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southern populations emerging earlier than northern popu-
lations; (c) greater amounts of warming units accumulated 
prior to leaf emergence during the extreme warm year rela-
tive to non-extreme years, and this constrained the poten-
tial for even earlier leaf emergence by an average of 9 days 
among populations; and (d) the extreme warm year reduced 
the reliability of a relevant phenological model for white 
ash by producing a consistent bias toward earlier predicted 
leaf emergence relative to observations. These results dem-
onstrate a critical need to better understand how extreme 
warm years will impact tree phenology, particularly at the 
intraspecific level.

Keywords Bud break · Climate change · Extreme years · 
Fraxinus · Global change · Leaf emergence · Phenology · 
Thermal models · White ash

Introduction

Since the industrial revolution began (≈200 years ago), 
atmospheric [CO2] has increased from 270 to 406 ppm, 
and average global temperatures have increased by 0.85 °C 
(IPCC 2012). In addition, extreme warm years have 
become more common, whereby the past 30 years consti-
tute the warmest conditions in the past 1700 years (Donat 
et al. 2013; Weaver et al. 2014; Chang et al. 2015). Fur-
thermore, in the United States, higher temperatures dur-
ing recent decades (1979–2012) were most extreme during 
spring relative to other seasons (Mutiibwa et al. 2015), pro-
ducing major implications for plants since many thermal 
cues for phenology occur during this period.

Shifts in plant phenology can have major impacts on 
ecosystem processes and may influence plant survival 
(Augspurger 2013), productivity (Chang et al. 2013), and 

Abstract The frequency of extreme warm years is increas-
ing across the majority of the planet. Shifts in plant phe-
nology in response to extreme years can influence plant 
survival, productivity, and synchrony with pollinators/
herbivores. Despite extensive work on plant phenological 
responses to climate change, little is known about responses 
to extreme warm years, particularly at the intraspecific 
level. Here we investigate 43 populations of white ash trees 
(Fraxinus americana) from throughout the species range 
that were all grown in a common garden. We compared the 
timing of leaf emergence during the warmest year in U.S. 
history (2012) with relatively non-extreme years. We show 
that (a) leaf emergence among white ash populations was 
accelerated by 21 days on average during the extreme warm 
year of 2012 relative to non-extreme years; (b) rank order 
for the timing of leaf emergence was maintained among 
populations across extreme and non-extreme years, with 
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synchrony with pollinators/herbivores (Forrest 2015). Lit-
tle is known about phenological responses to extreme warm 
years, although the few studies that have been conducted 
report unprecedented accelerations in phenology. For 
example, Rutishauser and colleagues (Rutishauser et al. 
2008) found that flowering time of cherry trees advanced 
by 28 days during the extreme year of 2007 compared with 
the long-term mean (1702–2007). Friedl and colleagues 
(Friedl et al. 2014) reported that leaf emergence was accel-
erated by as much as 14 days relative to long-term averages 
among tree species at Harvard Forest during the extreme 
years of 2010 and 2012. Fahey (2016) found even more 
advancement in the Midwestern U.S., where 96 species in 
an Illinois common garden showed an average accelera-
tion of 31 days in leaf emergence during the extreme warm 
spring of 2012 (Fahey 2016). Furthermore, Ellwood and 
colleagues (Ellwood et al. 2013) observed the earliest flow-
ering times among 32 species in Massachusetts, USA, dur-
ing the extreme years of 2010 and 2012 relative to records 
dating back to the nineteenth century, with some species 
advancing flowering time by as much as 6 weeks during 
2012. They also showed that during extreme years, shifts in 
phenology across species can be predicted from historical 
relationships between flowering time and mean spring tem-
perature (Ellwood et al. 2013) although others have cau-
tioned against further extrapolation into future conditions 
(Morin et al. 2009). Despite this, little is known about the 
intraspecific responses of plants to extreme warm years and 
whether thermal requirements for phenological cues during 
average years can be extrapolated to extreme years within 
individuals and populations. Such knowledge is critical 
for determining how plants will respond to extreme warm 
years as they gradually become the climate norms of the 
future (Hansen et al. 2012; IPCC 2012).

Leaf emergence is a major phenological event in the 
temperate zone because it marks the beginning of the 
majority of photosynthetic carbon assimilation during the 
growing season. The timing of leaf emergence is heritable 
in temperate trees (Polgar and Primack 2011) although the 
genetic mechanisms that control this process are not well 
understood (Cooke et al. 2012; Yordanov et al. 2014). Fur-
thermore, shifts in the timing of leaf emergence in response 
to temperature extremes can have long-term implications 
for ecosystem functioning and carbon sequestration. For 
example, warmer temperatures in early spring have been 
linked to accelerated phenology that may initially enhance 
carbon uptake, but may make trees more susceptible to 
frost damage, ultimately reducing carbon gain and tree sur-
vival (Augspurger 2013).

Temperature is the most dominant factor influencing 
phenology in the temperate zone, including the timing of 
leaf emergence (Polgar and Primack 2011). Temperature 
effects on leaf emergence are generally separated into two 

main components for predictive modeling purposes with 
trees requiring both chilling and warming requirements 
(Fig. 1). First, such trees require a specific number of 
chilling degree units (CDUs) in winter for buds to break 
dormancy. Once dormancy is broken, trees begin a second 
phase by tracking warming temperatures (growing degree 
units, GDUs) until thermal requirements are met (Fig. 1). 
At this point, bud break and subsequent leaf emergence 
can occur, assuming other constraints are overcome such 
as photoperiodic requirements and construction and/or 
activation of xylem conduits (Polgar and Primack 2011). 
In addition, there is evidence for interactions between 
chilling and warming requirements such that more GDUs 
may be required for leaf emergence if CDUs are not met 
during winter months (Vihera-Aarnio et al. 2014). Thus, 
extreme annual and seasonal temperatures can alter the 
interplay between CDU and GDU requirements, with 
major implications for phenological responses.

