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Abstract—This paper presents a three-phase iterative direct
current optimal power flow (DCOPF) algorithm with fictitious
nodal demand. Power losses and realistic distribution system
operating constraints such as line flow limits and phase imbalance
limits are carefully modeled in the DCOPF formulation. The def-
inition of locational marginal prices (LMPs) is extended to three-
phase distribution systems. The three-phase LMP decomposition
is derived based on the Lagrangian function. The proposed algo-
rithm is implemented in an IEEE test case and compared with
three-phase alternating current optimal power flow (ACOPF)
algorithm. The simulation results show that the proposed DCOPF
algorithm is effective in coordinating the operations of distributed
energy resources (DERs) and managing phase imbalance and
thermal overloading. The proposed iterative three-phase DCOPF
algorithm provides not only a computationally efficient solution
but also a good approximation to the ACOPF solution.

Index Terms—demand response, distribution system operator,
locational marginal price, three-phase DCOPF.

NOMENCLATURE

B
pm
ik , G

pm
ik Susceptance and conductance between node i

with phase p and node k with phase m.

Cd (n,m)j Demand bid price of the j-th segment of price

sensitive demand bid curve at node n with

phase m.

Cg (1)i Supply offer price of the i-th segment of

supply offer curve at the reference bus.

Cg (n,m)i Supply offer price of the i-th segment of

supply offer curve at node n with phase m.

d (n,m)j Demand bid quantity of the j-th segment of

price sensitive demand bid curve at node n

with phase m.

(DF t
s)

p Phase p’s delivery factor at node s with phase

t.

FD
g
i Real power of fixed demand at node i with

phase g.

FP, FQ Set of real and reactive power branch flows.

FP
p
b , FQ

p
b Real and reactive power flow on branch b

with phase p.

g (n,m)i Supply offer quantity of the i-th segment of

supply offer curve at node n with phase m.

GSFP
p g
ik q Generation shift factor for real power flow of

the branch which connects node i and k with

phase p when power injection is at node q

with phase g.

GSFQ
p g
ik q Generation shift factor for reactive power

flow of the branch which connects node i and

k with phase p when power injection is at

node q with phase g.

J1 Total number of segments of demand bid

curve at the reference bus.

Jm
n ,Km

n Total number of segments of supply offer

curve and demand bid curve at node n with

phase m.

Iik, Vik Current and voltage across the branch con-

necting node i and k.

(LF t
s)

p Phase p’s loss factor at node s with phase t.

N Total number of nodes including the swing

bus.

PDm
n Real power of total demand at node n with

phase m.

PGm
n Real power of generation at node n with

phase m.

P
p
i , Q

p
i Net injection of real and reactive power at

node i with phase p.

P
p
ik, Q

p
ik Real and reactive power flowing from node i

to node k with phase m.

P
p
loss Total real power losses at phase p.

PLimit
p
ik Real power flow limit between node i and k

with phase p.

R
pg
ik , X

pg
ik Resistance and reactance of the phase

impedance matrix relating node i with phase

p and node k with phase g.

S
p
ik Complex power flowing from node i to node

k with phase m.

(Sloss)ik Complex power losses of the branches con-

necting node i and k.

SLimit
p
ik Complex power flow limit between node i and

k with phase p.

Zik Phase impedance matrix of the line connect-

ing node i and k.

γ Power imbalance limit between phases.

θV
pm
ik ,θI

pg
ik Voltage angle difference and current angle

difference between node i with phase p and

node k with phase m.
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I. INTRODUCTION

Traditionally, the OPF problem is formulated at the trans-

mission system level to find the optimal dispatch levels of

generation power plants to meet electricity demand with

least cost. The LMP concept not only effectively manages

congestion in market operations but also provides guidance

to future generation and transmission upgrades. The LMP

decomposition method makes cost of congestion transpar-

ent. Driven by strict environmental regulations, distributed

renewable generation, demand response, and energy storage

devices are being deployed in the distribution system at an

unprecedented speed. Three-phase OPF problem needs to be

effectively solved by distribution system operators in order to

efficiently utilize DERs and operate distribution system in a

reliable and efficient manner.

Many researchers have studied the problem of DERs co-

ordination and management. In [1], the concept of LMP

for distribution system is first proposed in order to manage

distribution generation (DG) resources and reduce lines losses.

