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 
Abstract—In this paper, an improved multi-period risk-limiting 

dispatch (IMRLD) is proposed as an operational method in power 

systems with high percentage renewables integration. The basic 

risk-limiting dispatch (BRLD) is chosen as an operational 

paradigm to address the uncertainty of renewables in this paper 

due to its three good features. In this paper, the BRLD is extended 

to the IMRLD so that it satisfies the fundamental operational 

requirements in the power industry. In order to solve the IMRLD 

problem, the convexity of the IMRLD is verified. A theorem is 

stated and proved to transform the IMRLD into a piece-wise 

linear optimization problem which can be efficiently solved. In 

addition, the locational marginal price of the IMRLD is derived to 

analyze the effect of renewables integration on the marginal 

operational cost. Finally, two numerical tests are conducted to 

validate the IMRLD.    

 
Index Terms—Multi-period, operational requirements, 

risk-limiting dispatch, renewables integration, risk metric. 

 

I. INTRODUCTION 

HE global warming and the energy crisis are the most 

critical issues in this century. Renewable energy is 

flourishing these years as one of the most effective ways to 

reduce fossil fuel consumption. Total installed capacity of 

renewable energy resources keeps increasing in the past 

decade. 

The intermittency and uncertainty from renewable energy 

resources bring many challenges to power system operation. 

Stochastic programming (SP) is adopted to address the 

uncertainty in the power system operation in many studies, 

such as the scenario-based two-stage unit commitment [1], and 
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the model predictive control based look-ahead dispatch [2].  

Among the system operational methods using SP, the BRLD 

is one of the flagships due to three good features [3, 4]. First, 

the BRLD considers the chance of recourse decisions, so the 

operational decisions are adaptable to the latest forecast 

information of renewables. Second, operational risks are 

concerned and limited through multiple dispatch stages, so the 

BRLD naturally conforms to the industrial requirement on the 

risk assessment of renewables integration [5]. At last, the 

BRLD is able to render a global optimal operational decision, 

taking advantages of the conditional prediction of the 

uncertainty [3].   

Despite the three advantages, the BRLD achieves the global 

optimal decision while sacrificing some fundamental industrial 

requirements. First, the BRLD assumes a single delivery period 

in an electricity market, but the real-time operation in the 

electricity market should be multi-period. For example, the 

delivery horizon of the day-ahead market is composed of 24 

1-hour intervals in the Pennsylvania—New Jersey—Maryland 

(PJM) market [6]. Second, key power system operational 

constraints such as the inter-temporal unit ramping constraint 

and the transmission thermal limit constraint are missing in [3]. 

However, these constraints represent the basic physical features 

of power systems and the violation of them may lead to 

destructive consequences [7], [8]. Third, [3] uses a simplified 

risk metric in the form of probability. In the power industry and 

academic field, it is well acknowledged that a variety of 

alternative risk metrics are indispensable in quantifying the 

operational risk in appropriate situations [5]. These risk metrics 

include loss of load probability, loss of load frequency [9], 

value-at-risk [10] and conditional value-at-risk [11]. 

Due to these fundamental requirements on the system 

operation in the realistic power industry, the BRLD was 

extended in many ways. The operational framework of the 

BRLD was extended to include multiple delivery periods in [12] 

with closed form solutions based on dynamic programming. 

However, it is hard to integrate transmission networks and 

other risk metrics, in virtue of the combinational explosion of 

dynamic programming. Akin to [12], ramping capacity and 

energy storage were considered in the BRLD in [13], [14]. The 

effect of transmission network was considered in [15], where 

only one congested line existed in the network. However, this 

assumption is not tenable in realistic systems in which line 

congestions are one of the dominant factors preventing high 

percentage penetration of renewables [16]. [18] used a 
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numerical method to solve the BRLD considering the 

transmission network and the ramping capacity under the 

framework of two-stage stochastic optimization, so the 

recourse decision cannot be taken into consideration, which 

leads to the sub-optimality of the operational strategies. Risk 

metrics other than LOLP were considered in [17], but the 

impact of the multi-period and the transmission network were 

not regarded. Lastly, none of the above works derived the 

locational marginal price for the operational model, so the 

sensitivity of loads and renewable injections to the operational 

cost was not provided therein, and the shadow prices of the load 

and renewables injection were not revealed.  

Therefore, the knowledge gap of the existent studies is their 

insufficiency in satisfying the realistic operational requirements 

simultaneously. This paper extends the BRLD to the IMRLD to 

address this issue. Specifically, we model the IMRLD as a 

multi-stage multi-period operational problem. The unit 

ramping constraint and the transmission network constraint are 

incorporated, and the quantile and the superquantile are 

wielded as the risk metrics. To solve the IMRLD, we encounter 

two technical challenges. The first is the global optimality of 

the IMRLD, and the second lies in solving an optimization 

problem with a set of superquantile constraints. We prove the 

global optimality of the IMRLD by verifying its convexity, and 

we prove a theorem mathematically so that the optimization 

problem with a set of superquantile constraints can be 

equivalently transformed into a piece-wise linear optimization 

problem, which can be solved by existing solvers efficiently. In 

order to analyze the IMRLD, we derive the locational marginal 

price (LMP) to show the impact of renewables integration on 

system marginal operational costs.  

In sum, the contributions of the paper can be summarized as 

follows:  

(1) In terms of problem formulation, this paper extends the 

BRLD to the IMRLD which caters to the industrial 

requirements while preserves the good features of the BRLD.    