Common assumptions when modeling leaf emergence 
are that CDU and GDU requirements are met indepen-
dently and sequentially and that they remain constant 
within species and across years [(Chuine et al. 2003; Lue-
deling et al. 2009); but see (Marchin et al. 2015)]. These 
assumptions are oversimplifications of how environmen-
tal factors cue leaf emergence, although models under-
lain with these assumptions have been used with rela-
tive success for over 50 years [see Chuine et al. (2003), 
Table 4.1-1 and references therein]. Unfortunately, how-
ever, it is not clear if thermal requirements will be simi-
lar during extreme warm years and if these requirements 
remain stable across populations through time.

Fig. 1  Theoretical framework for predicting the timing of leaf emer-
gence in response to temperature. Chilling is ineffective during the 
time in which heating accumulates and vice versa. Thus, the accumu-
lation of both heating and chilling occurs in two distinct periods, and 
requirements are assumed to be fulfilled sequentially. This represents 
a common theoretical framework that has been used to successfully 
predict the timing of leaf emergence in many cases, although further 
molecular/physiological work is needed to better explain the specific 
mechanisms that underlie leaf emergence (adapted from Fig. 1 of 
(Luedeling et al. 2009))
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Here we compared the timing of leaf emergence among 
43 populations of Fraxinus americana L. (white ash) during 
the warmest extreme year in recorded U.S. history (NOAA 
2012) with relatively non-extreme years (2005, 2010, 2011, 
2013, 2014, 2015). Note that 2016 was warmer on a global 
basis, but 2012 remains the warmest year in U.S. history. 
We incorporated population-level variation from across 
the species range and investigated extreme year effects in 
a common garden at the University of Kansas Field Station 
(Lawrence, KS; Fig. 2). According to long-term records, 
2012 was also the warmest year on record in this local area 
according to weather stations in Topeka (45 km away) and 
Leavenworth (55 km away) dating back approximately 
130 years (National Weather Service 2014; United States 
Weather Bureau 1942). Leaf emergence of white ash is 
known to be highly affected by temperature, and has both 
chilling (CDU) and warming (GDU) requirements (Fig. 1) 
(Jeong et al. 2012; Polgar et al. 2013), making it an ideal 
species to investigate the effects of extreme years on phe-
nology, and leaf emergence in particular. During 2012, 
average winter (November–February of 2011–2012) and 
spring (March–May of 2012) temperatures at the common 
garden were 4.5 and 17.6 °C, respectively, which were 3.9 
and 6.1 °C warmer than average non-extreme years (Fig. 3). 
In addition, the common garden is located at the western-
most edge of the species range, and, therefore, is relatively 
warmer than many white ash habitats (Fig. 2). Thus, many 

of the populations were operating outside of the thermal 
environments to which they were adapted, much like is 
expected under climate change scenarios. Therefore, the 
anomalously warm year of 2012 allowed us the rare oppor-
tunity to test whether phenological predictions based on 

Fig. 2  Current range of white 
ash (gray area) and locations 
where experimental populations 
originated from (black circles). 
All populations of trees were 
grown and measured in a com-
mon garden at the University of 
Kansas Field Station (Lawrence, 
KS, red star). Trees have been 
growing at this common garden 
for approximately 40 years, 
with 45 populations represented 
with 25 trees planted per popu-
lation (although long-term mor-
tality has reduced that number) 
Adapted from (Marchin et al. 
2008) and USDA Forest Service 
(www.na.fs.fed.us)

Fig. 3  The average winter (November–December of the previous 
year, and January–February of the named year) and spring (March–
May of the named year) temperatures for the years 2005, 2010, 2011, 
2012, 2013, 2014, and 2015 at the common garden located in Law-
rence, KS, USA. The average winter and spring temperatures during 
the extreme warm year of 2012, the warmest year in U.S. recorded 
history, are highlighted in red
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thermal requirements during non-extreme years are main-
tained during an extreme year. Moreover, our study pro-
vides insights into how increasing extreme warm years in 
the future will affect our current ability to forecast phenol-
ogy responses at the intraspecific level. We addressed the 
following questions: (1) how does an extreme year affect 
the timing of leaf emergence at the intra-specific level in 
white ash, (2) how do populations originating from a wide 
range of locations vary in thermal requirements for leaf 
emergence across extreme and non-extreme years, and 
(3) how does an extreme year affect our ability to predict 
leaf emergence using a phenology model (spring warm-
ing model of Migliavacca et al. 2012) that was previously 
shown to be predictive for white ash. 

Materials and methods

Common garden conditions

The phenology of white ash is known to be strongly 
affected by warming (Jeong et al. 2011; Laube et al. 2014), 
making it an ideal species to test whether thermal require-
ments for leaf emergence are similar between extreme and 
non-extreme years and to better understand intraspecific 
responses to extreme warm years. White ash seeds originat-
ing from 45 populations from throughout the species range 
were collected by the U.S. Forest Service from open-pol-
linated native parent trees. Seeds were planted in 1976 in 
the common garden at the University of Kansas Field Sta-
tion near Lawrence, KS (35.0°N, 95.1°W, 299 m; Fig. 2). 
Twenty-five replicate trees from each population were 
planted (1125 trees total), although long-term mortality 
reduced the number of living trees to ≈750. For the major-
ity of analyses, we considered the timing of leaf emergence 
for 43 populations (two populations were not included as 
they only had one surviving tree). Additionally, for the 
modified two-parameter spring warming model described 
below (Migliavacca et al. 2012), we considered a set of 35 
populations, eliminating populations with sample sizes of 
<10 surviving trees to minimize sampling error (as a result, 
n = 10–25 trees per population). From the beginning of the 
growing season, each tree was observed every 48 h until 
leaf emergence occurred.

