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Abstract The frequency of extreme warm years is increas-
ing across the majority of the planet. Shifts in plant phe-
nology in response to extreme years can influence plant
survival, productivity, and synchrony with pollinators/
herbivores. Despite extensive work on plant phenological
responses to climate change, little is known about responses
to extreme warm years, particularly at the intraspecific
level. Here we investigate 43 populations of white ash trees
(Fraxinus americana) from throughout the species range
that were all grown in a common garden. We compared the
timing of leaf emergence during the warmest year in U.S.
history (2012) with relatively non-extreme years. We show
that (a) leaf emergence among white ash populations was
accelerated by 21 days on average during the extreme warm
year of 2012 relative to non-extreme years; (b) rank order
for the timing of leaf emergence was maintained among
populations across extreme and non-extreme years, with
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southern populations emerging earlier than northern popu-
lations; (c) greater amounts of warming units accumulated
prior to leaf emergence during the extreme warm year rela-
tive to non-extreme years, and this constrained the poten-
tial for even earlier leaf emergence by an average of 9 days
among populations; and (d) the extreme warm year reduced
the reliability of a relevant phenological model for white
ash by producing a consistent bias toward earlier predicted
leaf emergence relative to observations. These results dem-
onstrate a critical need to better understand how extreme
warm years will impact tree phenology, particularly at the
intraspecific level.

Keywords Bud break - Climate change - Extreme years -
Fraxinus - Global change - Leaf emergence - Phenology -
Thermal models - White ash

Introduction

Since the industrial revolution began (*200 years ago),
atmospheric [CO,] has increased from 270 to 406 ppm,
and average global temperatures have increased by 0.85 °C
(IPCC 2012). In addition, extreme warm Yyears have
become more common, whereby the past 30 years consti-
tute the warmest conditions in the past 1700 years (Donat
et al. 2013; Weaver et al. 2014; Chang et al. 2015). Fur-
thermore, in the United States, higher temperatures dur-
ing recent decades (1979-2012) were most extreme during
spring relative to other seasons (Mutiibwa et al. 2015), pro-
ducing major implications for plants since many thermal
cues for phenology occur during this period.

Shifts in plant phenology can have major impacts on
ecosystem processes and may influence plant survival
(Augspurger 2013), productivity (Chang et al. 2013), and
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synchrony with pollinators/herbivores (Forrest 2015). Lit-
tle is known about phenological responses to extreme warm
years, although the few studies that have been conducted
report unprecedented accelerations in phenology. For
example, Rutishauser and colleagues (Rutishauser et al.
2008) found that flowering time of cherry trees advanced
by 28 days during the extreme year of 2007 compared with
the long-term mean (1702-2007). Friedl and colleagues
(Friedl et al. 2014) reported that leaf emergence was accel-
erated by as much as 14 days relative to long-term averages
among tree species at Harvard Forest during the extreme
years of 2010 and 2012. Fahey (2016) found even more
advancement in the Midwestern U.S., where 96 species in
an Illinois common garden showed an average accelera-
tion of 31 days in leaf emergence during the extreme warm
spring of 2012 (Fahey 2016). Furthermore, Ellwood and
colleagues (Ellwood et al. 2013) observed the earliest flow-
ering times among 32 species in Massachusetts, USA, dur-
ing the extreme years of 2010 and 2012 relative to records
dating back to the nineteenth century, with some species
advancing flowering time by as much as 6 weeks during
2012. They also showed that during extreme years, shifts in
phenology across species can be predicted from historical
relationships between flowering time and mean spring tem-
perature (Ellwood et al. 2013) although others have cau-
tioned against further extrapolation into future conditions
(Morin et al. 2009). Despite this, little is known about the
intraspecific responses of plants to extreme warm years and
whether thermal requirements for phenological cues during
average years can be extrapolated to extreme years within
individuals and populations. Such knowledge is critical
for determining how plants will respond to extreme warm
years as they gradually become the climate norms of the
future (Hansen et al. 2012; IPCC 2012).

Leaf emergence is a major phenological event in the
temperate zone because it marks the beginning of the
majority of photosynthetic carbon assimilation during the
growing season. The timing of leaf emergence is heritable
in temperate trees (Polgar and Primack 2011) although the
genetic mechanisms that control this process are not well
understood (Cooke et al. 2012; Yordanov et al. 2014). Fur-
thermore, shifts in the timing of leaf emergence in response
to temperature extremes can have long-term implications
for ecosystem functioning and carbon sequestration. For
example, warmer temperatures in early spring have been
linked to accelerated phenology that may initially enhance
carbon uptake, but may make trees more susceptible to
frost damage, ultimately reducing carbon gain and tree sur-
vival (Augspurger 2013).

Temperature is the most dominant factor influencing
phenology in the temperate zone, including the timing of
leaf emergence (Polgar and Primack 2011). Temperature
effects on leaf emergence are generally separated into two
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main components for predictive modeling purposes with
trees requiring both chilling and warming requirements
(Fig. 1). First, such trees require a specific number of
chilling degree units (CDUs) in winter for buds to break
dormancy. Once dormancy is broken, trees begin a second
phase by tracking warming temperatures (growing degree
units, GDUs) until thermal requirements are met (Fig. 1).
At this point, bud break and subsequent leaf emergence
can occur, assuming other constraints are overcome such
as photoperiodic requirements and construction and/or
activation of xylem conduits (Polgar and Primack 2011).
In addition, there is evidence for interactions between
chilling and warming requirements such that more GDUs
may be required for leaf emergence if CDUs are not met
during winter months (Vihera-Aarnio et al. 2014). Thus,
extreme annual and seasonal temperatures can alter the
interplay between CDU and GDU requirements, with
major implications for phenological responses.