A real-time pricing strategy is used to schedule load with a

linear-programming (LP) method in [2]. Researchers in [3]

provide a two-stage pricing approach for residential demand

response management. In [4], [5], an innovative proactive

demand participation scheme is proposed under two-stage

pricing framework with demand bid curve forecasting. To

mitigate power quality issues of micro-grid, a mixed integer

programming (MIP) approach is studied in [6].

However, only a few papers studied the three-phase OPF

problem. A quasi-Newton method based approach is developed

after transforming the OPF problem with implicit function the-

orem in [7]. Authors in [8] developed a distributed semidefinite

programming solver based on alternating direction method of

multipliers (ADMM) for non-convex optimization problem of

three-phase alternate current optimal power flow (ACOPF).

A comparison of three distributed OPF algorithms including,

the auxiliary problem principle (APP), the predictor correc-

tor proximal multiplier method (PCPM), and the alternating

direction method (ADM), is conducted in [9]. The main

challenge of transforming the original ACOPF problem into

a convex optimization problem is the rank constraint. In

order to convexify the original ACOPF problem, some recent

literatures directly relax the rank constraint [8], [10]–[13].

However, the global optimality is only proved for single-

phase tree-networks [14], [15]. Rank reduction techniques can

be leveraged to develop heuristic algorithms that solve rank-

constrained optimization problems [16]–[18]. However, the

convergence of these algorithm cannot be guaranteed.

A regional distribution system typically has thousands of

feeders with millions of nodes. It is computationally challeng-

ing to solve thousands of convexified large-scale three-phase

ACOPF problems in real time. This paper fills the knowledge

gap by extending the iterative single-phase DCOPF algo-

rithm [19] to three-phase system with fictitious nodal demand

(FND). The proposed iterative three-phase DCOPF algorithm

provides not only a computationally efficient solution but also

a good approximation to the ACOPF solution. In addition,

none of the existing literatures have touched on the subject of

LMP decomposition in three-phase distribution system. This

paper presents a generalized three-phase LMP decomposition

within the DCOPF framework.
The remainder of this paper is organized as follows. Section

II formulates the linear model of three-phase DCOPF problem.

Section III derives three-phase LMP decomposition from the

Lagrangian function. The numerical study results are presented

in Section IV. The conclusions are stated in Section V.

II. THREE-PHASE ITERATIVE DCOPF FORMULATION

A. Linear Model without Considering Loss

The objective of three-phase DCOPF problem is to maxi-

mize total surplus of customers and producers in a distribution

system. On the supply side, an equivalent system supply offer

curve is created at the point-of-integration to the transmission

system. On the demand side, individual buildings and cus-

tomers express their energy usage preferences by constructing

price-sensitive demand bid curves [4]. Node 1, the point-

of-integration to the transmission system, is selected as the

swing bus of the distribution system. Note that there is only

one supply offer curve for all three phases at the distribution

substation. The objective function of the DCOPF problem is

provided in equation (1). Without considering losses, the real

power balance constraints are represented by equation (2). In

subsection II.C, these constraints are modified when real power

losses are taken into consideration. Equation (3) shows the

power flow limit constraints. Generating shift factors used in

the equation are derived in subsection II.B. Phase imbalance

constraints are represented in equation (4), which have been

shown to be effective in mitigating phase imbalance problems

in [3].

max
d

N
∑

n=2

3
∑

m=1

⎛

⎝

Km
n

∑

j=1

Cd (n,m)j d (n,m)j

−
Jm
n

∑

i=1

Cg (n,m)i g (n,m)i

⎞

⎠−
J1
∑

i=1

Cg (1)i g (1)i (1)

subject to:

N
∑

n=1

PGm
n =

N
∑

n=1

PDm
n ,m = 1, 2, 3 (2)

|
N
∑

q=2

3
∑

g=1

GSFP
p g
ik q ·

(

PGg
q − PDg

q

)

| ≤ PLimit
p
ik,

∀i, k and i �= k (3)

|
N
∑

n=2

P i
n −

N
∑

n=2

P j
n| ≤ γ, i, j = 1, 2, 3 and i �= j (4)

where

PLimit
p
ik =

√

√

√

√(SLimit
p
ik)

2 − (

N
∑

q=2

3
∑

g=1

GSFQ
p g
ik q ·Q

g
q)2

2



B. Derivation of Generation Shift Factors

The relationship between real power injection and voltage

angle is derived by differentiating load flow equation with

respect to θV . We start the derivation from equations (5)-(6)

[20]:

∂P
p
i

∂θV
m
k

= |V p
i ||V m

k |[Gpm
ik sinθV

pm
ik −B

pm
ik cosθV

pm
ik ],

p �= m or i �= k (5)

