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Wave propagation characteristics in long cylindrical specimens of ballistic gelatine have been investigated using
a high speed digital camera and hyper elastic constitutive models. The induced transient deformation is
modelled with strain rate dependent Mooney-Rivlin parameters which are determined by modelling the stress-
strain response of gelatine at a range of strain rates. The varying velocity of wave propagation through the
gelatine cylinder is derived as a function of prestress or stretch in the gelatine specimen. A finite element
analysis is conducted using the above constitutive model by suitably defining the impulse imparted by the

polymer bar into the gelatine specimen. The model results are found to capture the experimentally observed
wave propagation characteristics in gelatine effectively.

1. Introduction

Gelatin and gelatin compounds are often used as tissue surrogates
in a range of biomedical applications for studying tissue damage and
modeling tissue response during reconstructive surgery. Their ability to
be molded with customizable properties makes them ideal candidates
as surrogates for human organs, tissue, and muscle. Gelatin is also used
as a projectile for testing of aircraft windows and engine components to
simulate bird impact during flight (Wilbeck and James, 1981). Gelatin
is basically a fibrous protein extracted from the skin, bones, organs of
animals and even sea weed. Ballistic gelatin, which is popularly used in
many dynamic applications, is prepared with collagen extracted from a
pig skin. Typically, the preparation is called ‘acid preparation’ (Type-A)
at pH 4.6 and its strength is quoted as 250 Bloom (Jussila, 2004).
There are two popular ways of gelatin preparation: (i) NATO Gelatin, in
which gelatin and water are mixed in the ratio of 1:4 by volume and (ii)
Fackler gelatin where gelatin and water are mixed in the ratio of 1:9 by
volume (Jussila, 2005).

Due to their wide range of applications, gelatin has been character-
ized under both quasi static and dynamic loads. While the quasi static
and low-velocity behavior has been described through hyperelastic
models (Cronin and Falzon, 2009; Liu et al., 2013; Ravikumar et al.,
2015), the high-velocity material behavior was described through
hydrodynamic theory (Airoldi and Cacchione, 2006; Johnson and
Holzapfel, 2003; Shepherd et al., 2009; Wightman et al., 2010;
Heimbs, 2011; Appleby Thomas et al., 2011; Toyoda and Gupta,
2014). Low-velocity tests ( <30 m/s) on gelatin have been conducted
in drop tower equipment (Cronin and Falzon, 2009; Naarayan et al.,
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2015) or split Hopkinson pressure bar (Cronin and Falzon, 2011;
Subhash et al., 2012; Chen et al.,, 1999; Liu and Subhash, 2006).
Salisbury and Cronin (2009) and Kwon and Subhash (2010) conducted
high deformation rate characterization of ballistic gelatin at nominal
strain rates up to 4,000/s using a polymer split Hopkinson bar. Richler
and Rittel (2014) used a metallic SHPB and developed empirical
models to fit the experimental data. Cronin and Falzon (2009) and
Ravikumar et al., (2015) used a hyper viscoelastic constitutive model to
describe the behaviour of gelatin in the quasistatic and intermediate
strain rate regimes. An Ogden type strain energy density function was
employed for the elastic component and a single Prony exponential
term was used to capture the observed rate-dependent response over
multiple strain rates. Liu et al. (2005) conducted uniaxial compression
and simple shearing experiments on gelatin and determined the moduli
in Mooney-Rivlin model to describe the elastic behavior at low strain
rates.

Gelatin has also been used as a tissue surrogate for understanding
the deformation behaviour of human organs under shock loading or
ballistic impact (Shepherd et al., 2009; Appleby-Thomas et al., 2011).
Wen et al., (2013) investigated cavity formation when gelatin is
subjected to high velocity impact. Song and Chen (2004) studied
non-uniform deformation of soft gels at low velocities to determine
the material properties. Despite the variety of experimental studies
reported here, the literature on non-uniform behavior and wave
propagation characteristics in gelatin are limited.

In this work, the wave propagation behavior in ballistic gelatin is
investigated by imparting an impulse motion into a long cylindrical
gelatin specimen and then capturing the transient deformation using a
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high speed digital camera. To model this response, the high strain rate
behavior of gelatin is determined at a range of strain rates using a
polymer split Hopkinson pressure bar (PSHPB). A hyperelastic
Mooney-Rivlin model is then employed to capture the constitutive
response. This model is applied to wave propagation in a long
cylindrical specimen. To further understand the behavior observed in
the experiments, the variation of the wave velocity with stretch is
explained in terms of two Mooney-Rivlin constants. The equivalent
Neo-Hookean model (with only a single constant) is then defined.
Using these model parameters, finite element analysis of the wave
propagation in the gelatin cylinder was conducted by explicitly defining
the momentum transfer from the loading device to the geletin. The
resulting wave propagation characteristics are then compared to the
experimental observations.

2. Experimental details
2.1. Preparation of the gelatin test specimens

Gelatin powder was purchased from Vyse-Gelatin Innovations,
Schiller Park, IL, USA. The gelatin solution with 250 bloom strength
was prepared as described in Kwon and Subhash (2010). The proce-
dure involved mixing 2g of gelatin powder with 4g of filtered water at
25° C. A drop of defoamer along with 14g of hot water (at 60 °C) was
then added to the mixture and the entire mixture was stirred at regular
intervals of 3min for 15s each until the powder is fully dissolved. The
mixture was then poured into plastic moulds and placed in a
refrigerator for 2h at 5° C and the experiments were conducted within
1 minute after they were taken out of the refrigerator. No calibration of
the gelatine was performed as the intent was to study wave propagation
behaviour in long cylindrical specimens utilizing a self-consistent
approach based on the experimentally determined constitutive proper-
ties from the small gelatin samples regardless of how they are made
and as long as they exhibit hyperelastic behavior.