The University of Kansas Field Station receives an 
average annual precipitation of ≈900 mm/year with more 
than 70% received during the growing season (April–Sep-
tember). Monthly average temperatures range from below 
−7 °C in January to 32 °C in July. For calculating ther-
mal units, we considered the winter temperature for each 
year as the average of daily temperatures from November 
to December of the preceding year, along with January–
February of the current year (the named year in all data 

sets). Spring temperature for each year was calculated as 
the average of daily temperatures of March–May. Hourly 
temperature data at the common garden are available from 
2008-present from weather stations that are maintained by 
the University of Kansas Field Station staff. We used these 
hourly temperature data to calculate GDUs using the Utah 
Model (see the below section, “Calculation of thermal 
proxies”).

Year 2012 was the warmest at the field station across 
all years in which leaf emergence was observed and across 
all years of local record keeping, as well as being the most 
extreme warm year in recorded U.S. history since 1895 
(NOAA 2012). At the common garden, average winter 
and spring temperatures were 4.5 and 17.6 °C during 2012 
(Fig. 3), respectively, which were 3.9 and 6.1 °C warmer 
than average tested non-extreme years. Total annual pre-
cipitation was lowest during the extreme year of 2012 
(622 mm) relative to non-extreme years; however, we did 
not find a significant correlation between precipitation and 
timing of leaf emergence (likely because reductions in pre-
cipitation occurred after leaf emergence), and, therefore, 
this factor was not considered in our analyses.

Modeling approach

We carried out four different aspects of model analysis: (1) 
calculation of thermal proxies using three different thermal 
proxy models, the Utah model (Richardson et al. 1974), a 
forcing model from Migliavacca et al. (2012), and a forcing 
model from Jeong et al. (2012); (2) comparison of thermal 
proxy accumulation in extreme and non-extreme years; (3) 
model fitting for two phenological models, a two-parame-
ter spring warming model from Migliavacca et al. (2012) 
and a three-parameter chilling/warming model from Jeong 
et al. (2012) that were previously shown to be effective at 
predicting leaf emergence of white ash (Jeong et al. 2012; 
Migliavacca et al. 2012); and (4) prediction of leaf emer-
gence and consideration of prediction accuracy.

Calculation of thermal proxies

A number of models exist for calculating thermal prox-
ies [see Table 2 in Rea and Eccel (2006)]. Of these, some 
require the use of additional fixed parameters estimated 
from experimental data for specific species (Anderson 
and Richardson 1986) or the use of a subset of leaf emer-
gence data to fit model parameters (Vitasse et al. 2011; 
Jeong et al. 2012; Migliavacca et al. 2012). In the absence 
of such experimental estimates for Fraxinus americana, 
we initially chose a method for estimating thermal proxies 
that required no parameter estimation and then considered 
methods with fit parameters estimated from a subset of 
data. The Utah Model proposed by Richardson et al. (1974) 
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was used to calculate growing degree units (GDU) from 
available hourly temperature data. In addition, two forcing 
models that were previously shown to work well for white 
ash (Jeong et al. 2012; Migliavacca et al. 2012) were used 
to calculate accumulated forcing from daily mean tempera-
ture data.

The Utah model has been used extensively to calculate 
GDUs for a variety of species and has performed as well 
or better than other thermal proxy models depending on 
the species and location [see Table 4 in (Cesaraccio et al. 
2004)]. In this study, we used this model to assess poten-
tial GDU requirement shifts during an extreme year versus 
a number of relatively non-extreme years. Growing degree 
units are calculated based on a linear forcing model with a 
fixed threshold [from the Utah model of (Richardson et al. 
1974)],

for a given day k, where r is the day when the chilling 
requirement is fulfilled (k > r), Th (i) is the hourly mean 
temperature at hour h and day i, and Tb is the threshold (or 
base) temperature. The Utah model uses a base temperature 
of Tb = 4.4 °C. Accumulating GDUs were calculated for 
each hour of the temperature record, with the beginning of 
the season set to November 1st.

The second method of calculating thermal proxies uses 
a forcing model defined by Jeong et al. (2012). This forc-
ing model relies on calculating the accumulation of grow-
ing degree days (GDD). Under this forcing model, GDD is 
defined by:

where T is the daily mean temperature and summation of 
GDD begins on January 1. This proxy for warming (GDDs) 
was used as part of a three-parameter chilling–warming 
model by Jeong et al. (2012) shown to be predictive of 
white ash leaf emergence. As with the Utah model, we do 
not use the forcing model of Jeong et al. (2012) to predict 
leaf emergence, but rather to assess potential shifts in GDD 
requirements across extreme and non-extreme years. How-
ever, we did assess the fit of the three-parameter chilling-
warming model of Jeong et al. (2012) using daily mean 
temperature and leaf emergence data from the white ash 
common garden (see “Determination of model fit for leaf 
emergence model” below for further details).

The third method of calculating thermal proxies relies 
on a forcing model defined by Migliavacca et al. (2012). 
According to this model, forcing accumulates as a nonlin-
ear function of daily mean temperature (x (t)):

(1)GDU (k) =

k
∑

i=r

24
∑

h=1

max[0, Th (i)− Tb]

(2)GDD (t) =

t
∑

Jan 1

max
(

T − 5 ◦C, 0
)

,

for x (t) >0 °C. This forcing model was used as part of a 
two-parameter spring warming model to estimate leaf 
emergence of tree species in Migliavacca et al. (2012) that 
was shown to be most accurate at predicting white ash leaf 
emergence relative to other phenology models. We assessed 
the fit of a modified version of this two-parameter spring 
warming model using temperature and leaf emergence data 
specific to the white ash common garden (see “Determi-
nation of fit for leaf emergence model” below for further 
details).

