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ABSTRACT The excretory system of the nematode Caenorhabditis elegans is a superb model of tubular organogenesis involving
a minimum of cells. The system consists of just three unicellular tubes (canal, duct, and pore), a secretory gland, and two associated
neurons. Just as in more complex organs, cells of the excretory system must first adopt specific identities and then coordinate diverse
processes to form tubes of appropriate topology, shape, connectivity, and physiological function. The unicellular topology of excretory
tubes, their varied and sometimes complex shapes, and the dynamic reprogramming of cell identity and remodeling of tube connec-
tivity that occur during larval development are particularly fascinating features of this organ. The physiological roles of the excretory
system in osmoregulation and other aspects of the animal’s life cycle are only beginning to be explored. The cellular mechanisms and
molecular pathways used to build and shape excretory tubes appear similar to those used in both unicellular and multicellular tubes in
more complex organs, such as the vertebrate vascular system and kidney, making this simple organ system a useful model for
understanding disease processes.
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Introduction to the Excretory System and Unicellular
Tubes

Organs are made up of networks of tubes that transport
fluids or gases and mediate exchange of nutrients and

waste productswith surrounding tissues. Each tube type in the
network has a distinctive size and shape that facilitates its
particular function. Many biological tubes are constructed
frompolarized epithelial cells, with the apical surface forming
the lumen, while the basal surface forms the outside of the
tube facing other tissues or body cavity (Figure 1). Wider
tubes are formed from multiple cells whose lateral surfaces
bind to each other via adherens and tight junctions to main-
tain the patency of the lumen (Figure 1A). The smallest tubes
are unicellular, made up of single cells (Figure 1, B–D). Tubes
are often dynamic and can convert from one type to another
during development (Ribeiro et al. 2004; Denker et al. 2013;
Lenard et al. 2013). Cells within tubes can also delaminate,
change identity, and give rise to other cell types (Kalluri and
Weinberg 2009; Zuryn et al. 2012). Biological tubes make up
a vast proportion of cells in all eukaryotic organisms, and
tube abnormalities underlie many birth defects and diseases
in humans, yet the mechanisms that determine tubule iden-
tity, size, shape, and connectivity are incompletely under-
stood (Lubarsky and Krasnow 2003; Iruela-Arispe and Beitel
2013; Sigurbjornsdottir et al. 2014).

The Caenorhabditis elegans excretory system is a very sim-
ple tubular organ that consists of just three unicellular tubes
(canal, duct, and pore) connected in tandem to form a con-
tinuous lumen (Nelson et al. 1983) (Figure 2). Dynamic
changes in pore identity and tube connectivity occur during
development (Figure 3, Figure 4). Two fused gland cells
(Figure 3E) form a syncytium attached to the canal–duct
junction (Nelson et al. 1983), and two canal-associated neu-
rons (Figure 2A, Figure 3F) have axons that run along the
basal surface of the canal cell and have been proposed to
regulate canal function (Hedgecock et al. 1987; Forrester
and Garriga 1997). The system appears to function in both
osmoregulation and secretion, and it shares many molecular
features with osmoregulatory or renal systems in other or-
ganisms, and with other epithelial and endothelial tube net-
works. The simplicity of the excretory system, and its
amenability to genetic analysis and live imaging, make it a
very attractive model for studying the cell biology of
tubulogenesis, tube dynamics, and other aspects of organ
development and physiology.

Unicellular tubes

Excretory system tubes are unicellular, meaning that the
apical or luminal domain is located inside of the cell (Figure
1, B–D). Unicellular tubes are also found in tissues as diverse
as vertebrate capillaries (Bär et al. 1984; Iruela-Arispe and
Davis 2009; Lenard et al. 2015; Yu et al. 2015) and glia
(Simons and Trotter 2007; Jessen et al. 2015), Drosophila
tracheal tubes (Samakovlis et al. 1996; Schottenfeld et al.
2010; Maruyama and Andrew 2012), plant pollen tubes

(Geitmann 2010), and the contractile vacuoles of single-cell
protozoa (Plattner 2015). Understanding how unicellular
tubes are formed and maintained has significant health rele-
vance, given the prevalence of such tubes in the microvascu-
lature and nervous system and their involvement in
cardiovascular disease, stroke, and neuropathies (Feihl
et al. 2008; Govani and Shovlin 2009; Vallat et al. 2013;
Draheim et al. 2014; Haffner et al. 2016). Several different
mechanisms for forming unicellular tubes have been pro-
posed, although none are very well understood at the
molecular level.

Wrapping: An individual cell can form a tubule of defined
luminal diameter by wrapping its plasma membrane around
an extracellular core of matrix or other material and forming
an autocellular junction (AJ) or “seam” to itself (Figure 1B).
Seamed unicellular tubes are generally open at both ends.
Examples of seamed unicellular tubes include the C. elegans
excretory pore cell (Nelson et al. 1983); Drosophila tracheal
stalk cells, which wrap around a core of chitin (Ribeiro et al.
2004; Tonning et al. 2005; Luschnig et al. 2006); many ver-
tebrate capillaries (Yu et al. 2015), especially in the brain
(Bär et al. 1984); and many invertebrate glial socket cells
that wrap around neurons (Freeman 2015; Shaham 2015).
A related topology is observed in other wrapping glia, such as
mammalian Schwann cells, which do not form actual junc-
tion seams, but instead adhere to themselves via secreted
myelin (Simons and Trotter 2007; Jessen et al. 2015).

Wrapping and autofusion: A seamed tube formed by wrap-
ping can subsequently autofuse to eliminate the autocellular
junction and become a “seamless” tube that has no junctions
running along its length (Figure 1C). Autofusion occurs in the
C. elegans excretory duct (Stone et al. 2009) and pharyngeal
valve cells (Rasmussen et al. 2008), some capillaries in the
zebrafish vascular system (Lenard et al. 2015), and mamma-
lian Madin-Darby canine kidney (MDCK) cells grown
on micropillar arrays in culture (Sumida and Yamada
2013, 2015).

Hollowing: Asanalternative to cellwrapping, a single cell can
create a seamless tube through “cell hollowing,” in which
endocytic (plasma membrane-derived) and/or exocytic
(Golgi-derived) vesicles coalesce to form an internal apical
surface that connects to the plasma membrane (Figure 1D).
This mechanism was first described in mammalian endothe-
lial cells grown in culture (Folkman and Haudenschild 1980;
Davis and Camarillo 1996; Sacharidou et al. 2012). The ini-
tial nucleating event for intracellular lumen formation is not
clear, but in vivo, lumen formation often initiates near a junc-
tion with another epithelial tube cell and then appears to
grow inward from that point, suggesting polarized vesicle
trafficking toward the newly established apical domain
(Figure 1D), similar to exocytosis-driven cord hollowing
in multicellular tubes (Datta et al. 2011; Eaton and Martin-
Belmonte 2014) (Figure 1A). Seamless tubes can be closed at
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one end or open at both ends, depending on where nucle-
ation of apical surface occurs. Examples of seamless tubes
thought to form by a hollowing mechanism include the
C. elegans excretory canal cell (Buechner 2002; Berry
et al. 2003), Drosophila tracheal terminal and fusion cells

(Samakovlis et al. 1996; Gervais and Casanova 2010; Gervais
et al. 2012), and many capillaries (Wolff and Bar 1972; Bär
et al. 1984; Yu et al. 2015), including those that fuse via
anastomosis (Herwig et al. 2011; Denker et al. 2013; Lenard
et al. 2013; Caviglia and Luschnig 2014).

Overview of excretory system development

The C. elegans excretory system is an excellent model for the
study of unicellular tubes, since it contains tubes that form by
each of the above mechanisms: (1) a seamed pore tube
formed by wrapping (Figure 1B and Figure 3, C and D); (2)
a seamless duct tube formed by wrapping and autofusion
(Figure 1C and Figure 3B); and (3) a seamless and branched
canal tube likely formed by hollowing (Figure 1D and Figure
3A). The excretory system also has been used to study other
important steps of organ development, including long-range
cell migration, cell fate determination, epithelial delamina-
tion, and cell fate reprogramming.

Figure 4 shows a timeline of excretory system develop-
ment. Cells of the excretory system are born about one-third
of the way through embryogenesis and derive from the AB
lineage (Sulston et al. 1983) (Figure 3 and Figure 4, A–C).
The presumptive duct, G1 pore, and glands are initially born
in lateral locations far from the canal cell and then migrate to
their final positions during ventral enclosure (Figure 4A).
Junction and lumen formation begin only after the canal,
duct, pore, and gland cells come in physical contact, around
the lima bean stage of embryogenesis (Abdus-Saboor et al.
2011) (Figure 4, D and E and Figure 5A). The tubes, espe-
cially the duct and canal, subsequently elongate and change
shapes, concomitant with embryo elongation (Suzuki et al.
2001; Stone et al. 2009) (Figure 4F). During this time period,
the CAN neurons also migrate to their positions near the

Figure 1 Tube topologies and models for unicellular tube formation. (A
and B) In multicellular tubes (A) and seamed unicellular tubes (B), adhe-
rens junctions (in black) separate and delineate the apical and basal do-
mains. (C and D) In seamless unicellular tubes, junctions appear only at
the end(s) of the tube, at the site of connection to another cell. Some
multicellular tubes form by a cord-hollowing mechanism (A) involving
polarized vesicle trafficking toward the lumen (arrows) (Datta et al.
2011). The excretory pore cell (in blue) (B) forms a seamed tube by
wrapping and forming an autocellular junction (AJ). The excretory duct
cell (in yellow) (C) initially forms a seamed tube and then converts to a
seamless tube via autofusion to remove the AJ (Stone et al. 2009). The
canal cell (in red) (D) forms a seamless tube, likely through a cell-hollowing
mechanism involving polarized vesicle trafficking toward the lumen. The
origin of relevant vesicles is not known. The intercellular junction with the
duct may provide a polarizing cue that directs vesicle targeting to this
region. For all tubes, both basal and apical sides may secrete extracellular
matrices. For all diagrams, lumen is shown in lighter color.

