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Abstract—In this paper, an improved multi-period risk-limiting
dispatch (IMRLD) is proposed as an operational method in power
systems with high percentage renewables integration. The basic
risk-limiting dispatch (BRLD) is chosen as an operational
paradigm to address the uncertainty of renewables in this paper
due to its three good features. In this paper, the BRLD is extended
to the IMRLD so that it satisfies the fundamental operational
requirements in the power industry. In order to solve the IMRLD
problem, the convexity of the IMRLD is verified. A theorem is
stated and proved to transform the IMRLD into a piece-wise
linear optimization problem which can be efficiently solved. In
addition, the locational marginal price of the IMRLD is derived to
analyze the effect of renewables integration on the marginal
operational cost. Finally, two numerical tests are conducted to
validate the IMRLD.

Index  Terms—Multi-period, operational requirements,
risk-limiting dispatch, renewables integration, risk metric.

I. INTRODUCTION

HE global warming and the energy crisis are the most

critical issues in this century. Renewable energy is
flourishing these years as one of the most effective ways to
reduce fossil fuel consumption. Total installed capacity of
renewable energy resources keeps increasing in the past
decade.

The intermittency and uncertainty from renewable energy
resources bring many challenges to power system operation.
Stochastic programming (SP) is adopted to address the
uncertainty in the power system operation in many studies,
such as the scenario-based two-stage unit commitment [1], and
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the model predictive control based look-ahead dispatch [2].

Among the system operational methods using SP, the BRLD
is one of the flagships due to three good features [3, 4]. First,
the BRLD considers the chance of recourse decisions, so the
operational decisions are adaptable to the latest forecast
information of renewables. Second, operational risks are
concerned and limited through multiple dispatch stages, so the
BRLD naturally conforms to the industrial requirement on the
risk assessment of renewables integration [5]. At last, the
BRLD is able to render a global optimal operational decision,
taking advantages of the conditional prediction of the
uncertainty [3].

Despite the three advantages, the BRLD achieves the global
optimal decision while sacrificing some fundamental industrial
requirements. First, the BRLD assumes a single delivery period
in an electricity market, but the real-time operation in the
electricity market should be multi-period. For example, the
delivery horizon of the day-ahead market is composed of 24
I-hour intervals in the Pennsylvania—New Jersey—Maryland
(PJM) market [6]. Second, key power system operational
constraints such as the inter-temporal unit ramping constraint
and the transmission thermal limit constraint are missing in [3].
However, these constraints represent the basic physical features
of power systems and the violation of them may lead to
destructive consequences [7], [8]. Third, [3] uses a simplified
risk metric in the form of probability. In the power industry and
academic field, it is well acknowledged that a variety of
alternative risk metrics are indispensable in quantifying the
operational risk in appropriate situations [5]. These risk metrics
include loss of load probability, loss of load frequency [9],
value-at-risk [10] and conditional value-at-risk [11].

Due to these fundamental requirements on the system
operation in the realistic power industry, the BRLD was
extended in many ways. The operational framework of the
BRLD was extended to include multiple delivery periods in [12]
with closed form solutions based on dynamic programming.
However, it is hard to integrate transmission networks and
other risk metrics, in virtue of the combinational explosion of
dynamic programming. Akin to [12], ramping capacity and
energy storage were considered in the BRLD in [13], [14]. The
effect of transmission network was considered in [15], where
only one congested line existed in the network. However, this
assumption is not tenable in realistic systems in which line
congestions are one of the dominant factors preventing high
percentage penetration of renewables [16]. [18] used a
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numerical method to solve the BRLD considering the
transmission network and the ramping capacity under the
framework of two-stage stochastic optimization, so the
recourse decision cannot be taken into consideration, which
leads to the sub-optimality of the operational strategies. Risk
metrics other than LOLP were considered in [17], but the
impact of the multi-period and the transmission network were
not regarded. Lastly, none of the above works derived the
locational marginal price for the operational model, so the
sensitivity of loads and renewable injections to the operational
cost was not provided therein, and the shadow prices of the load
and renewables injection were not revealed.

Therefore, the knowledge gap of the existent studies is their
insufficiency in satisfying the realistic operational requirements
simultaneously. This paper extends the BRLD to the IMRLD to
address this issue. Specifically, we model the IMRLD as a
multi-stage multi-period operational problem. The unit
ramping constraint and the transmission network constraint are
incorporated, and the quantile and the superquantile are
wielded as the risk metrics. To solve the IMRLD, we encounter
two technical challenges. The first is the global optimality of
the IMRLD, and the second lies in solving an optimization
problem with a set of superquantile constraints. We prove the
global optimality of the IMRLD by verifying its convexity, and
we prove a theorem mathematically so that the optimization
problem with a set of superquantile constraints can be
equivalently transformed into a piece-wise linear optimization
problem, which can be solved by existing solvers efficiently. In
order to analyze the IMRLD, we derive the locational marginal
price (LMP) to show the impact of renewables integration on
system marginal operational costs.

In sum, the contributions of the paper can be summarized as
follows:

(1) In terms of problem formulation, this paper extends the
BRLD to the IMRLD which caters to the industrial
requirements while preserves the good features of the BRLD.