∂P
p
i

∂θV
p
i

= −B
pp
ii (V

p
i )

2 −Q
p
i (6)

Under most operational scenarios, the voltage drop and

voltage angle bias are small when the distribution network

is not heavily loaded or seriously unbalanced. When large

voltage drop happens, step-type voltage regulators, load tap

changing transformers, and shunt capacitors will be operated

to keep customers’ voltage within an acceptable range. Thus

the following assumptions are made:

|V p
i | ≈ 1 (7)

θV
pm
ik ≈

⎧

⎪

⎨

⎪

⎩

120◦ if p−m = −1, 2

−120◦ if p−m = 1,−2

0◦ if p−m = 0

(8)

With the above assumptions, equations (5) and (6) can be

simplified as:

∂P
p
i

∂θV
m
k

= G
pm
ik sinθV

pm
ik −B

pm
ik cosθV

pm
ik ,

p �= m or i �= k (9)

∂P
p
i

∂θV
p
i

= −B
pp
ii −Q

p
i (10)

Excluding the swing bus, in condensed form equations (9)-

(10) become:

∆P = [BP ]∆θV (11)

where [BP ] is a 3 (N − 1)× 3 (N − 1) matrix.

The relationship between reactive power injection and volt-

age magnitude is derived by differentiating load flow equation

with respect to V [20]:

∂Q
p
i

∂V m
k

= |V p
i |[G

pm
ik sinθV

pm
ik −B

pm
ik cosθV

pm
ik ],

p �= m or i �= k (12)

∂Q
p
i

∂V
p
i

=

N
∑

k=1

3
∑

m=1

|V m
k |[Gpm

ik sinθV
pm
ik −B

pm
ik cosθV

pm
ik ]

−|V p
i |B

pp
ii cosθV

pp
ii (13)

With the same assumption above, equation (12) can be

simplified as:

∂Q
p
i

∂V m
k

= G
pm
ik sinθV

pm
ik −B

pm
ik cosθV

pm
ik

p �= m or i �= k (14)

As the shunt component is usually very small

N
∑

k=1

B
pm
ik ≈ 0,

N
∑

k=1

G
pm
ik ≈ 0, m = 1, 2, 3

Thus

∂Q
p
i

∂V
p
i

≈ −B
pp
ii (15)

Excluding the swing bus, in condensed form equations (13)-

(14) become:

∆Q = [BQ]∆V (16)

where [BQ] is a 3 (N − 1)× 3 (N − 1) matrix.

The complex power flowing from node i to k with phase p

is given by (17):

S
p
ik = V

p
i

3
∑

m=1

[(Gpm
ik + jB

pm
ik ) (V m

i − V m
k )]∗ (17)

By separating the real and imaginary part of complex branch

flow equation (17), we get equations (18) and (19).

P
p
ik =

3
∑

m=1

{|V p
i ||V m

i |cosθV pm
ii G

pm
ik − |V p

i ||V m
k |cosθV pm

ik G
pm
ik

+ |V p
i ||V m

i |sinθV pm
ii B

pm
ik − |V p

i ||V m
k |sinθV pm

ik B
pm
ik }
(18)

Q
p
ik =

3
∑

m=1

{|V p
i ||V m

i |sinθV pm
ii G

pm
ik − |V p

i ||V m
k |sinθV pm

ik G
pm
ik

− |V p
i ||V m

i |cosθV pm
ii B

pm
ik + |V p

i ||V m
k |cosθV pm

ik B
pm
ik }
(19)

Equation (18) can be simplified as follows by the assuming

|V p
i | ≈ 1.

P
p
ik=

3
∑

m=1

2Bpm
ik sin

(

θV
p
i − θV

m
i − θV

p
i + θV

m
k

2

)

cos

(

θV
p
i − θV

m
i + θV

p
i − θV

m
k

2

)

−
3

∑

m=1

2Gpm
ik sin

(

θV
p
i − θV

m
i − θV

p
i + θV

m
k

2

)

sin(
θV

p
i − θV

m
i + θV

p
i − θV

m
k

2
) (20)

If we assume balanced voltage angles,

θV
p
i − θV

m
i + θV

p
i − θV

m
k ≈

⎧

⎪

⎨

⎪

⎩

240◦ if p−m = −1, 2

−240◦ if p−m = 1,−2

0◦ if p−m = 0

We have sinθV
mm
ik ≈ θV

mm
ik . Now equation (20) can be

simplified as follows.

