bound the error for the second term of (3.1),
notice that for every i ∈ [k] and x ∈ Si, we have that
f(x) ∈ ((1 + ε)−i, (1 + ε)1−i] ·Max. Thus, the value
|Si ∩ X | Max

(1+ε)i−1 is a (1 + ε)-approximation to the sum∑
x∈Si∩X f(x). Since the primitive SE (CSi

) returns
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a (1 + ε)-approximation to |Si ∩ X |, we get that the
second term of (3.1) is approximated by Sum(C,Cf )
multiplicatively within (1 + ε)2 ≤ 1 + 3ε.

The first term introduces an additive error of at
most n·Max·(1+ε)−k = ε·Max ≤ ε·Sum(C,Cf ) which
implies that Sum(C,Cf ) gives (1 ± 4ε)-multiplicative
approximation to the sum of weights. Rescaling ε by
a constant, we get the desired guarantee. Thus, we
can get the estimate by using one query to the Max
primitive and k = O(log n/ε) queries to SE. For the
process to succeed with probability δ, we require that all
k of the SE queries to succeed with probability δ′ = δ/k.
Plugging in the corresponding guarantees of Lemmas 3.1
and 3.4, we obtain the following:

Lemma 3.5. There exists a procedure Sum(C,Cf )
that takes as input the description C of a set S
and a function f : Ω → [M ] given by a cir-
cuit Cf and computes an (ε, δ)-multiplicative
approximation of the value

∑
x∈SX f(x) using

Õ(log n log(1/δ)/ε3) conditional samples in time
Õ
(
(|C|+ |Cf |+ log2 |Ω|) log n log(1/δ)/ε3

)
.

3.4 Weighted Sampling The weighted sampling
function gets as input a description C of a set S to-
gether with a function f : Ω → [M ] given as a circuit
Cf . The output of the function is a point x in the set
SX = S ∩ X chosen with probability proportionally to
the value f(x). Therefore, we are interested in creating
an oracle WCond(C,Cf ) that outputs element x ∈ SX
with probability f(x)∑

y∈SX
f(y) .

To implement the weighted sampling in the condi-
tional sampling model, we use a similar idea as in sup-
port estimation. First we compute Sum = Sum(C,Cf )
and then we define a random set H that contains inde-
pendently every element x with probability

(3.2) P[x ∈ H] =
f(x)

2Sum

Let CH be the description of H. We will later use
Corollary 3.1 in order to build a pseudorandom set H ′

with small circuit description CH′ that approximately
achieves the guarantees of CH .

Based on the random set H, we describe Algo-
rithm 1 which performs weighted sampling according
to the function f .

We argue the correctness of this algorithm. Given a
purely random H, we first show that at every iteration,
the probability of selecting each point x ∈ SX is
proportional to its weight. This implies that the same
will be true for the final distribution as we perform
rejection sampling on ⊥ outcomes.

The probability that in one iteration the algorithm

Algorithm 1 Sampling elements according to their
weight.

1: selected← ⊥
2: while selected = ⊥ and #iterations ≤ k do
3: Construct the random set H and CH as de-

scribed by the equation (3.2)
4: Check if there exists a unique point x ∈ SX in

the set H.
5: if such unique point x exists then

6: With prob 1− f(x)
2Sum , set selected← x

7: return selected

will return the point x ∈ S is the probability that x
has been chosen in H and that |H ∩ SX | = 1, i.e. it
is the unique point of the input set X that lies in set
S and was not filtered by H. For every x ∈ SX , this
probability is equal to

P[x ∈ H]
∏

y∈SX ,y 6=x

P[y /∈ H] · P[keep x] =

=
f(x)

2Sum

∏
y∈SX ,y 6=x

(
1− f(y)

2Sum

)
·
(

1− f(x)

2Sum

)

=
f(x)

2Sum

∏
y∈SX

(
1− f(y)

2Sum

)
and it is easy to see that this probability is proportional
to f(x) as all other terms don’t depend on x.

We now bound the probability of selecting a point
at one iteration. This is equal to∑

x∈SX f(x)

2Sum

∏
y∈SX

(
1− f(y)

2Sum

)
≥

1

2

1

1 + ε
exp

(
−2

∑
y∈SX f(y)

2Sum

)
≥

1

2

1

1 + ε
exp

(
− 1

1− ε

)
which is at least 1/4 for a small enough parameter ε > 0
chosen in our estimation Sum of the total sum of f(x).
Thus at every iteration, there is a constant probability
of outputing a point. By repeating k = Θ(log(1/δ))
times we get that the algorithm outputs a point with
probability δ/2.