(2) In terms of problem solving, this paper verifies the 

convexity of the IMRLD problem, and proves a theorem 

mathematically to transform the insolvable IMRLD into a 

conventional piece-wise linear optimization problem.  

(3) In terms of problem analysis, this paper derives the 

analytic form of the locational marginal price to show the 

marginal operational cost related to loads and renewable 

injections for the IMRLD. 

The remainder of the paper is organized as follows. Section 

II presents the IMRLD model. Section III solves the IMRLD by 

verifying the convexity and proving a theorem. The LMP is 

derived in Section IV. Section V applies the proposed IMRLD 

to a modified IEEE standard case and a realistic Gansu 

provincial power system in China. The final conclusions are 

given in Section VI.  

II. MODEL FORMULATION OF THE IMRLD  

A. Framework of the IMRLD  

The basic idea of the IMRLD on multiple delivery periods is 

illustrated in Fig. 1. 

Dispatch stages Delivery periods

s=1 s=S t=1 t=T

 
Fig. 1.  The structure of the IMRLD. 

We assume that the operational framework is composed of T 

delivery periods (black arrows in Fig. 1) and S dispatch stages 

(white arrows in Fig. 1). The T delivery periods can be treated 

as real-time markets. The S dispatch stages represent the 

dispatch processes in the day-ahead market and the intra-day 

market. The power in each delivery period is accumulated from 

dispatch stages (day-ahead and intraday) and that delivery 

period (real-time). In order to mitigate the operational risk, such 

as the risk of power unbalance and transmission line overload 

in each delivery period, the Independent System Operator (ISO) 

purchases power by signing contracts in all dispatch stages in 

the most economical way.  

The general model of the IMRLD is formulated as (1)-(3): 

 
1

1 1

min ( ( , ,..., ), )
T S

st st s s s S s st

t s

E f Y Y Y Y Y
 
 x y   (1) 

 
1( ( , ,..., ), )t st s s s S s st tR Y Y Y Y Y Risk x y   (2) 

 
1( , ,..., ) ,st s s s S s stY Y Y Y Y  x y   (3) 

where s and t are the index of the stage and period respectively. 

The objective function fst(·) represents the expected operational 

cost. Rt(·) is the risk function with an upper bound Riskt. This 

risk function can take any risk metric for any given operational 

constraint. Ys is the prediction information at stage s. yst is the 

vector of state variables, such as the power flow and the phase 

angle, belonging to a feasible region Λ. Each decision vector xst, 

belonging to another feasible region Ω, denotes the power 

purchased at dispatch stage s for delivery period t, as a function 

of the conditional predictions (Ys, Ys+1|Ys,…, YS|Ys).  

The dispatch process is illustrated in Fig. 2. 
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Fig. 2.  Operational process. 

Dispatch stages: in dispatch stage 1, ISO solves (1)-(3) to 

obtain the power to be purchased from stage 1 to stage S with 

the input (Y1, Y2|Y1,…, YS|Y1.). Only x1 is enforced whereas the 

rest dispatch outputs are advisory. When times rolls forward, 

the prediction information will be updated, and the above 

calculation repeats again and again until the last dispatch stage 

S. By the end of the dispatch stages, the power accumulated for 

each delivery stage t is ∑i xit. 

Delivery periods: wind power generation may be different 

from the forecast due to the uncertainty. If the power 
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accumulated from previous dispatch stages cannot balance the 

load at one delivery period, the power shortage should be 

compensated from the corresponding real-time markets. 

Furthermore, if there is still a power shortage or the thermal 

limits of transmission lines are violated, compulsory load 

shedding is inevitable. Therefore, the power is a sum of the 

cumulated power from all dispatch stages for each delivery 

period, the power from the real-time market, and the negative 

power consumption resulting from load shedding, if necessary. 

According to the Bellman optimality principle, the solution 

process of the IMRLD can be decoupled into (S+T)th 

optimization problems. Therefore, the IMRLD is solved 

(S+T)th times to achieve the final global optimal decision [3]. 

The general model of the IMRLD is specified in the following 

subsections.  

B. Simplifying assumption 

The following simplifying assumptions are made in our 

model. 

(1) We assume that market participants are price-takers. This 

assumption is acceptable if quantities of the power to be traded 

are large in the market [19]. This assumption has been widely 

used in many textbooks [19-20], technical reports [21] and 

research papers [22], because it brings a decentralized market 

solution process [20]. The situation where the wind power 

serves as a price-maker is out of scope of this paper [23].  

(2) The operational constraints are grouped into two 

categories due to the uncertainty of renewables. The first type 

of constraints are considered as soft constraints, of which the 

violating probability and potential losses should be assessed by 

risk metrics. Transmission line overload is treated as the soft 

constraint in this paper, because utilities concern the severity of 

transmission line overload, e.g. costs associated with the 

overload, in addition to its probability. For example, 

Midcontinent Independent System Operators uses 

Transmission Constraint Demand Curves to quantify the 

severity of overload by penalty prices [24]. North American 

Electric Reliability Corporation (NERC) uses different short 

term ratings for transmission lines to distinguish severity levels 

of system failures [25]. In addition, quite a few research works 

also used operating risk to assess the transmission line overload 

[26], [27]. In this regard, the transmission line overload is 

defined as the soft constraint in this paper. The second type 

constraint is considered as a hard constraint which must be 

satisfied at all times. The real power balance and the unit 

max/min capacity constraint are good examples of the hard 

constraint. 