Common assumptions when modeling leaf emergence
are that CDU and GDU requirements are met indepen-
dently and sequentially and that they remain constant
within species and across years [(Chuine et al. 2003; Lue-
deling et al. 2009); but see (Marchin et al. 2015)]. These
assumptions are oversimplifications of how environmen-
tal factors cue leaf emergence, although models under-
lain with these assumptions have been used with rela-
tive success for over 50 years [see Chuine et al. (2003),
Table 4.1-1 and references therein]. Unfortunately, how-
ever, it is not clear if thermal requirements will be simi-
lar during extreme warm years and if these requirements
remain stable across populations through time.
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Fig. 1 Theoretical framework for predicting the timing of leaf emer-
gence in response to temperature. Chilling is ineffective during the
time in which heating accumulates and vice versa. Thus, the accumu-
lation of both heating and chilling occurs in two distinct periods, and
requirements are assumed to be fulfilled sequentially. This represents
a common theoretical framework that has been used to successfully
predict the timing of leaf emergence in many cases, although further
molecular/physiological work is needed to better explain the specific
mechanisms that underlie leaf emergence (adapted from Fig. 1 of
(Luedeling et al. 2009))



Oecologia (2017) 183:1197-1210

Here we compared the timing of leaf emergence among
43 populations of Fraxinus americana L. (white ash) during
the warmest extreme year in recorded U.S. history (NOAA
2012) with relatively non-extreme years (2005, 2010, 2011,
2013, 2014, 2015). Note that 2016 was warmer on a global
basis, but 2012 remains the warmest year in U.S. history.
We incorporated population-level variation from across
the species range and investigated extreme year effects in
a common garden at the University of Kansas Field Station
(Lawrence, KS; Fig. 2). According to long-term records,
2012 was also the warmest year on record in this local area
according to weather stations in Topeka (45 km away) and
Leavenworth (55 km away) dating back approximately
130 years (National Weather Service 2014; United States
Weather Bureau 1942). Leaf emergence of white ash is
known to be highly affected by temperature, and has both
chilling (CDU) and warming (GDU) requirements (Fig. 1)
(Jeong et al. 2012; Polgar et al. 2013), making it an ideal
species to investigate the effects of extreme years on phe-
nology, and leaf emergence in particular. During 2012,
average winter (November—February of 2011-2012) and
spring (March—-May of 2012) temperatures at the common
garden were 4.5 and 17.6 °C, respectively, which were 3.9
and 6.1 °C warmer than average non-extreme years (Fig. 3).
In addition, the common garden is located at the western-
most edge of the species range, and, therefore, is relatively
warmer than many white ash habitats (Fig. 2). Thus, many

Fig. 2 Current range of white
ash (gray area) and locations
where experimental populations
originated from (black circles).
All populations of trees were
grown and measured in a com-
mon garden at the University of
Kansas Field Station (Lawrence,
KS, red star). Trees have been
growing at this common garden
for approximately 40 years,
with 45 populations represented
with 25 trees planted per popu-
lation (although long-term mor-
tality has reduced that number)
Adapted from (Marchin et al.
2008) and USDA Forest Service
(www.na.fs.fed.us)
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Fig.3 The average winter (November—December of the previous
year, and January—February of the named year) and spring (March—
May of the named year) temperatures for the years 2005, 2010, 2011,
2012, 2013, 2014, and 2015 at the common garden located in Law-
rence, KS, USA. The average winter and spring temperatures during
the extreme warm year of 2012, the warmest year in U.S. recorded
history, are highlighted in red

of the populations were operating outside of the thermal
environments to which they were adapted, much like is
expected under climate change scenarios. Therefore, the
anomalously warm year of 2012 allowed us the rare oppor-
tunity to test whether phenological predictions based on

@ Springer


http://www.na.fs.fed.us

1200

Oecologia (2017) 183:1197-1210

thermal requirements during non-extreme years are main-
tained during an extreme year. Moreover, our study pro-
vides insights into how increasing extreme warm years in
the future will affect our current ability to forecast phenol-
ogy responses at the intraspecific level. We addressed the
following questions: (1) how does an extreme year affect
the timing of leaf emergence at the intra-specific level in
white ash, (2) how do populations originating from a wide
range of locations vary in thermal requirements for leaf
emergence across extreme and non-extreme years, and
(3) how does an extreme year affect our ability to predict
leaf emergence using a phenology model (spring warm-
ing model of Migliavacca et al. 2012) that was previously
shown to be predictive for white ash.

Materials and methods
Common garden conditions

The phenology of white ash is known to be strongly
affected by warming (Jeong et al. 2011; Laube et al. 2014),
making it an ideal species to test whether thermal require-
ments for leaf emergence are similar between extreme and
non-extreme years and to better understand intraspecific
responses to extreme warm years. White ash seeds originat-
ing from 45 populations from throughout the species range
were collected by the U.S. Forest Service from open-pol-
linated native parent trees. Seeds were planted in 1976 in
the common garden at the University of Kansas Field Sta-
tion near Lawrence, KS (35.0°N, 95.1°W, 299 m; Fig. 2).
Twenty-five replicate trees from each population were
planted (1125 trees total), although long-term mortality
reduced the number of living trees to ~750. For the major-
ity of analyses, we considered the timing of leaf emergence
for 43 populations (two populations were not included as
they only had one surviving tree). Additionally, for the
modified two-parameter spring warming model described
below (Migliavacca et al. 2012), we considered a set of 35
populations, eliminating populations with sample sizes of
<10 surviving trees to minimize sampling error (as a result,
n = 10-25 trees per population). From the beginning of the
growing season, each tree was observed every 48 h until
leaf emergence occurred.