Summarizing, if we assume a purely random set
H, the probability that the above procedure will fail
in O(log(1/δ)) iterations is at most δ/2 plus the proba-
bility that the computation of the sum will fail which we
can also make to be at most δ/2, for a total probability δ
of failure. Since we need only a constant multiplicative
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approximation to the sum, using Lemma 3.5 the total
number of queries that we need for the probability of
failure to be at most δ/2 is Õ(log n log(1/δ)).

Since the random set H can have very large de-
scription complexity, we use Corollary 3.1 to generate
a pseudorandom set H ′. If we apply the corollary for
error δ′ we get that the total variation distance between
the output distribution in one step when using H ′ with
the distribution when using H is at most:∑

x∈SX

|P (Cond(C ∧ CH) = x)−

P(Cond(C ∧ CH′) = x)| ≤ nδ′

Since we make at most k = Θ(log(1/δ)) queries the
oracle Cond, we get that the total variation distance
between the two output distributions is O(nδ′ log(1/δ)).
Setting δ′ = O( ε

|Ω| log(1/δ) ) we get that this distance is

at most ε. Computing the total runtime and number of
samples, we obtain the following lemma.

Lemma 3.6. There exists a procedure WCond(C,Cf )
that takes as input the description C of a set S and a
function f given by a circuit Cf and returns a point
x ∈ SX from a probability distribution that is at most
ε-far in total variation distance from the probability
distribution that selects each element x ∈ SX propor-
tionally to f(x). The procedure fails with probability
at most δ, uses Õ(log n log(1/δ)) conditional samples
and takes time Õ((|C|+ |Cf |+ log2 |Ω|) log n log(1/δ) +
log |Ω| log (1/ε) log(1/δ)).

3.5 Distinct Elements Sampling – `0 Sampling
The distinct elements sampling function gets as input
a description C of a set S together with a function
f : Ω → [M ] described by a circuit Cf . It outputs
samples from a distribution on the set SX = S ∩ X
such that the distribution of values f(x) is uniform over
the image space f(SX ). We thus want that for every

y ∈ f(SX ), P[x ∈ f−1(y)] = |f(SX )|−1
.

We first explain the implementation of the algo-
rithm assuming access to true randomness. Assume
therefore that we have a circuit Ch that describes one
purely random hash function h : [M ] → [M ]. Then
argmaxx∈SX h(f(x)) will produce a uniformly random
element as long as the maximum element is unique.
This means that if we call the procedure ArgMax to
find a point x∗ = ArgMax(C,Ch ◦Cf ) and check that
no point x ∈ SX exists such that f(x) 6= f(x∗) and
h(f(x)) = h(f(x∗)) then the result will be a point
distributed with the correct distribution. Repeating
O(log(1/δ)) times guarantees that we get a valid point
with probability at least 1− δ.

Therefore the only question is how to replace h with
a pseudorandom h′. We can apply Nisan’s pseudoran-
dom generator. Consider an algorithm that for every
point y ∈ [M ] in order, draws a random sample s uni-
formly at random from [M ] and checks if y ∈ f(SX )
and whether s is the largest value seen so far. This
algorithm computes argmaxy∈Ph(y) while only keep-
ing track of the largest sample s and the largest point
y. This algorithm uses Θ(logM) bits of memory and
O(M logM) random bits. Therefore we can apply
Nisan’s theorem (Theorem 3.1) for space Θ(log(1/ε))
for ε > M−1 and we can replace h with h′ that uses
only Õ(logM log(1/ε)) random bits whose circuit rep-
resentation is only Õ(logM log(1/ε)).

This means that we can use the Lemma 3.4 and
Theorem 3.1 to get the following lemma about the `0-
sampling.

Lemma 3.7. There exists a procedure DES(C,Cf ) that
takes as input the description C of a set S and a
function f : Ω → [M ] given by a circuit Cf and
returns a point x ∈ SX from a probability distribution
that is at most ε-far in total variation distance (for
ε ≤ M−1) from a probability distribution that assigns
probability 1

|f(SX )| to every set f−1(y) for y ∈ f(SX ).

This procedure fails with probability at most δ, uses
O(log n log(1/δ)) conditional samples and takes time
O((|C|+ |Cf |+ logM log(1/ε)) logn log(1/δ)).