(3) Electricity demands are modeled as inelastic loads, so the 

objective function of the system operation is the minimization 

of total dispatch cost rather than the maximizing of social 

surplus. However, price-sensitive demand bids can be easily 

integrated into the proposed framework. 

(4) The model is based on the DC power flow. This 

assumption is tenable for high voltage and long distance 

transmission networks, where DC power flow is a good 

approximation of the AC power flow for system steady state 

operation [28]. In this sense, DC power flow is used both in the 

industrial and academic field in transmission-level system 

operation [29], [30].  

C. Risk metrics 

Based on the above assumptions, the operational risk of 

violating the thermal limit depends on the choice of risk metrics, 

which is the risk function Rst(·) in (2). In engineering field, the 

commonly used risk metrics are expectation, worst case, 

quantile, safety margin, and superquantile [31]. This paper 

chooses the quantile and the superquantile as a paradigm to 

measure the risk. Reasons for such choice are given as follows.  

Of these five risk metrics, the expectation is simple but does 

not reflect the risk averseness of operators. The worst-case is 

conservative and uses no information of the probability 

distribution other than its highest realization. The safety margin 

may not detect large variation on the tail loss, which is 

important to operators. However, the quantile and the 

superquantile, also known as value at risk (VaR) and 

conditional value at risk (CVaR) in finance, take advantages of 

the probability distribution and the risk preference of operators 

can be tuned. The quantile has been identified as a risk metric 

when dealing with uncertainties in power systems by NERC [4]. 

Meanwhile, the superquantile is widely used as a risk measure 

in both industrial and academic field [32], because it has some 

good properties in the model formulation and solution. First, it 

meets the requirement of system operators on quantifying the 

uncertainty with a low probability but a high consequence. 

Second, it is a coherent and convex risk metric, so a global 

optimal decision can be achieved, which is desirable for system 

operators. It should be noted that the choice of risk metrics 

could be replaced by other metrics without affecting the whole 

methodology.  

Quantile. Given a random variable Z and its cumulative 

distribution function (CDF) FZ, the α-quantile is: 

 1( ) ( )Zq Z F    (4) 

Similarly, if the loss is a function of Z, denoted as f(Z), then the 

risk of loss is determined by qα(f(Z)). Mathematically, this is 

equal to the failure probability p(f(Z)), where 

p(f(Z))=prob(f(Z)>0), because of: 

 [ ( )] 1 iff [ ( )] 0p f Z q f Z     (5) 

Superquantile. Similarly, given the loss function, the 

α-superquantile is: 

 
( ) ( )

1
[ ( )] ( ) ( )

1 f Z q Z
q f Z f Z p Z dZ


  


    (6) 

In spite of its complex form, the superquantile is a coherent 

and convex metric [31], so it is widely used in both financial 

and engineering fields. 

Based on these risk metrics, the risk constraint (2) is 

specified as the quantile constraint and the superquantile 

constraint, so the IMRLD to be solved has two versions, which 

are the IMRLD with the quantile constraint and the IMRLD 

with the superquantile constraint.  

D. IMRLD model with the quantile constraint  

For the general model of the IMRLD in (1)-(3), we first use 

the quantile as the risk metric of the IMRLD, shown in (7)-(13).  
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At each dispatch stage s, the objective function (1) can be 

specified as: 

 
l l w w

1 1 1

min [ ( ) ( )]
T S T

st st t t t t

t s t

E
  

  c p m r m r   (7) 

which minimizes the expected total operational cost for the 

whole delivery period. Decision variables are pst, rlt and rwt, 

where pst is the power output vector for each bus at dispatch 

stage s for delivery period t, rlt and rwt are the load shedding and 

wind spillage. The operational price cst, the load shedding price 

mlt and the wind spillage price mwt are constants in (7). 

The constraint (3) of the decision variables is the hard 

constraint without risk. They are transformed to (8)-(11) as: 

 
l w

1

S

st t t t t t

s

t


     p w r d r Bθ   (8) 

 
min max

1

,
S

st

s

t


  P p P   (9) 

 D U

1

1 1

,
S S

st st

s s

t
 

    P p p P   (10) 

 min max , ,st t s   P p P   (11) 

where random variable wt is the wind power vector predicted 

for delivery period t, and dt is the demand at period t. Constants 

are the lower and upper bounds of the generation output limits 

Pmin and Pmax, the lower and upper bounds of the ramping 

capabilities PD and PU, and the B-matrix of the DC power flow 

B. (8) is the nodal power balance equation and θt is the phase 

angle in delivery period t. (9) means the accumulated power 

from each generator should be bounded in each delivery period. 

(10) is the ramping constraint of the accumulated power from 

each generator for each delivery period, and (11) is the unit 

capacity constraint.   

Because the line thermal limit is the soft constraint with risk, 

we use the quantile qα,lt to quantify the potential loss for line l in 

period t. So the risk constraint in (2) is specified as (12) and 

(13): 

 ,max

, max( ) : ,q

lt lt l lt tlq f f Risk t l       (12) 

 
,min

, min( ) : ,q

lt l lt lt tlq f f Risk t l       (13) 

where Risklt is the risk bound for line l in period t. Ĳltq,max and 

Ĳltq,min are dual variables. The state variable is the power flow flt. 

Constants are the lower and upper bounds of the line thermal 

limits flmin and flmax of line l. Thus, the full model of the IMRLD 

using the quantile as the risk metric is encapsulated by (7)-(13). 