Two types of test specimen were prepared: (i) long cylinders of
19mm diameter and 40mm length for investigation of wave propaga-
tion behavior and (ii) thin cylindrical disks of 12.7mm diameter and
2mm thickness for determining the constitutive response at high strain
rates. The prepared specimens were stored in a refrigerator for 2 hours
at 5°C and tests were conducted in ambient conditions at room
temperature within 1 minute after they were taken out of the
refrigerator.

2.2. Wave propagation in gelatin cylinders

Cylindrical specimens were placed in a polymer (acrylic) split
Hopkinson pressure bar (PSHPB) and subjected to impulse load of
duration of roughly 0.33ms. The principle of application of impulse
load to gelatin by the PSHPB is briefly discussed here. The PSHPB
consists of a striker bar, an incident bar and a transmission bar, all of
diameter 25.4mm (Kwon and Subhash, 2010; Liu and Subhash, 2006).
The specimen is placed between the incident and the transmission
bars. The striker bar is launched from a gas gun towards the incident
bar at predetermined velocity. The impact generates a stress pulse in
the incident bar and travels towards the specimen. The duration of the
stress pulse is equal to the round trip travel time of the longitudinal
wave in the striker bar. When the stress wave in the incident bar
reaches the bar-specimen interface, the rapid motion of the incident
bar imparts an impulse into the gelatine and generates a stress wave
within the cylindrical specimen. The associated temporal and spatial
deformation of gelatine is captured by a high speed camera at 14,000
frames per second. Note that due to the low wave velocity in the gelatin,
it takes several milliseconds for the stress wave to traverse the length of
the long cylindrical specimen and hence, the transmission bar acts only
as a rigid support during this time interval. The transient deformation
of the specimen during this time interval is of interest in this study. A
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Fig. 1. Experimental setup for testing of gelatin specimens to study wave propagation in
polymer split Hopkinson pressure bar.

schematic of the test setup is shown in Fig. 1. Three specimens were
tested at each incident bar velocity of approximately 1.7 m/s, 2.1 m/s,
and 3.6 m/s to ensure repeatability of the behaviour.

2.3. High strain rate stress-strain testing of gelatin using PSHPB

Due to the low-impedance (product of density, wave velocity, and
area of cross section) of gelatin, traditional metallic SHPB has been
shown to be unsuitable for extracting its constitutive response (Liu and
Subhash, 2006). Therefore, alternate methods such as hollow trans-
mission bar and PSHPB have been used effectively in the literature
(Cronin and Falzon, 2009; Salisbury and Cronin, 2009; Liu and
Subhash, 2006; Cronin and Falzon, 2011; Wen et al., 2013). In both
cases the aim is to reduce impedance of the bar close to that of the soft
specimen, yet ensuring that the bar stiffness and strength are suffi-
ciently high to keep the testing equipment relatively rigid during the
deformation of the soft specimen. A schematic of the test setup is
shown in Fig. 1. The thin gelatin specimen is again sandwiched
between the transmission and incident bars. Similar to previous tests
on long cylindrical specimens, the stress wave reaches the specimen,
except that now it deforms the specimen uniformly because the
incident stress pulse duration is significantly greater than several times
the time required for stress wave to travel through the specimen
thickness. A portion of the wave is transmitted to the transmission bar
and the rest is reflected back into the incident bar. The amplitude of the
reflected wave is proportional to the strain rate in the specimen and
that of the transmitted wave is related to stress in the specimen.
However, the traditional equations used for metallic SHPB need to be
modified to account for the viscoelastic nature of the polymer bars. The
specific procedure for extracting the stress-strain response for soft
materials using a PSHPB involves many steps and is well-documented
in Liu and Subhash (2006) and Liu et al. (2005). The viscoelastic wave
propagation in the polymer bar results in dispersion and attenuation of
wave signals as they travel along the bars. To capture this phenomenon,
three strain gages were bonded on the incident bar and one gage at the
center of the transmission bar length. The wave signals captured by
these strain gages reveal the severity of dispersion and attenuation in
the propagating waves. Utilizing any two of these three signals (e.g.,
strain gages 1 and 3 in Fig. 1) on the incident bar and an iterative
procedure developed by Liu et al. (2005), the viscoelastic behavior of
the polymer bars can be fully characterized in terms of an impulse
response function (IRF) which allows one to predict the shape of the
stress pulse at any position in the bar for any instant of time. By
reconstructing the incident and reflected signals at the gage locations,
the stress-strain response in the specimen can be determined using the
following equations (Kwon and Subhash, 2010; Liu and Subhash,
2006)

Ah/’ o€,
(1) = — Ey(t—7)—d
a0 =7 ), Bl d (1)

2 1
a0 =1 fo C(0)e, (z)dr o

Where ¢,. and &, are the time varying reflected and transmitted strains,
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Fig. 2. Images of wave propagation in a cylindrical ballistic gelatin specimen subjected to an impulse load in a polymer split Hopkinson pressure bar.

respectively, L is the original length of the specimen, and A, and A are
cross sectional areas of bar and specimen, respectively. C is wave
velocity in the bar given by C(r)= f(’;i(’))) where E(t) is the stress
relaxation modulus function of the bar and p is the density of gelatin.
The wave velocity in undeformed material is calculated as discussed in
Liu and Subhash (2010), given by C(0) = V(E;/p), where E; are the
visco-elastic elements that approximate the modulus of the bar and p is
density. Using the above equations the stress-strain response of gelatin
at a range of strain rates is determined (Kwon and Subhash, 2010). The
derivation of the expression in Eq. (2) and of the expression for C(t) is
given in Section 5.