(2) In terms of problem solving, this paper verifies the
convexity of the IMRLD problem, and proves a theorem
mathematically to transform the insolvable IMRLD into a
conventional piece-wise linear optimization problem.

(3) In terms of problem analysis, this paper derives the
analytic form of the locational marginal price to show the
marginal operational cost related to loads and renewable
injections for the IMRLD.

The remainder of the paper is organized as follows. Section
IT presents the IMRLD model. Section III solves the IMRLD by
verifying the convexity and proving a theorem. The LMP is
derived in Section I'V. Section V applies the proposed IMRLD
to a modified IEEE standard case and a realistic Gansu
provincial power system in China. The final conclusions are
given in Section VI.

II. MODEL FORMULATION OF THE IMRLD

A. Framework of the IMRLD

The basic idea of the IMRLD on multiple delivery periods is
illustrated in Fig. 1.
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Fig. 1. The structure of the IMRLD.

We assume that the operational framework is composed of T
delivery periods (black arrows in Fig. 1) and S dispatch stages
(white arrows in Fig. 1). The T delivery periods can be treated
as real-time markets. The S dispatch stages represent the
dispatch processes in the day-ahead market and the intra-day
market. The power in each delivery period is accumulated from
dispatch stages (day-ahead and intraday) and that delivery
period (real-time). In order to mitigate the operational risk, such
as the risk of power unbalance and transmission line overload
in each delivery period, the Independent System Operator (ISO)
purchases power by signing contracts in all dispatch stages in
the most economical way.

The general model of the IMRLD is formulated as (1)-(3):

Delivery periods

T s
min £ 3 f, (%, (Y. Y |Y... 5[Y).y,) (1
t=1 s=1
R(x,(Y,.Y,,|Y....Y,|Y,).y,) < Risk, @)
X, (V.Y Y YY) ey, €A )

where s and 7 are the index of the stage and period respectively.
The objective function f;(-) represents the expected operational
cost. R,(-) is the risk function with an upper bound Risk;. This
risk function can take any risk metric for any given operational
constraint. Y is the prediction information at stage s. y is the
vector of state variables, such as the power flow and the phase
angle, belonging to a feasible region A. Each decision vector X,
belonging to another feasible region €, denotes the power
purchased at dispatch stage s for delivery period ¢, as a function
of the conditional predictions (Y5, Ys+1|Ys,..., Ys|Y).
The dispatch process is illustrated in Fig. 2.
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Fig. 2. Operational process.

Dispatch stages: in dispatch stage 1, ISO solves (1)-(3) to
obtain the power to be purchased from stage 1 to stage S with
the input (Y1, Y2|Y1,..., Ys|Y1.). Only x; is enforced whereas the
rest dispatch outputs are advisory. When times rolls forward,
the prediction information will be updated, and the above
calculation repeats again and again until the last dispatch stage
S. By the end of the dispatch stages, the power accumulated for
each delivery stage 7 is ) Xir.

Delivery periods: wind power generation may be different
from the forecast due to the uncertainty. If the power
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accumulated from previous dispatch stages cannot balance the
load at one delivery period, the power shortage should be
compensated from the corresponding real-time markets.
Furthermore, if there is still a power shortage or the thermal
limits of transmission lines are violated, compulsory load
shedding is inevitable. Therefore, the power is a sum of the
cumulated power from all dispatch stages for each delivery
period, the power from the real-time market, and the negative
power consumption resulting from load shedding, if necessary.

According to the Bellman optimality principle, the solution
process of the IMRLD can be decoupled into (S+7)"
optimization problems. Therefore, the IMRLD is solved
(S+D)™ times to achieve the final global optimal decision [3].
The general model of the IMRLD is specified in the following
subsections.

B. Simplifying assumption
The following simplifying assumptions are made in our
model.

(1) We assume that market participants are price-takers. This
assumption is acceptable if quantities of the power to be traded
are large in the market [19]. This assumption has been widely
used in many textbooks [19-20], technical reports [21] and
research papers [22], because it brings a decentralized market
solution process [20]. The situation where the wind power
serves as a price-maker is out of scope of this paper [23].

(2) The operational constraints are grouped into two
categories due to the uncertainty of renewables. The first type
of constraints are considered as soft constraints, of which the
violating probability and potential losses should be assessed by
risk metrics. Transmission line overload is treated as the soft
constraint in this paper, because utilities concern the severity of
transmission line overload, e.g. costs associated with the
overload, in addition to its probability. For example,
Midcontinent ~ Independent  System  Operators  uses
Transmission Constraint Demand Curves to quantify the
severity of overload by penalty prices [24]. North American
Electric Reliability Corporation (NERC) uses different short
term ratings for transmission lines to distinguish severity levels
of system failures [25]. In addition, quite a few research works
also used operating risk to assess the transmission line overload
[26], [27]. In this regard, the transmission line overload is
defined as the soft constraint in this paper. The second type
constraint is considered as a hard constraint which must be
satisfied at all times. The real power balance and the unit
max/min capacity constraint are good examples of the hard
constraint.

(3) Electricity demands are modeled as inelastic loads, so the
objective function of the system operation is the minimization
of total dispatch cost rather than the maximizing of social
surplus. However, price-sensitive demand bids can be easily
integrated into the proposed framework.