E. IMRLD model with the superquantile constraint 

If we use the superquantile instead of the quantile as the risk 

metric, the risk constraint in (2) is transformed to (14)-(16), 

rather than (12)-(13). In (14), the potential loss Llt in period t on 

line l is defined as a penalty when the power flow violates the 

thermal limit, shown as (14): 

 max min[ ] [ ] ,lt lt lt l lt l ltL f f f f t l          (14) 

where [·]+=max (· ,0). Ȝlt and ȝlt are penalty prices when the 
power flow violates the thermal limit of line l in period t. The 
corresponding superquantile of the loss function Llt is given in 
(15): 

 
1

( ) ( ) , ,
1 t

lt lt t tlt
L q

q L L p d l t


  
  

  w w   (15) 

and the risk constraint is: 

 ( ) , ,lt ltlt
q L Risk t l      (16) 

Finally, the full model of the IMRLD using the superquantile 

as the risk metric is composed of (7)-(11) and (14)-(16). 

Therefore, we see some features which make the IMRLD 

different from previous works. It is a multi-stage multi-period 

operational problem considering operational constraints and 

alternative risk metrics, so it can be used in the realistic power 

industry directly, compared with the BRLD and the related 

works [3], [12-15], [17], [18]. It also preserves the good 

features of the BRLD, so it achieves the global optimal decision 

like the BRLD. 

III. THE CONVEXITY OF THE IMRLD AND THE MODEL 

SOLUTION  

In this section, we first demonstrate the convexity of the 

IMRLD with the quantile and the superquantile risk metrics, so 

a local optimal solution would be global optimal. Then we 

prove a theorem mathematically to transform the IMRLD with 

the superquantile risk metric into a piece-wise linear 

programming problem. After solving these two technical 

challenges, the IMRLD can be finally computed by existing 

solvers like GUROBI.  

A. The convexity of the IMRLD 

First of all, it should be noted that the BRLD in [3] is convex. 

We call the BRLD plus the hard constraints P1, and the BRLD 

plus the hard and soft constraints P2. According to the model 

formulation, the IMRLD is P2 in essence. For P1, one remark 

can be drawn, and is proved in Appendix A.  

Remark 1: P1 is a convex optimization problem. 

P2 is equal to P1 plus the soft constraints. For the quantile 

constraint, it can be reformed into a linear inequality if the 

prediction error of wind power is Gaussian distributed, and the 

convexity of the feasible region is thereby maintained 

according to the proof of Remark 1. The assumption of a 

Gaussian distribution for the prediction error of wind power is 

tenable as a result of the central limit theorem [31], and it has 

been widely used in the steady state operational problems [3].  

For the superquantile constraint, it will not change the 

convexity of the feasible region because it is a coherent and 

convex risk metric. In addition, the superquantile constraint is 

always convex regardless of distributions, if the loss function is 

convex [36]. Therefore, P2, namely the IMRLD, is a convex 

optimization problem.  

In this sense, the above models are both convex optimization 

problems, so a local optimal solution would global optimal. 

B. Algorithm for solving the IMRLD problem 

For the model with the quantile constraint, we use (5) and the 

generator shifting matrix A to rewrite the risk constraint (12) 

and (13) to (17) and (18): 

 
l w max

1

( ( ) ) 1
S

st t t t t t

s

p t


       A p w r d r f α   (17) 
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min l w

1

( ( ) 0) 1
S

st t t t t t

s

p t


        f A p w r d r α   (18) 

These probability constraints are rewritten as the linear 

constraints using the thresholds φt
max and φt

min [37], based on 

the aforementioned assumptions.  

 max ,max

l w max

1

( ) :
S

q

st t t t t t

s

t


     A p r d r f φ τ   (19) 

 min ,min

l w min

1

( ) :
S

q

st t t t t t

s

t


     A p r d r f φ τ  (20) 

where τt
q,max and τt

q,min are the dual variables. 
Moreover, the system power balance constraint is shown in 

(21): 

 l w1
( ) 0 :

S

st t t t t ts
u t


     T

1 p w r d r  (21) 

where ut is the dual variable. 
Therefore, the final IMRLD model with the quantile 

constraint includes (7), (9)-(11), and (19)-(21). 

For the IMRLD with the superquantile constraint, it is 

challenging to solve it by existing solvers. Thus, we propose 

Theorem 1 to reformulate the original problem into a 

piece-wise linear optimization problem. 

Theorem 1: The following two optimization problems 

generate the same efficient frontier: 

 
,

(a) min ( , ) (b) min ( , )

. [ ( , )] , . [ ( , ), ] ,

ix x

i i i i i ii

f x y f x y

s t q g x y Q i s t F g x y C i



    
  (22) 

where i is the index of constraints, Qi and Ci are parameters, x 

is a deterministic variable, y is a random variable, and p(y) is 

the probability density function(PDF) of y. βi is an ancillary 

variable. F(·) is an ancillary function defined as: 

 
1

( ( , ), ) [ ( , ) ] ( )
1

F g x y g x y p y dy  


  
    (23) 

The proof of Theorem 1 is provided in Appendix B. 

Thus, we define the ancillary function for our specific 

problem as: 
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where al is the lth row of the generator shifting matrix A. The 

vector fmax and fmin are the bounds of the thermal limits. 

According to Theorem 1, the optimization problem (7)-(11), 

and (14)-(16) is equivalent to (7), (9)-(11), (21) and (25) where: 

 l w( , , , , ) , ,lt st t t t lt ltF Risk t l   p r w r   (25) 

Furthermore, if we use discrete samples to represent the 

random variable wt, (25) can be discretized to (26) for any type 

of distribution [36]: 
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where k is the index of the samples, and Ĳltsq is the dual variable. 