The low impedance of gelatin necessitates small specimen thickness
to satisfy stress equilibrium (Kwon and Subhash, 2010; Liu and
Subhash, 2006; Song and Chen, 2004 and 2005) and obtain reliable
stress-strain response at high strain rate. Subhash and Ravichandran
(2000) established minimum thickness requirements of a specimen
based on specified number of wave reflections for stress equilibration.
They suggested that at least four round-trip travel times are necessary
within a specimen to achieve the dynamic stress equilibrium. Song and
Chen (2004) validated this method for soft specimens by using quartz
gages on both sides of a soft specimen and comparing the signals to
establish stress equilibrium. Utilizing the same approach, Kwon and
Subhash (2010) determined that a 2 mm thickness is sufficient to
ensure dynamic stress equilibrium in PSHPB testing. Based on these
considerations a gelatin sample of 2 mm thickness and 12.7 mm
diameter was used for determination of stress-strain response.

An important consideration while testing soft materials at high
strain rates is radial inertial effect which a material point experiences
due to sudden radial acceleration during uniaxial compression of the
specimen. In uniaxial compression the material points on the outer
surface are free to move radially and hence experience high radial
accelerations and thereby exert an inertial force or stress on the
material within the cylinder. This inertial stress is therefore maximum
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at the central region of the specimen due to confinement. While this
inertial stress magnitude may be only on the order of hundred mega
pascals or less (Song and Chen, 2004 and 2005), it is a significant
fraction of the strength of the soft material. On the other hand, this
stress magnitude is negligible in metallic or ceramic materials in
comparison to their failure strength (Warren and Forrestal, 2010). In
addition, the dynamic loading causes large radial displacement in a soft
material during the experiment. The above discussed inertia related
issues cause additional stiffness in the material. The dependence of
radial inertial stress on strain ¢,, strain rate ¢,and strain acceleration
&is expressed as hydrostatic pressure p given by (Warren and
Forrestal, 2010)

_ P 3(&)?
P 0=e | 2(1-e)

+£3'XJ(a02—r2) @)

where, p is density, r is the radial distance of a material point and ao is
the outer radius of the specimen. Note that the pressure varies with
square of the radial distance r and is maximum at the centre of the
specimen and reduces in a parabolic fashion to zero at the outer radius
of the specimen. As a result, the average additional pressure p which
would be measured in the experiment along with the axial stress is
calculated (Warren and Forrestal, 2010) as
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This additional stress should be subtracted from the measured axial
stress in the transmitted bar as this stress doesn’t contribute to the

deformation of the material. More details of this procedure are given in
Nishida (2010) and Nishida and Chen (2010).
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3. Experimental results
3.1. Wave propagation in cylindrical specimens

Fig. 2 shows a sequence of high speed images of gelatin deformation
in a 40mm long cylindrical specimen due to an impulse loading in a
PSHPB where the incident bar velocity was measured at 3.49 m/s. The
six images are sequenced at 640 microseconds apart with the last image
at 3200 microseconds. Fig. 2(a) shows the initial state of the sample.
After imparting impulse into the gelatine specimen, the motion of the
incident bar ceases at 640 microseconds (Fig. 2(b)) and resumes after
3200 microseconds when the reflected wave from the specimen in the
incident bar reaches the impact end and then arrives back again to this
interface causing a second impulse loading on the gel specimen. This
interval allows for observation of the wave motion and the associated
gel deformation over 3200 ps.

Upon receiving an impulse load by the incident bar in PSHPB, a
longitudinal stress wave is generated in gelatine and propagates along
the length of the specimen. The sequence of images shown in Fig. 2(b)-
(f) illustrate gel deformation as the wave propagates. Upon impact, the
generated wave causes a bulge in the specimen (T=0.64 ms) where the
transverse strain is maximum. This bulge tapers down to the original
diameter of the cylinder on both the front and the rear of the wave crest
as shown by the blue dashed boundary lines. The white arrows above
the specimen indicate the length over which the deformation extends in
the specimen. The taper ahead of the bulge extends over a longer
distance than the one behind the crest. This observation indicates that
the wave-front travels at a higher speed than the point at the crest of
the wave. With time, the amplitude of the crest attenuates and
disperses as it propagates along the length of the cylindrical specimen.
In Fig. 2(f) the wave-front almost reaches the end of the specimen even
though the wave-crest has only travelled 1/3™ of the specimen length.
The taper length at the back of the wave-crest remains almost the same
with time. The profiles of the wave at various time intervals are
superposed in Fig. 3 to reveal the dispersion, peak attenuation, and
positions of wave-front and wave-crest with time.