4 k-means clustering

In this section we describe how known algorithms for
the k-means clustering can be transformed to sublinear
time algorithms in the case that we have access to
conditional samples. The basic tool of this algorithms
was introduced by Arthur and Vassilvitskii [5].

D2-sampling: This technique provides some very
simple algorithms that can easily get a constant
factor approximation to the optimal k-means clus-
tering, like in the work of Aggarwal et. al. [4]. Also
if we allow exponential running time dependence on
k then we can also get a PTAS like in the work of
Jaiswal et. al. [16]. The drawback of this PTAS is
that it works only for points in the d dimensional
euclidean space.

When working in arbitrary metric spaces, inspired by
Aggarwal et. al. [4] we use weighted sampling to get a
constant factor approximation to the k-means problem.
Now we describe how all these steps can be implemented
in sublinear time using the primitives that we described
in the previous section. The steps of the algorithm are:

1. Pick a set P of O(k) points according to D2-
sampling.
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For O(k) steps, let Pi denote the set of samples that
we have chosen in the i-th step. We pick the (i +
1)th point according to the following distribution

P(probability of picking ~xk) =
d2(~xk, Pi)∑
j d

2(~xj , Pi)

Implementation: To implement this step we
simply use the primitive WCond(C, f) where
C is the constant true circuit and f(x) =
d2(x, Pi) = minp∈Pi

d2(x, p). The circuit to im-

plement the function d2(·, ·) has size Õ(log |Ω|).
Now since |Pi| ≤ O(k) we can also implement
the minimum using a tournament with only O(k)
comparisons each of which has size O(log |Ω|).
This means that the size of the circuit of f
is bounded by |Cf | ≤ Õ(k log |Ω|). There-
fore we can now use the Lemma 3.6 and get
that we need Õ(k log n log(1/δ)) queries and run-
ning time Õ((k log |Ω| + log2 |Ω|) log n log(1/δ) +
log |Ω| log(1/ε) log(1/δ)) to get the O(k) needed
samples from a distribution that is ε1 in total varia-
tion distance from the correct distribution and has
probability of error δ for each sample.

2. Weight the points of P according to the
number of points that each one represents.
For any point p ∈ P we set

wp = |{x ∈ Ω | ∀p′(6= p) ∈ P d(x, p) < d(x, p′)}|

Implementation: To implement this step given
the previous one we just iterate over all the points
in P and for each one of these points p we com-
pute the weight wp using the procedure Sum as
described in Lemma 3.5. Similarly to the previ-
ous step we have that C is the constant 1 cir-
cuit and fp(x) is equal to 1 if the closest point
to x in P is p and zero otherwise. To de-
scribe this function we need as before O(k log |Ω|)
sized circuit. Therefore for this step we need
Õ(log n log(1/δ)/ε3

2) conditional samples and run-
ning time Õ((k log |Ω|+ log2 |Ω|) log n log(1/δ)/ε3

2)
in order to get an (ε2, δ)−multiplicative approxi-
mation of every wp.

3. Solve the weighted k-means problem in with
the weighted points of P.
This can be done using an arbitrary constant factor
approximation algorithm for k-means since the size
of P is O(k) and therefore the running time will be
just poly(k) which is already sublinear in n.

To prove that this algorithm gets a constant factor
approximation we use Theorem 1 and Theorem 4 of

[4]. From the Theorem 1 of [4] and the fact that
we sample from a distribution that is ε-close in total
variation distance to the correct one we conclude that
the set P that we chose satisfies Theorem 1 of [4] with
probability of error at most ε1 +O(k)δ. Then it is easy
to see at Theorem 4 of [4] that when we have a constant
factor approximation of the weights, we lose only a
constant factor in the approximation ratio. Therefore
we can choose ε2 to be constant. Finally for the total
probability of error to be constant, we have to pick ε1 to
be constant. Combining all these with the description of
the step that we have above we get the following result.

Theorem 4.1. There exists an algorithm that com-
putes an O(1)-approximation to the k-means clustering
and uses only Õ(k2 log n log(k/δ)) conditional queries
and has running time
Õ(poly(k) log2 |Ω| log n log(1/δ)).

Remark 1. The above algorithm could be extended to
an arbitrary metric space where we are given a circuit
Cd that describes the distance metric function. In this
case the running time will also depend on |Cd|.