Figure 2 The C. elegans excretory system. (A) Diagram of cells of the
C. elegans adult excretory system. (B) DIC with fluorescence photograph
of qpIs11[Pvha-1::gfp] adult expressing GFP in the canal cytoplasm. Arrow-
heads mark anterior and posterior ends of the canals running the length
of the organism.
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posterior canal arms (Sulston et al. 1983; Forrester and
Garriga 1997), and the system begins functioning in excre-
tion, as judged by edema formation in mutant embryos
(Stone et al. 2009). During the L1 larval stage, the G1 pore
delaminates and is replaced as pore by the epidermal cell G2
(Sulston et al. 1983; Parry and Sundaram 2014) (Figure 4G).
In the L2 larval stage, G2 divides and its daughter G2p
becomes the permanent pore.

Epithelial organization in excretory tube cells

Excretory tubes exhibit many typical epithelial characteristics
(Figure 3). The apical (luminal) surface of each tube cell is
marked by CRB-1/Crumbs (Bossinger et al. 2001) and the
apical PAR proteins PAR-3, PAR-6, and PKC-3 (Mancuso
et al. 2012; Armenti et al. 2014). The tubes are joined by
ring-shaped apical junctions containing both the Cadherin–
Catenin complex and the DLG-1–AJM-1 complex (Stone et al.
2009; Abdus-Saboor et al. 2011; Parry and Sundaram 2014;
Pasti and Labouesse 2014). Apical junctions and submembra-
nous domains are enriched for F-actin; this is particularly true
of the pore cell, which has a strong F-actin signal along its
autocellular junction (Parry and Sundaram 2014), and the
canal cell, which has a prominent terminal web containing

ACT-5/actin and cortical actin-binding proteins (Buechner
et al. 1999; Gobel et al. 2004; MacQueen et al. 2005; Praitis
et al. 2005) (Figure 5B). During tube development, the
lumen is filled with a fibrous apical extracellular matrix
(aECM) visible bymeans of transmission electronmicroscopy
(TEM) (Buechner et al. 1999; Mancuso et al. 2012) (Figure
5A). In the duct and pore, this luminal matrix disappears
prior to hatching and is replaced by a cuticular lining
(Nelson et al. 1983).

Excretory system functions and phenotypes

One important role of the C. elegans excretory system is in
osmoregulation. Long tubes of the canal cell extend through-
out the length of the animal and are thought to collect excess
water to be transported to the duct cell and then excreted
through the pore cell in the head (Figure 2). Osmoregulatory
function is inferred from morphological and molecular fea-
tures of the canal cell (Figure 2, Figure 5, Table 1) and from
laser ablations of the canal cell, duct, pore, or CAN neurons,
which cause characteristic Clear (Clr) and rod-like larval le-
thal (Lvl or Let) phenotypes in which the pseudocoelom
swells with accumulating fluid (Nelson and Riddle 1984;
Forrester and Garriga 1997). Many mutations that perturb

Figure 3 C. elegans excretory system parts list. Schematic
representations of the cell types that contribute to the
excretory system, their lineal origins (Sulston et al. 1983),
and major transcription factor (TF) regulators or markers.
Colors represent specific cell types throughout the figures.
Anterior is to the left. Junctions (as visualized with AJM-1,
DLG-1, or HMR-1/cadherin reporters) are represented with
heavy black rings or lines. (A) Canal cell (ventral view). Two
ring-shaped junctions connect the canal lumen to the duct
and gland. (B) Duct (lateral view). Ring-shaped junctions
connect the duct to the canal cell (right), and pore (left). (C
and D) G1, G2, or G2p pore (lateral views). An AJ (arrow)
seals the tube, and ring-shaped junctions connect the pore
to the duct (top) and hypodermis (bottom). (E) Binucleate
excretory gland (ventral view). A small ring-shaped secre-
tory–excretory junction (SEJ, arrowhead) connects the
gland to the canal cell. (F) CAN neurons (ventral view).
*, putative phosphorylation. ^, markers suitable for visu-
alizing the mature cells.
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these cells cause a similar lethal phenotype (Yochem et al.
1997; Liegeois et al. 2007; Stone et al. 2009; Mancuso et al.
2012), while mutants with milder excretory system abnor-
malities often appear pale and slightly bloated and/or show
increased sensitivity to osmotic challenge (Buechner et al.
1999; Wang and Chamberlin 2002; Hahn-Windgassen and
Van Gilst 2009).

The Excretory Canal Cell

Canal cell structure and ultrastructure

The excretory canal cell is the largest and one of the most
distinctively shaped mononucleate cells in the worm (Figure
2, Figure 3A). The cell body and nucleus are located just
ventral to the posterior bulb of the pharynx. The nucleus is
very large, which suggests that, as for intestinal nuclei, the
chromosomes are endoreduplicated (Hedgecock and White
1985). The cell sends out four hollow tubules or “canals,” two
posterior and two anterior, forming an “H-shape” (Nelson
et al. 1983). The canals are closed at their tips and extend
the entire length of the adult animal. The canal cell is a seam-
less tube—it does not have adherens junctions along most of
its length, but only at its connection to the excretory duct cell
and gland.

The lumen of the canals is easily observed via DIC (Figure
5C) or TEM (Figure 5B). The lumen diameter is narrowest
near the canal tips and widens steadily toward the excretory
canal cell body. The lumen is also wider in the posterior ca-
nals than in the anterior canals. In cross-section, the baso-
lateral surface of the canals extends between the lateral

hypodermis and the basement membrane, and the canal
and hypodermal membranes merge where gap junctions
are present (Figure 5B). The cytoplasmic terminal web is a
thick filament-rich coating adjacent to the luminal membrane
(Figure 5B).

Surrounding the lumen and filling most of the cytoplasm
are a series of smaller tubes or vesicles called canaliculi
(Nelson et al. 1983) (Figures 5, B and D). EM tomography
has shown that the canaliculi can be separate vesicles or
attached to each other and to the lumen (Khan et al. 2013)
(Figure 5B). Canalicular vesicles are 50–100 nm in diameter
and differ from other vesicles such as endosomes in having an
electron-dense coat, which at high magnification exhibits
“lollipop” structures characteristic of ATPases (Figure 5D).
Canaliculi appear to store water, and regulated docking of
the canaliculi with the apical membrane has been proposed
as a major driver of both axial and circumferential canal lu-
men growth (Khan et al. 2013; Kolotuev et al. 2013; Armenti
et al. 2014) (see below).

Surrounding and interspersed with the canaliculi are mul-
tiple microtubules (MTs) running along the length of the
canals (Figure 5B). The canals are rich in TBG-1/g-tubulin,
which marks MT organizing centers (MTOCs) (Zheng et al.
1991), and Venus::TBG-1 is visible as myriad puncta
throughout the canals (Shaye and Greenwald 2015) (Figure
6D). Outside of the canalicular region, other larger diam-
eter vesicles, as well as mitochondria, endoplasmic retic-
ulum (ER), and Golgi, are prominently visible by TEM
(Hahn-Windgassen and Van Gilst 2009; Khan et al. 2013;
Lant et al. 2015) toward the basal surface of the canals
(Figure 5B).

Figure 4 Overview of excretory system devel-
opment. (A) Excretory system cells are born in
disparate locations of the developing embryo
and migrate to meet at the ventral midline dur-
ing ventral enclosure (Sulston et al. 1983). Col-
ors represent cell types as in Figure 3. Dashed
line, ventral midline. (B) Sequential Notch and
EGFR signaling break symmetry in the ABplpa
vs. ABprpa lineages that give rise to the canal,
duct, G1 pore, and gland cells (Sulston et al.
1983; Moskowitz and Rothman 1996; Abdus-
Saboor et al. 2011). (C) LIN-12/Notch signaling
breaks symmetry in the ABplap vs. ABprap line-
ages to promote the G2 pore vs. W neuroblast
fate (Greenwald et al. 1983; Sulston et al.
1983). (D) Near the completion of ventral en-
closure, the tube progenitor cells are in contact
but have not yet formed junctions or lumen
(Abdus-Saboor et al. 2011). Note asymmetric
position of the canal cell with respect to the
ventral midline. (E) By the 1.5-fold stage, the

tubes have junctions consisting of AJM-1, DLG-1, and HMR-1/cadherin (heavy black lines) and a continuous lumen (white) that extends from the canal
cell, through the duct and pore, and is open to the extraembryonic environment (Stone et al. 2009). Arrowhead, canal–duct intercellular junction. The
gland cells also connect to the canal and duct at this region. Arrows, duct and pore AJs. The duct AJ autofuses at this stage (dashed lines) (Stone et al.
2009). (F) By late embryogenesis, the tubes have undergone morphogenesis to adopt their characteristic shapes. (G) By late in the first larval stage (L1),
the G1 pore has delaminated and lost all its prior junctions and lumen, and the G2 cell has replaced it as the pore (Sulston et al. 1983; Parry and
Sundaram 2014). Note that in F and G, the canal cell arms are drawn much shorter than actual length, and rotated relative to their actual lateral
positions, to show cell shape; in particular the canal arms reach the midbody by late embryogenesis and the rectum by late L1 stage.
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Lineal origin and Notch dependency of the canal cell