The University of Kansas Field Station receives an
average annual precipitation of ~#900 mm/year with more
than 70% received during the growing season (April-Sep-
tember). Monthly average temperatures range from below
—7 °C in January to 32 °C in July. For calculating ther-
mal units, we considered the winter temperature for each
year as the average of daily temperatures from November
to December of the preceding year, along with January—
February of the current year (the named year in all data
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sets). Spring temperature for each year was calculated as
the average of daily temperatures of March—May. Hourly
temperature data at the common garden are available from
2008-present from weather stations that are maintained by
the University of Kansas Field Station staff. We used these
hourly temperature data to calculate GDUs using the Utah
Model (see the below section, “Calculation of thermal
proxies”).

Year 2012 was the warmest at the field station across
all years in which leaf emergence was observed and across
all years of local record keeping, as well as being the most
extreme warm year in recorded U.S. history since 1895
(NOAA 2012). At the common garden, average winter
and spring temperatures were 4.5 and 17.6 °C during 2012
(Fig. 3), respectively, which were 3.9 and 6.1 °C warmer
than average tested non-extreme years. Total annual pre-
cipitation was lowest during the extreme year of 2012
(622 mm) relative to non-extreme years; however, we did
not find a significant correlation between precipitation and
timing of leaf emergence (likely because reductions in pre-
cipitation occurred after leaf emergence), and, therefore,
this factor was not considered in our analyses.

Modeling approach

We carried out four different aspects of model analysis: (1)
calculation of thermal proxies using three different thermal
proxy models, the Utah model (Richardson et al. 1974), a
forcing model from Migliavacca et al. (2012), and a forcing
model from Jeong et al. (2012); (2) comparison of thermal
proxy accumulation in extreme and non-extreme years; (3)
model fitting for two phenological models, a two-parame-
ter spring warming model from Migliavacca et al. (2012)
and a three-parameter chilling/warming model from Jeong
et al. (2012) that were previously shown to be effective at
predicting leaf emergence of white ash (Jeong et al. 2012;
Migliavacca et al. 2012); and (4) prediction of leaf emer-
gence and consideration of prediction accuracy.

Calculation of thermal proxies

A number of models exist for calculating thermal prox-
ies [see Table 2 in Rea and Eccel (2006)]. Of these, some
require the use of additional fixed parameters estimated
from experimental data for specific species (Anderson
and Richardson 1986) or the use of a subset of leaf emer-
gence data to fit model parameters (Vitasse et al. 2011;
Jeong et al. 2012; Migliavacca et al. 2012). In the absence
of such experimental estimates for Fraxinus americana,
we initially chose a method for estimating thermal proxies
that required no parameter estimation and then considered
methods with fit parameters estimated from a subset of
data. The Utah Model proposed by Richardson et al. (1974)
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was used to calculate growing degree units (GDU) from
available hourly temperature data. In addition, two forcing
models that were previously shown to work well for white
ash (Jeong et al. 2012; Migliavacca et al. 2012) were used
to calculate accumulated forcing from daily mean tempera-
ture data.

The Utah model has been used extensively to calculate
GDUs for a variety of species and has performed as well
or better than other thermal proxy models depending on
the species and location [see Table 4 in (Cesaraccio et al.
2004)]. In this study, we used this model to assess poten-
tial GDU requirement shifts during an extreme year versus
a number of relatively non-extreme years. Growing degree
units are calculated based on a linear forcing model with a
fixed threshold [from the Utah model of (Richardson et al.
1974)],

k24

GDU (k) = > > max[0, 75 (i) — Tp] M

i=r h=1

for a given day k, where r is the day when the chilling
requirement is fulfilled (k > r), T, (i) is the hourly mean
temperature at hour 4 and day i, and 7 is the threshold (or
base) temperature. The Utah model uses a base temperature
of T, = 4.4 °C. Accumulating GDUs were calculated for
each hour of the temperature record, with the beginning of
the season set to November 1st.

The second method of calculating thermal proxies uses
a forcing model defined by Jeong et al. (2012). This forc-
ing model relies on calculating the accumulation of grow-
ing degree days (GDD). Under this forcing model, GDD is
defined by:

1t
GDD (1) = Y _max(T —5°C,0), )

Jan 1

where T is the daily mean temperature and summation of
GDD begins on January 1. This proxy for warming (GDDs)
was used as part of a three-parameter chilling—warming
model by Jeong et al. (2012) shown to be predictive of
white ash leaf emergence. As with the Utah model, we do
not use the forcing model of Jeong et al. (2012) to predict
leaf emergence, but rather to assess potential shifts in GDD
requirements across extreme and non-extreme years. How-
ever, we did assess the fit of the three-parameter chilling-
warming model of Jeong et al. (2012) using daily mean
temperature and leaf emergence data from the white ash
common garden (see “Determination of model fit for leaf
emergence model” below for further details).