Remark 2. In this case that the points belong
to d dimensional space, we can also use the Find-
k-means(X ) algorithm by [16] to get (1 + ε)-
approximation instead of constant. This algorithm
iterates over a number of subsets of the input of
specific size that have been selected using D2-sampling.
Then from all these different solutions it selects the
one with the minimum cost. We can implement this
algorithm using our WCond and Sum primitives to
get a sublinear (ε, δ)-multiplicative approximation

algorithm that uses Õ
(

2Õ(k2/ε) · log n · log(1/δ)
)

conditional samples and has running time

Õ
(

2Õ(k2/ε) · log2 |Ω| · log n · log(1/δ)
)

.

5 Euclidean Minimum Spanning Tree

In this section we are going to discuss how to use the
primitives that we described earlier in order to estimate
the weight of the minimum spanning tree of n points in
euclidean space.

More specifically, suppose that we have a d-
dimensional discrete euclidean space Ω = {1, . . . ,∆}d
and a set of n points X = {x1, . . . , xn}, where xi ∈ Ω.
We assume that ∆ = poly(n) which is a reasonable as-
sumption to make when bounded precision arithmetic
is used. This means that each coordinate of our points
can be specified using O(log n) bits. 2

2This is consistent with the standard word RAM model
assumption that size of the coordinates are O(logn). Otherwise
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In what follows, we are going to be using the
following formula that relates the weight of an MST to
the number of connected components of certain graphs.
Let W denote the maximum distance between any pair
of points in Ω. Moreover, let G(i) be the graph whose
vertices correspond to points in X and there is an edge
between two vertices if and only if the distance of the
corresponding points is at most (1+ε)i. By ci we denote
the number of connected components of the graph G(i).
In [11], it is shown that the following quantity leads to
an (1 + ε)-multiplicative approximation of the weight of
the minimum spanning tree:

(5.3) n−W + ε ·
log1+εW−1∑

i=0

(1 + ε)i · ci

The quantity would be equal to the weight of the
minimum spanning tree if all pairwise distances between
points were (1 + ε)i for some i ∈ N.

In order to estimate the weight of the MST, we
need to estimate the number of connected components
ci for each graph G(i). As shown in [14], for every i,
we can equivalently focus on performing the estimation
task after rounding the coordinates of all points to an
arbitrary grid of size ε(1 + ε)i/

√
d. This introduces a

multiplicative error of at most 1 + O(ε) which we can
ignore by scaling ε by a constant.

We thus assume that every point is at a center
of a grid cell when performing our estimation. We
perform a sampling process which samples uniformly
from the occupied grid cells (regardless of the number
of points in each of them) and estimates the number of
cells covered by the connected component j of G(i) that
the sampled cell belongs to. Comparing that estimate
to an estimate for the total number of occupied grid
cells, we obtain an estimate for the total number of
connected components. In more detail, if the sampled
component covers a ρ fraction of the cells, the guess
for the number of components is 1

ρ . For that estimator
to be accurate, we need to make sure that the total
expected number of occupied grid cells is comparable to
the total number of components without blowing up in
size exponentially with the dimension d of the Euclidean
space. We achieve this by choosing a uniformly random
shifted grid. This random shift helps us avoid corner
cases where a very small component spans a very large
number of cells even when all its contained points are
very close together. With a random shift, such cases
have negligible probability.

even representing one point in the grid would need more than
O(logn) space.

We will first use the following lemma to get an upper
bound on the number of occupied cells which holds with
high probability:

Lemma 5.1. Let C ⊆ Rd be a 1-D curve of length L,
a grid G ⊆ Rd of side length R and random vector ~v
distributed uniformly over [0, R]d. Then, the expected
number of grid cells of G + ~v that contain some point

of the curve is vol([0,R]d+C)
Rd , where ”+” denotes the

Minkowski sum of the two sets.

Proof. Consider the grid G = {R~z : ~z ∈ Zd} ⊆ Rd
shifted by a random vector ~v ∈ [0, R]d to obtain a grid
Gv = ~v+G. We associate every point ~z ∈ Gv with a cell
~z + [0, R]d. Observe that a cell corresponding to a grid
point ~z intersects the curve C if (~z+[0, R]d)∩C 6= ∅, or
equivalently if ~z ∈ C+[−R, 0]d. The expected number of
occupied grid cells is thus equal to the expected number
of grid points of Gv, which lie in the Minkowski sum of
C and [−R, 0]d.