Therefore, the objective of the final IMRLD with 

superquantile constraint is to minimize (7), subject to (9)-(11), 

(21) and (26). It is a piece-wise linear optimization, which can 

be efficiently computed by existing solvers.  

IV. LOCATIONAL MARGINAL PRICE ANALYSIS 

In order to analyze the IMRLD model, the LMP is derived in 

this section to reveal the relation between the marginal 

operational cost and the uncertainty from renewables injections. 

In addition, the LMP analysis also contributes to the detection 

of transmission congestions in a network.  

In our formulation, we cannot obtain the LMP by checking 

the dual variables directly, because the nodal power balance 

equation is not explicit. In this regard, the LMP is derived by 

perturbing the load in the Lagrangian function of the IMRLD. 

The Lagrangian functions of the IMRLD with the quantile and 

the superquantile constraints are denoted as l1 and l2 

respectively. A perturbation ξnt on load at bus n in period t is 

used, in order to derive an analytical form of the LMP. 

A. LMP of the IMRLD with the quantile constraint 

For node n in delivery period t, the LMP is derived in (27): 

 ,max ,min1

1 1
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nt

l
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where aln is the entry of matrix A, L is the number of lines, ut, 

Ĳltq,max and Ĳltq,min are the dual variables of constraint (21), (12) 

and (13). 

The first component in (27) is interpreted as the marginal 

operational cost of the reference bus, not depending on 

transmission lines. The second and the third components stand 

for the marginal cost of congestion. The impact of the 

operational risk can be treated as an expansion of the 

transmission capacity determined by the thresholds φt
max and 

φt
min. In this sense, the congestion cost of the expanded 

transmission line is equal to the merchandizing surplus. In 

addition, if ξnt is interpreted as wind perturbation, the LMP is 

the price of wind power at bus n in period t. It should be 

mentioned that the uncertainty is implicitly included in the 

Lagrangian multipliers ut, Ĳltq,max and Ĳltq,min. 

B. LMP of the IMRLD with the superquantile constraint 

For node n in delivery period t, the LMP is derived in (28): 
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where Ĳltsq is the dual variable of (26).  

Akin to (27), the first component reflects the marginal cost of 

the reference bus, while the second component stands for the 

congestion price relative to the reference bus. Moreover, if the 

wind power output follows a joint Gaussian distribution, the 

LMP can be further simplified as: 

1 2

1

[ ( ) ( )]
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sq
L lt lt ln lt ln
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In (29), P denotes a joint probability, w is an ancillary 

random variable, and W is a threshold derived in Appendix C. 
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Indicator functions I1 and I2 equal to ȝltaln and Ȝltaln when the 

values of the second and the third line in (26) are not zero 

respectively. (Otherwise, I1 and I2 are zero)  

If we can find a threshold like the case in the quantile model, 

the effect of the operational risk on the transmission capacity 

can also be deemed as an expansion of transmission lines. 

However, for the superquantile case, it is difficult to calculate 

such a threshold, so we need the reformulation and Theorem 1 

to solve the model. In addition, the LMP is explicitly related to 

the joint probability distribution, so it is possible to analyze the 

effect of wind forecast error on the LMP directly. 

V. CASE STUDY 

In this section, two case studies are conducted for the 

IMRLD. The first case is based on a modified IEEE 6-bus 

system, and the second case is based on a realistic wind power 

system from Gansu province of China. The models for these 

cases are coded in CVX 2.1 in MATLAB 2013 and solved by 

GUROBI 6.0. All experiments are conducted on a PC Dell 

OPTIPLEX 9010 with Intel Dual Core i5 at 3.30, 3.30 GHz and 

128 GB RAM in a 64-bit Windows 7 operating system. 

A. A modified IEEE standard system 

The first case is based on a modified IEEE 6-bus system with 

3 dispatch stages (S1, S2 and S3) and 3 delivery periods (T1, T2 

and T3). All system data can be found in [33]. In this case, the 

prediction data of the wind are generated by Monte Carlo 

simulation based on the joint Gaussian distribution with 1000 

samples. Mean values of the two wind plants are given in Table 

I. (x/y) in Table I represents the mean values of the wind power 

at bus 2 and bus 3 respectively. The covariance matrix 

represents the prediction error. Table II gives the covariance 

matrix in high prediction error (HPE), medium prediction error 

(MPE) and low prediction error (LPE) for this case.  
TABLE I 

MEAN VALUES OF THE WIND POWER AT BUS 2 AND BUS 3 

W2/W3 (MW) T1 T2 T3 

S1 10/9.4 15.3/11.2 25.3/20.3 
S2 10/7.7 14.4/11.1 20.9/19.9 
S3 10/5.8 15/8.8 23.3/15.3 

 
TABLE II 

COVARIANCE MATRIX IN HPE, MPE AND LPE  

 HPE MPE LPE 

S1 [10,6;6,10] [5,2;2,5] [2,1;1,2] 
S2 [6,3;3,2] [2,1;1,2] [1, 0.5; 0.5, 1] 
S3 [0,0;0,0] [0,0;0,0] [0,0;0,0] 

 

There are three objectives in this case. The first objective 

illustrates how the IMRLD generates the scheduling plan of 

each unit at each dispatch stage for each delivery period. Based 

on the scheduling plan, the second objective compares the 

operational costs among the traditional deterministic operation 

(TD), the three-stage stochastic programming (SP) and the 

IMRLD. The last objective analyzes the IMRLD model to find 

the relation between the operational cost, the system flexibility, 

the prediction error and the wind penetration level.  