The third method of calculating thermal proxies relies
on a forcing model defined by Migliavacca et al. (2012).
According to this model, forcing accumulates as a nonlin-
ear function of daily mean temperature (x (¢)):

28.4
T 1§ e 0I85G:(—184) )

Ry

for x (f) >0 °C. This forcing model was used as part of a
two-parameter spring warming model to estimate leaf
emergence of tree species in Migliavacca et al. (2012) that
was shown to be most accurate at predicting white ash leaf
emergence relative to other phenology models. We assessed
the fit of a modified version of this two-parameter spring
warming model using temperature and leaf emergence data
specific to the white ash common garden (see “Determi-
nation of fit for leaf emergence model” below for further
details).

Comparison of thermal proxy accumulation in extreme
and non-extreme years

To determine if accumulated GDUs [from Eq. (1) using the
Utah model] were similar between the extreme year of 2012
and non-extreme years, we plotted accumulated GDUs at
leaf emergence from the Utah model for each population.
We compared these points to a hypothetical one-to-one
line representing a hypothesis of fixed GDU requirements
between years. We also conducted the same analysis using
accumulated GDD as calculated from the forcing model of
Jeong et al. (2012); see Eq. (2). We regressed these points
between years using a general linear model (SAS 9.2, Cary,
North Carolina, USA).

Determination of fit for leaf emergence models

In this study, we assessed the fit and prediction of leaf
emergence across two phenological models: (1) a two-
parameter spring warming model (Migliavacca et al. 2012),
and (2) a three-parameter model incorporating both chill-
ing and warming (Jeong et al. 2012). We used these mod-
els to test whether phenological predictions based on
thermal requirements are maintained during extreme and
non-extreme years. These two models were identified as
providing the best fit for white ash in previous studies com-
paring the performance of phenological models across tree
species for prediction of leaf emergence.

The phenology model of Migliavacca et al. (2012) is a
two-parameter spring warming model where leaf emergence
is predicted to occur when accumulated forcing from the
date where accumulation of warming begins (f,) exceeds
the fit parameter F*, such that 252 Ri(x (1)) > F* (Chuine
et al. 2003; Migliavacca et al. 2012). To reduce the num-
ber of fit parameters, a modified version of this model was
considered, with a fixed value for ¢, (date where accumula-
tion of warming begins, set to January 1); this is the same
start date as for the simple spring warming or GDD model
described in Jeong et al. (2012). Assessment of model fit for
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this modified spring warming model involved three impor-
tant aspects: (1) calculation of thermal proxies (Ry) requir-
ing only daily temperature data rather than hourly, which
was available for all 6 non-extreme years and the extreme
year of 2012, (2) estimation of a fit parameter, F*, the forc-
ing state at which leaf emergence occurs [see Chuine et al.
(1998) and “Materials and methods”], and (3) use of only
non-extreme year data to assess model fit. Five years of
data were used for parameter estimation, reserving 2012
and one additional non-extreme year to test model predic-
tion. All possible subsets of five non-extreme years from
the overall set of six non-extreme years were considered.
Model run refers to a run of the model utilizing one of these
six subsets of non-extreme years. Fit for the spring warm-
ing model was determined using a least squares method
after Chuine and colleagues (Chuine et al. 1998), minimiz-

ing Z (dEpr- - dObsi)2 for the parameters of the model,

where dObs; gives the average observed date of leaf emer-
gence for year i and dExp; gives the predicted date from
the model. Since the modified model has only a single fit
parameter (F*, the forcing state at which the transition from
quiescence to bud-burst occurs), the least squares minimiza-
tion was carried out across all possible values of F*, which
can be found by considering the sum of forcing from day
1 to 365 for each year. The fit parameter F'* was estimated
both separately for each individual population, and using
combined data for the entire set of 35 populations, using
the average dObs; across all individuals and all populations.
Graphs of minimum least squares found by the model as a
function of the fit parameter F'* for individual populations
showed distinct differences in F* across populations, indi-
cating that there was considerable population-level variation
in the response of leaf emergence to forcing accumulation
(results not shown). Therefore, we focused on the popula-
tion level analysis rather than the combined data.

The chilling—warming model of Jeong et al. (2012) is
a three-parameter model that incorporates both the effect
of chilling and warming in estimating timing of leaf emer-
gence. For the fitting of this model, we carried out joint
estimation of the three fit parameters using daily average
temperature data and observed dates of leaf emergence,
using a simulated annealing minimization routine (ame-
bsa, Press et al. 1992). However, with only 5 years of data
(and thus 5 dObs;), the data provide only 4 degrees of
freedom with which to estimate the 3 parameters. Thus it
is not surprising that the minimization surface was almost
completely flat with regard to the three model parame-
ters, and the corresponding interval estimates essentially
spanned the entire range considered. Additionally, calcula-
tion of a small sample corrected Akaike Information Cri-
terion [AICc; Burnham and Anderson 2002; (Migliavacca
et al. 2012)] for this model with a sample of n = 5 years
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of data and p = 3 fit parameters for a randomly sampled
population gave AICc = 36.28. The same calculation for
the spring warming model with only a single fit parameter
[(Migliavacca et al. 2012), see “Calculation of thermal
proxies”, above] gives AICc = 9.213. The AAICc >27
indicates that using the more highly parameterized model
is not justified in this case since the gain in the goodness-
of-fit (model explanatory power) is overwhelmed by the
increase in model complexity (number of fit parameters).
The combination of a flat likelihood surface for the model
parameters and the large AAICc indicated that use of the
Jeong et al. model (Jeong et al. 2012) is not justified for
our data. Therefore, only the modified version of the two-
parameter spring warming model from Migliavacca et al.
(2012) was used for all further analyses.