The variation in velocities of the wave-front and wave-crest for
three different bar-input velocities are shown in Fig. 4. It is seen that
both these velocities increase with increasing incident bar velocity.
However, the wave-front velocity reveals a sharp drop within 250 ps,
indicating that the initial velocity of the wave is influenced by the bar
impulse velocity and once this influence is diminished, the wave-front
travels at its characteristic velocity which depends on the stretch of the
material as will be shown in the next section. On the other hand, the
wave-crest velocity gradually decreases as it propagates along the
length of the cylinder. Due to its gradual attenuation, it cannot be
tracked in the images once its amplitude falls close to the original
diameter of the cylinder. Regardless, the wave velocities vary with
incident bar velocity and this can be explained based on the prestress
induced in the specimen as discussed in the next section.

:1
Tzl.ggm‘s'zgm5

T=3.2ms

T=2.56 ms

21 mm

Fig. 3. Profiles of the wave in gelatin specimen at various time intervals revealing crest
attenuation and dispersion as it traverses the specimen length.
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Fig. 4. Variation of the velocities of propagation of the wave-crest and wave-front with
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4. Constitutive modeling

The intent of the modelling effort is to first capture the constitutive
behavior using the well-established hyper-elastic models and deter-
mine the relevant constants. In the next phase, we will apply these
models to capture the wave propagation behavior in gelatine cylinder.
In literature both Neo-Hookean and Mooney-Rivlin models have been
used. While the former uses a single constant in its constitutive
equation, the latter is more versatile as it utilizes two constants to
capture the complex behaviour of gels. In these models, the strain
energy function W is given by

W= K§-3) (%)

(6)

Where K, C; and C, are constants and I; and I, are the stress invariants
of Cauchy-Green tensor. The Mooney-Rivlin model, Eq. (6), can be
rewritten in terms of the principal stretches A;, A» and A3 (Treloar,
1975) as

—Neo — Hooken(NH)model

and W=C (,-3)+C,(1Lb—3) —Mooney — Rivlin(MR)model

111
W = QU342 =3)+Co| 5 +—5+—>5-3 ]
AA3 A3

@)

Consider a uniaxial test on an isotropic cylindrical specimen where
the load is applied in x;-direction yielding an extension ratio or
compression ratio A;=A. The condition of isotropy in the other two
directions yields A=A;. Applying the incompressibility condition
(hA4=1) for an isotropic material, we obtain Ay=A3= % The above
strain energy functional for MR model can now be written in terms of
stretch A as

w=q LMY G, u+L_3
A 22 (8)

The first Piola-Kirchoff elastic stress can be obtained by differen-
tiating the energy function with stretch, i.e.,ad:%, in terms of C; and
C> (Kobayashi and Vanderbyl, 2005)

_ G
— X =g+ 2
20 - ) A

Cel
)]

Thus, the stress in the gelatin cylinder can be fully expressed in
terms of the MR constants and the stretch of the material. However, as
described previously, the behaviour of hyperelastic materials also
depends on the prestress (or prestrain) in the material (Kobayashi
and Vanderbyl, 2005) which can influence the wave behaviour
observed in Fig. 4 where the velocities of wave-front and wave-crest
increase with increasing incident bar velocity. These phenomena can be
explained through the change in prestress (or prestrain) in the material
as the wave propagates in the sample (see Fig. 2). Considering wave
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propagation only in x;-direction with a prestress T as the Cauchy stress
applied by the incident bar, the equations of motion can be written
(Kobayashi and Vanderby1, 2005).

or? (10)

Where 5‘1 \is the stiffness and the Cauchy stress T causes a stretch of
A in x;-direction through the relation

ow
T=22%
oA (11
Note that the term (C,;+T7) is the effective stiffness in the presence
of pre-stress. The dilatational velocity in the x;-direction is now given

by

b \/M
P 12)

~ 0%u
(C11+T)?21 =p

Where C1; can be derived in terms of the deformation gradient Fy;
=ZLX‘l=)\ as (Kobayashi and Vanderbyl, 2005) as

~

W
4
Gy (Fi1) Py

= det (F) (13)

For an incompressible material det(F)=1. The finite Green strain
tensor &7 is given in terms of the deformation gradient as
€1 = 1 A2=1)

"7 (14

Utilizing Egs. (8), (13) and (14) we can derive the expression for the
numerator of Eq.(12) as
Ch+T= (242+i)c.+(%)c2

1 1 (15)

The above equation illustrates that the wave velocity in gelatine

depends on the stretch ratio A (which is nothing but prestrain). It would

be of interest to know the value of C 11 at zero strain (A=1) from Eq.
(15) which for MR model is given by

Ci() + T (Dug = 6[(G + C)lu (16)

For comparison purposes, if we model the gel behavior as a Neo-
Hookean (NH) material (i.e., C2=0), we reduce Eq. (6) to Eq. (5) and
hence we can write Eq. (16) as

[Ci(1) + T(D)]yy = 6K 17

Now we can plot the wave velocity as a function of prestrain A. But
the constants C; and C» are unknown which may depend on strain rate
of the material. Recall that gelatine is highly rate sensitive material
(Kwon and Subhash, 2010) and the local strain rate in the wave
propagation experiment changes not only spatially and temporally, but
also with initial velocity of the indent bar (see Figs. 2—4). Therefore, we
will first obtain stress-strain response experimentally at a range of
strain rates and try to evaluate the constants used in the relations
above.