Note that each of the original grid points ~z ∈ G can
move inside a d-dimensional hypercube of side length R
and all those hypercubes are pairwise disjoint and span
the whole d-dimensional space.

Now let I~z be the indicator random variable for the
event that ~z ∈ C + [−R, 0]d. Clearly,

E[I~z] = Pr[~z ∈ C + [−R, 0]d] =

vol((C + [−R, 0]d) ∩ (~z + [0, R]d))

Rd

So the expected number of points in C + [−R, 0]d is:

E[]points] = E

[∑
~z∈G

I~z

]
=

vol(C + [−R, 0]d)

Rd
=
vol(C + [0, R]d)

Rd

The following lemma bounds the volume of the
required Minkowski sum.

Lemma 5.2. Let C ⊆ Rd be a 1-D curve of length L.
The volume of the Minkowski sum C+[0, R]d is at most
Rd +

√
d · L.

Proof. We can think of the Minkowski sum as the set of
points spanned by the d-dimensional hypercube [0, R]d

as it travels along the curve C. Now suppose that we
move the hypercube for a very small distance dL along
an arbitrary unit vector ~r = (a1, . . . , ad) with positive
coordinates (we assume this wlog since all other cases
are symmetric). Also, let e1, . . . , ed be the standard
basis vectors (i.e ei = (0, . . . , 0, 1, 0 . . . , 0) where the
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”1” is at the i-th coordinate). Note that each of those
vectors is orthogonal to a facet of the hypercube and
the total volume spanned by each facet during the
movement is equal to the absolute value of the inner
product ~r · ~ei scaled by dL where ei is the standard
basis vector orthogonal to that facet.

The volume spanned by this displacement is equal
to the sum of the volumes spanned by each of the facets
and is given by the following formula:

dV = dL ·Rd−1 ·
d∑
i=1

~r · ~ei =

dL ·Rd−1 ·
d∑
i=1

|ai| = dL ·Rd−1 · ‖r‖1

So in the worst case the curve C is a straight
line segment along the all ones unit vector ~w =

1√
d
(1, 1, . . . , 1), since this is the unit vector that has the

maximum l1 norm.
In this case, the total volume spanned during the

movement along C is:

VC = L ·Rd−1 · ‖r‖1 =
√
d ·Rd−1 · L

So, the volume of the Minkowski sum C + [0, R]d is:

vol(C + [0, R]d) = Rd + VC = Rd +
√
d ·Rd−1 · L

and this is an upper bound for the general case.

We can view the minimum spanning tree as a 1-
D curve considering its Euler tour. The length of this
Euler tour is 2·MST since each edge is traversed exactly
twice. For the same reason, each point in the Minkowski
sum is ”covered by” at least two points in the curve. So,
effectively, the length of the curve can be divided by 2.
Thus, the volume of the Minkowski sum T + [0, R]d is
at most Rd +

√
d · Rd−1 ·MST . Therefore, by lemma

5.1, we get that:

E[]cells] = 1 +

√
d ·MST

R

Using Markov’s inequality, we get that

Pr

[
]cells > 2 · (1 +

√
d ·MST

R
)

]
<

1

2

Finally, we can use our support estimation primitive
of Lemma 3.1 to estimate the number of occupied grid
cells after a random shift which enables us to amplify
the success probability to 1 − δ by picking the random
shift with the smallest number of cells after O(log(1/δ))
repetitions.

We immediately get the following corollary:

Corollary 5.1. We can find a grid of side length R,
such that the number of grid cells that contain points is

at most 2 · (1 +
√
d·MST
R ) using Õ(log logn log2(1/δ))

conditional samples while the failure probability is at
most δ. The total running time is Õ(log2 n log2(1/δ)).

5.1 Computing the size of small connected
components As we have said earlier, we will use (5.3)
in order to estimate the weight of the MST. For every
i, we estimate the number of connected components ci
in the graph G(i) assuming that the points are in the
center of a given grid with side length R = ε(1+ε)i/

√
d

and that the total number of grid cells is at most

2 · (1+
√
d·MST
R ) = 2 · (1+ d·MST

ε(1+ε)i ). For that purpose, we

will sample grid cells uniformly at random and estimate
the size of the connected component that we hit during
our sampling procedure.