P
p
ik =

3
∑

m=1

(BP
pm
ik )

”
(θV

m
i − θV

m
k ) (21)

3



where

(BP
pm
ik )

”
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

2
B

pm
ik +

√
3

2
G

pm
ik if p−m = −1, 2;

1

2
B

pm
ik −

√
3

2
G

pm
ik if p−m = 1,−2;

−B
pm
ik if p−m = 0.

According to equation (21), the change in real power branch

flow ∆PB can be represented in condensed form as:

∆PB = [DP ][A]∆θV (22)

where ∆PB is a 3L × 1 vector. L is the total number of

branches. [DP ] is a 3L×3L matrix, whose off-diagonal 3×3
blocks are zeros. Let DP b denote the b-th 3×3 diagonal block

connecting bus i and bus k

DP b =

⎡

⎢

⎢

⎢

⎣

−B11
ik

1

2
B12

ik +
√
3

2
G12

ik
1

2
B13

ik −
√
3

2
G13

ik

1

2
B21

ik −
√
3

2
G21

ik −B22
ik

1

2
B23

ik +
√
3

2
G23

ik

1

2
B31

ik +
√
3

2
G31

ik
1

2
B32

ik −
√
3

2
G32

ik −B33
ik

⎤

⎥

⎥

⎥

⎦

[A] is a 3L × 3(N − 1) node-arc incidence matrix. [A] is

compromised of L× (N − 1), 3 by 3 blocks. Each row of the

3× 3 blocks represents a three-phase branch. Each column of

the 3× 3 blocks represents a bus. Let [Aij] be the ij-th 3× 3
block of [A].

Diagonals of Aij =

⎧

⎪

⎨

⎪

⎩

1 if branch i starts at node j

−1 if if branch i ends at node j

0 otherwise

The non-diagonal elements of [Aij] are zeros.
Substituting equation (11) into (22) yields

∆PB = [DP ][A]∆θV

= [DP ][A][BP ]
−1∆P

(23)

Therefore, three-phase generation shift factor matrix for real

power flow is derived as:

[GSFP ] = [DP ][A][BP ]
−1 (24)

With |V p
i | ≈ 1 and the balanced angle assumption:

θV
pm
ii ≈ θV

pm
ik =

⎧

⎪

⎨

⎪

⎩

120◦ if p−m = −1, 2;

−120◦ if p−m = 1,−2?

0◦ if p−m = 0.

Equation (19) can be simplified as:

Q
p
ik =

3
∑

m=1

(Gpm
ik sinθV

pm −B
pm
ik cosθV

pm) (|V m
i | − |V m

k |)

(25)
Therefore

Q
p
ik =

3
∑

m=1

(BQ
pm
ik )

′′

(|V m
i | − |V m

k |) (26)

where

(BQ
pm
ik )

”
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

2
B

pm
ik +

√
3

2
G

pm
ik if p−m = −1, 2;

1

2
B

pm
ik −

√
3

2
G

pm
ik if p−m = 1,−2;

−B
pm
ik if p−m = 0.

According to equation (26), the change in reactive power

branch flow ∆QB can be represented in condensed form as:

∆QB = [DQ][A]∆V (27)

where QB is a 3L×1 vector. L is the total number of branches.

DQ is a 3L × 3L matrix, whose off-diagonal 3 × 3 blocks

are zeros. Let the DQb
denote the b-th 3 × 3 diagonal block

connecting node i and node k.

DQb
=

⎡

⎢

⎢

⎢

⎣

−B11
ik

1

2
B12

ik +
√
3

2
G12

ik
1

2
B13

ik −
√
3

2
G13

ik

1

2
B21

ik −
√
3

2
G21

ik −B22
ik

1

2
B23

ik +
√
3

2
G23

ik

1

2
B31

ik +
√
3

2
G31

ik
1

2
B32

ik −
√
3

2
G32

ik −B33
ik

⎤

⎥

⎥

⎥

⎦

Similarly, with equations (16) and (27), three-phase generation

shift factor matrix for reactive power flow is derived as:

[GSFQ] = [DQ][A][BQ]
−1 (28)

The derivations of three-phase GSFs have the same form as

single-phase GSF matrix. However, matrices [DP ], [DQ], [A],

[BP ] and [BQ] are constructed in a different way. Intuitively,

the differences arise from the mutual coupling among three

phases of distribution system line. All of the non-diagonal

elements of [D] in single-phase GSF equation are zeros, while

non-diagonal elements of diagonal 3 by 3 blocks of [DP ] and

[DQ] in three-phase GSF equations are typically non-zero.