Comparison of thermal proxy accumulation in extreme 
and non‑extreme years

To determine if accumulated GDUs [from Eq. (1) using the 
Utah model] were similar between the extreme year of 2012 
and non-extreme years, we plotted accumulated GDUs at 
leaf emergence from the Utah model for each population. 
We compared these points to a hypothetical one-to-one 
line representing a hypothesis of fixed GDU requirements 
between years. We also conducted the same analysis using 
accumulated GDD as calculated from the forcing model of 
Jeong et al. (2012); see Eq. (2). We regressed these points 
between years using a general linear model (SAS 9.2, Cary, 
North Carolina, USA).

Determination of fit for leaf emergence models

In this study, we assessed the fit and prediction of leaf 
emergence across two phenological models: (1) a two-
parameter spring warming model (Migliavacca et al. 2012), 
and (2) a three-parameter model incorporating both chill-
ing and warming (Jeong et al. 2012). We used these mod-
els to test whether phenological predictions based on 
thermal requirements are maintained during extreme and 
non-extreme years. These two models were identified as 
providing the best fit for white ash in previous studies com-
paring the performance of phenological models across tree 
species for prediction of leaf emergence.

The phenology model of Migliavacca et al. (2012) is a 
two-parameter spring warming model where leaf emergence 
is predicted to occur when accumulated forcing from the 
date where accumulation of warming begins (t2) exceeds 
the fit parameter F*, such that 

∑

t

t2
Rf(x (t)) > F

∗ (Chuine 
et al. 2003; Migliavacca et al. 2012). To reduce the num-
ber of fit parameters, a modified version of this model was 
considered, with a fixed value for t2 (date where accumula-
tion of warming begins, set to January 1); this is the same 
start date as for the simple spring warming or GDD model 
described in Jeong et al. (2012). Assessment of model fit for 

(3)Rf =
28.4

1+ e−0.185(x(t)−18.4)
,
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this modified spring warming model involved three impor-
tant aspects: (1) calculation of thermal proxies (Rf) requir-
ing only daily temperature data rather than hourly, which 
was available for all 6 non-extreme years and the extreme 
year of 2012, (2) estimation of a fit parameter, F*, the forc-
ing state at which leaf emergence occurs [see Chuine et al. 
(1998) and “Materials and methods”], and (3) use of only 
non-extreme year data to assess model fit. Five years of 
data were used for parameter estimation, reserving 2012 
and one additional non-extreme year to test model predic-
tion. All possible subsets of five non-extreme years from 
the overall set of six non-extreme years were considered. 
Model run refers to a run of the model utilizing one of these 
six subsets of non-extreme years. Fit for the spring warm-
ing model was determined using a least squares method 
after Chuine and colleagues (Chuine et al. 1998), minimiz-

ing 
∑

i

(

dExpi − dObsi
)2 for the parameters of the model, 

where dObsi gives the average observed date of leaf emer-
gence for year i and dExpi gives the predicted date from 
the model. Since the modified model has only a single fit 
parameter (F*, the forcing state at which the transition from 
quiescence to bud-burst occurs), the least squares minimiza-
tion was carried out across all possible values of F*, which 
can be found by considering the sum of forcing from day 
1 to 365 for each year. The fit parameter F* was estimated 
both separately for each individual population, and using 
combined data for the entire set of 35 populations, using 
the average dObsi across all individuals and all populations. 
Graphs of minimum least squares found by the model as a 
function of the fit parameter F* for individual populations 
showed distinct differences in F* across populations, indi-
cating that there was considerable population-level variation 
in the response of leaf emergence to forcing accumulation 
(results not shown). Therefore, we focused on the popula-
tion level analysis rather than the combined data.

The chilling–warming model of Jeong et al. (2012) is 
a three-parameter model that incorporates both the effect 
of chilling and warming in estimating timing of leaf emer-
gence. For the fitting of this model, we carried out joint 
estimation of the three fit parameters using daily average 
temperature data and observed dates of leaf emergence, 
using a simulated annealing minimization routine (ame-
bsa, Press et al. 1992). However, with only 5 years of data 
(and thus 5 dObsi), the data provide only 4 degrees of 
freedom with which to estimate the 3 parameters. Thus it 
is not surprising that the minimization surface was almost 
completely flat with regard to the three model parame-
ters, and the corresponding interval estimates essentially 
spanned the entire range considered. Additionally, calcula-
tion of a small sample corrected Akaike Information Cri-
terion [AICc; Burnham and Anderson 2002; (Migliavacca 
et al. 2012)] for this model with a sample of n = 5 years 

of data and p = 3 fit parameters for a randomly sampled 
population gave AICc = 36.28. The same calculation for 
the spring warming model with only a single fit parameter 
[(Migliavacca et al. 2012), see “Calculation of thermal 
proxies”, above] gives AICc = 9.213. The ΔAICc >27 
indicates that using the more highly parameterized model 
is not justified in this case since the gain in the goodness-
of-fit (model explanatory power) is overwhelmed by the 
increase in model complexity (number of fit parameters). 
The combination of a flat likelihood surface for the model 
parameters and the large ΔAICc indicated that use of the 
Jeong et al. model (Jeong et al. 2012) is not justified for 
our data. Therefore, only the modified version of the two-
parameter spring warming model from Migliavacca et al. 
(2012) was used for all further analyses.