Notch signaling promotes left/right asymmetry in C. elegans
(Priess 2005), as in other organisms (Kato 2011), and is re-
quired to generate the asymmetrically positioned canal cell
(Lambie and Kimble 1991; Moskowitz and Rothman 1996)
(Figure 4, A and B). The ABpl and ABpr lineages generate
mostly bilaterally symmetric descendants (Sulston et al.
1983), with some exceptions that depend on signaling by
the Delta-like ligand LAG-2 through the Notch receptors
LIN-12 and GLP-1 and the downstream CSL [CBF1/Su(H)/
LAG-1] family transcription factor LAG-1 (Lambie and
Kimble 1991; Moskowitz and Rothman 1996; Priess 2005).
LAG-2 is expressed by interior MSap descendants on the left
side of the embryo and activates Notch signaling in various
ABpl (but not ABpr) descendants. Notch signaling promotes
the identity of ABplpapp (Moskowitz and Rothman 1996),
which gives rise to the canal cell and a mix of other epithelial
and neuronal descendants. In the absence of Notch signaling,
ABplpapp adopts an ABprpapp-like identity and generates
mostly neuronal descendants; no canal cell is generated.
The only known downstream target of this signaling is the
Hes-related transcription factor REF-1 in ABplpapp descen-
dants, though ref-1 mutants do not have defects in this cell
fate decision (Neves and Priess 2005).

Within the ABplpapp lineage, multiple asymmetric cell
divisions generate the canal cell (Sulston et al. 1983) (Figure

4B). The canal cell’s grandmother, ABplpappa, generates a
larger anterior daughter that survives and a smaller posterior
daughter that undergoes apoptosis. In ceh-36; unc-30 double
mutants, this asymmetry can be reversed (Walton et al.
2015). In pgl-1 ced-3 double mutants, the posterior daughter
can survive to generate an extra canal cell (Denning et al.
2012). The next asymmetric division, of the canal cell’s
mother ABplpappaa, generates a small anterior daughter that
becomes the RMEV neuron and a larger posterior daughter
that becomes the excretory canal cell. Since a noncanonical
Wnt pathway involving WRM-1/b-catenin promotes many
anterior/posterior asymmetries in the C. elegans lineage
(Sawa and Korswagen 2013; Zacharias et al. 2015), this path-
way is a good candidate for controlling such asymmetries
relevant to canal cell identity.

Transcription factors important for canal
cell differentiation

No single transcription factor has been found to specify canal
cell identity, but the following are important for canal differ-
entiation (Figure 3A):

LIN-26 is a nematode-specific C2H2 zinc finger protein im-
portant for epithelial differentiation and maintenance,
whose loss leads to epidermal degeneration as well as
variable defects in canal morphology (Labouesse et al.
1994, 1996). The final cell division that generates the

Figure 5 Excretory canal cell structure
and ultrastructure. (A) TEM of 420 min
(comma stage) embryo canal, duct, and
pore (tinted as in previous pictures)
shows canal lumen developing at the
point where canal contacts the duct
(TEM courtesy of Shai Shaham, The
Rockefeller University). Nuc, cell nuclei;
Lu, lumen. (B) TEM of transverse section
of an adult anterior canal, shows multi-
tude of canalicular vesicles, some con-
nected to the round central lumen
and/or to each other, while others are
disconnected. MTs surround the cana-
liculi, as do ER and mitochondria. The
left side of this section is almost entirely
gap junction, while the right side is
separated from muscle by basal extra-
cellular matrix. The terminal web is
stained lightly in this section and sur-
rounds the central lumen (M. Buechner,
D. Hall, E. Hedgecock, unpublished re-
sults). Note that the membrane of the
canalicular vesicles stains more darkly
than does the plasma membrane or lu-
minal membrane. (C) DIC micrograph of
a section of the posterior canal in N2
adult (M. Buechner and E. Hedgecock,
unpublished results). Boundary between

lumen and cytoplasm (red guidelines) is highly refractive and shows up well in DIC. Boundary between cytoplasm and hypodermis (blue guidelines) is
more difficult to see. (D) High-resolution TEM of canalicular vesicles in adult exc-7(rh252)mutant, in which the cytoplasmic contents appear more dilute.
Each canalicular vesicle is surrounded by proteins protruding into the lumen, that appear reminiscent of the lollipop structure of ATPase (M. Buechner,
D. Hall, E. Hedgecock, unpublished results).
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canal partitions epithelial and neuronal fates (Figure 4B),
and activation of LIN-26 in the canal is likely to be an
important early step in epithelial determination.

PROS-1 (formerly called CEH-26 or RDY-3) is a Prospero-
related homeodomain transcription factor (Kolotuev
et al. 2013). In pros-1 mutants, there is a nearly com-
plete failure of canal cell and lumen outgrowth, al-
though many aspects of canal cell identity appear
intact. Downstream (direct or indirect) targets of
PROS-1 include the aquaporin gene aqp-8, the guanine
nucleotide exchange factor gene exc-5, the germinal
center kinase gene gck-3, and the intermediate filament
gene ifb-1; the last appears to be a direct target
(Kolotuev et al. 2013). The mammalian homolog Prox1
promotes development of the lymphatic system (Wigle
and Oliver 1999), suggesting possible similarities
between the canal tube and lymphatic vessels (Kolotuev
et al. 2013).

CEH-6 is a POU-family homeodomain transcription factor
related to mammalian Brn1, which is required for devel-
opment and function of the distal tubule of the mouse
kidney (Burglin and Ruvkun 2001; Nakai et al. 2003).
ceh-6 mutants have canal cell and outgrowth defects
similar to those of pros-1 mutants, but less severe.

Downstream (direct or indirect) targets of CEH-6 include
multiple transporter- or channel-encoding genes, includ-
ing aqp-8, clh-4, mrp-2, nac-2, pgp-3, pgp-4, pgp-12,
sulp-4, sulp-5, sulp-8, twk-36, vha-12, vha-13, and
Y70G10A.3; aqp-8 and nac-2 appear to be direct targets
(Mah et al. 2007; Armstrong and Chamberlin 2010).

NHR-31 is a nuclear hormone receptor related to mamma-
lian HNF4a. NHR-31 is required for expression of
vha genes encoding subunits of vacuolar ATPase and
appears to restrain and coordinate both apical and
basal membrane growth (Hahn-Windgassen and Van
Gilst 2009).

Neural guidance cues and basement membrane steer
canal outgrowth

To adopt its distinctive H-shape, the canal cell undergoes an
extensive program of elongation and branching that is regu-
lated by neural guidance cues such as netrins,Wnts, and FGFs
and by other factors in the extracellular matrix such as
collagens and laminins (Hedgecock et al. 1987; Buechner
2002; Oosterveen et al. 2007; Polanska et al. 2011). Once
born, the canal cell begins to grow out left and right over
the ventral muscle quadrants from the cell body to the lateral

Table 1 Membrane channel or transporter proteins expressed in the excretory canal cell

Canal-expressed
genes Human homologs (if present)

Associated vertebrate
diseases or traits C. elegans gene reference(s) Disease references

INX-3, 5, 12, 13 None (invertebrate innexin gap
junction proteins)

Altun et al. 2009

AQP-2, 3, 8 Aquaporin 3, 9, 10 GIL blood group Huang et al. 2007; Khan et al.
2013

Rumsey and Mallory
2013

VHA-1, 5, 8, 12,
13, 19

Vacuolar ATPase (ATP-
dependent proton pump)

Renal distal tubular acidosis,
osteopetrosis

Oka et al. 1997; Liegeois et al.
2006, 2007; Hahn-Windgassen
and Van Gilst 2009; Knight
et al. 2012

Breton and Brown
2013

APTS-2, Y70G10A.3 SLCO4A1, C1 solute carrier
organic anion transporters

Reduction of renal-failure-
induced hypertension

Sherman et al. 2005 Suzuki et al. 2011

SULP-4, 5, 8 SLC26A4, A6 sulfate permease
anion exchanger, (pendrin)

Pendred syndrome Sherman et al. 2005 Everett et al. 1997;
Soleimani 2015

NHX-9 NHE3 cation proton antiporter
and ezrin linker

Congenital Na+ diarrhea Nehrke and Melvin 2002 Donowitz et al. 2013

MRP-2, PGP-3, 4, 12 ATP-binding cassette (ABC)
transporters

Chemotherapeutics
resistance, cholestasis

Zhao et al. 2005; Armstrong and
Chamberlin 2010

Srivastava 2014

ABCB1, ABCB4
NAC-2 SLC13A3 Association with Canavan

disease, hypertension
Armstrong and Chamberlin 2010 Bergeron et al. 2013

Na+-coupled dicarboxylate
transporter

TWK-36 KCNK4 (TRAAK,TWiK)
mechanosensitive potassium
channel

Salkoff et al. 2001 Brohawn 2015

CLH-3, 4 CLCN1 voltage-sensitive
chloride channel 1

Bartter syndrome
(hyponatremia), myotonia
congenital disease

Schriever et al. 1999; Hisamoto
et al. 2008

Andrini et al. 2015;
Imbrici et al. 2015

EXC-4 CLIC4 chloride intracellular
channel 4

X-linked intellectual
disability

Berry et al. 2003; Berry and
Hobert 2006

Takano et al. 2012;
Jiang et al. 2014

GTL-2 TRPM3,6,7 transient receptor
potential magnesium
channels

Hypomagnesemia Teramoto et al. 2010; Wang et al.
2014a

Li et al. 2006; de
Baaij et al. 2015
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surface. Both left and right extensions branch, and each ex-
tends the wide posterior-directed canals as well as the
smaller anterior-directed canals. These branches are visible
in GFP-marked cells by the time of the threefold stage
(Suzuki et al. 2001) (Figure 6A). At hatch, the posterior ca-
nals reach approximately the V3/V4 interval in the midbody.
The canal arms reach their target positions at the V6/T
boundary by the end of the L1 stage (Fujita et al. 2003).
While extension along the hypoderm then ceases, the canals
continue to lengthen tomaintain their positions as the animal
grows to adulthood.