(4) The model is based on the DC power flow. This
assumption is tenable for high voltage and long distance
transmission networks, where DC power flow is a good
approximation of the AC power flow for system steady state
operation [28]. In this sense, DC power flow is used both in the

3

industrial and academic field in transmission-level system
operation [29], [30].

C. Risk metrics

Based on the above assumptions, the operational risk of
violating the thermal limit depends on the choice of risk metrics,
which is the risk function Ry(-) in (2). In engineering field, the
commonly used risk metrics are expectation, worst case,
quantile, safety margin, and superquantile [31]. This paper
chooses the quantile and the superquantile as a paradigm to
measure the risk. Reasons for such choice are given as follows.

Of these five risk metrics, the expectation is simple but does
not reflect the risk averseness of operators. The worst-case is
conservative and uses no information of the probability
distribution other than its highest realization. The safety margin
may not detect large variation on the tail loss, which is
important to operators. However, the quantile and the
superquantile, also known as value at risk (VaR) and
conditional value at risk (CVaR) in finance, take advantages of
the probability distribution and the risk preference of operators
can be tuned. The quantile has been identified as a risk metric
when dealing with uncertainties in power systems by NERC [4].
Meanwhile, the superquantile is widely used as a risk measure
in both industrial and academic field [32], because it has some
good properties in the model formulation and solution. First, it
meets the requirement of system operators on quantifying the
uncertainty with a low probability but a high consequence.
Second, it is a coherent and convex risk metric, so a global
optimal decision can be achieved, which is desirable for system
operators. It should be noted that the choice of risk metrics
could be replaced by other metrics without affecting the whole
methodology.

Quantile. Given a random variable Z and its cumulative
distribution function (CDF) F, the a-quantile is:

4.(2)=F; (o) )

Similarly, if the loss is a function of Z, denoted as f{Z), then the

risk of loss is determined by g.(f(Z)). Mathematically, this is

equal to the failure probability p(fiZ)), where
Pp(f(Z))=prob(f{Z)>0), because of:

PLfD)<1-aiff q,[f(Z2)]<0 ®)

Superquantile. Similarly, given the loss function, the
o-superquantile is:

Gl @)1= ——

i [ OPDE (©)

In spite of its complex form, the superquantile is a coherent
and convex metric [31], so it is widely used in both financial
and engineering fields.

Based on these risk metrics, the risk constraint (2) is
specified as the quantile constraint and the superquantile
constraint, so the IMRLD to be solved has two versions, which
are the IMRLD with the quantile constraint and the IMRLD

with the superquantile constraint.

D. IMRLD model with the quantile constraint

For the general model of the IMRLD in (1)-(3), we first use
the quantile as the risk metric of the IMRLD, shown in (7)-(13).

1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2017.2651146, IEEE

Transactions on Industrial Informatics

At each dispatch stage s, the objective function (1) can be
specified as:

T S T
min [ Y (¢,p,)+ D (m,x, +m,r,)] (7)

t=1 s=1

which minimizes the expected total operational cost for the
whole delivery period. Decision variables are py, ri; and ry,
where py; is the power output vector for each bus at dispatch
stage s for delivery period ¢, ri; and r, are the load shedding and
wind spillage. The operational price ¢y, the load shedding price
my; and the wind spillage price my, are constants in (7).

The constraint (3) of the decision variables is the hard
constraint without risk. They are transformed to (8)-(11) as:

S
>p,+w,+r,—-d, -r,, =BO, Vi (8)
s=1
S
Pmin < zpst < Pmax’ vt (9)
s=1
S S
P’<>'p,->p, <PY, Vi (10)
s=1 s=1
P_<p <P_.  V.Vs (11)

where random variable w; is the wind power vector predicted
for delivery period ¢, and d, is the demand at period ¢. Constants
are the lower and upper bounds of the generation output limits
Puin and Py, the lower and upper bounds of the ramping
capabilities PP and PY, and the B-matrix of the DC power flow
B. (8) is the nodal power balance equation and 0, is the phase
angle in delivery period ¢. (9) means the accumulated power
from each generator should be bounded in each delivery period.
(10) is the ramping constraint of the accumulated power from
each generator for each delivery period, and (11) is the unit
capacity constraint.

Because the line thermal limit is the soft constraint with risk,
we use the quantile g, to quantify the potential loss for line / in
period t. So the risk constraint in (2) is specified as (12) and
(13):

ot Sy = Frmax) < Risk, o 7)™ Ve, V1

Qi S = fi) S Risk, = 0™ VeV (13)

where Risk is the risk bound for line / in period . ;4™ and
;4™ are dual variables. The state variable is the power flow fi,.
Constants are the lower and upper bounds of the line thermal
1imits fimin and fimax of line L. Thus, the full model of the IMRLD
using the quantile as the risk metric is encapsulated by (7)-(13).

12)

E. IMRLD model with the superquantile constraint

If we use the superquantile instead of the quantile as the risk
metric, the risk constraint in (2) is transformed to (14)-(16),
rather than (12)-(13). In (14), the potential loss L in period ¢ on
line / is defined as a penalty when the power flow violates the
thermal limit, shown as (14):

LI/ = ﬂ'[l [ﬁl _ﬁmax ]+ +/Jll I:-ﬁmin - ﬁt ]+ V[, VI (14)
where [-]*=max (-,0). Ay and w; are penalty prices when the
power flow violates the thermal limit of line / in period ¢. The

corresponding superquantile of the loss function L; is given in
(15):

4
- 1
Gy =7 [, Lpwdw, WL (15)
and the risk constraint is:
q,,(L,) < Risk, , Vvt, Vi (16)

Finally, the full model of the IMRLD using the superquantile
as the risk metric is composed of (7)-(11) and (14)-(16).