Prediction of leaf emergence and consideration 
of prediction accuracy

The predicted date of leaf emergence for the two-param-
eter spring warming model of Migliavacca et al. (2012) 
was calculated as the date when accumulated forcing from 
t2 (set to January 1 for our modified model) exceeded the 
fit parameter F*, such that 

∑

t

t2
Rf(x(t))F

∗, as described 
above (Chuine et al. 1998; Migliavacca et al. 2012). To 
consider prediction accuracy, we calculated the root 
mean square error (RMSE) of leaf emergence for each 

year, using RMSE =

√

∑

n

i=1

(

dExpi − dObsi
)2
/n , where 

the summation i is over all populations, n gives the num-
ber of populations, and dExpi and dObsi give the expected 
and observed dates of leaf emergence for population i for 
that year. To indicate the direction of error, we calculated 
the relative error, using 

(

dExpi − dObsi
)

/dObsi .

Statistical analyses

To assess the effect of the extreme year on the timing of leaf 
emergence, we used a general linear model. A mixed model 
was used to assess the effect of population on timing of leaf 
emergence with year included as a random effect to account 
for repeated measures within the design. To test the internal 
reliability of rank among populations across years, a Cron-
bach’s alpha internal reliability measure was calculated. We 
used a simple regression calculation to compare accumulated 
GDU and accumulated GDD at leaf emergence for each pop-
ulation between extreme (2012) and non-extreme years. We 
also used regression to consider between-population vari-
ation in model fit as functions of both population size and 
latitude of origin. All statistical analyses were carried out in 
SAS 9.2 (Cary, North Carolina, USA).
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Results

We examined 43 white ash populations by comparing leaf 
emergence responses during extreme and non-extreme 
years in a common garden at the University of Kansas 
Field Station (Figs. 2, 3). Overall, we show that (a) leaf 
emergence among white ash populations was accelerated 
by 21 days on average during the extreme warm year of 
2012 relative to non-extreme years; (b) rank order for the 
timing of leaf emergence was maintained among popula-
tions across extreme and non-extreme years, with south-
ern populations emerging earlier than northern popula-
tions; (c) greater amounts of warming units accumulated 
prior to leaf emergence during the extreme warm year 
relative to non-extreme years, and this constrained the 

potential for even earlier leaf emergence by an average of 
9 days among populations; and (d) the extreme warm year 
reduced the reliability of a relevant phenological model 
for white ash by producing a consistent bias toward ear-
lier predicted leaf emergence relative to observations.

Timing of leaf emergence during the warmest year 
in U.S. history

Average leaf emergence occurred significantly earlier by 
21 days in extreme year 2012 compared with non-extreme 
years (p < 0.0001), with population responses ranging 
from 16 days (Onondaga, NY) to 25 days earlier (Overton, 
TN) (Fig. 4). Such accelerations are consistent with other 
reported phenology responses during extreme years with 

Fig. 4  Timing of leaf emer-
gence among 43 populations of 
white ash grown in a common 
garden (University of Kansas 
Field Station). Symbols are 
mean leaf emergence times ±1 
SE. The total number of trees 
observed each year ranges from 
700 to 763, and sample sizes 
within populations range from 
2 to 25 trees depending on 
long-time survivorship in the 
common garden. Populations 
with <10 trees were not used 
in modeling analyses, although 
they are shown here. Symbols 
indicate seed source locations 
for each population. Symbols of 
more southern latitudes are in 
warmer colors (red-yellow) and 
more northern latitudes are in 
cooler colors (cyan-dark blue)
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multiple species (Luterbacher et al. 2007; Rutishauser et al. 
2008; Ellwood et al. 2013; Friedl et al. 2014), although in 
this case we documented similar absolute responses at the 
intraspecific level.

Population‑level leaf emergence and rank order 
across extreme and non‑extreme years

Interestingly, we found that the 43 white ash populations 
maintained rank order for leaf emergence across extreme 
and non-extreme years in the common garden (Cronbach’s 
alpha >0.9), with populations originating from lower lati-
tudes consistently showing earlier leaf emergence than 
those from higher latitudes (Fig. 4). More specifically, leaf 
emergence for populations originating from lower latitudes 
(lower than 39°N) occurred on average 4 days earlier rela-
tive to populations originating from higher latitudes (above 
39°N) across all years of observation. During the extreme 
year of 2012, the average timing of leaf emergence for 
populations originating from lower latitudes (below 39°N) 
occurred 6 days earlier relative to populations originating 
from higher latitudes (above 39°N; p = 0.0003).

GDU requirements during extreme versus non‑extreme 
years

In order to test whether GDU requirements for popula-
tions were similar between extreme and non-extreme 
years, we compared average accumulated GDUs at leaf 
emergence between the extreme (2012) and non-extreme 
years. GDUs were calculated using the standard Utah 
model (see “Calculation of thermal proxies” for further 
detail on calculation) that utilizes hourly weather data 
(2005 was not included due to lack of hourly temperature 
data). Overall, we found that more GDUs accumulated at 
leaf emergence during the extreme warm year relative to 
non-extreme years (Fig. 5). More specifically, the average 
amount of GDUs accumulated at leaf emergence across 
all populations during 2012 was 16,275, whereas the 
average for non-extreme years was 13,270, with a range 
among non-extreme years of 11,041 (2010) to 14,945 
(2011). If overall GDU accumulation at leaf emergence 
had been similar in 2012 as in non-extreme years, aver-
age leaf emergence would have occurred 30 days ear-
lier in 2012 compared with the observed acceleration 
of 21 days, whereby the extra GDU requirements dur-
ing the extreme year produced a partial buffering effect 
of 9 days. We also conducted a similar analysis using 
calculated GDDs (see “Calculation of thermal proxies” 
above for further detail on calculation) that were shown 
to be predictive for white ash leaf emergence in a previ-
ous study (Jeong et al. 2012). As with GDUs, we found 
that accumulation of GDDs at leaf emergence was higher 

during the extreme versus non-extreme years for the 
majority of populations (using daily rather than hourly 
temperature data as required for these calculations; Fig. 
S1).