The canals are positioned between the hypodermis and a
basement membrane (Figure 6B). It is unknown whether
this basement membrane is synthesized by the canal cell
or if the canals insinuate themselves between the hypo-
dermis and its own basement membrane. Supporting the
second possibility, the canal synthesizes several matrix
metalloproteases (Spencer et al. 2011) that could be used
for cutting through the basement membrane. In addition to
the guidance cues mentioned above, multiple other genes
and pathways that affect the extent of canal outgrowth ap-
pear to function in the hypodermis or in other nearby tissues
over which the canal grows (Polanska et al. 2011; Marcus-
Gueret et al. 2012).

Relatively little is known about molecular pathways that
direct basal canal branching, but a few mutants have been
observed that exhibit extra canal arms at low penetrance.
These include mutants for unc-6/Netrin or unc-5/Netrin re-
ceptor (Hedgecock et al. 1987); nck-1(mig-1)/Nck kinase
(Mohamed and Chin-Sang 2011); and axl-1, an axin-like
molecule (Oosterveen et al. 2007).

Cytoskeletal organization in the growing canals

Extracellular guidance cues likely regulate cytoskeletal orga-
nization to direct canal outgrowth, similar to what occurs
during neurite outgrowth (Dent et al. 2011). The growing tip
of the canals is wider than the canal behind it, in appearance
similar to a growth cone of a neuron (Suzuki et al. 2001).
Canal basal membrane outgrowth slightly precedes apical
membrane outgrowth, such that the growing tips of each
canal arm initially lack lumen (Kolotuev et al. 2013) (Figure
6C). The growing tips are marked by a cluster of MTOCs and
by a patch of F-actin that accumulates basolaterally rather
than apically (Figure 6D), which may be important for basal
outgrowth (Shaye and Greenwald 2015).

Mutations in several cytoskeletal regulators result in short-
ened canals without disrupting the formation or structure of
the lumen.

Integrins PAT-3, PAT-2, and INA-1 link laminins and other
extracellular matrix factors to the cytoskeleton (Gettner
et al. 1995; Baum and Garriga 1997). While null muta-
tions in pat-3 are embryonic lethal, hypomorphs and ca-
nal mosaics show length defects (Hedgecock et al. 1987).

UNC-53, homologous to vertebrate NAV2, is an actin- and
MT-binding protein that affects many anterior–posterior
cell and axon migrations, as well as canal outgrowth
(Stringham et al. 2002). UNC-53 acts cell autonomously
and in a common pathway with UNC-71 (ADAM),
MIG-10 (Lamellipodin), ABI-1 (Abelson Interactor-
1), WVE-1 (WAVE), ARX-2 (Arp2), and the Rho-specific
guanine nucleotide exchange activity of UNC-73 (TRIO)
(Schmidt et al. 2009; Marcus-Gueret et al. 2012; McShea

Figure 6 Canal cell outgrowth. (A) Canal length extends
greatly during the L1 stage. Diagrams to scale of animals
with left canals shown in red. At hatch, the posterior ca-
nals extend only as far as the gonad (light gray). During
the next 8 hr the canals extend to the anus (black diagonal
line) and have reached full length by the beginning of L2
stage, while the animal has also lengthened considerably.
(B) Transverse section of the animal near the canal cell
body. The cell body (red) stretches across left and right
muscle quadrants beneath the pharynx and extends canals
to the hypodermis. Some basal extracellular matrices
(basal lamina) are shown, incompletely, in gray. Canal
arms must cross the hypodermal basal lamina to extend
posteriorward alongside the hypodermis and the CAN
neuron (brown). (C) Growth of the tip of a canal during
wild-type L1 stage, adapted from fluorescence micrograph
(Kolotuev et al. 2013). The basolateral surface of the ca-
nals precedes the end of the lumen (apical surface) by
several micrometers. In addition, large varicosities of the
cytoplasm appear at regular intervals along the canal dur-
ing growth, while the lumen diameter is less variable. (D)
Model for canal tip outgrowth, adapted from Shaye and

Greenwald (2015) and Khan et al. (2013) (not to scale). EXC-6/INF2 formin is spread throughout the canal and concentrated at varicosities and especially
at the canal tip, where it helps to form a large actin patch to push the membrane forward. EXC-6 is also associated with MTOCs that nucleate MTs
growing predominantly toward the cell body. Actin filaments at the tip may extend to connect the basolateral surface to the terminal web of the apical
surface, providing guidance for growth of that surface as well. Growth of the apical surface may occur through ERM-1, RAL-1, and exocyst (not shown;
see Figure 7)-mediated fusion of canaliculi to the luminal surface, which allows water to pass through aquaporin AQP-8 into the canal lumen; increased
osmotic pressure drives luminal expansion.
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et al. 2013; Ghosh and Sternberg 2014; Wang et al.
2014b). The contactin RIG-6 also functions cell autono-
mously in the canal, potentially as part of the UNC-53
pathway (Katidou et al. 2013). Finally, PLR-1, a putative
E3 ubiquitin ligase, interacts with UNC-53 to regulate
outgrowth (Bhat et al. 2015).

Kinesins are motor proteins that transport vesicles along
MTs (Caviston and Holzbaur 2006). UNC-116/kinesin-1
heavy chain and KLC-2/kinesin light chain are expressed
in the canal, and mutation of either gene results in short
canals (Patel et al. 1993; Shaye and Greenwald 2015).

The canal cell likely forms a seamless tube through a
hollowing mechanism

Canal lumen formation initiates around the lima bean stage of
embryogenesis, near the newly formed junction with the
excretory duct cell (Stone et al. 2009; Abdus-Saboor et al.
2011; Mancuso et al. 2012) (Figure 4E, Figure 5A). Apical
PAR proteins (Achilleos et al. 2010; Mancuso et al. 2012;
Armenti et al. 2014) and the ezrin/radixin/moesin ortholog
ERM-1 (Khan et al. 2013) are among the earliest markers of
the nascent canal lumen, which suggests that recruitment of
these proteins may be involved in lumen nucleation. One
model consistent with existing data is that PAR proteins re-
cruit the exocyst complex (Armenti et al. 2014) to promote
vesicle docking at the canal–duct interface, while ERM-1 or-
ganizes actin to coat these vesicles and promote their fusion
with the apical membrane (Khan et al. 2013), which then
grows inward (Figure 1D). However, most studies have fo-
cused on postembryonic stages of canal outgrowth, and it
remains unknown whether the aforementioned gene
products are actually required for lumen nucleation.

Models for canal elongation and maintenance

Possible models for canal elongation and maintenance are
shown in Figure 6D and Figure 7. Elongation requires ERM-1
and the exocyst, which recruit canaliculi and other vesicles to
the apical membrane by interacting with vesicle-residing pro-
teins such as AQP-8 or RAL-1 (Khan et al. 2013; Armenti et al.
2014). The vacuolar ATPase (V-ATPase) and the aquaporin
AQP-8 drive water into canaliculi (Khan et al. 2013; Kolotuev
et al. 2013). Canaliculi may fuse into the canal apical mem-
brane (Kolotuev et al. 2013; Armenti et al. 2014), or theymay
dock only transiently to dump water into the lumen and
thereby increase hydrostatic pressure to push the lumen out-
ward (Khan et al. 2013). Other Golgi-derived or endocytic
vesicles follow MT and/or actin tracks to reach their proper
destinations and deliver apical or basal membrane and other
cargo. In particular, EXC-1/5/9 and the CCM-3–STRIPAK
complex regulate CDC-42 to promote recycling endosome
trafficking for apical membranemaintenance. Actin filaments
of the terminal web, linked to the apical membrane by ERM-1
(Gobel et al. 2004; Khan et al. 2013) and SMA-1/b-spectrin
(Buechner et al. 1999; Praitis et al. 2005), influence trafficking

and also cooperate with intermediate filaments (Woo et al.
2004; Kolotuev et al. 2013) to provide structural support
and restrain lumen diameter, guiding growth in the axial
direction. At the growing canal tips, apical and basal mem-
branes are linked by cytoskeletal filaments and the formin
EXC-6 to coordinate apical vs. basal outgrowth (Shaye and
Greenwald 2015).

During periods of rapid canal growth, such as during the L1
larval stage or during recovery from hyperosmotic shock,
basally protruding cytoplasmic bulges, variously called
“pearls,” “varicosities,” or “periluminal cuffs,” form at regular
intervals along the length of the canal arms (Figure 6C).
Pearls are rich in organelles such as ER and Golgi (Hahn-
Windgassen and Van Gilst 2009), and most docking of cana-
liculi to the apical membrane occurs in these pearl regions
(Kolotuev et al. 2013). Osmotic stress stimulates pearl forma-
tion, canalicular docking, and aquaporin-mediated water in-
flux into the lumen, thereby providing a mechanism to speed
lumen growth in response to physiological demands (Khan
et al. 2013; Kolotuev et al. 2013). This proposed role of
aquaporin-induced water influx is similar to that of blood
flow in stimulating lumen growth in vascular capillaries
(Herwig et al. 2011).