Prediction of leaf emergence and consideration
of prediction accuracy

The predicted date of leaf emergence for the two-param-
eter spring warming model of Migliavacca et al. (2012)
was calculated as the date when accumulated forcing from
t, (set to January 1 for our modified model) exceeded the
fit parameter F*, such that Z;z Re(x(¢))F*, as described
above (Chuine et al. 1998; Migliavacca et al. 2012). To
consider prediction accuracy, we calculated the root
mean square error (RMSE) of leaf emergence for each

year, using RMSE = \/Z?:l (dExp; — dObs,-)z/n, where

the summation i is over all populations, n gives the num-
ber of populations, and dExp; and dObs; give the expected
and observed dates of leaf emergence for population i for
that year. To indicate the direction of error, we calculated
the relative error, using (dExp; — dObs;) /dObs;.

Statistical analyses

To assess the effect of the extreme year on the timing of leaf
emergence, we used a general linear model. A mixed model
was used to assess the effect of population on timing of leaf
emergence with year included as a random effect to account
for repeated measures within the design. To test the internal
reliability of rank among populations across years, a Cron-
bach’s alpha internal reliability measure was calculated. We
used a simple regression calculation to compare accumulated
GDU and accumulated GDD at leaf emergence for each pop-
ulation between extreme (2012) and non-extreme years. We
also used regression to consider between-population vari-
ation in model fit as functions of both population size and
latitude of origin. All statistical analyses were carried out in
SAS 9.2 (Cary, North Carolina, USA).
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Results

We examined 43 white ash populations by comparing leaf
emergence responses during extreme and non-extreme
years in a common garden at the University of Kansas
Field Station (Figs. 2, 3). Overall, we show that (a) leaf
emergence among white ash populations was accelerated
by 21 days on average during the extreme warm year of
2012 relative to non-extreme years; (b) rank order for the
timing of leaf emergence was maintained among popula-
tions across extreme and non-extreme years, with south-
ern populations emerging earlier than northern popula-
tions; (c) greater amounts of warming units accumulated
prior to leaf emergence during the extreme warm year
relative to non-extreme years, and this constrained the

potential for even earlier leaf emergence by an average of
9 days among populations; and (d) the extreme warm year
reduced the reliability of a relevant phenological model
for white ash by producing a consistent bias toward ear-
lier predicted leaf emergence relative to observations.

Timing of leaf emergence during the warmest year
in U.S. history

Average leaf emergence occurred significantly earlier by
21 days in extreme year 2012 compared with non-extreme
years (p < 0.0001), with population responses ranging
from 16 days (Onondaga, NY) to 25 days earlier (Overton,
TN) (Fig. 4). Such accelerations are consistent with other
reported phenology responses during extreme years with

Fig. 4 Timing of leaf emer-
. 130
gence among 43 populations of
white ash grown in a common i
garden (University of Kansas
Field Station). Symbols are
mean leaf emergence times £1
SE. The total number of trees
observed each year ranges from
700 to 763, and sample sizes
within populations range from
2 to 25 trees depending on
long-time survivorship in the
common garden. Populations
with <10 trees were not used
in modeling analyses, although
they are shown here. Symbols
indicate seed source locations
for each population. Symbols of
more southern latitudes are in
warmer colors (red-yellow) and
more northern latitudes are in
cooler colors (cyan-dark blue)
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Hopkins, KY (37.3)
Hopkins, KY (37.3)
Gallatin, IL (37.6)
Jackson, IL (37.7)
Jackson, IL (37.7)
Randolph, WV (38.9)
Jackson, IN (38.9)
Jefferson, KS (39)
Effingham, IL (39)
Effingham, IL (39)
Tucker, WV (39.1)
Preble, OH (39.6)
Adams, IL (39.8)
Otoe, NE (40.6)
Wayne, OH (40.7)
Washtenaw, Ml (42.2)
Washtenaw, Ml (42.2)
Onondaga, NY (42.7)
Benzi, Ml (44.7)
Penobscot, ME (44.8)
Penobscot, ME (44.8)
Presque Isle, Ml (45.3
Forest, Wi (45.7)
Forest, WI (45.7)
Ontonagon, Ml (46.6)
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multiple species (Luterbacher et al. 2007; Rutishauser et al.
2008; Ellwood et al. 2013; Friedl et al. 2014), although in
this case we documented similar absolute responses at the
intraspecific level.

Population-level leaf emergence and rank order
across extreme and non-extreme years

Interestingly, we found that the 43 white ash populations
maintained rank order for leaf emergence across extreme
and non-extreme years in the common garden (Cronbach’s
alpha >0.9), with populations originating from lower lati-
tudes consistently showing earlier leaf emergence than
those from higher latitudes (Fig. 4). More specifically, leaf
emergence for populations originating from lower latitudes
(lower than 39°N) occurred on average 4 days earlier rela-
tive to populations originating from higher latitudes (above
39°N) across all years of observation. During the extreme
year of 2012, the average timing of leaf emergence for
populations originating from lower latitudes (below 39°N)
occurred 6 days earlier relative to populations originating
from higher latitudes (above 39°N; p = 0.0003).