In three-phase equations [BP ] and [BQ] are constructed with

conductance and susceptance from the admittance matrix Y.

C. Centralized Loss Model

The power loss on each branch can be written as:

(SLoss)ik = Vik · Iik∗ = (ZikIik) · Iik∗

=

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

Z11
ik Z12

ik Z13
ik

Z21
ik Z22

ik Z23
ik

Z31
ik Z32

ik Z33
ik

⎤

⎥

⎥

⎦

Iik

⎞

⎟

⎟

⎠

· Iik∗
(29)

For each phase, we have:

(SLoss)
p
ik = I

p
ik

∗
3

∑

g=1

Z
pg
ik I

g
ik (30)

where Z
pg
ik is the element of phase impedance matrix relating

node i with phase p and node k with phase g. I
p
ik

∗
=

|Ipik|e−jθ
p

ik and I
g
ik = |Igik|ejθ

g

ik

Assume |Igik| ≈ |Ipik|, for p �= g, then (30) can be simplified

as:

(SLoss)
p
ik = |Ipik|2

3
∑

g=1

Z
pg
ik (cosθI

pg
ik − j · sinθIpgik )

= |Ipik|2
3

∑

g=1

(Rpg
ik + jX

pg
ik ) (cosθI

pg
ik − j · sinθIpgik )

(31)

4



The real part of (31) is the real power loss,

(PLoss)
p
ik =

3
∑

g=1

|Ipik|
2
(Rpg

ik cos θI
pg
ik +X

pg
ik sin θI

pg
ik )

=

3
∑

g=1

|Sp
ik|2

|V p
i |2

R
pg
ik

′
(32)

Where the equivalent resistance obtained from phase

impedance matrix relating node i with phase p and node k with

phase g is defined as: R
pg
ik

′ ∆
= R

pg
ik cos θI

pg
ik +X

pg
ik sin θI

pg
ik .

If balanced current angle is assumed,

θI
p
i − θI

g
k =

⎧

⎪

⎨

⎪

⎩

120◦ if p− g = −1, 2

−120◦ if p− g = 1,−2

0◦ if p− g = 0.

Then

Rik
′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

R11
ik −1

2
R12

ik +

√
3

2
X12

ik −1

2
R13

ik −
√
3

2

13

ik

−1

2
R21

ik −
√
3

2
X21

ik R22
ik −1

2
R23

ik +

√
3

2
X23

ik

−1

2
R31

ik +

√
3

2
X31

ik −1

2
R32

ik −
√
3

2
X32

ik R33
ik

⎤

⎥

⎥

⎥

⎥

⎥

⎦

If we assume |V p
i | ≈ 1, then (32) can be simplified as:

(PLoss)
p
ik =

3
∑

g=1

|Sp
ik|2R

pg
ik

′
=

3
∑

g=1

(|P p
ik|2+|Qp

ik|2)R
pg
ik

′
(33)

Therefore we have

P
p
Loss = P

p
Loss(FP ) + P

p
Loss(FQ) (34)

where

P
p
Loss(FP ) =

B
∑

b=1

3
∑

g=1

(FP
p
b)

2
R

pg
b

′

P
p
Loss(FQ) =

B
∑

b=1

3
∑

g=1

(FQ
p
b)

2
R

pg
b

′

where B is the total number of branches. FP
p
b and FQ

p
b are

real and reactive power flow on branch b at phase g. FP and

FQ are the set of real and reactive branch flows respectively.

F
p
b can be obtained with GSFs and power injections:

FP
p
b =

N
∑

q=2

3
∑

m=1

GSF
p m
b q Pm

q (35)

FQ
p
b =

N
∑

q=2

3
∑

m=1

GSF
p m
b q Qm

q (36)

Phase p’s marginal loss factor (LF) at bus s with phase t is

defined as follows:

(LF t
s)

p ∆
=

∂P
p
Loss

∂P t
s

=
B
∑

b=1

3
∑

g=1

2Rpg
b

′ ·GSFP
p t
b s

N
∑

q=2

3
∑

m=1

GSFP
p m
b q Pm

q (37)

Phase p’s marginal delivery factor (DF) at bus s with phase

t is defined as following:

(DF t
s)

p ∆
=

{

1− (LF t
s)

p, t = p,

−(LF t
s)

p, t �= p
(38)

Loss factor and delivery factor are keys to deriving marginal

loss component of LMP. The definitions of three-phase LF and

DF are similar to that of single-phase. However, from Equa-

tion (38), we can clearly see that in three-phase distribution

systems, power losses of one phase is influenced by net loads

of the other phases. Delivery factor (DF t
s)

p is the amount of

power delivered from phase p when the load on node s with

phase t increases by 1KW. When t equals p, DF is the sum

of increase of load and power losses due to real power flow

on phase p. Otherwise, DF is equal to the increase in power

losses due to real power flow on phase p.