In order to do this, we first sample a uniformly
random grid cell using the Distinct Elements Sampling
procedure of Lemma 3.7 and then perform a BFS-like
search starting from that cell to count the number of
cells in that connected component. More specifically, at
every iteration, we ask for a uniformly random cell that
is adjacent in G(i) to one of the cells we have already
visited, using our conditional sampling oracle. If we
visit more than t distinct cells (for some threshold t)
during this search, we will stop and output that the
connected component is “big”. Otherwise, we stop when
we completely explore the connected component and
output its size. Since there cannot be too many “big”
connected components, ignoring them is not going to
affect our final estimate too much. More specifically,

we will set t =
d log1+εW

ε and note that there can be
at most ]cells/t “big” connected components. So, by
ignoring them we introduce at an additive error of at
most ]cells/t.

5.2 Algorithm for estimating the number of
connected components Now, we can continue with
the main part of the algorithm which shows how to
estimate the number of connected components of the
graph G(i).

Let s1, . . . , sk be the number of cells occupied by
each of the k connected components of G(i) and X
be the random variable for the index of the connected
component our sample hits (in number of cells). Also,
let S be the total number of occupied grid cells, and Ŝ
be our estimate for that using the SE primitive from
Lemma 3.1.

Our estimator which comes from Algorithm 2 is the
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Algorithm 2 Estimating ci
1: x0 ← uniformly random occupied cell using l0

sampling.
2: U ← {x0}
3: s← 1
4: while s < t =

d log1+εW

ε do
5: Let circuit CU such that CU (x) =

(∃p ∈ U : cell(x) neighbor of cell(p))∧
(∀p ∈ U : cell(x) 6= cell(p))

6: x← COND(CU )
7: if x = ⊥ then
8: return ĉi = Ŝ

s

9: U ← U ∪ {x}
10: s← s+ 1

11: return ĉi = 1

following:
k∑
j=1

I[X = j]
Ŝ

ŝj

where ŝj = sj when sj < t and ŝj = Ŝ otherwise (i.e
ĉi = 1).

Note that ŝj is always overestimating the true value
of sj and an lower bound for this expectation is the same
sum if we exclude the “big” connected components.
This means that:

0 ≤ E[ĉi]−
k∑
j=1
sj<t

Pr[X = j]
Ŝ

sj
≤ |{j : sj > t}| ⇔

0 ≤ E[ĉi]− |{j : sj ≤ t}| ·
Ŝ

S
≤ |{j : sj > t}|

where we substituted Pr[X = j] = |{j : sj ≤ t}| /S
since every component is selected with probability pro-
portional to the number of cells it contains.

From the SE primitive, we have that

Pr[|S − Ŝ| > ε · S] < δ

So, by conditioning on the support estimation pro-
cedure succeeding (which happens with probability 1−
δ) we get that:

|{j : sj ≤ t}| · (1− ε) ≤ E[ĉi]

≤ |{j : sj ≤ t}| · (1 + ε) + |{j : sj > t}|

Thus, we have that E[ĉi], is an accurate approxima-
tion of ci with probability at least 1− δ. In particular,
since |{j : sj > t}| < S/t we get:

(1− ε)ci − S/t ≤ E[ĉi] ≤ (1 + ε)ci + S/t

with probability at least 1− δ.
We are going to repeat the above estimation m

times independently and keep the average which, as
we are going to show, will be very well concentrated
around its mean µi = E[ĉi]. To show that, we can use
Hoefding’s inequality since our trials are independent
and trivially the value of each individual estimate is
lower and upper bounded by 1 and S respectively.

Let µ̂i denote the estimated average. From Hoefd-
ing’s inequality we get:

Pr[|µ̂i − µi| > S/t] < 2e−
2m2 S2

t2

m·S2 = 2e−2m/t2

If we set m = O(t2 log(1/δ)) we get the above
guarantee with probability at least 1 − δ. This means
that with probability 1− δ we get:

(1− ε)ci − 2S/t ≤ µ̂i ≤ (1 + ε)ci + 2S/t

This means that µ̂i = (1± ε)ci ± 4 · (1 + d·MST
ε(1+ε)i )/t

and applying it to equation (5.3), we get the following
estimator for the weight of the MST:

M̂ST = n−W + ε ·
l=log1+εW−1∑

i=0

(1 + ε)i · µ̂i =

(1± ε)MST ± 4ε

l=log1+εW−1∑
i=0

(1 + ε)i · d ·MST

tε(1 + ε)i

The last term is bounded by
4·d·log1+εW

t MST which for

t =
d log1+εW

ε gives an (1+ε)-multiplicative approxima-
tion to MST .