GDU requirements during extreme versus non-extreme
years

In order to test whether GDU requirements for popula-
tions were similar between extreme and non-extreme
years, we compared average accumulated GDUs at leaf
emergence between the extreme (2012) and non-extreme
years. GDUs were calculated using the standard Utah
model (see “Calculation of thermal proxies” for further
detail on calculation) that utilizes hourly weather data
(2005 was not included due to lack of hourly temperature
data). Overall, we found that more GDUs accumulated at
leaf emergence during the extreme warm year relative to
non-extreme years (Fig. 5). More specifically, the average
amount of GDUs accumulated at leaf emergence across
all populations during 2012 was 16,275, whereas the
average for non-extreme years was 13,270, with a range
among non-extreme years of 11,041 (2010) to 14,945
(2011). If overall GDU accumulation at leaf emergence
had been similar in 2012 as in non-extreme years, aver-
age leaf emergence would have occurred 30 days ear-
lier in 2012 compared with the observed acceleration
of 21 days, whereby the extra GDU requirements dur-
ing the extreme year produced a partial buffering effect
of 9 days. We also conducted a similar analysis using
calculated GDDs (see “Calculation of thermal proxies”
above for further detail on calculation) that were shown
to be predictive for white ash leaf emergence in a previ-
ous study (Jeong et al. 2012). As with GDUs, we found
that accumulation of GDDs at leaf emergence was higher
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during the extreme versus non-extreme years for the
majority of populations (using daily rather than hourly
temperature data as required for these calculations; Fig.
S1).

The average accumulation of GDUs at leaf emergence
varied across latitude of population origin. Across all
years, the average accumulation of GDUs at leaf emer-
gence was higher for populations originating from higher
latitudes (14,173, above 39°N) relative to those originat-
ing from lower latitudes (13,246; below 39°N; Fig. 5).
Additionally, the forcing parameter F'* for the modified
two-parameter spring warming model of Migliavacca
et al. (2012) increased significantly with increasing lati-
tude of origin (R? = 0.35, B = 6.56, p < 0.001), imply-
ing that northern populations require more accumulated
forcing prior to leaf emergence. During the extreme year,
populations originating from higher latitudes (above
39°N) exhibited an average of 17,292 GDUs at leaf emer-
gence, whereas populations originating from lower lati-
tudes (below 39°N) had a lower accumulation of GDUs
at leaf emergence (15,351 on average) (Fig. 5).

Model fitting

We fit a modified two-parameter spring warming phe-
nological model described by Migliavacca et al. (2012)
using local temperature and leaf emergence data at the
white ash common garden. This model was fit using a
least squares method after Chuine and colleagues (Chu-
ine et al. 1998), and this method is more fully described
in the “Materials and methods” (see “Determination of fit
for leaf emergence models”). Substantial variation was
seen across populations and across model runs within
populations for model fit (Table S1). Population sample
size did not explain the differences observed across popu-
lations in model fit (R2 = 0.04, NS). However, latitude
of population origin did explain some differences across
populations in both average model fit (average minimum
least squares, R? = 0.36, B =5.66, p <0.001) and in the
variation in model fit across runs (SD for minimum least
squares, R = 0.37, p = 2.91, p < 0.0001). The model
fit is diminished (indicated by increasing minimum least
squares values) and more variable (indicated by higher
SD for minimum least squares) for northern populations.
The model fit parameter F* also showed substantial vari-
ation across populations and across model runs (Table
S1). Differences observed between the populations
for the variation in parameter estimation across model
runs (SD for F*) are not explained by either population
sample size or latitude and may reflect unidentified dif-
ferences in temperature sensitivity (or other variables)
across these populations.
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Leaf emergence prediction accuracy

Using data from only the non-extreme years as described
above, we considered the ability of the modified two-
parameter spring warming model of Migliavacca et al.
(2012), that was previously shown to be predictive for
white ash, to accurately predict leaf emergence in both the
extreme year and an additional non-extreme year (using all

years in turn). We observed a consistent bias in predicted
leaf emergence towards earlier emergence dates for the
extreme year of 2012. The spring warming model consist-
ently predicted an earlier than observed date of leaf emer-
gence during the extreme warm year of 2012 for all popu-
lations and for all model runs, with relative errors ranging
from —0.062 to —0.093. The RMSE values for 2012
ranged from 6.85 to 9.27 for the six model runs. Published
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values of RMSE from phenological models for many leaf
emergence studies give values <7 (Rea and Eccel 2006;
Morin et al. 2009; Vitasse et al. 2011), although some stud-
ies give much wider ranges, depending on the model used
and the species under study [RMSE = 3-51, (Cesaraccio
et al. 2004); RMSE = 5-28, (Fu et al. 2013)]. For three of
our model runs, the non-extreme year used for estimation
(2005, 2014, and 2015) showed good model fit, with RMSE
values of 2.80, 3.47, and 3.76 (RE = 0.001, —0.022, and
—0.024), respectively. For the remaining three model runs,
the non-extreme years (2010, 2011, and 2013) showed fits
as poor (or worse) as the extreme year, with RMSE values
of 10.93, 12.35, and 8.77 (RE = 0.103, —0.098, and 0.069),
respectively. Thus, although this modeling approach was
previously shown to perform best in estimating leaf emer-
gence of white ash relative to other phenological models
(Migliavacca et al. 2012), we found variability in its ability
to predict non-extreme years. Nonetheless, no combination
of available non-extreme years for model fitting allowed
this approach to accurately predict leaf emergence for the
extreme year.