These models are based on studies of the following groups
of genes, which are important for canal lumen growth, shape,
or maintenance. Only mutants with the most severe canal
defects are lethal, whereas many mutants are viable but have
cystic lumens (Exc phenotype).

Gene products required for most or all lumen growth

Thereareonlya fewknowngeneproducts in this category, and
their analysis so far has been limited to larval stages.

PROS-1: The transcription factor PROS-1 upregulates many
genes important for canal lumen growth, including the
intermediate filament gene ifb-1 (Kolotuev et al. 2013)
(see above).

ERM-1: ERM proteins are membrane-actin linkers with
broad roles in cortical membrane organization (Neisch
and Fehon 2011) and intracellular tubulogenesis
(JayaNandanan et al. 2014; Jiang et al. 2014). ERM-1
localizes near the apical membrane and is essential for
terminal web organization and for both apical and basal
canal outgrowth (Khan et al. 2013) (Figure 6D, Figure 7).
ERM-1 is necessary and sufficient to recruit canaliculi
containing the Aquaporin AQP-8 to the apical membrane
(Figure 6D), but also has AQP-8-independent functions,
which may involve recruiting other classes of vesicles
(Khan et al. 2013).

RAL-1 and the exocyst: The small GTPase Ral helps direct
assembly of the exocyst, a multiprotein complex that
tethers exocytic vesicles to the plasma membrane for sub-
sequent SNARE-mediated membrane fusion (Liu and Guo
2012). RAL-1 on canaliculi was proposed to interact with
the exocyst on the apical membrane to promote canalic-
ular fusion and lumen growth (Armenti et al. 2014)
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(Figure 7). The canal lumen appears short and misshapen
in ral-1 or sec-5 zygotic mutants, and nearly absent in
ral-1 maternal-zygotic mutants. Conversely, ectopic lumen
pockets form under conditions of RAL-1 overexpression.
RAL-1 may also play a role in production or stabilization
of canaliculi, since ral-1 mutants have severely reduced
numbers of canaliculi, and some canaliculi appear aber-
rantly docked at the basal plasma membrane.

Cytoskeletal factors and the terminal web

The cytoskeleton helps direct lumen growth to appropriate
locations and provides structural support to maintain lumen
shape and integrity.

ACT-5 (actin) is expressed almost exclusively in the terminal
webs of the canal cell and intestine (MacQueen et al.
2005) (Figure 6D, Figure 7). In erm-1(RNAi) conditions
that slow lumen formation, ACT-5 coats large-diameter
vesicles as they coalesce (Khan et al. 2013). No pheno-
type has yet been attributed to act-5 loss, probably due to
redundancy with other actin paralogs, but act-5 geneti-
cally interacts with other genes such as erm-1 and sma-1
(Gobel et al. 2004).

SMA-1 is homologous to the F-actin cross-linker bΗ-spectrin
(Bennett and Healy 2008). SMA-1 is located at the apical
membrane of the canal cell (Praitis et al. 2005) and is
needed to maintain the terminal web at the apical mem-
brane (Buechner et al. 1999) (Figure 6D, Figure 7).
Strong sma-1 mutants often exhibit a canal lumen that
appears like a very large sac, a single cyst surrounded by
myriad canalicular vesicles. sma-1 genetically interacts
with both erm-1 and act-5 for this phenotype (Gobel
et al. 2004). sma-1 mRNA is bound at its 39 UTR by

EXC-7, a member of the ELAV/Hu family of RNA-binding
proteins, which regulate RNA stability and translation
(Fujita et al. 2003; Simone and Keene 2013). Null exc-7
mutants have the same canal phenotype as does mild
knockdown of sma-1 (Buechner et al. 1999; Fujita et al.
2003). These data suggest a model in which EXC-7 bind-
ing stabilizes sma-1 mRNA to be carried to the canal
distal tips to be translated, analogous to the role of
Drosophila ELAV and mammalian Hu proteins in stabiliz-
ing neural mRNAs (Bronicki and Jasmin 2013; Simone
and Keene 2013).

EXC-6 is homologous to human INF2, a formin with both
actin polymerization and MT-binding activities (Shaye
and Greenwald 2015). Human mutations in INF2 cause
inherited forms of the kidney disease focal segmental
glomerulosclerosis (Brown et al. 2010) and can also
cause Schwann cell actinopathy (Mathis et al. 2014).
EXC-6 associates with MTs and affects both actin locali-
zation and MT dynamics at the growing tips of the
canal arms (Shaye and Greenwald 2015) (Figure 6D).
exc-6 mutants have short canals with multiple lumens
(Buechner et al. 1999), consistent with EXC-6 promoting
basal membrane growth and restricting apical membrane
growth to the leading edge.

TBB-2 is a b-tubulin expressed in the canals (Spencer et al.
2011). tbb-2 mutants exhibit a similar canal phenotype
to that of exc-6, while tbb-2 gain-of-function mutations
suppress the effects of exc-6 mutation (Shaye and
Greenwald 2015).

Intermediate filament proteins in the cytoplasm provide me-
chanical strength to tissues (Carberry et al. 2009). IFB-1
is located at the periapical region of the canal and is re-
quired for canal outgrowth and integrity (Woo et al.

Figure 7 Model for vesicle trafficking in the canal cell.
Speculative model of factors allowing extension and main-
tenance of the luminal surface. Intermediate filaments,
ACT-5/actin, ERM-1, and SMA-1/bH-spectrin surround
the luminal surface (Gobel et al. 2004; Praitis et al.
2005; Khan et al. 2013; Kolotuev et al. 2013), where they
maintain the smooth diameter of the lumen. ERM-1 inter-
acts with AQP-8 on canaliculi (Khan et al. 2013), and RAL-1
GTPase on canaliculi and the PAR complex on the apical
surface attract the exocyst to fuse canaliculi to the apical
surface (Armenti et al. 2014), which could allow the activ-
ity of vacuolar ATPase to drive water into the lumen via
AQP-8 (Figure 6D, Figure 8) (Khan et al. 2013). Various
marked endosomes can be viewed moving anteriorward
and posteriorward throughout the length of the canals
(H. Al-Hashimi and M. Buechner, unpublished results).
The canal cytoplasm is rich in MTs (Shaye and Greenwald

2015), which presumably form tracks for this movement. By analogy to its role in vertebrate kidney proximal tubules (Chou et al. 2016), EXC-4/CLIC may
mediate vesicle movement in growing canals. In addition, two sets of protein cascades promote trafficking through recycling endosomes: EXC-9/CRIP
(Tong and Buechner 2008), EXC-1/IRG (K. Grussendorf, D. Hall, M. Buechner, unpublished results), and EXC-5/FGD (Mattingly and Buechner 2011)
activate CDC-42 (Olson et al. 1996; Gao et al. 2001) to stimulate growth of actin filaments and/or transport of endosomes along those filaments.
Similarly, CCM-3 and the STRIPAK complex also activate CDC-42 to promote trafficking, possibly toward or from the Golgi (Lant et al. 2015).
Presumably, some feature of a weakened or growing luminal cytoskeleton activates EXC-9 and/or CCM-3 to strengthen the cytoskeleton at these
points. The recycling endosomes are hypothesized to allow maintenance and/or growth of the lumen, presumably by supplying lipid and/or membrane
proteins either directly to the luminal membrane, or indirectly via the canalicular vesicle membrane.
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2004; Kolotuev et al. 2013). IFB-1 has two protein iso-
forms, IFB-1A and IFB-1B; both are expressed in the canal
cell, but IFB-1B appears more critical for canal cell func-
tion (Woo et al. 2004). IFB-1 forms heterodimers with
multiple other intermediate filament proteins, including
IFA-1/2/3/4 (Karabinos et al. 2003). At least two of
these, IFA-1 and IFA-4, are also expressed in the excre-
tory canal cell (Karabinos et al. 2003).

Regulators of recycling endosome trafficking

Recycling endosomes are important for later stages of canal
outgrowth and for maintenance of the terminal web. The
relevant cargo in these endosomes, or from where it origi-
nates, is unknown, but a reasonable model is that apical
membrane proteins and lipids are being continuously endo-
cytosed and recycled, as has been shown in many epithelia
(Eaton and Martin-Belmonte 2014). Recycling endosomes
may return material directly back to the apical membrane
or may traffic material to the Golgi for subsequent sorting
and exocytosis (Figure 7).

CDC-42 is a Rho-family GTPase that plays widespread roles
in apical cell polarity and cytoskeletal organization, in
part by regulating vesicular transport to and from the
Golgi network (Harris and Tepass 2010; Park et al.
2015). Both in C. elegans and mammalian cells, CDC-42
is colocalized with the recycling endosome marker
RME-1 and promotes retrograde transport of certain car-
goes from recycling endosomes to Golgi (Balklava et al.
2007; Bai and Grant 2015). In the canal cell, CDC-42 is
critical for lumen extension and maintenance and ap-
pears to act via effects on endocytic recycling (Mattingly
and Buechner 2011; Lant et al. 2015). CDC-42 activity is
regulated by at least two sets of gene products, EXC-1/5/9
and CCM-3/STRIPAK.

cdc-42 dominant-negative mutants or cdc-42(RNAi) animals
have shortened canals with lumen dilations or cysts that
are depleted for Golgi and recycling endosome markers
(Mattingly and Buechner 2011; Lant et al. 2015), consistent
with a role for CDC-42 in endocytic recycling (Figure 7).
Expression of constitutively active CDC-42 results in a
convoluted lumen phenotype, in which a long lumen of
near-normal diameter forms within a canal cell of greatly
reduced basal surface area (Mattingly and Buechner
2011), which suggests that CDC-42 also influences the
balance between apical-directed and basolateral-directed
trafficking.