Objective A1: assume the prediction error is LPE. Based on 

the data in Table I and Table II, the scheduling plans of each 

unit at each dispatch stage for each delivery period of the 

quantile and the superquantile models are computed by (7)-(11), 

(14)-(16), and (7), (9)-(11), (21), (26) respectively. The output 

of unit 3 is always zero because of its high operational cost. The 

outputs of unit 1 and 2 are shown in Table III, and (N/M) in 

Table III are the outputs computed by the quantile and the 

superquantile model respectively.   
TABLE III 

OPERATIONAL SCHEDULES OF UNIT 1 AND UNIT 2  

Quantile/Superquantile S1 S2 S3 

Unit1  
(MW) 

T1 98.3/98.5 0/0 0/0 
T2 108.7/110.4 0/0 0/0 
T3 117.2/120.9 0/0 0/0 

Unit2 
(MW) 

T1 94.4/97.4 1.1/1.9 0.4/0.6 
T2 76.9/80.3 0.4/0.5 0.2/0.3 
T3 49.3/51.8 4.2/4.3 0.7/1.1 

 

In Table III, operators purchase power at dispatch stage 1, 

and purchase recourse power at dispatch stage 2 because the 

change of prediction is known, given in Table I and II. 

Similarly, additional power will be purchased at the last stage.  

Objective A2: the wind data is represented by the mean 

values in Table I without prediction errors in the TD. In the SP 

and the IMRLD, the wind data are given in Table I and II. Table 

IV shows the operational costs of the TD, SP and IMRLD. 

(N/M) in Table IV are the operational costs computed by the 

quantile and the superquantile model respectively. 
TABLE IV 

OPERATIONAL COSTS OF THE TD, SP AND IMRLD  

 S1  S2 S3 Total 

TD($/hr) 6,472.8 0 465.5 6,938.3 

SP($/hr) 6,618.1 179.7 69.2 6,867.0 

IMRLD($/hr) 
6,495.7 
/6,551 

80.3 
/142.5 

24.4 
/45.5 

6,600.4 
/6,739 

 

Table IV shows the operational costs of the TD, SP and 

IMRLD at each dispatch stage. Compared with the TD, the 

IMRLD takes advantage of the available prediction information 

of the wind power decreasing so it avoids buying much power 

at the last stage with a very high price. Moreover, operators can 

correct the operational decision in the recourse stage with a 

lower price. Compared with the 3-stage SP, the permission of 

the operational risk at stage 1 and 2 within a given risk level 

leads to the lower operational cost in the IMRLD. In addition, 

more power would be purchased in the superquantile model and 

the operational cost is thereby higher because the severity and 

probability of losses are both integrated in the superquantile 

model, whereas the quantile model just considers the 

probability of losses. 

Table V compares the performance of each model. It is found 

that there are more variables and constraints in the 

superquantile model, which is more computationally 

expensive.  
TABLE V 

PERFORMANCE COMPARISON OF THE MODIFIED 6-BUS SYSTEM  

 Quantile model  Superquantile model 

Number of variables 102,204 188,206 
Number of constraints 87,132 106,133 

CPU time 20.83s 186.67s 

 

In sum, we draw one note from the above observations: 
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Note A1: the IMRLD has a lower operational cost compared 

with the TD and SP, because it preserves the good features of 

the BRLD.  

Objective A3: there are three scenarios. The base case for all 

scenarios is the system without any wind power injection, 

denoted by the blue line in the figures. The overall system 

flexibility is defined as the system upward/downward ramping 

capability in 10 minutes. For example, system flexibility equals 

to 10%/10mins means units can ramp upward/downward 10% 

of their total capacity in 10 minutes. The penetration level is the 

wind power capacity over the total installed capacity. 

Scenario 1: set the system flexibility level to 20%/10mins. 

This scenario finds the relation between the wind penetration 

level, the wind prediction error, and the operational cost. There 

are three subcases in this scenario for the quantile and the 

superquantile models: HPE, MPE and LPE, shown in Fig. 3(a).  

Scenario 2: set the prediction error to MPE. This scenario 

finds the relation between the wind penetration level, the 

system flexibility, and the operational cost. There are 3 

subcases in this scenario for both the quantile and superquantile 

models: high system flexibility (HSF), medium system 

flexibility (MSF) and low system flexibility (LSF), shown in 

Fig. 4(a). Based on the definition of the system flexibility, HSF, 

MSF and LSF are chosen as 40%/10mins, 20%/10mins and 

10%/10mins.   

Scenario 3: set the penetration level to 20%. This scenario 

finds the relation between the system flexibility, the wind 

prediction error, and the operational cost. Again, there are 3 

subcases in this scenario for both the quantile and superquantile 

models: HPE, MPE and LPE, shown in Fig. 4(b). 
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Fig. 3.  (a) Given the flexibility level, the relationship between the wind 
penetration and the prediction accuracy. (b) The wind spillage in scenario 1.  

For both scenario 1 and scenario 2 shown in Fig. 3(a) and Fig. 

4(a), the characteristics of the curves are similar: (a) In the HPE 

and MPE subcases, or the HSF and MSF subcases, it is not 

surprising that the costs first drop down with the increased 

penetration level. When the penetration levels reach about 20% 

in scenario 1 and 25% in scenario 2, the curves start to rise. 