The average accumulation of GDUs at leaf emergence 
varied across latitude of population origin. Across all 
years, the average accumulation of GDUs at leaf emer-
gence was higher for populations originating from higher 
latitudes (14,173, above 39°N) relative to those originat-
ing from lower latitudes (13,246; below 39°N; Fig. 5). 
Additionally, the forcing parameter F* for the modified 
two-parameter spring warming model of Migliavacca 
et al. (2012) increased significantly with increasing lati-
tude of origin (R2 = 0.35, β = 6.56, p < 0.001), imply-
ing that northern populations require more accumulated 
forcing prior to leaf emergence. During the extreme year, 
populations originating from higher latitudes (above 
39°N) exhibited an average of 17,292 GDUs at leaf emer-
gence, whereas populations originating from lower lati-
tudes (below 39°N) had a lower accumulation of GDUs 
at leaf emergence (15,351 on average) (Fig. 5).

Model fitting

We fit a modified two-parameter spring warming phe-
nological model described by Migliavacca et al. (2012) 
using local temperature and leaf emergence data at the 
white ash common garden. This model was fit using a 
least squares method after Chuine and colleagues (Chu-
ine et al. 1998), and this method is more fully described 
in the “Materials and methods” (see “Determination of fit 
for leaf emergence models”). Substantial variation was 
seen across populations and across model runs within 
populations for model fit (Table S1). Population sample 
size did not explain the differences observed across popu-
lations in model fit (R2 = 0.04, NS). However, latitude 
of population origin did explain some differences across 
populations in both average model fit (average minimum 
least squares, R2 = 0.36, β = 5.66, p < 0.001) and in the 
variation in model fit across runs (SD for minimum least 
squares, R2 = 0.37, β = 2.91, p < 0.0001). The model 
fit is diminished (indicated by increasing minimum least 
squares values) and more variable (indicated by higher 
SD for minimum least squares) for northern populations. 
The model fit parameter F* also showed substantial vari-
ation across populations and across model runs (Table 
S1). Differences observed between the populations 
for the variation in parameter estimation across model 
runs (SD for F*) are not explained by either population 
sample size or latitude and may reflect unidentified dif-
ferences in temperature sensitivity (or other variables) 
across these populations.
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Leaf emergence prediction accuracy

Using data from only the non-extreme years as described 
above, we considered the ability of the modified two-
parameter spring warming model of Migliavacca et al. 
(2012), that was previously shown to be predictive for 
white ash, to accurately predict leaf emergence in both the 
extreme year and an additional non-extreme year (using all 

years in turn). We observed a consistent bias in predicted 
leaf emergence towards earlier emergence dates for the 
extreme year of 2012. The spring warming model consist-
ently predicted an earlier than observed date of leaf emer-
gence during the extreme warm year of 2012 for all popu-
lations and for all model runs, with relative errors ranging 
from −0.062 to −0.093. The RMSE values for 2012 
ranged from 6.85 to 9.27 for the six model runs. Published 

Fig. 5  Average growing degree 
units (via the Utah model that 
uses hourly temperature data), 
in thousands, accumulated at 
leaf emergence for 43 white ash 
populations regressed between 
the extreme year of 2012 and 
tested non-extreme years, 2010, 
2011, 2013, 2014 and 2015 
(panels a–e, respectively). The 
one-to-one line (dashed) is a 
hypothetical line indicating no 
difference in required GDUs 
between 2012 and the non-
extreme year. The solid line 
shows a linear regression of 
the actual data with regression 
equation and R2 value. Popula-
tions are represented by the 
same symbols and colors as in 
Fig. 4. We conducted this same 
analysis using growing degree 
days (GDD) that are calculated 
using daily mean temperature 
data, a thermal proxy that has 
been shown to be relevant for 
prediction of leaf emergence 
in white ash. We find similar 
results for GDDs as shown here 
for GDUs (see Fig. S1)
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values of RMSE from phenological models for many leaf 
emergence studies give values <7 (Rea and Eccel 2006; 
Morin et al. 2009; Vitasse et al. 2011), although some stud-
ies give much wider ranges, depending on the model used 
and the species under study [RMSE = 3–51, (Cesaraccio 
et al. 2004); RMSE = 5–28, (Fu et al. 2013)]. For three of 
our model runs, the non-extreme year used for estimation 
(2005, 2014, and 2015) showed good model fit, with RMSE 
values of 2.80, 3.47, and 3.76 (RE = 0.001, −0.022, and 
−0.024), respectively. For the remaining three model runs, 
the non-extreme years (2010, 2011, and 2013) showed fits 
as poor (or worse) as the extreme year, with RMSE values 
of 10.93, 12.35, and 8.77 (RE = 0.103, −0.098, and 0.069), 
respectively. Thus, although this modeling approach was 
previously shown to perform best in estimating leaf emer-
gence of white ash relative to other phenological models 
(Migliavacca et al. 2012), we found variability in its ability 
to predict non-extreme years. Nonetheless, no combination 
of available non-extreme years for model fitting allowed 
this approach to accurately predict leaf emergence for the 
extreme year.