Discussion
Overall response to the extreme warm year

Leaf emergence of white ash occurred on average 21 days
earlier in the extreme warm year of 2012 relative to non-
extreme years (Fig. 4). Recent evidence suggests that trees
that are able to accelerate leaf emergence in response to
warming may have a competitive advantage, in that this
extends their growing season, providing a longer period for
carbon accumulation (Cleland et al. 2012). However, the
potential for white ash to utilize an extended growing sea-
son during extreme warm years will also depend on other
factors such as hydraulic and leaf damage and mortality
due to enhanced vulnerability to frost (Augspurger 2013),
drought effects that are predicted to increase over much
of the species range (IPCC 2013), and mortality following
introduction of the emerald ash borer beetle (Poland and
McCullough 2006).

We found that more GDUs (and GDDs) accumulated at
leaf emergence during the extreme year versus non-extreme
years based on modeled threshold temperatures (Fig. 5).
If overall GDU accumulation at leaf emergence had been
similar in 2012 as in non-extreme years, average leaf emer-
gence would have occurred 30 days earlier in 2012 com-
pared with the observed acceleration of 21 days. This buft-
ering effect of 9 days may have been driven by a number
of factors. First, GDU requirements may have increased
in response to the extreme warm year and this would have
constrained further accelerations in phenology. In a second,
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but related factor, modified temperature thresholds may
have produced leaf emergence at the same GDUs during
the extreme year, but at a different rate of accumulation.
Clonal studies with other species indicate that threshold
temperatures in trees are genetically determined (Rousi
and Pusenius 2005; Sanz-Pérez et al. 2009), suggesting
a greater likelihood for the former (more GDUs) rather
than the latter (changing temperature thresholds). Also,
unfulfilled CDU requirements may have constrained the
advancement of leaf emergence during the extreme year.
In support of this, the winter preceding leaf emergence
in 2012 was 3.9 °C warmer on average than non-extreme
years at the common garden (Fig. 3), and, therefore, it is
possible that chilling requirements (CDUs) were not fully
met during 2012. This phenomenon has been observed in
other species in the U.S. (Morin et al. 2009; Cook et al.
2012), Europe (Pletsers et al. 2015), and on the Tibetan
Plateau (Yu et al. 2010). Last, other biological factors may
have played a role in driving higher accumulation of GDUs
during the extreme warm year such as avoidance of xylem
embolism and responses to photoperiodic cues (discussed
below).

Population-level responses to the extreme warm year

The rank order of leaf emergence was maintained among
43 populations of white ash across both extreme and non-
extreme years. This maintenance of rank order suggests
that we can expect a similar relative “line-up” in the tim-
ing of leaf emergence among white ash populations, even
during the most extreme warm years. This finding is key
for forecasting phenological responses as southern popula-
tions migrate to more northern areas with climate warming,
and as distant populations are intentionally introduced into
new areas through transplant approaches in forest manage-
ment. The maintenance of rank order may be driven by a
number of factors, including the sensitivity of freeze—thaw
xylem embolism in ring-porous species such as white ash,
a potentially strong genetic basis for temperature thresh-
olds, as well as the possibility of photoperiodic responses
and their interactions with population-level responses
(described below).

Our results suggest that the evolutionary history
of white ash, namely that it is a ring-porous species,
plays a key role in determining latitudinal patterns for
leaf emergence. From a meta-analysis, as well as other
studies (Salk 2011; Zohner and Renner 2014), it was
found that northern populations of temperate tree spe-
cies most commonly exhibit earlier leaf emergence
than southern populations in common garden studies.
However, here we find the opposite response for white
ash (Fig. 4), and although this is less common overall,
this trend has been observed in all ring-porous species
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studied to date, including white ash (Salk 2011; Liang
2015). This pattern is likely due to a conservative strat-
egy involving extensive warming requirements for ring-
porous species that generally show later leaf emergence
than other species, and one that is particularly evident in
northern and/or cold-adapted populations. For example,
Dantec and colleagues (Dantec et al. 2014) found that
in ring-porous oak, cold-adapted genotypes (from high
elevations) exhibited later leaf emergence than warm-
adapted genotypes (from low elevations), due to greater
degree-day requirements that were calculated in con-
trolled growth environments. This pattern did not occur
in diffuse-porous beech that showed no differences in
leaf emergence and degree-day requirements between
cold and warm-adapted genotypes. Such responses were
further supported in our study with white ash where
we found that the accumulation of GDUs at leaf emer-
gence were significantly higher among northern popula-
tions than southern populations (Fig. 5). Additionally,
from responses occurring during non-extreme years, we
found that the forcing parameter F* (calculated accord-
ing to Migliavacca et al., 2012) increased significantly
with increasing latitude of origin (R2 = 0.35, B = 6.56,
p < 0.001), indicating that northern populations require
more accumulated forcing prior to leaf emergence. These
results may explain why populations from more north-
ern latitudes consistently show later leaf emergence than
southern populations in the common garden. Relatively
later leaf emergence would reduce the likelihood of frost
damage, which would be highly adaptive in the native
northern range, since the larger spring xylem vessels of
ring-porous species (including white ash) are particu-
larly vulnerable to freeze—thaw embolism that disrupts
hydraulic conductance (Wang et al. 1992). On the other
hand, for southern populations, relatively earlier leaf
emergence in northern locations may extend the grow-
ing season as it did by several days/weeks in our study
(Fig. 4), although the potential for early frost exposure
increases.

Model predictability during the extreme year

In our study, the modified two-parameter spring warm-
ing model of Migliavacca et al. (2012) was unable to
accurately predict the timing of leaf emergence of white
ash during the extreme year of 2012 due to a consistent
bias towards earlier leaf emergence predictions relative
to observations. These results could be explained by a
number of factors including higher GDU requirements or
altered temperature thresholds (described above), other
biological constraints, altered temperature sensing by the
trees, or an inability of this type of model to be predictive

under extremely warm conditions, even though it was
previously shown to be most useful for white ash.