4.1. Stress-strain response of gelatine

Fig. 5 shows true stress (A\*Engineering stress) and true strain (-
In(A)) curves at a range of strain rates from 0.0107/s-6600/s. These
curves are corrected for radial inertial stress as described earlier
(Nishida, 2010; Nishida and Chen, 2010). These curves appear slightly
different from Kwon and Subhash (2010) because such correction for
radial inertia was not applied in that article. Without this correction,
the curves display a plateau in the initial strain range due to slight non-
equilibrium in the early stages of deformation which vanishes when
equilibrium gets established later (Song and Chen, 2004). The reported
curves in Fig. 5 also are slightly different from those of Richler and
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Fig. 5. True stress-strain curves at different strain rates for ballistic gelatin.

Rittel (2014) and Salisbury and Cronin (2009) for similar strain rates
due to differences in mixing methods, temperature, and inhomogene-
ities (small bubbles, cracks, and fissures) present in the virgin speci-
mens which may give lower stiffness in their early response. In
addition, Richler and Rittel (2014) used a metallic Hopkinson bar
and they noted no stress increase even at a strain of 0.2, probably due
to high low-signal to noise ratio which may have made identification of
stress increase difficult. We have also noted that Richler and Rittel
(2014) have used a gelatine density of 1000 g/cm® which is not
appropriate. All these differences could have caused discrepancies in
reported literature values.

In Fig. 5, the strain rate dependence of stiffness and strength is
clearly observed. The curves show an increasing stress with strain until
the stress reaches a peak and then decrease for large strain values. This
trend is very clear for the highest strain rate (6600/s). The curves at
other strain rates clearly show a peak but the decreasing trend is not
observed since the load or true stress didn't go beyond the peak.
Similar trend for decreasing true stress is also observed by other
researchers (Richler and Rittel, 2014).

Now consider Eq. (9) and plot 6¢/(2*(A-1 /M) as the ordinate and
1/A as the abscissa for various values of g, and A. Utilizing a polyfit
command with degree one, we can now determine the constants C; and
C> based on least square criterion. With these values of Mooney-Rivlin
constants, the stress-strain curves are generated by evaluating the true
stress expression in Eq. (11) using Eq. (9). Fig. 6 compares the
experimental and model true stress-strain curves which reveal that

6
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Fig. 6. Comparison of the experimental and MR model true stress-strain curves in
compression.
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Table 1

Mooney-Rivlin constants obtained from curve-fit to the experimental data.

Strain rate (s*  C;(N/m?) C,(N/m?) 6(C+Cy) (N/ True strain
D) m?) range
0.0107 4.0482x10°  -1.1569x10°  1.7348x10* 0.47
2500 3.42x10° -1.652x10°  1.06x10° 0.60
3600 1.322x10°  0.595x10° 1.15x10° 0.81
4800 2.90x10° 0.087x10° 1.792x10° 0.81
5700 2.7x10° 1.32x10° 2.41x10° 0.81
6600 1.23x10° -0.135x10°  6.57x10° 0.81
16
2
15+ R"=0.99 E
14+ b
~
3]
¢ 137 |
-
Q
g 12+ N
on
=
1Mt O Experimental 1
—Curve Fit
10 b

0 1000 2000 3000 4000 5000 6000 7000
Strain rate (1/s)

Fig. 7. Plot of variation of the term 6(C;+C,) with strain rate.

the above values of constants capture the stress-strain response up to a
true strain as large as 0.8. The values of the constants C; and C> and
their range of validity are shown in Table 1. Some values of constants
are negative and will influence the model behavior in a complex way.
Also shown in Table 1 are the values of the term 6(C;+C>) in Eq. (16)
which signifies the stiffness in the presence of prestress. From Egs. (12)
and (15) it is seen that the wave velocity in gelatine is dependent on
both the Mooney-Rivlin constants, and that the wave velocity at zero
strain (A=1) is dependent on sum of the constants (6(C;+C,)). This
term is plotted as a function of strain rate in Fig. 7 which reveals that it
increases (and hence the wave velocity) with strain rate in a nonlinear
fashion. The third order polynomial model fit is also shown in the
Figure. It is to be noted that Richler and Rittel (2014), based on
empirical evidence, have derived a linear relationship between the
logarithm of stress and strain rate for ballistic gelatin. The current work
reveals that the relationship between the logarithm of the sum of the
Mooney-Rivlin constants (the sum of the constants is directly propor-
tional to the stress) and the strain rate is much more complex. It is seen
from Fig. 7 that a third order polynomial instead of a linear fit
describes the relationship between strain rate and the logarithm of
Mooney-Rivlin constants appropriately. Also the current work presents
finite strain hyperelastic models such as the Mooney-Rivlin and Neo-
Hookean models which can model the complex phenomena observed in
gels. Recall that a completely incompressible material cannot support
elastic waves nor the wave deformation observed in the test. Also, the
pressure effects such as radial inertial effects which occur during rapid
loading will not be observed in fully incompressible material. Most of
the commercial finite element packages make the assumption of near
incompressibility at large strains. In our study we have used a nearly
incompressible Mooney Rivlin material model with Poisson’s ratio of
0.49 was used. Even though the Mooney-Rivlin and Neo-Hookean
models are not strain rate dependent, the data from this work provides
a relationship between the constants and strain rate which will be
useful when the average strain rate of loading is known as will be
demonstrated later where the phenomena observed in Fig. 2 are
modelled using the average strain rate of loading. With the values of
constants shown in Fig. 7 we will now try to simulate the wave
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propagation behaviour in gelatin.