EXC-1, EXC-5, and EXC-9: EXC-1 is homologous to the mam-
malian immunity-related GTPase (IRG) family, a set of
dynamin-related GTPases that are found at intracellular
membrane compartments, some of which target parasite-
containing vacuoles for autophagy and destruction
(K. Grussendorf and M. Buechner, unpublished results)
(Howard 2008; Petkova et al. 2012). EXC-5 is homolo-
gous to the mammalian FGD family of guanine nucleotide

exchange factors (GEFs), regulators of CDC-42 activity
that are mutated in faciogenital dysplasia (FGD) and
Charcot-Marie-Tooth (CMT) disease type 4H (Olson
et al. 1996; Gao et al. 2001; Suzuki et al. 2001; Delague
et al. 2007). FGD5 also is required for capillary formation
in culture (Kurogane et al. 2012). EXC-9 is homologous
to mammalian cysteine-rich intestinal protein (CRIP), a
cytoplasmic LIM-domain protein of unclear biochemical
function (Lanningham-Foster et al. 2002; Tong and
Buechner 2008); a vertebrate homolog is expressed in
the pronephros (Hempel and Kuhl 2014) and a C. elegans
homolog, VALV-1, appears to aid in the function of sev-
eral epithelial valves (Tong and Buechner 2008).

exc-1, exc-5, or exc-9 loss-of-function mutants have similar
phenotypes in which canal length is reduced and the
canal lumen becomes progressively dilated or cystic start-
ing in late embryogenesis (Buechner et al. 1999). In exc-5
mutants, cyst regions show reduced apical accumulation
of F-actin, and the leading edge of the canal arms also
lacks its usual basolateral F-actin patch, consistent with
actin organization being a key downstream readout of
EXC-5 function (Shaye and Greenwald 2015). The cystic
regions are enriched for the early endosome marker
EEA-1, but depleted of the recycling endosome marker
RME-1, while Golgi markers remain unchanged (Mattingly
and Buechner 2011). Overexpression of exc-1, exc-5,
or exc-9 all result in a convoluted-lumen phenotype
(Suzuki et al. 2001; Tong and Buechner 2008; Mattingly
and Buechner 2011; K. Grussendorf and M. Buechner,
unpublished results) similar to that of constitutive CDC-42
activation. Epistasis experiments based on the loss-of-
function and overexpression phenotypes indicate that
EXC-9 acts upstream of EXC-1, and both act upstream
of EXC-5. Yeast-2-hybrid results additionally indicate
that EXC-9 binds to wild-type EXC-1. These results sug-
gest that EXC-1/5/9 act upon CDC-42 in a common
pathway for apical membrane recycling (Mattingly and
Buechner 2011; K. Grussendorf, C. Trezza, A. Salem,
B. Mattingly, H. Al-Hashimi, D. Kampmeyer, L. Khan,
V. Göbel, D. Hall, B. Ackley, M. Buechner, unpublished
results), but do not affect trafficking to Golgi (Figure 7).

CCM-3 is the worm homolog of CCM3/PDCD10, a scaffold
protein that is part of several protein complexes, includ-
ing the striatin-interacting phosphatase and kinase com-
plex (STRIPAK) (Hwang and Pallas 2014; Lant et al.
2015). A key role of CCM-3 is to recruit GCKIII family
kinases to promote Golgi assembly and polarization
(Fidalgo et al. 2010; Kean et al. 2011). Mammalian mu-
tations in CCM-3 cause an autosomal-dominant form of
cerebral cavernous malformation (CCM), a neurovascular
disease associated with swelling and rupture of brain
capillaries (Draheim et al. 2014). Mutants for ccm-3,
gck-1, cash-1/striatin, farl-11/STRIP, or mrck-1/MRCK
(myotonic dystrophy-related CDC-42-binding kinase)
have shortened canals and a cystic lumen phenotype sim-
ilar to that of exc-1, exc-5, or exc-9 mutants, although the

46 M. V. Sundaram and M. Buechner



phenotype originates later in development (Lant et al.
2015). The cyst regions in ccm-3 mutants do not accumu-
late early endosome markers, but are depleted for Golgi,
ER, and recycling endosome markers and are enriched in
canaliculi and other abnormal vesicles. ccm-3 mutation
also results in reduced activation of CDC-42. CCM-3 is
therefore concluded to act with GCK-1 and other STRI-
PAK homologs to activate CDC-42 (Lant et al. 2015).
Based on the differences in early endosome and Golgi
marker accumulation, CCM-3 and STRIPAK may act on
CDC-42 at a later step of recycling than do EXC-1/5/9
(Figure 7).

Other potential trafficking regulators

The following genes also may influence trafficking, but the
specific step(s) affected is unknown.

EXC-4 is homologous to mammalian chloride intracellular
channel (CLIC) proteins (Berry et al. 2003). Mutants
have severely truncated canals with cystic lumens
(Buechner et al. 1999). Vertebrate CLIC proteins have
been proposed to act in many capacities, including as:
chloride channels (allowing counter-ion transport, during
vesicle acidification in hollowing endothelial cells)
(Ulmasov et al. 2009); enzymes (homologous to GST)
(Littler et al. 2010); cytoskeletal adaptors (associating
with ERM proteins) (Jiang et al. 2014); or a combination
of these, since the proteins can convert between cytosolic
and integral membrane forms (Littler et al. 2010; Jiang
et al. 2014). Mouse CLIC4 is needed for endolysosome
formation during Cdc42-dependent lumen formation in
kidney proximal tubule cells, prior to becoming progres-
sively enriched at the luminal surface (Chou et al. 2016),
which may represent a conserved role for EXC-4/CLIC4
in promoting vesicle trafficking during luminogenesis
(Figure 7). C. elegans EXC-4 is constitutively membrane-
associated, acts as an ion channel at pH below 6 (Littler
et al. 2010), is required during early lumen elongation
(Berry et al. 2003), and is found at the luminal mem-
brane of adult canals (Berry et al. 2003; Berry and Hobert
2006). The site of its action in excretory cell luminogen-
esis has not been determined; an attractive hypothesis is
that EXC-4 might acidify vesicles for transport to promote
trafficking-mediated lumen elongation (Figure 7). An al-
ternative, and not mutually exclusive, model is that
EXC-4 at the luminal surface provides counter-ions to
V-ATPase-driven protons that promote osmotic-mediated
lumen elongation (Kolotuev et al. 2013), and this func-
tion is also required for lumen maintenance (Figure 8).

DAF-6 and CHE-14 are homologs of Patched and Dispatched,
respectively, transmembrane proteins involved in Hedge-
hog signaling, endocytosis, and polarized secretion
(Tukachinsky et al. 2012; D’Angelo et al. 2015). DAF-6
and CHE-14 are localized to apical membranes and func-
tion redundantly to promote canal lumen extension

(Perens and Shaham 2005). Although C. elegans does
not have a standard Hedgehog (Hh) signaling pathway,
it does contain various “Warthog” and “Groundhog” pro-
teins related to Hedgehog (Burglin 1996), several of which
are expressed in the canal cell (Hao et al. 2006). Based on
molecular identities, DAF-6 and CHE-14 might regulate
endocytosis or secretion of specific apical factors, although
it is not known if the Hh paralogs are relevant cargoes.

RDY-2 is a nematode-specific tetraspan protein located in
apical membranes of the canal, duct, and pore cells
(Liegeois et al. 2007; H. Gill and M. Sundaram, unpub-
lished results). In addition to canal defects, rdy-2mutants
share several additional phenotypes with vha-5 mutants,
including defects in amphid channel morphology and hy-
podermal alae formation, which indicates a possible role
in apical trafficking.

Canalicular factors

Canaliculi docking with the apical membrane presumably in-
crease lumen growth (Figure 6D), but the origin of canaliculi is
unknown and further studies are needed to determine if they
contribute apical membrane or only water. Besides RAL-1
(above), the following gene products are localized to canaliculi:

AQP-8 is an aquaporin, a multipass transmembrane protein
that forms pores or channels permeable to water but

Figure 8 Speculative model of osmoregulatory function of the excretory
canals. Excess organismal liquid may flow from the hypodermis into the
canals via the many gap junctions between the two tissues and/or may
cross the basement membrane from the pseudocoelom to the canals.
Canalicular vesicles contain vacuolar ATPase and aquaporin AQP-8 (Khan
et al. 2013; Kolotuev et al. 2013). Depending on environmental osmo-
larity, canaliculi may store water or transport water into the lumen.
ATPase pumps protons into the lumen, which may attract a counter-ion
into the lumen via EXC-4/CLIC or another associated channel (Berry et al.
2003; Berry and Hobert 2006; Ulmasov et al. 2009). The sodium-proton
exchanger (NHX-9) is hypothesized to prevent acidification of the lumen,
increasing osmolarity of NaCl sufficient to draw water into the lumen of
the channel. Water then flows through the excretory duct and pore to the
outside environment. In this model, the duct cuticle and membrane are
impermeable to water. Pumps and channels in the duct might retrieve the
NaCl to prevent its loss; or pumps and channels in the hypodermis could
replenish Na+ and Cl2 from the environment.
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impermeable to ions and other charged molecules (King
et al. 2004). AQP-8 is located on canalicular vesicles and
may draw water into those vesicles, which is later re-
leased into the lumen upon ERM-1-dependent docking
with the apical membrane (Khan et al. 2013) (Figure
6D, Figure 7, Figure 8). Significant expansions in lumen
diameter occur when ERM-1 or AQP-8 are overexpressed.
aqp-8 null mutants have only a mildly shortened canal
lumen, however, which suggests that aquaporin-mediated
water flux may not be the key driver for lumen growth
under stable physiological conditions.