With the definitions above, it can be proved that

N
∑

s=1

3
∑

t=1

(DF t
s)

p ·
(

PGt
s − PDt

s

)

=
N
∑

s=1

3
∑

t=1

(DF t
s)

pP t
s

=
N
∑

s=1

P p
s −

N
∑

s=1

3
∑

t=1

[(

B
∑

b=1

3
∑

g=1

2 ·Rpg
b

′
GSFP

p t
b sFP

p
b

)

· P t
s

]

=

N
∑

s=1

P p
s −

B
∑

b=1

3
∑

g=1

(

2 ·Rpg
b

′
FP

p
b

N
∑

s=1

3
∑

t=1

GSFP
p t
b sP

t
s

)

=

N
∑

s=1

P p
s − 2

B
∑

b=1

3
∑

g=1

R
pg
b

′
(FP

p
b)

2

= −P
p
Loss(FP ) + P

p
Loss(FQ) (39)

Thus the real power balance constraints become:

N
∑

i=1

3
∑

m=1

(DFm
i )p · PGm

i −
N
∑

i=1

3
∑

m=1

(DFm
i )p · PDm

i

+P
p
Loss(FP )− P

p
Loss(FQ)=0, p = 1, 2, 3 (40)

D. FND Model

Adopting FND can distribute system losses among distri-

bution lines to eliminate significant mismatch at the reference

bus. FND-based DCOPF yields a closer approximation to the

results of ACOPF, as shown in [19]. E
p
i , FND at bus i with

phase p, is defined as following:

E
p
i =

1

2

Bi
∑

b=1

3
∑

g=1

[(FP
g
b )

2
+ (FQ

g
b)

2
]Rpg

b

′
(41)

where Bi is the number of branches connected to bus i. With

FND, the power injection at each node becomes:

Pm
q = PGm

q − PDm
q − Em

q (42)

Using FND, branch flow equation (35) can be updated as:

FP
g
b =

N
∑

q=2

3
∑

m=1

GSFP
g m
b q

(

PGm
q − PDm

q − Em
q

)

(43)
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ψ=

⎛

⎝

N
∑

n=1

3
∑

m=1

⎛

⎝

Jm
n

∑

j=1

Cd (n,m)j d (n,m)j −
Im
n

∑

i=1

Cg (n,m)i g (n,m)i

⎞

⎠

⎞

⎠−
3

∑

p=1

λp

(

N
∑

i=1

3
∑

m=1

(DFm
i )p · PGm

i

−
N
∑

i=1

3
∑

m=1

(DFm
i )p · (PDm

i + Em
i ) + P

p
Loss(FP )− P

p
Loss(FQ)

)

−
B
∑

b=1

3
∑

p=1

μ
p
b

+

(

N
∑

q=1

3
∑

g=1

GSFP
p g
b q · P g

q − PLimit
p
b

)

−
B
∑

b=1

3
∑

p=1

μ
p
b

−
(

−
N
∑

q=1

3
∑

g=1

GSFP
p g
b q · P g

q − PLimit
p
b

)

−
2

∑

p=1

3
∑

m=2,m �=p

μpm+

(

N
∑

n=2

P p
n −

N
∑

n=2

Pm
n − γ

)

−
2

∑

p=1

3
∑

m=2,m �=p

μpm−
(

−
N
∑

n=2

P p
n +

N
∑

n=2

Pm
n − γ

)

(45)

Thus, power flow constraints (3) are revised as:

|
N
∑

q=2

3
∑

g=1

GSFP
p g
ik q ·

(

PGg
q − PDg

q − Em
q

)

|2 ≤ PLimit
p
ik,

∀i, k and i �= k (44)

Then the values of LFs, DFs, and power losses are updated

with the new power injections and power flows calculated from

equations (42)-(43).

E. Iterative DCOPF Algorithm

The FND-based DCOPF problem is solved iteratively. The

iterative algorithm we propose can be briefly described as

follows:

1) Initially set LFs, FNDs and power losses to zeros.