Therefore, we see some features which make the IMRLD
different from previous works. It is a multi-stage multi-period
operational problem considering operational constraints and
alternative risk metrics, so it can be used in the realistic power
industry directly, compared with the BRLD and the related
works [3], [12-15], [17], [18]. It also preserves the good
features of the BRLD, so it achieves the global optimal decision
like the BRLD.

III. THE CONVEXITY OF THE IMRLD AND THE MODEL
SOLUTION

In this section, we first demonstrate the convexity of the
IMRLD with the quantile and the superquantile risk metrics, so
a local optimal solution would be global optimal. Then we
prove a theorem mathematically to transform the IMRLD with
the superquantile risk metric into a piece-wise linear
programming problem. After solving these two technical
challenges, the IMRLD can be finally computed by existing
solvers like GUROBI.

A. The convexity of the IMRLD

First of all, it should be noted that the BRLD in [3] is convex.
We call the BRLD plus the hard constraints P1, and the BRLD
plus the hard and soft constraints P2. According to the model
formulation, the IMRLD is P2 in essence. For P1, one remark
can be drawn, and is proved in Appendix A.

Remark I: Pl is a convex optimization problem.

P2 is equal to P1 plus the soft constraints. For the quantile
constraint, it can be reformed into a linear inequality if the
prediction error of wind power is Gaussian distributed, and the
convexity of the feasible region is thereby maintained
according to the proof of Remark 1. The assumption of a
Gaussian distribution for the prediction error of wind power is
tenable as a result of the central limit theorem [31], and it has
been widely used in the steady state operational problems [3].

For the superquantile constraint, it will not change the
convexity of the feasible region because it is a coherent and
convex risk metric. In addition, the superquantile constraint is
always convex regardless of distributions, if the loss function is
convex [36]. Therefore, P2, namely the IMRLD, is a convex
optimization problem.

In this sense, the above models are both convex optimization
problems, so a local optimal solution would global optimal.

B. Algorithm for solving the IMRLD problem

For the model with the quantile constraint, we use (5) and the
generator shifting matrix A to rewrite the risk constraint (12)
and (13) to (17) and (18):

S
p(A(Zpst +w,+r,—-d,-r,,)>f )<l-a, Vvt (17)
s=1
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S
p&. —AQ p, +wW, +r,—d, -1, )>0)<1-a, Vi (I18)
s=1
These probability constraints are rewritten as the linear
constraints using the thresholds @™ and ™" [37], based on

the aforementioned assumptions.

S
A(Zpsl +r, _dr _rwt) < fmax _(ptmax : T?,mﬂx Vit (19)

A(ZPS, -r,)>f_  —o™: ™ vt (20)
where 74™* and 1,4™" are the dual variables.

Moreover, the system power balance constraint is shown in
(21):

1 (Zi]ps: W, tr, -
where u, is the dual variable.

Therefore, the final IMRLD model with the quantile
constraint includes (7), (9)-(11), and (19)-(21).

For the IMRLD with the superquantile constraint, it is
challenging to solve it by existing solvers. Thus, we propose
Theorem 1 to reformulate the original problem into a
piece-wise linear optimization problem.

Theorem 1: The following two optimization problems
generate the same efficient frontier:

() min f(x, y) (b) min f(x,y)

st qlg,(x, MI<0,Vi st Flg,(x,y),B]1<C, Vi
where i is the index of constraints, Q; and C; are parameters, x
is a deterministic variable, y is a random variable, and p(y) is
the probability density function(PDF) of y. pi is an ancillary
variable. F(-) is an ancillary function defined as:

1
F(gx,y).B) =p +Ej[g(x, Y=AI'p(ydy  (23)

The proof of Theorem 1 is provided in Appendix B.
Thus, we define the ancillary function for our specific
problem as:

(pst’rlr’w rwl’IBZI)ZIBII
j[ ., (Zpé,—i—w +r, —

d-r,)=0 :u Vi (21)

t

(22)

(24)

-r,,)—f

m]x]

(1_ lr

lulr[fmin _al(szt tw, +r, _d)‘ _rwt)]+ _ﬁlr]+ p(W,)dW,

s=1
where a; is the /M row of the generator shifting matrix A. The
vector fnax and fnin are the bounds of the thermal limits.
According to Theorem 1, the optimization problem (7)-(11),
and (14)-(16) is equivalent to (7), (9)-(11), (21) and (25) where:
F,(p,.x,.w,.r,,3,)<Risk,, YtV (25)

Furthermore, if we use discrete samples to represent the
random variable w;, (25) can be discretized to (26) for any type
of distribution [36]:

K 1 S
B+, —x[A[a,() p,+w,+r,—d, —r,)
It Zkfl k(l—a) 1Ly ; t tk It t tk

S
al (Zpst + Wtk + rlt - dr - rw{k )]+ (26)

s=1

_fmax ]+ + lult [fmin -

-p,1" < Risk, : 7]

t

Vi,V

5

where k is the index of the samples, and 7,7 is the dual variable.