Vacuolar ATPase (V-ATPase) is a proton pump important for
acidification of exocytic and endocytic vesicles (Lee et al.
2010). It is composed of two multisubunit sectors: V0
embedded in the membrane and the ATP-utilizing V1
proton pump (Lee et al. 2010). The V0 sector also has a
V1-independent function in apical secretion (Liegeois
et al. 2006). C. elegans V-ATPase subunits (encoded by
vha genes) are highly expressed in the canal cell and
excretory duct (Liegeois et al. 2006, 2007; Hahn-
Windgassen and Van Gilst 2009; Knight et al. 2012).
The V0-a subunit VHA-5 was identified by means of
immunoEM in canalicular vesicles (Kolotuev et al. 2013).
In vha-5 mutants, pearl formation and canaliculi den-
sity are increased, and multiple separate lumens form
(Liegeois et al. 2006, 2007; Hahn-Windgassen and Van
Gilst 2009). One interpretation of this phenotype is that
VHA-5 promotes efficient docking or fusion of canalicu-
lar vesicles with the mature apical membrane to create
a central lumen. Another interpretation is that the
V-ATPase plays a broader role in inhibiting both apical
and basal membrane production and canal cell growth.

Ion transport and fluid flow

Studies of AQP-8 (above) showed that water influx can drive
canal lumen expansion (Khan et al. 2013). Flow from the
canal lumen into the lumens of the adjacent duct and pore
tubes is also important for lumen shape, as mutations in
genes such as let-4 and let-653, which are not expressed in
the canal cell, but affect duct and pore tube patency, cause
severe dilations and cysts in the canal (Buechner et al. 1999;
Mancuso et al. 2012) (H. Gill, J. Cohen and M. Sundaram,
unpublished results) (Figure 9B). Finally, ion channels or
channel modulators also affect lumen shape, possibly by
affecting fluid flow (Figure 8).

WNK-1, GCK-3, and CLH-3: Mammalian with-no-lysine
(WNK) serine/threonine kinases are critical regulators
of ion transport in the kidney and other tissues and are
mutated in familial hypertension syndromes (McCormick
and Ellison 2011; Alessi et al. 2014). One important set of
Wnk substrates are GCK-VI kinases, which in turn regu-
late various ion channels (McCormick and Ellison 2011;
Alessi et al. 2014). WNK-1 is the sole Wnk-family kinase
in C. elegans, and it positively regulates the GCK-3 kinase,

which negatively regulates CLH-3 chloride channel activ-
ity (Denton et al. 2005; Hisamoto et al. 2008). This path-
way appears to function in multiple tissues to affect cell
volume (Denton et al. 2005; Choe and Strange 2007).
wnk-1 mutants have shortened canals, while gck-3 mu-
tants exhibit short and wide canal lumens despite normal
basal outgrowth, consistent with a role for ion channel
activity in modulating canal lumen growth (Hisamoto
et al. 2008). However, clh-3 mutants have normal canal
morphology, and cell autonomy of wnk-1 or gck-3 canal
phenotypes has not been rigorously established.

Future questions

Many questions remain about how the canal cell is formed
andshaped.Forexample,howis the intracellularapicaldomain
initially established and connected to that of the duct tube?
What is the origin of canaliculi or other vesicles that contribute
to the apical membrane? On what specific vesicle compart-
ments do the EXC and CCM-3 gene products act? Studies of
earlier embryonic stages and live imaging of the relevant
vesicular compartments will be important for answering these
questions. Most of the key players involved in canal outgrowth
have homologs in vertebrates, many of which affect tubule

Figure 9 Excretory duct and pore structure and ultrastructure. (A) Early
L1 larva expressing apical junction marker AJM-1::GFP (Koppen et al.
2001). The duct and pore are located just anterior and ventral to the
posterior bulb of the pharynx (ph). Arrow, pore cell junctions; arrowhead,
junction between duct and canal. (B) let-653(cs178) early L1 larva. The
spherical dilation near the duct–canal junction is characteristic of mutants
with a block in duct or pore lumen continuity (Stone et al. 2009; Mancuso
et al. 2012). (C) Duct and G1 pore marked with dct-5promoter::mCherry
(cell bodies) and AJM-1::GFP (apical junctions). (D) Duct marked with lin-
48promoter::mRFP (cell body) and LET-653::GFP (lumen, line) (H. Gill,
J. Cohen and M. Sundaram, unpublished results). Photos in C and D
are courtesy of Fabien Soulavie (University of Pennsylvania). (E) TEM of
duct lumen in an L4 hermaphrodite. Arrowheads point to membrane
stacks (lamellae) that surround the apical membrane. Line indicates lu-
men, surrounded by darkly staining cuticle, which has detached from the
apical membrane in this specimen. TEM image is courtesy of John Sulston
(Medical Research Council). (F) TEM of duct and G1 pore in a 420-min
(comma stage) embryo. Lines indicate fibrous apical ECM in the lumen.
TEM image is courtesy of Shai Shaham (The Rockefeller University).
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shape and integrity in the vascular system, kidney, or glial
Schwann cells, so a better understanding of how these genes
function in the canal cell is likely to lead to broadly relevant
insights.

The Excretory Duct and Pore Cells

Duct and pore tube structure and ultrastructure

The excretory duct and pore are smaller unicellular tubes that
connect the canal cell lumen to the exterior of the animal to
allow fluid excretion and secretion (Figure 3, B–D, Figure 4,
Figure 9). The duct tube channel is essential for viability: in
mutants lacking a duct or having a discontinuous duct lumen,
the upstream canal lumen becomes grossly dilated (Figure
9B), and larvae die with a turgid, rod-likemorphology (Stone
et al. 2009;Mancuso et al. 2012). On the other hand, mutants
can survive quite well without a pore cell, because the duct
can connect directly to the external hypodermis to provide an
open channel for excretion (Abdus-Saboor et al. 2011).

The mature duct is an elongated, seamless tube with an
asymmetric shape and a narrow cellular process that connects
it to the pore (Figure 3B, Figure 9, C and D) (Nelson et al.
1983; Stone et al. 2009). The duct lumen takes a looping path
through the cell (Figure 9D). The duct apical membrane is
attached to surrounding parallel stacks of lamellar mem-
branes (Figure 9E) that greatly increase its potential sur-
face area and have been speculated to facilitate selective
reuptake of ions (Nelson et al. 1983). The vacuolar ATPase
subunit VHA-5 localizes to these lamellar stacks (Kolotuev
et al. 2010).

The pore has an autocellular junction, a relatively simple,
conical shape, and few or no lamellae (Nelson et al. 1983;
Stone et al. 2009) (Figure 3, C and D, Figure 9C). The pore
tube further has the amazing property that its structure and
function is preserved through several changes in pore cell
identity (Figure 4G; see The G1-to-G2 Pore Swap below).

EGF-Ras-ERK signaling specifies the duct vs. G1 pore fate

The duct and G1 pore are another example of left/right
asymmetry within the ABp lineage (Figure 4, A and B)
(Sulston et al. 1983), but in this case the asymmetry is due
to EGF-Ras-ERK signaling (Abdus-Saboor et al. 2011). Asym-
metry of EGF-Ras-ERK signaling depends on the earlier,
Notch-dependent asymmetry in canal cell position, because
the canal cell is a major source of LIN-3/EGF (Figure 10A).

The logic behind the duct vs. G1 pore fate decision is sim-
ilar to that of tip vs. stalk cell fate decisions in more complex,
branched tubular organs such as the vertebrate vascular sys-
tem, lung, or kidney, where cells compete for a tip cell fate in
response to growth factor signaling (Siekmann et al. 2013).
The duct and G1 pore are left/right lineal homologs (Figure
4B) that are initially equivalent (Sulston et al. 1983). These
cells are born in lateral positions in the embryo and migrate
toward each other and the excretory canal cell during ventral
enclosure (Figure 4A). As the duct and G1 pore progenitors

migrate ventrally, both cells express LET-23/EGFR and ap-
pear to compete for access to the LIN-3-secreting canal cell
(Abdus-Saboor et al. 2011) (Figure 10A). Whichever cell
“wins” this competition becomes the duct and adopts a
canal-proximal position, sinking dorsally into the interior of
the embryo; the remaining cell becomes the G1 pore and
adopts a more ventral position on the outside surface of the
embryo. In wild-type embryos, the competition is biased such
that the left precursor always wins and becomes the duct,
probably because it starts out closer to the canal cell and thus
gets earlier and/or higher levels of LET-23/EGFR stimula-
tion. Signaling of LET-23/EGFR through LET-60/Ras and
MPK-1/ERK is both necessary and sufficient for the duct fate
(Figure 10B). In the absence of signaling, both cells adopt a
G1 pore fate, whereas in the presence of constitutive signal-
ing, both cells adopt a duct fate (Yochem et al. 1997; Abdus-
Saboor et al. 2011) (Figure 10, C and D).