2) Solve linear optimization problem using (1), (4), (40),

and (44).

3) Update the values of FNDs, power losses, LFs and DFs

using (37), (38), (41) and (43).

4) Solve the linear optimization problem again using (1),

(4), (40), and (44).

5) Check the dispatch of loads and generation resources. If

the difference between the current iteration and previous

iteration’s result is larger than the pre-defined tolerance,

go the step 3. Otherwise, the final three-phase OPF

solution is obtained.

III. THREE-PHASE LMP DECOMPOSITION

LMP at node i with phase g can be derived by differentiating

Lagrangian function (45) with respect to fixed load at node

i phase g. Lagrangian function ψ is derived from objective

function (1) and constraints (4), (40), and (44). λp is the La-

grange multiplier of real power balance constraint of phase p

(40); μ
p
b

+
and μ

p
b

−
are the Lagrange multipliers of distribution

line thermal limit constraints (44); μpm+ and μpm− are the

Lagrange multipliers of phase imbalance constraints (4).

As shown in (46), three-phase LMPs can be decomposed

into four component: marginal energy component, marginal

loss component, marginal congestion component, and marginal

phase imbalance component. Compared with single-phase

LMP, three-phase LMP has an extra component, namely,

marginal phase imbalance component.

LMP
g
i =

∂ψ

∂FD
g
i

=

3
∑

p=1

λp(DF
g
i )

p +

B
∑

b=1

3
∑

p=1

μ
p
b

′
GSFP

p g
b i + μg ′′

= λg −
3

∑

p=1

λp(LF g
i )

p +

B
∑

b=1

3
∑

p=1

μ
p
b

′
GSFP

p g
b i + μg ′′ (46)

where

μ
p
b

′
= μ

p
b

+ − μ
p
b

−

μg ′′ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

μ12+ + μ13 − μ12
i

− − μ13− if g = 1;

−μ12+ + μ23 + μ12
i

− − μ23− if g = 2;

−μ13+ − μ23 + μ13
i

−
+ μ23− if g = 3.

IV. NUMERICAL STUDY

In this section, a benchmark three-phase ACOPF algorithm

is first briefly presented. The proposed three-phase DCOPF

algorithm is then compared with the ACOPF algorithm using

the IEEE 4-bus test system. At last, the decomposition of the

three-phase LMPs is illustrated with the test system.

A. Three-phase ACOPF Algorithm

The benchmark ACOPF algorithm is based on an exten-

sion of the SDP algorithm [10] to three-phase system with

rank reduction technique described in [18]. The optimality

of ACOPF algorithm can be validated with the conditions

stated in [10] for the convex iteration algorithm. Note that

this ACOPF algorithm cannot be easily scaled up due to the

curse of dimensionality.

B. Simulation Setup

The simulation is based on the modified IEEE 4-bus test

case. The quantity of fixed demand and price sensitive demand

of node 4 are shown in Table I. The demand bid curves of

flexible loads on three-phases are modeled as step functions

shown in Figure 1. The 10 steps of each demand bid curve

are assumed to have equal length. The price ranges of the
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three price sensitive demand bid curves are from $0.1/kWh to

$1/kWh. To study the impact of bus voltage deviation on the

accuracy of the proposed DCOPF algorithm, simulations are

conducted by increasing the reference bus voltage from 1.0

to 1.15 per unit with a step size of 0.01. The base phase-to-

neutral voltage of the distribution network is 7.2 KV.

TABLE I
LOAD PROFILE ON NODE 4

Node 4 Phase A Phase B Phase C Total

Fixed Load Capacity (KW) 500 500 500 1500

Flexible Load Capacity (KW) 250 300 350 900

0 50 100 150 200 250 300

Flexible load (KW)

0.3

0.4

0.5

0.6
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W
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Demand Bid Curve of Phase a

Demand Bid Curve of Phase b

Demand Bid Curve of Phase c

Fig. 1. Demand bid curve of flexible load

C. Simulation Results

1) A comparison between three-phase DCOPF and three-

phase ACOPF: The simulation results of three-phase DCOPF

and three-phase ACOPF are shown in Table II when the

voltage of the reference bus is at 1.0 per unit. As shown in

Table II, the differences in social welfare, system real power

losses, and real power line flows are very small between

the proposed three-phase DCOPF and the benchmark three-

phase ACOPF algorithm. The differences in reactive power

flow are slightly larger than the real power flow due to the

fact that reactive power losses are not modeled in the three-

phase DCOPF algorithm. However, as the power factors of

distribution loads are typically around 0.95 lagging, the errors

of reactive power flow are usually not very significant.