Because the deviation of the prediction leads to a much more 

severe shortage of the reserve at the real time when the 

penetration level is high, more power must be purchased at the 

last stage with a high price. However, in the LPE and LSF 

subcase, the costs decrease monotonously with the penetration 

levels. (b) For each curve, the part beyond the base case means 

the operational cost of a wind power system is higher than the 

cost of a system without wind. The inaccurate forecast results in 

insufficient power purchasing at the stage with a low price, so it 

leads to the excessive purchase at the real time. (c) The cost of 

the superquantile model is higher than the quantile model, 

given the same confidential levels and risk parameters. In 

addition, Fig. 3(b) provides the wind spillage in each subcase. 

The high wind spillage percentages in the HPE and MPE reveal 

that the high penetration level does not necessarily provide 

economic profits without matched forecast technology and 

system flexibility. 

Nevertheless, for the scenario 3 shown in Fig. 4(b), shapes of 

the curves are different: (a) For the HPE and MPE, the costs 

slope down when the flexibility improves. The suitable 

flexibility is about 25%/10mins and 43.5%/10mins respectively 

to hold the wind power. (b) In the LPE subcase, the costs barely 

decline, because the prediction is precise enough so that the 

uncertainty of the wind can be handled by a comparatively low 

flexibility level.    
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Fig. 4.  (a) Given the prediction accuracy, the relationship between the wind 
penetration and the flexibility. (b) Given the penetration level, the relationship 
between the flexibility and the prediction accuracy. 

In sum, the above observations and analysis give rise to one 

note: 

Note A2: impact factors in the IMRLD are coupling. Analysis 

of the IMRLD shows the wind power integration will probably 

bring no economic benefits without matched prediction 

accuracy and system flexibility.  

B. The realistic system in Gansu, China 

In the second case, the simulation is built on a realistic 

system, the Gansu power grid in China, which has a large-scale 

wind power integration. There are 132 buses and 244 

transmission lines in the system. The wind power injects at bus 

14, 38, 51, 63, 54 and 58, and 1000 samples of wind power are 

generated and reduced to 10 samples with sophisticated 

scenario reduction tool [39]. Details of this system can be found 

in [33].   

The objectives of this case are twofold: (1) Compare the 

operational costs between the TD, SP and IMRLD for the 

Gansu realistic system. (2) Illustrate the LMP calculation of all 

750kV buses and find the reason for the variation in the LMPs 

over the total 12 delivery periods.  

Objective B1: the comparison between the TD, SP and 

IMRLD for the Gansu realistic system is shown in Table VI. 
TABLE VI 

COMPARISON OF THE OPERATION COSTS FOR THE REALISTIC SYSTEM 

 S1  S2 S3 Total 

TD($/hr) 22,319.7 0 10,513.9 32,834.6 

SP($/hr) 22,819.7 7,332.4 205.1 30,357.2 

IMRLD($/hr) 
22,684.0 
/22,736.6 

6,718.3 
/7,053.7 

55.9 
/106 

29,458.2 
/29,896.3 

 

Table VI shows the similar result with Table V on the 6-bus 
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system. The IMRLD has the lowest operational cost. Compared 

with the TD, the economic benefits of the IMRLD come from 

the utilization of recourse stage to correct the operational 

decision. Compared with the SP, some extreme scenarios are 

not considered because of the acceptable operational risk level, 

so the operational cost of the IMRLD is lower. Table VI can be 

concluded to one note: 

Note B1: the IMRLD has a lower operational cost than the 

TD and SP for the realistic Gansu power system, because it 

preserves the good features of the BRLD. 

The performance of the IMRLD for the realistic system is 

provided in Table VII. There are more variables in the 

superquantile model, thus it needs more CPU time. In addition, 

provided more advanced solvers and computers, if any, the 

number of samples and the problem scale can be further 

enlarged to render a better operational plan, and the 

computational time can be further reduced.   
TABLE VII 

PERFORMANCE COMPARISON OF THE REALISTIC SYSTEM 

 Quantile model  Superquantile model 

Number of variables 108,864 167,566 
Number of constraints 22,176 86,939 

CPU time 40.83s 266.32s 

 

For the LMP analysis, the mean values of wind power 

predicted at the first stage are shown in Fig. 5. At time t=5, t=8 

and t=10, the wind power ramps up while sinks down at t=6, 

t=9 and t=11. 
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Fig. 5.  The predicted mean values of the wind power at the first stage. 

The LMPs of the quantile model and the superquantile model 

are shown in Fig. 6. 
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Fig. 6.  (a) The LMPs in the quantile model. (b) The LMPs in the superquantile 
model. 

Some heuristic and impressive features can be found in Fig. 

6. At the first glance, there are 3 peaks of the LMPs at t=5, t=8 

and t=10, coincident with the wind power peaks. The largest 

LMP fluctuations are at bus 17, 38 and 51. Intuitively, the raise 

of wind power will result in cost-saving, just like the fact at bus 

38 and 51 where the LMPs tumble down. However, the LMP of 

bus 17 paradoxically increases with the wind power. This 

abnormal phenomenon results from the different location of the 

buses and line congestions. Because bus 38 and 51 are wind 

injection point, the LMPs decline. But the congested lines in the 

system are increased due to the increment of the wind power 

injection at t=5, t=8 and t=10, thus the LMPs of some buses rise 

up with nuanced degrees. For bus 17, the sharp ascent of the 

LMP is due to the neighboring congested lines. However for the 

other buses, the LMPs slightly grow because they are far from 

the congested area. 