Discussion

Overall response to the extreme warm year

Leaf emergence of white ash occurred on average 21 days 
earlier in the extreme warm year of 2012 relative to non-
extreme years (Fig. 4). Recent evidence suggests that trees 
that are able to accelerate leaf emergence in response to 
warming may have a competitive advantage, in that this 
extends their growing season, providing a longer period for 
carbon accumulation (Cleland et al. 2012). However, the 
potential for white ash to utilize an extended growing sea-
son during extreme warm years will also depend on other 
factors such as hydraulic and leaf damage and mortality 
due to enhanced vulnerability to frost (Augspurger 2013), 
drought effects that are predicted to increase over much 
of the species range (IPCC 2013), and mortality following 
introduction of the emerald ash borer beetle (Poland and 
McCullough 2006).

We found that more GDUs (and GDDs) accumulated at 
leaf emergence during the extreme year versus non-extreme 
years based on modeled threshold temperatures (Fig. 5). 
If overall GDU accumulation at leaf emergence had been 
similar in 2012 as in non-extreme years, average leaf emer-
gence would have occurred 30 days earlier in 2012 com-
pared with the observed acceleration of 21 days. This buff-
ering effect of 9 days may have been driven by a number 
of factors. First, GDU requirements may have increased 
in response to the extreme warm year and this would have 
constrained further accelerations in phenology. In a second, 

but related factor, modified temperature thresholds may 
have produced leaf emergence at the same GDUs during 
the extreme year, but at a different rate of accumulation. 
Clonal studies with other species indicate that threshold 
temperatures in trees are genetically determined (Rousi 
and Pusenius 2005; Sanz-Pérez et al. 2009), suggesting 
a greater likelihood for the former (more GDUs) rather 
than the latter (changing temperature thresholds). Also, 
unfulfilled CDU requirements may have constrained the 
advancement of leaf emergence during the extreme year. 
In support of this, the winter preceding leaf emergence 
in 2012 was 3.9 °C warmer on average than non-extreme 
years at the common garden (Fig. 3), and, therefore, it is 
possible that chilling requirements (CDUs) were not fully 
met during 2012. This phenomenon has been observed in 
other species in the U.S. (Morin et al. 2009; Cook et al. 
2012), Europe (Pletsers et al. 2015), and on the Tibetan 
Plateau (Yu et al. 2010). Last, other biological factors may 
have played a role in driving higher accumulation of GDUs 
during the extreme warm year such as avoidance of xylem 
embolism and responses to photoperiodic cues (discussed 
below).

Population‑level responses to the extreme warm year

The rank order of leaf emergence was maintained among 
43 populations of white ash across both extreme and non-
extreme years. This maintenance of rank order suggests 
that we can expect a similar relative “line-up” in the tim-
ing of leaf emergence among white ash populations, even 
during the most extreme warm years. This finding is key 
for forecasting phenological responses as southern popula-
tions migrate to more northern areas with climate warming, 
and as distant populations are intentionally introduced into 
new areas through transplant approaches in forest manage-
ment. The maintenance of rank order may be driven by a 
number of factors, including the sensitivity of freeze–thaw 
xylem embolism in ring-porous species such as white ash, 
a potentially strong genetic basis for temperature thresh-
olds, as well as the possibility of photoperiodic responses 
and their interactions with population-level responses 
(described below).

Our results suggest that the evolutionary history 
of white ash, namely that it is a ring-porous species, 
plays a key role in determining latitudinal patterns for 
leaf emergence. From a meta-analysis, as well as other 
studies (Salk 2011; Zohner and Renner 2014), it was 
found that northern populations of temperate tree spe-
cies most commonly exhibit earlier leaf emergence 
than southern populations in common garden studies. 
However, here we find the opposite response for white 
ash (Fig. 4), and although this is less common overall, 
this trend has been observed in all ring-porous species 
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studied to date, including white ash (Salk 2011; Liang 
2015). This pattern is likely due to a conservative strat-
egy involving extensive warming requirements for ring-
porous species that generally show later leaf emergence 
than other species, and one that is particularly evident in 
northern and/or cold-adapted populations. For example, 
Dantec and colleagues (Dantec et al. 2014) found that 
in ring-porous oak, cold-adapted genotypes (from high 
elevations) exhibited later leaf emergence than warm-
adapted genotypes (from low elevations), due to greater 
degree-day requirements that were calculated in con-
trolled growth environments. This pattern did not occur 
in diffuse-porous beech that showed no differences in 
leaf emergence and degree-day requirements between 
cold and warm-adapted genotypes. Such responses were 
further supported in our study with white ash where 
we found that the accumulation of GDUs at leaf emer-
gence were significantly higher among northern popula-
tions than southern populations (Fig. 5). Additionally, 
from responses occurring during non-extreme years, we 
found that the forcing parameter F* (calculated accord-
ing to Migliavacca et al., 2012) increased significantly 
with increasing latitude of origin (R2 = 0.35, β = 6.56, 
p < 0.001), indicating that northern populations require 
more accumulated forcing prior to leaf emergence. These 
results may explain why populations from more north-
ern latitudes consistently show later leaf emergence than 
southern populations in the common garden. Relatively 
later leaf emergence would reduce the likelihood of frost 
damage, which would be highly adaptive in the native 
northern range, since the larger spring xylem vessels of 
ring-porous species (including white ash) are particu-
larly vulnerable to freeze–thaw embolism that disrupts 
hydraulic conductance (Wang et al. 1992). On the other 
hand, for southern populations, relatively earlier leaf 
emergence in northern locations may extend the grow-
ing season as it did by several days/weeks in our study 
(Fig. 4), although the potential for early frost exposure 
increases.

Model predictability during the extreme year

In our study, the modified two-parameter spring warm-
ing model of Migliavacca et al. (2012) was unable to 
accurately predict the timing of leaf emergence of white 
ash during the extreme year of 2012 due to a consistent 
bias towards earlier leaf emergence predictions relative 
to observations. These results could be explained by a 
number of factors including higher GDU requirements or 
altered temperature thresholds (described above), other 
biological constraints, altered temperature sensing by the 
trees, or an inability of this type of model to be predictive 

under extremely warm conditions, even though it was 
previously shown to be most useful for white ash.