Therefore, the objective of the final IMRLD with
superquantile constraint is to minimize (7), subject to (9)-(11),
(21) and (26). It is a piece-wise linear optimization, which can
be efficiently computed by existing solvers.

IV. LOCATIONAL MARGINAL PRICE ANALYSIS

In order to analyze the IMRLD model, the LMP is derived in
this section to reveal the relation between the marginal
operational cost and the uncertainty from renewables injections.
In addition, the LMP analysis also contributes to the detection
of transmission congestions in a network.

In our formulation, we cannot obtain the LMP by checking
the dual variables directly, because the nodal power balance
equation is not explicit. In this regard, the LMP is derived by
perturbing the load in the Lagrangian function of the IMRLD.
The Lagrangian functions of the IMRLD with the quantile and
the superquantile constraints are denoted as /i and £k
respectively. A perturbation &, on load at bus # in period 7 is
used, in order to derive an analytical form of the LMP.

A. LMP of the IMRLD with the quantile constraint
For node n in delivery period ¢, the LMP is derived in (27):

g,min

qmax
= — a
21 1 Tu Zz 1 2 In
5§m

where a, is the entry of matrix A, L is the number of lines, u;,
7, 4™ and 7,4™" are the dual variables of constraint (21), (12)
and (13).

The first component in (27) is interpreted as the marginal
operational cost of the reference bus, not depending on
transmission lines. The second and the third components stand
for the marginal cost of congestion. The impact of the
operational risk can be treated as an expansion of the
transmission capacity determined by the thresholds ¢/ and
@™, In this sense, the congestion cost of the expanded
transmission line is equal to the merchandizing surplus. In
addition, if &y is interpreted as wind perturbation, the LMP is
the price of wind power at bus n in period ¢ It should be
mentioned that the uncertainty is implicitly included in the
Lagrangian multipliers u;, 7™ and ,%™",

B. LMP of the IMRLD with the superquantile constraint
For node n in delivery period ¢, the LMP is derived in (28):

LMP, = (27

L sg O L, p(w,)dw,
LMP

a, _ " + Z LTy Ly >4,
nt - %% 1=1
agnt 1 - alt agnt‘

(28)

where 7;°? is the dual variable of (26).

Akin to (27), the first component reflects the marginal cost of
the reference bus, while the second component stands for the
congestion price relative to the reference bus. Moreover, if the
wind power output follows a joint Gaussian distribution, the
LMP can be further simplified as:

v 'L (wa,) —1,(4,a,)]
(1-a,)

In (29), P denotes a joint probability, w is an ancillary

random variable, and W is a threshold derived in Appendix C.

Pw=>W)

LMP, =u, +) (29)

nt
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Indicator functions I; and I, equal to uuai,, and Ayai;, when the
values of the second and the third line in (26) are not zero
respectively. (Otherwise, I; and I, are zero)

If we can find a threshold like the case in the quantile model,
the effect of the operational risk on the transmission capacity
can also be deemed as an expansion of transmission lines.
However, for the superquantile case, it is difficult to calculate
such a threshold, so we need the reformulation and Theorem 1
to solve the model. In addition, the LMP is explicitly related to
the joint probability distribution, so it is possible to analyze the
effect of wind forecast error on the LMP directly.

V. CASE STUDY

In this section, two case studies are conducted for the
IMRLD. The first case is based on a modified IEEE 6-bus
system, and the second case is based on a realistic wind power
system from Gansu province of China. The models for these
cases are coded in CVX 2.1 in MATLAB 2013 and solved by
GUROBI 6.0. All experiments are conducted on a PC Dell
OPTIPLEX 9010 with Intel Dual Core i5 at 3.30, 3.30 GHz and
128 GB RAM in a 64-bit Windows 7 operating system.

A. A modified IEEE standard system

The first case is based on a modified IEEE 6-bus system with
3 dispatch stages (S1, S2 and S3) and 3 delivery periods (T1, T2
and T3). All system data can be found in [33]. In this case, the
prediction data of the wind are generated by Monte Carlo
simulation based on the joint Gaussian distribution with 1000
samples. Mean values of the two wind plants are given in Table
I. (x/y) in Table I represents the mean values of the wind power
at bus 2 and bus 3 respectively. The covariance matrix
represents the prediction error. Table II gives the covariance
matrix in high prediction error (HPE), medium prediction error
(MPE) and low prediction error (LPE) for this case.

TABLE I
MEAN VALUES OF THE WIND POWER AT BUS 2 AND BUS 3
W2/W3 (MW) T1 T2 T3
S 10/9.4 15.3/11.2 25.3/20.3
S2 10/7.7 14.4/11.1 20.9/19.9
S3 10/5.8 15/8.8 23.3/15.3
TABLEII
COVARIANCE MATRIX IN HPE, MPE AND LPE
HPE MPE LPE
S1 [10,6:6,10] [5,2:2,5] [2,1;1,2]
S2 [6,3;3.2] [2,1;1,2] [1,0.5;0.5,1]
S3 [0,0,0,0] [0,0;0,0] [0,0,0,0]

There are three objectives in this case. The first objective
illustrates how the IMRLD generates the scheduling plan of
each unit at each dispatch stage for each delivery period. Based
on the scheduling plan, the second objective compares the
operational costs among the traditional deterministic operation
(TD), the three-stage stochastic programming (SP) and the
IMRLD. The last objective analyzes the IMRLD model to find
the relation between the operational cost, the system flexibility,
the prediction error and the wind penetration level.