The total runtime requires log1+εW iterations to
estimate every ci by µ̂i. In every iteration a random
shifting is performed and the total number of occupied
grid cells are counted using the SE primitive. Moreover,
for the estimation O(t2) samples are required using Dis-
tinct Element Sampling (`0-sampling) of the occupied
grid cells. Finally for each such sample, a BFS proce-
dure is performed for at most t iterations. The circuit
complexity of the conditional sampling queries that are
required is negligible in most cases as it is subsumed by
the runtime of the corresponding algorithmic primitive
used. Only queries performed during the BFS have large
circuit size as the circuit requires to keep all grid cells
that have been visited. The size in that case is bounded
by O(t log |Ω|) = O(t · d · log n). The number of samples
is bounded by Õ(log1+εWt3) = Õ(d3 log4 n/ε7) and

the total runtime is bounded by Õ(log1+εWt4d log n) =

Õ(d5 log6 n/ε9) if we require constant success probabil-
ity. Repeating log(1/δ) times we can amplify the to-
tal success probability to 1− δ. The following theorem
shows the dependence of the running time and query
complexity on the parameters n, d, ε, δ:

1755 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/3

0/
17

 to
 1

28
.3

0.
51

.1
77

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Theorem 5.1. It is possible to compute an (ε, δ)-
multiplicative approximation to the weight of the Eu-
clidean minimum spanning tree using Õ(d3 log4 n/ε7) ·
log(1/δ) conditional queries in time Õ(d5 log6 n/ε9) ·
log(1/δ).

6 Conclusions and Future Directions

In this work we introduced a computational model
based on conditional sampling and showed how various
combinatorial optimization tasks can be performed effi-
ciently with very limited access to the input through the
conditional oracle. This provides a generic way to de-
sign algorithms for several other models such as parallel
computation, streaming and distributed.

In terms of future research it is interesting to
explore what other tasks are approachable using this
computational model and to understand its powers and
limitations. A more concrete question is whether we
can avoid the dependence of the running time on the
domain size under a slight variation of our model where
the description of the sets are given by arithmetic
circuits. This dependence is necessary in our model
since specifying a single point in the input uses at least
log |Ω| bits.

References

[1] Jayadev Acharya, Clément L. Canonne, and Gautam
Kamath. Adaptive estimation in weighted group test-
ing. In IEEE International Symposium on Information
Theory, ISIT 2015, Hong Kong, China, June 14-19,
2015, pages 2116–2120, 2015.

[2] Jayadev Acharya, Clément L. Canonne, and Gautam
Kamath. A chasm between identity and equivalence
testing with conditional queries. In Approximation,
Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM 2015,
August 24-26, 2015, Princeton, NJ, USA, pages 449–
466, 2015.

[3] Foto N. Afrati, Magdalena Balazinska, Anish Das
Sarma, Bill Howe, Semih Salihoglu, and Jeffrey D.
Ullman. Designing good algorithms for mapreduce and
beyond. In ACM Symposium on Cloud Computing,
SOCC ’12, San Jose, CA, USA, October 14-17, 2012,
page 26, 2012.

[4] Ankit Aggarwal, Amit Deshpande, and Ravi Kannan.
Adaptive sampling for k-means clustering. In Approxi-
mation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, 12th International
Workshop, APPROX 2009, and 13th International
Workshop, RANDOM 2009, Berkeley, CA, USA, Au-
gust 21-23, 2009. Proceedings, pages 15–28, 2009.

[5] David Arthur and Sergei Vassilvitskii. k-means++:
the advantages of careful seeding. In Proceedings
of the Eighteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2007, New Orleans,
Louisiana, USA, January 7-9, 2007, pages 1027–1035,
2007.

[6] Clément Canonne, Dana Ron, and Rocco A Servedio.
Testing equivalence between distributions using condi-
tional samples. In Proceedings of the Twenty-Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
pages 1174–1192. Society for Industrial and Applied
Mathematics, 2014.

[7] Sourav Chakraborty, Eldar Fischer, Yonatan Gold-
hirsh, and Arie Matsliah. On the power of conditional
samples in distribution testing. In Proceedings of the
4th conference on Innovations in Theoretical Computer
Science, pages 561–580. ACM, 2013.

[8] Bernard Chazelle, Ronitt Rubinfeld, and Luca Tre-
visan. Approximating the minimum spanning tree
weight in sublinear time. SIAM Journal on Comput-
ing, 34(6):1370–1379, 2005.