Despite the trend shown in Fig. 7, it is not possible to separately
determine the values of constants C; and C- in this procedure as they
depend on strain rate. Since the prime goal of this analysis is to model
the wave propagation behavior observed in Fig. 2, knowledge of the
sum of the constants alone would be of limited use. To overcome this
limitation, we will use the single constant NH model that is equivalent
to the derived two constant MR model. The equivalence is based on the
wave velocity in the gelatine (which is a function of stretch) by defining
the NH model with the constant K = (C;+C>) such that it will result in
the same initial wave velocity at zero strain (i.e., A=1) for both the
models. The process is described in the following paragraph.

In the previous analysis on the stress-strain curves, we used MR
model because of its versatility in capturing the response with two
constants. If we had used the NH model it would have only captured
the average response due to the single constant in the model. Also
recall from Table 1 that some of the values of C- constant are negative
suggesting that the stress does not rise consistently at all strain rates.
Therefore the initial wave velocity of the MR model is equated to that of
the NH model by considering the stiffness at zero strain. To check the
validity of this approach the true stress-strain curves for both the
models are plotted in Fig. 8 for the selected strain rates. It is evident
that for low strain values up to 0.59 the equivalent Neo-Hookean model
compares well with the Mooney-Rivlin model at all the strain rates
considered. Since the strain observed in the experiments in Fig. 2 is
well within this range (to be discussed in Section 5) and the strain rates
are also in the lower range as will be discussed later, the Neo-Hookean
model should be adequate to capture the wave propagation phenom-
enon well.

It is evident from Figs. 2—4 that not only the velocities of the wave-
crest and wave-front vary with time but also the strain in the wave-crest
varies as it propagates. So it would be of interest to study, using the
equations derived above, how the wave velocity varies with prestress/
prestrain which is caused solely by the dynamic compressive loading
imparted by the PSHPB. The variation of the wave velocity with static
compressive pre strain for the newly constructed NH model is shown in
Fig. 9. There are many observations that can be made from this figure:
(i) as expected, for static loading (strain rate of 0.0107/s), the wave
velocity is not dependent on prestrain and is almost constant (zero); (ii)
for dynamic strain rates, the wave velocity not only increases with
strain rate but also with pre strain in a non-linear way, and (iii) the rate
of increase in wave velocity with pre strain increases rapidly with strain
rate, especially at higher strain rates. Clearly, the wave velocity
increases with compressive prestrain for a given strain rate in a
complex way. With this model behavior we will now embark on
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Fig. 8. Comparison of stress-strain curves between the Mooney-Rivlin and the equiva-
lent Neo-Hookean Models.
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Fig. 9. Variation of dilatational wave velocity with stretch at various strain rates using
the equivalent Mooney-Rivlin Model.

capturing the wave propagation characteristics in the gelatine cylin-
ders.

5. Modeling the gelatin deformation during wave
propagation

To model the wave propagation phenomenon in a cylindrical
specimen, analytical expressions were derived for the interaction
between the gelatin surface and the incident bar. These equations
were implemented in LS-DYNA software by constructing a finite
element model of the full cylindrical specimen and imparting appro-
priate loading and boundary conditions. A total of 9949 constant-stress
8-node solid elements were used to model the 40-mm long cylindrical
specimen as shown in Fig. 10. The nodes along the left boundary of the
specimen were constrained in x-direction and those at the right-end
were given mass for imparting acceleration a,(t), or body force, in x-
direction by the incident bar. As would be seen in subsequent
paragraphs that the value of mass at the nodes depend on the time-
step required to obtain finer details of deformation. The convergence of
the solution for the mesh size was verified by meshing the specimen
domain with a range of element aspect ratios.

Assuming linear elasticity, the interaction stress of the incident bar
with the gelatine sample can be written as

o = pcy

(18)

Where p is the density of the bar, c is the wave velocity in the bar
and v; is the velocity of the particle in the incident bar interacting with
the specimen. The above equation can be rewritten as

6 = (pedt) vy/dt (19)

which can be interpreted as the inertial force of a mass (pcdt)
undergoing an acceleration of vi/dt on a unit cross sectional area
(Timoshenko and Goodier, 1970). v, can be viewed as the difference in
particle velocities of the incident and reflected wave velocities at the
vp), 1.e.,

incident bar-specimen interface (i.e., vy = vj -

a(t)

U, ()=0

Fig. 10. Specimen discretization and loading conditions.
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v =2vi— (v + V) (20)

where 2v; would be the velocity of the particle of mass pcdt of the
incident bar when it initially interacts with a completely stress-free
surface of the specimen and v;+v, = vy, is the velocity with which this
interface moves after encountering resistance from the specimen which
is undergoing deformation during the experiment in time duration of
dt. Similarly, the interfacial force F on a bar of cross-sectional area A
can be written as

F = (pAcdt)— = pAcdtL — pAcdt—= Vint

dt dt 1)

The differential (AF,) of the above equation can be considered as
the equation of motion of the interface in terms of the input
acceleration(m) given by

d(2v) dVine
AF = pAcdt—— pAcdtT (22)
Eq. (22) can be rearranged in a convenient form as
del d(2V1
pAcdt— m + AF = pAcdt——— (23)

where, the right hand side is similar to the body force for the interface
which is the input for the nodes in the finite element analysis. This
approach is similar to body force equivalent for seismic radiation in
literature (Burridge and Knopoff, 1964). However, realize that the
above equation of motion is for a purely elastic material. Since the split
Hopkinson bar is made of a viscoelastic material, modifications must
be made to the above method where the wave velocity at time t is
considered as C(t) and the stress is given by

o(t) = fo pC(t — T)dv(r) (24)

multiplying and dividing the right hand side with C(0), the wave
velocity at initial time, Eq. (24) is rewritten as
dw(7)

c(0) (25)