Numerical errors of real power losses and total social

welfare are calculated for the proposed three-phase DCOPF

algorithm. Figure 2. depicts the change in the numerical errors

with various load bus voltage levels. The proposed three-phase

DCOPF algorithm achieves best accuracy when the load bus

three-phase average voltage is around 1.05 per unit. If the load

bus voltage is kept between 0.98 and 1.02 per unit, then the

errors of social welfare and real power losses associate with

TABLE II
COMPARISON BETWEEN THREE-PHASE DCOPF AND THREE-PHASE

ACOPF

DCOPF ACOPF

Social Welfare ($) 833.4 838.6

Real Power Loss (KW) 38.9 47.1

Power Flows: Line 1 (KVA)

613+242.2i 618.6+281.6i

631.4+242.2i 633.6+281.5i

654.6+242.2i 654.9+288.7i

Power Flows: Line 2 (KVA)

611.5+242.2i 617.2 + 279.5i

629.9+242.i 632.7+279.5i

652.8+242.2i 653.9+286.2i

Power Flows: Line 3 (KVA)

605.2+242.i 614.9+265.7i

624.4+242.2i 630.3+265.1i

645.7+242.2i 651.3+270.8i

the three-phase DCOPF algorithm are smaller than 0.5% and

10% respectively.
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Fig. 2. Numerical error versus load bus voltage

2) Three-phase LMP decomposition: The LMPs of the

IEEE 4-bus network are shown in Table III. As illustrated in

equation (46), three-phase LMPs consists of marginal energy

component, marginal loss component, marginal congestion

component, and marginal phase imbalance component. How-

ever, because the congestion constraints and phase imbalance

constraints are not binding, these two components are not

present in Table III. The marginal energy components are

$0.6/kWh for every single bus and phase in the network.

The marginal loss components and loss factors increase from

distribution substation to the end of the feeder. The marginal

loss components are higher on phase c whose loads are slightly

higher than that of phase a and b. In order to show the

effects of marginal phase imbalance component, simulations

are performed by setting the fixed load of phase a as 460 KW

and the fixed load of phase c as 530KW. The phase imbalance

limit is set as 50 KW. The result of LMPs is shown in Table

7



IV. The phase imbalance constraint relating phase a and c is

binding. The marginal imbalance price component of phase

a is about $-0.1/kWh, while the marginal imbalance price

component of phase c is about $0.1/kWh. Phase imbalance

components of three-phase LMPs are crucial economic signals

sent to customers on phase a and c instructing them to adjust

load level to alleviate phase imbalance problems. The effect

of congestion component is intuitive and straightforward.

TABLE III
THREE-PHASE LMPS WITH ONLY ENERGY AND LOSS COMPONENTS

Price ($/KWh) Node 2 Node 3 Node 4

Phase A 0.6 + 0.0016 0.6 + 0.0053 0.6 + 0.0234

Phase B 0.6 + 0.0013 0.6 + 0.0051 0.6 + 0.02

Phase C 0.6 + 0.0016 0.6 + 0.0055 0.6 + 0.0228

TABLE IV
THREE-PHASE LMPS WITH ENERGY, LOSS, AND PHASE IMBALANCE

COMPONENTS

Price ($/KWh)

Node2

Phase A 0.6 + 0.0016− 0.1033

Phase B 0.6 + 0.0052− 0.1033

Phase C 0.6 + 0.0228− 0.1033

Node3

Phase A 0.6 + 0.0013 + 0

Phase B 0.6 + 0.0051 + 0

Phase C 0.6 + 0.0200 + 0

Node4

Phase A 0.6 + 0.0015 + 0.1033

Phase B 0.6 + 0.0054 + 0.1033

Phase C 0.6 + 0.0226 + 0.1033

V. CONCLUSION

This paper develops a three-phase iterative DCOPF algo-

rithm with fictitious nodal demand. GSF matrix, LF, and

DF are derived within the three-phase DCOPF framework.

The derivation for three-phase LMP decomposition shows that

LMP can be decomposed into four price components: marginal

energy component, marginal loss component, marginal con-

gestion component, and marginal phase imbalance component.

Simulation results from the IEEE 4-bus test case demonstrated

the validity of the proposed three-phase DCOPF algorithm.

The three-phase DCOPF algorithm is shown to be a good

approximation of the ACOPF algorithm when the load bus

voltage is within normal operating range.
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