In normal condition, the free price of the wind power will 

reduce the LMP intuitively. However, this is not the case for 

some buses in the realistic Gansu power system. This abnormal 

situation is concluded by the following note:  

Note B2: line congestions in the Gansu power system lead to 

the rise of the LMPs in some buses even when the wind power 

increases.  

VI. CONCLUSION 

In conclusion, the paper proposes the IMRLD as a power 

system operational method for the renewables integration, 

because it preserves the advantages of the BRLD, and it 

satisfies the three realistic industrial requirements 

simultaneously. The convexity is verified and a theorem is 

proved to make the IMRLD solvable. The LMP is then derived 

to analyze the relation between the system marginal operational 

cost and the uncertainty from the renewables injection.  

The case studies on a modified IEEE 6-bus system and a 

realistic provincial system in China demonstrate the economic 

benefits of the IMRLD. In addition, the simulation result of the 

IMRLD shows that the impact factors of the operational cost, 

which are the system flexibility, the wind penetration level, and 

the prediction accuracy, are coupling. The operational cost of a 

system with wind power integration may be higher than the 

system without wind, if the prediction accuracy and the system 

flexibility are not matched. Lastly, the LMP analysis shows that 

the limited transmission capacity is another factor that prevents 

the economic benefits of wind power integration. 

APPENDIX 

A. Proof of Remark 1 

The hard constraints are a set of linear inequalities and 

equalities, denoted in (30):  

 
1

2

,

,

T

i i

T

j j

a x b i

c x d j

 

 
  (30) 

where a, b, c and d are parameters, i and j are the index of the 

inequalities and equalities, and A1, A2 are the sets of 

inequalities and equalities. 

For the linear equalities, they are rewritten into a set of 

inequalities shown as: 

 
2, ,T T

j j j jc x d c x d j     (31) 

Therefore, the hard constraints can be reformed into a set of 

linear inequalities: 
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3,T

k ke x f k    (32) 

where e and f are parameters, k is the index of the inequalities, 

and A3 is the set of inequalities. 

Assume x, y be two solutions of (32), we have 

 
3

3

,

,

T

k k

T

k k

e x f k

e y f k

 

 
  (33) 

If the inequalities are multiplied by nonnegative values q and 

1-q, we have: 

 3(1 ) (1 ) ,T T

k k k k kqe x q e y qf q f f k         (34) 

(34) means any point z=qx+(1-q)y is a solution to (32), 

provided q∈[0,1]. Therefore, the feasible region composed of 

the hard constraints is a convex set. 

B. Proof of Theorem 1 

Prerequisite 1: The following optimization problems are 

equivalent, if f(x,y) and g(x,y) are convex [36]. 

 

,

(a) min ( , ) [ ( , )]

(b) min ( , ) [ ( , ), ]
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
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  (35) 

where Ψ is a feasible region of the deterministic variable x. y is 

a random variable. a is a parameter, F(·) is the ancillary 

function defined in [36], and β is the ancillary variable. 

Prerequisite 2: The following optimization problems 

generate the same efficient frontier, when f(x) is convex and g(x) 

is concave [38]. 

 
(a)min ( ) (b) min ( ) ( )
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s t g x G x s t x


  

 (36) 

where a and G are parameters. 
By Prerequisite 2, the two problems below generate the 

same efficient frontier: 

1 11(a) min ( , ) (b)min ( , ) [ ( , )]

. [ ( , )] , . [ ( , )] , 1

x x

i i i ii i

f x y f x y a q g x y

s t q g x y Q i s t q g x y Q i



 



    
 (37) 

where Qi and a1 are parameters. By Prerequisite 1, the two 

problems below are equivalent: 

1 11(a) min ( , ) (b)min ( , ) [ ( , )]

. [ ( , )] , . [ ( , )] , 1

x x

i i i ii i

f x y f x y a q g x y

s t q g x y Q i s t q g x y Q i



 



    
  (38) 

By Prerequisite 2, the two problems below generate the 

same efficient frontier, where C1 is a parameter: 

1 1
1 1 1 1

, ,

1 1 1 1

(a) min ( , ) [ ( , ), ] (b) min ( , )

. [ ( , )] , 1 . [ ( , )] , 1

[ ( , ), ]

x x

i i i ii i

f x y a F g x y f x y

s t q g x y Q i s t q g x y Q i

F g x y C

 

 







     



 (39) 

With (37)-(39), all the superquantile constraints can be 

transformed to the ancillary functions, thus Theorem 1 can be 

proved.  

C. Derivation of the LMP for the superquantile model 

When the optimization problem of the superquantile model 

is solved, the loss function and the ancillary function 

degenerate into an affine function. Assume the wind power is 

subject to a joint Gaussian probability, the lower limit of the 

integral in (28) can be analytically expressed as: 

 
l t w w   a w   (40) 

where ȝw and ıw are the mean and the variance of the PDF of 
alwt, and φα is the α-quantile of the normal distribution. Thus, 

 
1 2

( )
[ ( ) ( )]

( )

lt

l t w w

lt t t
L q

lt ln lt ln

nt

t t

L p d
a a

p d



  

 




 


   








a w

w w

w w

  (41) 

The integral is actually a probability, which can be calculated 

and denoted by P(w≥W). 

Finally, substituting (41) into (28), the LMP of the IMRLD 

with the superquantile risk metric becomes: 

 1 2

1

[ ( ) ( )]
( )

(1 )

sq
L lt lt ln lt ln

nt t l
lt

a a
LMP u P w W

  


  
  

   (42) 
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