Considering de(t)=dv(1)/C(0) and comparing this expression with
the expression of stress in a viscoelastic material (Eq. (1)), we get

o0 = [ pct - e

Ep() = pC(1)C(0) (26)
and
dvi(t) = C(0)de(t) 27

The expression in Eq. (2) can therefore be easily derived from Eq.
(27) since the strain from the SHPB theory which defines the strain in
the material at any time as twice the integral of reflected wave velocity
with time divided by the length of the sample. From Eq. (22), for a
linear elastic material, it is apparent that a constant acting mass of
pAcdt causes stress in the adjoining material with a velocity change of
v; in time dt, where dt can conveniently be chosen as the sampling rate
or the time step of analysis, provided that the inputs for the analysis
(e.g., displacement, velocity or acceleration) for the active mass (pAcdt)
are given at the same time difference dt. In Eq. (25), for a viscoelastic
material, it is observed that the active mass changes with time. So the
equations of motion for elastic solid as seen in Egs.(22) and (23) have
to be rewritten to accommodate for the changing mass of the
viscoelastic bar as follows

/‘tpAdtC(l—T)d(dvmr(T) )+AEm = prdtC(t T)d(w
0

dr ) (28)

Which can be written in terms of the incident strain g;_v;/C(0) and
interfacial strain ;,;=vi,;/C(0) as

f AdiE, (1 - r)d(dg’”’ (7)) + ARy = f AdiE, (1 ~ T)d(gd (2e; (T)))
0 dr
(29)
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Note that the mass appears both in body force term on the right and
the inertial force on the left in Egs. (28) and (29). So an averaging
procedure was adopted to decide the mass of the nodes on which the
body force or acceleration is imposed. The mass for each time t is found
by evaluating the convolution integral in the right hand part of
equations and dividing it by the body force term (W) and then
averaging all the masses over time t to arrive at the mass of the
interacting element. Dividing this mass by the total number of contact
nodes in the specimen surface with the bar gives the mass for each
mass element.

The equivalent Neo-Hookean model with constant evaluated using
Fig. 7 for strain rate dependence was used for the analysis. The
equivalent Neo-Hookean model constant K for the test discussed in
Figs. 2 and 3 (strain rate of 600/s, Vo=3.49m/s) is 1.49x10* N/m?2. To
perform the finite element analysis, the NH constant K has to be
obtained at the specified strain rate in the experiment from Fig. 7 and
the video images. The time required to form the forward taper length
just before the wave is initiated is measured from video images.
Assuming incompressibility(/zr?=[yzry?), we can approximate the max-
imum engineering longitudinal strain (e,) and the maximum engineer-
ing transverse strain (g,) in terms of the specimen dimensions as

L (Yot _
i \r (1+4¢,)?
Where [, and r,, are original length and radius, and [/ and r are the

deformed length and radius, respectively. The average strain rate of
deformation during the wave propagation may be written as

l—e)=2
(I - &) (30)

S*avg = 0.5%(1 = Amax) — At (31)

Where, At is the time taken to reach the maximum strain of (1-4,,.).
Both 4,,,, and At were measured from the high speed images. The factor
of 0.5 is assumed for averaging the strain spatially along the length of
the sample where the strain varies. For the example shown in Fig. 2,
the strain was acquired at 0.5x107® ms since the acquisition rate of the
oscilloscope was 2MegaSamples/s and the data such as wave velocity
variation, strain and its derivatives were calculated for a time step (At)
of 2.72x107® ms to calculate the right hand side expression of Eq. (29).
This value was divided by the body force term to evaluate the effective
mass for that particular time t. The average mass over the total time
was then calculated as 0.0018kg which was then distributed uniformly
over the contact nodes. This exercise required a process where the
finite element analysis was run a priori to determine the time step and
then calculate the mass on nodes for the next analysis where the
analysis for the specimen is to be conducted. For the three tests
performed at different input bar velocities shown in Fig. 4, the
maximum strain (or stretch), strain rate, and the NH model constant
K are given Table 2. A Poisson’s ratio of 0.499 has been used in
addition to the constant K for all the three cases in the LSDYNA
software to simulate the wave generation and pressure conditions such
as the radial inertial effect.

Figs. 11 and 12 compare the computed profiles of the gelatin
specimen for a strain rate of 600/s at various times during wave
propagation with those of the high speed snapshot profiles from the
experimental results (Fig. 2). There is a good agreement between the
experiments and analysis in terms of the amplitude of the wave crest,
wave duration, and the propagation velocity of the wave-front suggest-

Table 2
Test conditions and Neo-Hookean constant values for the three samples.

Average Maximum strain Average strain ~ Neo-Hookean
velocity (m/s) (=Amax) rate (1/s) constant K ( N/m?)
3.49 0.42 600 1.5x10*

2.03 0.28 450 1.04x10*

1.79 0.19 283 6.7x10°
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Fig. 11. Comparison of wave profiles in the specimen between the analysis and
experiment at different time.

ing that the chosen material model on the basis of average strain rate
captures the gel behavior reasonably well.