[9] Artur Czumaj, Funda Ergün, Lance Fortnow, Avner
Magen, Ilan Newman, Ronitt Rubinfeld, and Christian
Sohler. Approximating the weight of the euclidean
minimum spanning tree in sublinear time. SIAM J.
Comput., 35(1):91–109, 2005.

[10] Artur Czumaj and Christian Sohler. Property testing
with geometric queries. In Algorithms - ESA 2001,
9th Annual European Symposium, Aarhus, Denmark,
August 28-31, 2001, Proceedings, pages 266–277, 2001.

[11] Artur Czumaj and Christian Sohler. Estimating the
weight of metric minimum spanning trees in sublinear-
time. In Proceedings of the Thirty-sixth Annual ACM
Symposium on Theory of Computing, STOC ’04, pages
175–183, New York, NY, USA, 2004. ACM.

[12] Artur Czumaj and Christian Sohler. Sublinear-time
approximation algorithms for clustering via random
sampling. Random Struct. Algorithms, 30(1-2):226–
256, 2007.

[13] Moein Falahatgar, Ashkan Jafarpour, Alon Orlit-
sky, Venkatadheeraj Pichapati, and Ananda Theertha
Suresh. Faster algorithms for testing under conditional
sampling. In Proceedings of The 28th Conference on
Learning Theory, COLT 2015, Paris, France, July 3-
6, 2015, pages 607–636, 2015.

[14] Gereon Frahling, Piotr Indyk, and Christian Sohler.
Sampling in dynamic data streams and applications.
Int. J. Comput. Geometry Appl., 18(1/2):3–28, 2008.

[15] Piotr Indyk. Sublinear time algorithms for metric
space problems. In Proceedings of the Thirty-first
Annual ACM Symposium on Theory of Computing,
STOC ’99, pages 428–434, New York, NY, USA, 1999.
ACM.

[16] Ragesh Jaiswal, Amit Kumar, and Sandeep Sen. A
simple D 2-sampling based PTAS for k-means and
other clustering problems. Algorithmica, 70(1):22–46,
2014.

[17] Ramgopal R. Mettu and C. Greg Plaxton. Optimal
time bounds for approximate clustering. Machine
Learning, 56(1-3):35–60, 2004.

[18] Adam Meyerson, Liadan O’Callaghan, and Serge A.

1756 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/3

0/
17

 to
 1

28
.3

0.
51

.1
77

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Plotkin. A k -median algorithm with running time
independent of data size. Machine Learning, 56(1-
3):61–87, 2004.

[19] Nina Mishra, Daniel Oblinger, and Leonard Pitt. Sub-
linear time approximate clustering. In Proceedings
of the Twelfth Annual Symposium on Discrete Algo-
rithms, January 7-9, 2001, Washington, DC, USA.,
pages 439–447, 2001.

[20] N. Nisan. Pseudorandom generators for space-bounded
computations. In Proceedings of the Twenty-second
Annual ACM Symposium on Theory of Computing,
STOC ’90, pages 204–212, New York, NY, USA, 1990.
ACM.

[21] Dana Ron and Gilad Tsur. The power of an example:
Hidden set size approximation using group queries and
conditional sampling. TOCT, 8(4):15, 2016.

[22] Gregory Valiant and Paul Valiant. Estimating the un-
seen: an n/log(n)-sample estimator for entropy and
support size, shown optimal via new clts. In Proceed-
ings of the 43rd ACM Symposium on Theory of Com-
puting, STOC 2011, San Jose, CA, USA, 6-8 June
2011, pages 685–694, 2011.

1757 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/3

0/
17

 to
 1

28
.3

0.
51

.1
77

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


	Introduction
	Previous Work on Sublinear Algorithms
	k-means Clustering
	Minimum Spanning Tree in Euclidean metric space

	Our Contribution
	k-means Clustering
	Minimum Spanning Tree in Euclidean metric space


	Model and Preliminaries
	Conditional Sampling as Computational Model
	k-means Clustering
	Minimum spanning tree in Euclidean space

	Basic Primitives
	Point in Set and Support Estimation
	Point in Set
	Support Estimation
	Distinct Values

	Point of Maximum Weight
	Sum of Weights of Points
	Weighted Sampling
	Distinct Elements Sampling – 0 Sampling

	k-means clustering
	Euclidean Minimum Spanning Tree
	Computing the size of small connected components
	Algorithm for estimating the number of connected components

	Conclusions and Future Directions