Objective Al: assume the prediction error is LPE. Based on
the data in Table I and Table II, the scheduling plans of each
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unit at each dispatch stage for each delivery period of the
quantile and the superquantile models are computed by (7)-(11),
(14)-(16), and (7), (9)-(11), (21), (26) respectively. The output
of unit 3 is always zero because of its high operational cost. The
outputs of unit 1 and 2 are shown in Table III, and (N/M) in
Table III are the outputs computed by the quantile and the
superquantile model respectively.

TABLE III
OPERATIONAL SCHEDULES OF UNIT 1 AND UNIT 2
Quantile/Superquantile S1 S2 S3
Unitl T1 98.3/98.5 0/0 0/0
(MW) T2 108.7/110.4 0/0 0/0
T3 117.2/120.9 0/0 0/0
Unit2 Tl 94.4/97.4 1.1/1.9 0.4/0.6
(MW) T2 76.9/80.3 0.4/0.5 0.2/0.3
T3 49.3/51.8 4.2/4.3 0.7/1.1

In Table III, operators purchase power at dispatch stage 1,
and purchase recourse power at dispatch stage 2 because the
change of prediction is known, given in Table I and II.
Similarly, additional power will be purchased at the last stage.

Objective A2: the wind data is represented by the mean
values in Table I without prediction errors in the TD. In the SP
and the IMRLD, the wind data are given in Table I and II. Table
IV shows the operational costs of the TD, SP and IMRLD.
(N/M) in Table IV are the operational costs computed by the
quantile and the superquantile model respectively.

TABLE IV
OPERATIONAL COSTS OF THE TD, SP AND IMRLD
S1 S2 S3 Total
TD($/hr) 6,472.8 0 465.5 6,938.3
SP($/hr) 6,018.1 179.7 69.2 6,867.0
6,495.7 80.3 244 6,600.4
IMRLD($/hr) /6,551 /142.5 /45.5 /6,739

Table IV shows the operational costs of the TD, SP and
IMRLD at each dispatch stage. Compared with the TD, the
IMRLD takes advantage of the available prediction information
of the wind power decreasing so it avoids buying much power
at the last stage with a very high price. Moreover, operators can
correct the operational decision in the recourse stage with a
lower price. Compared with the 3-stage SP, the permission of
the operational risk at stage 1 and 2 within a given risk level
leads to the lower operational cost in the IMRLD. In addition,
more power would be purchased in the superquantile model and
the operational cost is thereby higher because the severity and
probability of losses are both integrated in the superquantile
model, whereas the quantile model just considers the
probability of losses.

Table V compares the performance of each model. It is found

that there are more variables and constraints in the
superquantile model, which is more computationally
expensive.

TABLE V

PERFORMANCE COMPARISON OF THE MODIFIED 6-BUS SYSTEM

Quantile model Superquantile model

Number of variables 102,204 188,206
Number of constraints 87,132 106,133
CPU time 20.83s 186.67s

In sum, we draw one note from the above observations:
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Note Al: the IMRLD has a lower operational cost compared
with the TD and SP, because it preserves the good features of
the BRLD.

Objective A3: there are three scenarios. The base case for all
scenarios is the system without any wind power injection,
denoted by the blue line in the figures. The overall system
flexibility is defined as the system upward/downward ramping
capability in 10 minutes. For example, system flexibility equals
to 10%/10mins means units can ramp upward/downward 10%
of their total capacity in 10 minutes. The penetration level is the
wind power capacity over the total installed capacity.

Scenario 1: set the system flexibility level to 20%/10mins.
This scenario finds the relation between the wind penetration
level, the wind prediction error, and the operational cost. There
are three subcases in this scenario for the quantile and the
superquantile models: HPE, MPE and LPE, shown in Fig. 3(a).

Scenario 2: set the prediction error to MPE. This scenario
finds the relation between the wind penetration level, the
system flexibility, and the operational cost. There are 3
subcases in this scenario for both the quantile and superquantile
models: high system flexibility (HSF), medium system
flexibility (MSF) and low system flexibility (LSF), shown in
Fig. 4(a). Based on the definition of the system flexibility, HSF,
MSF and LSF are chosen as 40%/10mins, 20%/10mins and
10%/10mins.

Scenario 3: set the penetration level to 20%. This scenario
finds the relation between the system flexibility, the wind
prediction error, and the operational cost. Again, there are 3
subcases in this scenario for both the quantile and superquantile
models: HPE, MPE and LPE, shown in Fig. 4(b).
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Fig. 3. (a) Given the flexibility level, the relationship between the wind
penetration and the prediction accuracy. (b) The wind spillage in scenario 1.