Other biological factors

If photoperiod requirements are not met prior to thermal 
requirements, the timing of leaf emergence may potentially 
be delayed, particularly during extreme years when GDUs 
can accrue rapidly (Way and Montgomery 2014). While 
photoperiod may have constrained leaf emergence during 
the extreme warm year, it did not appear to be a major fac-
tor in our study. If this were the case, leaf emergence tim-
ing would have remained relatively constant across years 
within each population (since photoperiodic signals do not 
change from year to year), and this was not observed. In 
addition, trees most sensitive to photoperiod often exhibit 
a dampened response to temperature change for leaf emer-
gence (Vitasse et al. 2014a, b), whereas we observed large 
overall shifts in the timing of leaf emergence with chang-
ing inter-annual temperature. Additionally, photoperiod did 
not affect the timing of leaf emergence in Fraxinus excel-
sior (same genus) under controlled experimental condi-
tions (Basler and Körner 2012). Also, Way and Montgom-
ery (2014) compiled results from studies that investigated 
photoperiodic sensitivity of leaf emergence and found that 
ash species were generally photoperiod insensitive (e.g., 
Fraxinus chinensis, Fraxinus excelsior, and Fraxinus penn-
sylvanica), as well as most other early successional spe-
cies. In contrast, Hunter and Lechowicz (1992) suggested 
that leaf emergence of white ash may be sensitive to pho-
toperiod as evidenced by a negative correlation between 
mean temperature 10 days before leaf emergence and pho-
toperiod on the day of leaf emergence (Hunter and Lecho-
wicz 1992). Across a number of models used to predict leaf 
emergence, these same authors found that a spring warm-
ing model (warming only) most accurately predicted white 
ash leaf emergence, with better outcomes than a photother-
mal model. Moreover, a major review concluded from stud-
ies using dormant twigs grown under controlled conditions 
that photoperiod requirements for leaf emergence may 
be less important than previously thought (Primack et al. 
2015). Nonetheless, we cannot rule out the possibility that 
interactive effects of temperature and photoperiod influ-
enced the timing of leaf emergence, as well as the influence 
of population, since little is known about the role of these 
potential two- and three-way interactions.

Other biological factors involved in water uptake, such 
as the timing of xylem construction, may have also con-
strained leaf emergence during the extreme year. Wang 
and colleagues (Wang et al. 1992) reported a nearly 100% 
loss in xylem conducting capacity by late winter in white 
ash trees. To support newly emerging leaves, white ash 
trees must first form new xylem each spring. Thus, the 
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developmental timing of xylem formation in the spring 
may constrain further advancements in leaf emergence, 
even if GDU and CDU requirements are met. Vessel forma-
tion in ring-porous species is generally initiated 2–6 weeks 
prior to leaf emergence (Suzuki et al. 1996), and, therefore, 
this factor is not likely to be constraining leaf emergence 
under normal conditions. However, the extreme year may 
have created a scenario where the formation of xylem may 
have constrained the timing of leaf emergence since GDUs 
accumulated rapidly in our study.

Extreme temperatures may limit the performance 
of phenology models

The extreme year of 2012 may have also altered the tem-
perature sensing mechanisms that underlie leaf emergence 
and this may have reduced model predictability. These 
mechanisms are not well understood in trees, and it is cur-
rently not possible to speculate how extreme warm years 
may alter such responses. Phenology models that only con-
sider how one phenological state (leaf emergence) responds 
to temperature may result in imprecise predictions if 
aggregated variables (e.g., CDUs and GDUs) are not rep-
resentative of chilling and warming sensitivity in the tree, 
particularly during extreme years. Along this line, Clark 
et al. (2014) suggested that uneven warming results in an 
interaction between phenological state and seasonality of 
warming, and this effect is likely to be amplified in extreme 
warm years, reducing the ability to predict phenologi-
cal events using conventional models. Future models that 
incorporate multiple phenological states and that do not 
aggregate temperature time series into a cumulative sum or 
average value may be better able to deal with phenologi-
cal responses to extreme warm years (Clark et al. 2014). 
Unfortunately, the drawback in these future models is that 
measurements at multiple states of leaf development are 
required, and the full sensing mechanisms to establish such 
parameters are often unknown. Furthermore, traditional 
degree-day models may not be predictive during extreme 
years since warm climates may alter underlying biological 
processes that are sensitive to temperature. Along this line, 
Luedeling and Brown (2011) and Borchert et al. (2005) 
pointed out that commonly used thermal proxy models 
(e.g., Utah model used to calculate GDUs and CDUs) are 
not as accurate in warmer regions (sub-tropical or tropical 
regions) compared to cooler temperate regions. It is possi-
ble that even in temperate regions, for which these mod-
els were designed, conditions may be getting too warm for 
accurate predictions of leaf emergence, particularly during 
extreme years.

Regardless of why the modeling approach of Migli-
avacca et al. (2012) failed to accurately predict leaf emer-
gence in the extreme warm year, our data suggest that this 

phenological response may be fundamentally altered dur-
ing the extreme year. This is evidenced by the fact that no 
combination of non-extreme year data for model fitting 
allowed for the accurate prediction of leaf emergence for 
the extreme year. Thus, we need to be cautious when apply-
ing common phenological models to project future shifts in 
phenology under climate change scenarios where extreme 
warm years are becoming more common. Moreover, these 
results demonstrate a critical need to better understand the 
underlying biology of how extreme warm years affect tree 
phenology, mainly because these years are predicted to 
become the climate norms of the next century.
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