Other biological factors

If photoperiod requirements are not met prior to thermal
requirements, the timing of leaf emergence may potentially
be delayed, particularly during extreme years when GDUs
can accrue rapidly (Way and Montgomery 2014). While
photoperiod may have constrained leaf emergence during
the extreme warm year, it did not appear to be a major fac-
tor in our study. If this were the case, leaf emergence tim-
ing would have remained relatively constant across years
within each population (since photoperiodic signals do not
change from year to year), and this was not observed. In
addition, trees most sensitive to photoperiod often exhibit
a dampened response to temperature change for leaf emer-
gence (Vitasse et al. 2014a, b), whereas we observed large
overall shifts in the timing of leaf emergence with chang-
ing inter-annual temperature. Additionally, photoperiod did
not affect the timing of leaf emergence in Fraxinus excel-
sior (same genus) under controlled experimental condi-
tions (Basler and Korner 2012). Also, Way and Montgom-
ery (2014) compiled results from studies that investigated
photoperiodic sensitivity of leaf emergence and found that
ash species were generally photoperiod insensitive (e.g.,
Fraxinus chinensis, Fraxinus excelsior, and Fraxinus penn-
sylvanica), as well as most other early successional spe-
cies. In contrast, Hunter and Lechowicz (1992) suggested
that leaf emergence of white ash may be sensitive to pho-
toperiod as evidenced by a negative correlation between
mean temperature 10 days before leaf emergence and pho-
toperiod on the day of leaf emergence (Hunter and Lecho-
wicz 1992). Across a number of models used to predict leaf
emergence, these same authors found that a spring warm-
ing model (warming only) most accurately predicted white
ash leaf emergence, with better outcomes than a photother-
mal model. Moreover, a major review concluded from stud-
ies using dormant twigs grown under controlled conditions
that photoperiod requirements for leaf emergence may
be less important than previously thought (Primack et al.
2015). Nonetheless, we cannot rule out the possibility that
interactive effects of temperature and photoperiod influ-
enced the timing of leaf emergence, as well as the influence
of population, since little is known about the role of these
potential two- and three-way interactions.

Other biological factors involved in water uptake, such
as the timing of xylem construction, may have also con-
strained leaf emergence during the extreme year. Wang
and colleagues (Wang et al. 1992) reported a nearly 100%
loss in xylem conducting capacity by late winter in white
ash trees. To support newly emerging leaves, white ash
trees must first form new xylem each spring. Thus, the
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developmental timing of xylem formation in the spring
may constrain further advancements in leaf emergence,
even if GDU and CDU requirements are met. Vessel forma-
tion in ring-porous species is generally initiated 2—6 weeks
prior to leaf emergence (Suzuki et al. 1996), and, therefore,
this factor is not likely to be constraining leaf emergence
under normal conditions. However, the extreme year may
have created a scenario where the formation of xylem may
have constrained the timing of leaf emergence since GDUs
accumulated rapidly in our study.

Extreme temperatures may limit the performance
of phenology models

The extreme year of 2012 may have also altered the tem-
perature sensing mechanisms that underlie leaf emergence
and this may have reduced model predictability. These
mechanisms are not well understood in trees, and it is cur-
rently not possible to speculate how extreme warm years
may alter such responses. Phenology models that only con-
sider how one phenological state (leaf emergence) responds
to temperature may result in imprecise predictions if
aggregated variables (e.g., CDUs and GDUs) are not rep-
resentative of chilling and warming sensitivity in the tree,
particularly during extreme years. Along this line, Clark
et al. (2014) suggested that uneven warming results in an
interaction between phenological state and seasonality of
warming, and this effect is likely to be amplified in extreme
warm years, reducing the ability to predict phenologi-
cal events using conventional models. Future models that
incorporate multiple phenological states and that do not
aggregate temperature time series into a cumulative sum or
average value may be better able to deal with phenologi-
cal responses to extreme warm years (Clark et al. 2014).
Unfortunately, the drawback in these future models is that
measurements at multiple states of leaf development are
required, and the full sensing mechanisms to establish such
parameters are often unknown. Furthermore, traditional
degree-day models may not be predictive during extreme
years since warm climates may alter underlying biological
processes that are sensitive to temperature. Along this line,
Luedeling and Brown (2011) and Borchert et al. (2005)
pointed out that commonly used thermal proxy models
(e.g., Utah model used to calculate GDUs and CDUs) are
not as accurate in warmer regions (sub-tropical or tropical
regions) compared to cooler temperate regions. It is possi-
ble that even in temperate regions, for which these mod-
els were designed, conditions may be getting too warm for
accurate predictions of leaf emergence, particularly during
extreme years.

Regardless of why the modeling approach of Migli-
avacca et al. (2012) failed to accurately predict leaf emer-
gence in the extreme warm year, our data suggest that this
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phenological response may be fundamentally altered dur-
ing the extreme year. This is evidenced by the fact that no
combination of non-extreme year data for model fitting
allowed for the accurate prediction of leaf emergence for
the extreme year. Thus, we need to be cautious when apply-
ing common phenological models to project future shifts in
phenology under climate change scenarios where extreme
warm years are becoming more common. Moreover, these
results demonstrate a critical need to better understand the
underlying biology of how extreme warm years affect tree
phenology, mainly because these years are predicted to
become the climate norms of the next century.
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