For both scenario 1 and scenario 2 shown in Fig. 3(a) and Fig.
4(a), the characteristics of the curves are similar: (a) In the HPE
and MPE subcases, or the HSF and MSF subcases, it is not
surprising that the costs first drop down with the increased
penetration level. When the penetration levels reach about 20%
in scenario 1 and 25% in scenario 2, the curves start to rise.
Because the deviation of the prediction leads to a much more
severe shortage of the reserve at the real time when the
penetration level is high, more power must be purchased at the
last stage with a high price. However, in the LPE and LSF
subcase, the costs decrease monotonously with the penetration
levels. (b) For each curve, the part beyond the base case means
the operational cost of a wind power system is higher than the
cost of a system without wind. The inaccurate forecast results in
insufficient power purchasing at the stage with a low price, so it
leads to the excessive purchase at the real time. (c) The cost of

— LPE quantile
= LPE superquantile
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the superquantile model is higher than the quantile model,
given the same confidential levels and risk parameters. In
addition, Fig. 3(b) provides the wind spillage in each subcase.
The high wind spillage percentages in the HPE and MPE reveal
that the high penetration level does not necessarily provide
economic profits without matched forecast technology and
system flexibility.

Nevertheless, for the scenario 3 shown in Fig. 4(b), shapes of
the curves are different: (a) For the HPE and MPE, the costs
slope down when the flexibility improves. The suitable
flexibility is about 25%/10mins and 43.5%/10mins respectively
to hold the wind power. (b) In the LPE subcase, the costs barely
decline, because the prediction is precise enough so that the
uncertainty of the wind can be handled by a comparatively low
flexibility level.
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& 8000\, & \
% % 750 \
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a
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|==HSF quantile = LSF superquantile |==LPE quantile — HPE superquantile
MSF superquantile — HSF superquantile MPE superquantile — LPE superquantile

Fig. 4. (a) Given the prediction accuracy, the relationship between the wind
penetration and the flexibility. (b) Given the penetration level, the relationship
between the flexibility and the prediction accuracy.

In sum, the above observations and analysis give rise to one
note:

Note A2: impact factors in the IMRLD are coupling. Analysis
of the IMRLD shows the wind power integration will probably
bring no economic benefits without matched prediction
accuracy and system flexibility.

B. The realistic system in Gansu, China

In the second case, the simulation is built on a realistic
system, the Gansu power grid in China, which has a large-scale
wind power integration. There are 132 buses and 244
transmission lines in the system. The wind power injects at bus
14, 38, 51, 63, 54 and 58, and 1000 samples of wind power are
generated and reduced to 10 samples with sophisticated
scenario reduction tool [39]. Details of this system can be found
in [33].

The objectives of this case are twofold: (1) Compare the
operational costs between the TD, SP and IMRLD for the
Gansu realistic system. (2) Illustrate the LMP calculation of all
750kV buses and find the reason for the variation in the LMPs
over the total 12 delivery periods.

Objective Bl: the comparison between the TD, SP and
IMRLD for the Gansu realistic system is shown in Table VL.

TABLE VI
COMPARISON OF THE OPERATION COSTS FOR THE REALISTIC SYSTEM
N S2 S3 Total
TD($/hr) 22,319.7 0 10,513.9 32,834.6
SP($/hr) 22,819.7 7,332.4 205.1 30,357.2
22,684.0 6,718.3 55.9 29,458.2
IMRLD($/hr) /22,736.6 /7,053.7 /106 /29,896.3

Table VI shows the similar result with Table V on the 6-bus
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system. The IMRLD has the lowest operational cost. Compared
with the TD, the economic benefits of the IMRLD come from
the utilization of recourse stage to correct the operational
decision. Compared with the SP, some extreme scenarios are
not considered because of the acceptable operational risk level,
so the operational cost of the IMRLD is lower. Table VI can be
concluded to one note:

Note Bl: the IMRLD has a lower operational cost than the
TD and SP for the realistic Gansu power system, because it
preserves the good features of the BRLD.

The performance of the IMRLD for the realistic system is
provided in Table VII. There are more variables in the
superquantile model, thus it needs more CPU time. In addition,
provided more advanced solvers and computers, if any, the
number of samples and the problem scale can be further
enlarged to render a better operational plan, and the

computational time can be further reduced.
TABLE VII
PERFORMANCE COMPARISON OF THE REALISTIC SYSTEM

Quantile model Superquantile model

Number of variables 108,864 167,566
Number of constraints 22,176 86,939
CPU time 40.83s 266.32s

For the LMP analysis, the mean values of wind power
predicted at the first stage are shown in Fig. 5. At time =5, =8
and =10, the wind power ramps up while sinks down at =6,

=9 and =11.
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Fig. 5. The predicted mean values of the wind power at the first stage.

The LMPs of the quantile model and the superquantile model

are shown in Fig. 6.
9 10
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Fig. 6. (a) The LMPs in the quantile model. (b) The LMPs in the superquantile
model.

Some heuristic and impressive features can be found in Fig.
6. At the first glance, there are 3 peaks of the LMPs at =5, =8
and =10, coincident with the wind power peaks. The largest
LMP fluctuations are at bus 17, 38 and 51. Intuitively, the raise
of wind power will result in cost-saving, just like the fact at bus
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38 and 51 where the LMPs tumble down. However, the LMP of
bus 17 paradoxically increases with the wind power. This
abnormal phenomenon results from the different location of the
buses and line congestions. Because bus 38 and 51 are wind
injection point, the LMPs decline. But the congested lines in the
system are increased due to the increment of the wind power
injection at /=5, =8 and =10, thus the LMPs of some buses rise
up with nuanced degrees. For bus 17, the sharp ascent of the
LMP is due to the neighboring congested lines. However for the
other buses, the LMPs slightly grow because they are far from
the congested area.