Fig. 13 compares the velocities of the wave-front and wave-crest
between the model and experiment for three input bar velocities. It is
noted that the wave front velocity (Fig. 13 (a)) in the model and
experiment match reasonably well for both the initial phase (where it is
aided by the bar impulse) and also later in the steady state regime
(where the front slows down). Recall that the wave velocity is a function
of stretch in the material, and during the early stage, the stretch
(strain) in the material is high due to the immediate influence of the
impulse imparted by the incident bar, and the wave front travels at a
higher speed. As the influence of the impulse is diminished, the front
velocity slows down due to the lower stretch (strain and strain rate) in
the material. This is clearly reflected in Fig. 13(a). However, the
comparison between the experimental and model crest velocities,
shown in Fig. 13(b), is not as good as in Fig. 13(a). During the initial
phase, the velocity of propagation of the wave crest from the model is
lower than that of the experiments and at a later stage the trend
reverses. This result stems from the fact that the strain (stretch) and
strain rate are significantly higher in the crest than the wave front, and
at higher strain rates the constant K exhibits a highly non-linear
response as seen in Fig. 7. The simplified Neo-Hookean model with one
constant is unable to capture the complex strain and strain rate
dependent response of these materials, especially at large deformations
and high strain rates. Interestingly, the crest-velocities at the start (i.e.,
at t=0 in Fig. 13 (b)) in both the model and experiment match
reasonably well, i.e., 7 m/s and 7.4 m/s, respectively, with a difference
of only 5.6% which suggest that the chosen Neo-Hookean constant K
simulates the initial response well in terms of velocity but later deviates
due to the limited flexibility of the model. The non-linear nature of the
dependence of the constant on strain rate (see Fig. 7 and Egs. (5-8)) is
more severe at higher strain rates which is responsible for the large
deviation in the crest profile and its velocity.

The deviation observed in Fig. 13(b) can be attributed to the strain
rate dependence of the material. Since the material constants for the
average strain rate was chosen, the response represents an average
response. As can be seen in Fig. 13(b), the experimental wave velocity
in the initial stages is consistently higher than the analytical wave
velocity for all the three experiments. This trend continues up to a
certain point and then deviates. This experimental behavior can be
intuitively understood in terms of higher strain rates in the initial
stages of impulse loading resulting in higher stiffness (and conse-
quently higher wave velocity) and lower strain rates at later stages
resulting in a more compliant material (and hence lower wave velocity).
On the other hand, the analytical wave velocity variation is only due to
prestrain/prestress and not due to change in strain rate because the
single Neo-Hookean constant for the average strain rate is chosen for
this analysis. This deviation may be alleviated by choosing a complex
viscoelastic material model which captures the strain rate dependence
well and can be a scope for future work. It would be impossible to
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Fig. 13. Comparison between the experimental and model results of (a) wave-front velocity and (b) wave-crest velocity in gelatin.

develop a linear viscoelastic model to encompass the whole range of
strain rates (0-6600/s) as nonlinear viscous effects (such as Non-
Newtonian behavior) are generally observed in gelatin over larger
strain rate range (Subhash et al., 2012) and are responsible for strain
rate dependence rather than linear viscous effects. Therefore, a limited
linear viscoelastic model over selected range of strain rates which is
enough for the modelling of this phenomena can be chosen. It can
therefore be concluded that the current Neo-Hookean model captures
the overall response in an average sense within the time range of the
experiment.

40

The body force method combined with the Neo-Hookean model
based on the strain rate dependence of compression response has been
shown to capture the behavior of gelatin during wave propagation
reasonably well. Although the average strain rate (600/s) in the wave
propagation experiment is considerably lower than the maximum
strain rate (6600/s) utilized in the Hopkinson pressure bar experi-
ments, such a study was warranted to obtain the complete strain rate
dependence of the model constants as shown in Fig. 7. While the two
constant Mooney-Rivlin model has a greater flexibility, by defining an
equivalent Neo Hookean model constant allowed for simpler analysis
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that captured the apparent dispersion and attenuation of the wave in
gelatin specimen effectively.

6. Conclusion

Wave propagation experiments on cylindrical ballistic gelatin
samples revealed that the velocities of wave-crest and wave-front
decrease with time and there is a simultaneous attenuation and
dispersion of the wave crest. Analytical expression for the dilatational
wave velocity in gelatine is derived using Mooney-Rivlin and Neo-
Hookean material models in terms of the stretch in gelatine. The
decrease in the wave velocity with attenuation of the transverse
displacement (the crest) is explained through the dependence of the
longitudinal wave velocity on the stretch of a hyperelastic material. It is
found that the initial wave velocity depends on the constants in both
the models and the sum of the Mooney-Rivlin constants is proportional
to the initial dilatational wave velocity.

The constitutive response of ballistic gelatin as a function of strain-
rate was modelled using Mooney-Rivlin and Neo-Hookean material
models and a cubic relationship between the logarithm of the sum of
the Mooney-Rivlin constants and strain rate was observed. The
equivalent Neo-Hookean material which has the same initial wave
velocity as that of the Mooney-Rivlin model was defined with the Neo-
Hookean constant being proportional to the sum of the Mooney-Rivlin
constants. It was found that the Neo-Hookean model stress-strain
curves match the Mooney-Rivlin model well within the true compres-
sive strain range up to 0.58.

The dynamics of the interaction between the incident bar and the
ballistic gelatin was modelled using lumped masses, based on the
average body force transferred by the incident bar, at the nodes of the
ballistic gelatin in LS-DYNA software. This method yielded good
correlation between the model and experimental result for the wave
propagation.
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