In normal condition, the free price of the wind power will
reduce the LMP intuitively. However, this is not the case for
some buses in the realistic Gansu power system. This abnormal
situation is concluded by the following note:

Note B2: line congestions in the Gansu power system lead to
the rise of the LMPs in some buses even when the wind power
increases.

VI. CONCLUSION

In conclusion, the paper proposes the IMRLD as a power
system operational method for the renewables integration,
because it preserves the advantages of the BRLD, and it
satisfies the three realistic industrial requirements
simultaneously. The convexity is verified and a theorem is
proved to make the IMRLD solvable. The LMP is then derived
to analyze the relation between the system marginal operational
cost and the uncertainty from the renewables injection.

The case studies on a modified IEEE 6-bus system and a
realistic provincial system in China demonstrate the economic
benefits of the IMRLD. In addition, the simulation result of the
IMRLD shows that the impact factors of the operational cost,
which are the system flexibility, the wind penetration level, and
the prediction accuracy, are coupling. The operational cost of a
system with wind power integration may be higher than the
system without wind, if the prediction accuracy and the system
flexibility are not matched. Lastly, the LMP analysis shows that
the limited transmission capacity is another factor that prevents
the economic benefits of wind power integration.

APPENDIX

A. Proof of Remark 1

The hard constraints are a set of linear inequalities and
equalities, denoted in (30):
a'x<b, ieA, 30)
T, _ .
c;x=d;, jeA,
where a, b, ¢ and d are parameters, i and j are the index of the
inequalities and equalities, and Al, A2 are the sets of
inequalities and equalities.
For the linear equalities, they are rewritten into a set of
inequalities shown as:

cjxéa’j,cfxzdj,jeA2 (31)

Therefore, the hard constraints can be reformed into a set of
linear inequalities:
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ex<f., keA, (32)
where e and f are parameters, k is the index of the inequalities,
and Aj; is the set of inequalities.

Assume x, y be two solutions of (32), we have
eka <f.,, keA,
ey<f., keA,

If the inequalities are multiplied by nonnegative values ¢ and
1-g, we have:
gelx+(—-qey<qf, +(—-q)f, = f., keA, (34
(34) means any point z=gx+(1-g)y is a solution to (32),
provided g€[0,1]. Therefore, the feasible region composed of
the hard constraints is a convex set.

(33)

B. Proof of Theorem 1

Prerequisite 1: The following optimization problems are
equivalent, if f(x,y) and g(x,y) are convex [36].

(@min f(x,y)+aq,[g(x,y)]
xe¥ (35)
(b)xrgg fO,y)+aFlgx, y), pl

where ¥ is a feasible region of the deterministic variable x. y is
a random variable. a is a parameter, F(-) is the ancillary
function defined in [36], and [ is the ancillary variable.
Prerequisite 2: The following optimization problems
generate the same efficient frontier, when f(x) is convex and g(x)
is concave [38].
(@min f(x)
st. g <G, xeVY
where a and G are parameters.
By Prerequisite 2, the two problems below generate the
same efficient frontier:

(@) min £(x,) (bymin £(x, )+ ,q,,[8, (x. )]

$1 48 MISOL VI st q,lg(x <O, Vil
where Q; and a; are parameters. By Prerequisite I, the two
problems below are equivalent:

(a) min f(x, y) (bymin f(x, y) +a,q,,[¢, (x. y)]

st q,lg (<O, Vi st q,lg(x,y]<Q,Vi#l

By Prerequisite 2, the two problems below generate the
same efficient frontier, where C, is a parameter:

(a)ry}{? Sy +aFlg (xy),5] (b) r?gl Fxy)

(b) min f(x) +ag(x)

36
st. xeV (36)

(37)

(38)

st q,lg(x NI<Q, Vi#l
Flg (x, ), B81<C
With (37)-(39), all the superquantile constraints can be
transformed to the ancillary functions, thus Theorem 1 can be
proved.

C. Derivation of the LMP for the superquantile model

When the optimization problem of the superquantile model
is solved, the loss function and the ancillary function
degenerate into an affine function. Assume the wind power is
subject to a joint Gaussian probability, the lower limit of the
integral in (28) can be analytically expressed as:

st g[8 (x.)]<0. Vi=1 39)
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(40)

where u,, and oy, are the mean and the variance of the PDF of
a;w;, and ¢, is the a-quantile of the normal distribution. Thus,

GJ.L”Z% L, p(w,)dw,
05,
x _[ p(w,)dw,
AW, 2L, + 9,0,
The integral is actually a probability, which can be calculated
and denoted by P(w>W).
Finally, substituting (41) into (28), the LMP of the IMRLD
with the superquantile risk metric becomes:
v gL () —1,(A,a,)]
=u, +
I/t, ZI:] (1 _ 051, )

alwt = /’lw + ¢a0w

=1 (wa,)—1,(4,a,)] @l

LMP

nt

Pw=W) (42)
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