In wild-type animals, there is always one duct and one G1
pore, but if the presumptive duct is removed via laser ablation,
the presumptive G1 pore instead adopts a duct fate (Sulston
et al. 1983). Furthermore, in mosaic animals, loss of LET-60/
Ras from the ABpl lineage, but not ABpr lineage, causes these
cells to switch fates: the presumptive ABpl-derived duct
adopts the G1 pore fate, and the presumptive G1 pore adopts
the duct fate (Yochem et al. 1997) (Figure 10E). Together,
these data show that the duct prevents G1 from also adopting
a duct fate through lateral inhibition.

Lateral inhibition presumably prevents G1 from sensing or
responding to LIN-3/EGF signaling (Figure 10A), but the
molecular basis of the inhibition is not known. Unlike many
other lateral inhibition mechanisms in C. elegans (Sundaram
2005), or in vertebrate tip vs. stalk cell decisions (Siekmann
et al. 2013), Notch signaling does not appear to be involved;
instead, morphological data suggest that the duct physically
prevents G1 from contacting the canal cell and in this way
reduces its access to the LIN-3/EGF ligand (Abdus-Saboor
et al. 2011).

Ras signaling is required at or before the 1.5-fold stage to
specific duct identity, but has additional roles beyond this time.
Experiments with a temperature-sensitive (ts) allele of sos-1
(encoding the Ras guanine nucleotide exchange factor)
(Chang et al. 2000) showed that upshifting to restrictive tem-
perature after the 1.5-fold stage does not perturb duct identity,
but causes other abnormalities in duct lumenmorphology and
integrity (Abdus-Saboor et al. 2011). One later requirement
for EGF-Ras signaling is in proper execution of the G1-to-G2
pore swap (Parry and Sundaram 2014) (see below).

Transcription factors important for duct or G1
pore differentiation

The following transcription factors are important for duct
and/or G1 differentiation (see also Figure 3, B and C, Figure
10B):

CEH-36/Otx and UNC-30/Pitx are related bicoid-type home-
odomain factors expressed in the ABp(l/r)p lineages that
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give rise to the canal, duct, and G1 pore cells (Walton
et al. 2015). CEH-36 and UNC-30 function redundantly
to upregulate mls-2 to promote proper migration of the
duct and pore cells to the ventral midline.

MLS-2 is an Hmx-family homeodomain transcription fac-
tor expressed in the ABp(l/r)paaa lineages that give
rise to the duct and G1 pore (Abdus-Saboor et al.
2012). After the final set of divisions in this lineage,
MLS-2 protein disappears from the DB1 and DB3 neu-
rons, but remains present in the duct and G1 pore cells
during their migration and early differentiation. In
mls-2 mutants, the duct and pore cells show variable
defects in migration to the ventral midline and in final
tube shape (Abdus-Saboor et al. 2012; Walton et al.
2015). MLS-2 cooperates with Ras signaling to express
duct-specific genes such as lin-48/Ovo (Abdus-Saboor
et al. 2012). MLS-2 is also important for glial differen-
tiation in C. elegans (Yoshimura et al. 2008), suggesting
molecular similarities between duct/pore and glial tube
formation.

LIN-26, the general epithelial C2H2 factor, is expressed in
both the excretory duct cell and G1 pore, and its loss
leads to variable defects in duct and pore morphology
(Labouesse et al. 1994, 1996). As for the canal cell (see
above), the final division that generates the duct and G1
pore partitions epithelial from neuronal cell fates
(Sulston et al. 1983) (Figure 4B). Expression of lin-26
in the duct and G1 is likely to be one important early
step in epithelial determination.

NHR-23 and NHR-25 are nuclear hormone receptors
expressed in most external (cuticle-lined) epithelia, in-
cluding the duct and pore (Gissendanner and Sluder
2000; Kostrouchova et al. 2001; Murray et al. 2012;
M. V. Sundaram, unpublished data). In the epidermis,
NHR-23 and NHR-25 are required for cyclical expression
of collagens and other secreted ECM factors, and for

proper molting (Gissendanner and Sluder 2000; Hayes
et al. 2006; Kouns et al. 2011). These transcription fac-
tors are likely to play similar roles in the duct and pore.

LIN-1 and EOR-1 are two MPK-1/ERK targets that, in the
presence of Ras signaling, function redundantly to pro-
mote excretory duct vs. G1 pore fate specification (Figure
10B). LIN-1 is an Ets transcription factor related to mam-
malian Elk1 (Beitel et al. 1995; Jacobs et al. 1998).
EOR-1 is a BTB-Zinc Finger protein related to mammalian
PLZF (Howard and Sundaram 2002; Howell et al. 2010).
eor-1 lin-1 double mutants resemble let-60 ras mutants
and have two G1 pore-like cells and no duct (Abdus-
Saboor et al. 2011). In the absence of Ras signaling,
LIN-1 also has an opposing function to inhibit the duct
fate (Figure 10B). lin-1 single mutants resemble let-60(gf)
mutants and have a binucleate duct cell and no G1 pore
(Abdus-Saboor et al. 2011).

LIN-48 is a C2H2 zinc finger transcription factor related to
Drosophila and mammalian Ovo (Johnson et al. 2001),
which play roles in epithelial differentiation and shap-
ing (Menoret et al. 2013; Roca et al. 2013; Aue et al.
2015). It is expressed continuously in the duct from
mid–late embryogenesis through adulthood and is
therefore a convenient duct fate marker. Ras signaling
and MLS-2 cooperate to stimulate lin-48 expression in
the duct (Abdus-Saboor et al. 2012). lin-48 mutants
have subtle changes in pore position, possibly due to
changes in duct shape (Wang and Chamberlin 2002).
Interestingly, C. briggsae lacks lin-48 duct expression,
and its pore cell is located posterior to the position of
the C. elegans pore; forced expression of lin-48 in
C. briggsae moves its pore cell anteriorly (Wang and
Chamberlin 2002, 2004).

CES-2 and ATF-2 are bZIP factors related to the mammalian
proline- and acid-rich (PAR) family of bZIP transcription
factors (Metzstein et al. 1996). CES-2 and ATF-2 function

Figure 10 EGF-Ras-ERK signaling promotes
duct vs. G1 pore fate. (A) The biased competi-
tion model postulates that asymmetry in canal
position results in the left member of the
duct/G1 equivalence group receiving more
canal-derived LIN-3/EGF signal and therefore
becoming the duct cell (Abdus-Saboor et al.
2011). An unknown lateral inhibitory mecha-
nism (Sulston et al. 1983) prevents the cell on
the right from receiving or responding to the
EGF signal. (B) The EGF-Ras-ERK pathway acts
via LIN-1/Ets and EOR-1 to promote duct fate
(Howard and Sundaram 2002; Abdus-Saboor
et al. 2011). Asterisks indicate potential ERK-
dependent phosphorylation (Jacobs et al.
1998; Howell et al. 2010). (C and D) Reduced
EGF-Ras-ERK signaling causes a duct-to-G1
pore fate transformation. Constitutive signaling
causes a G1 pore-to-duct fate transformation;

the two ducts fuse to make a binucleate duct (Yochem et al. 1997; Abdus-Saboor et al. 2011). (E) In mosaics lacking let-60/Ras activity in the ABpl
lineage, the duct and G1 pore progenitors switch fates (Yochem et al. 1997). (F) Physical or genetic ablation of the canal cell prevents duct and G1 pore
tubulogenesis (Abdus-Saboor et al. 2011).

50 M. V. Sundaram and M. Buechner



are required for correct timing of lin-48 expression, and
mutants in either ces-2 or atf-2 exhibit subtle changes in
pore position, similar to the phenotype of lin-48 mutants
(Wang and Chamberlin 2002; Wang et al. 2006).

The duct and G1 pore form tubes through a
wrapping mechanism

Following ventral migration and contact with each other and
with the canal cell, and concomitant with their cell fate
decisions, the duct and G1 pore cells form tubes with auto-
cellular junctions (Stone et al. 2009; Abdus-Saboor et al.
2011) (Figure 1, B and C, Figure 4E). Mechanisms of duct
and G1 pore wrapping are not understood, but wrapping is
closely coupled to de novo junction formation.

The excretory canal cell is required for duct cell and G1
pore cell wrapping and stacking (Abdus-Saboor et al. 2011).
Removal of the canal cell by means of laser ablation or Notch
mutation prevents tube formation; the duct and G1 pore still
epithelialize but do not form tubes, and instead take adjacent
positions and adopt an epidermal-like morphology (Figure
10F). Partial reduction of let-60/Ras activity (in hypomorphic
mutants) can also lead to adjacent epithelial cells, only one of
which forms a tube (Abdus-Saboor et al. 2011), which sug-
gests that Ras signaling also influences the wrapping process.

AFF-1-dependent duct autofusion converts an autocellular
tube to a seamless tube

Although the duct initially has an autocellular junction, this
junction disappears at or soon after the 1.5-fold stage (Figure
4E). Autocellular junction removal requires the plasmamem-
brane fusogen AFF-1 (Stone et al. 2009). AFF-1 is both nec-
essary and sufficient for several cell–cell fusions that generate
syncytia (Sapir et al. 2007). In the case of the duct, AFF-1
mediates autofusion to convert a seamed autocellular tube
into a seamless tube (Figure 1C). The junctions connecting
the duct to the adjacent pore and canal cells are not affected
by the autofusion.

EGF-Ras-ERK signaling promotes aff-1 expression to pro-
mote duct autofusion (F. Soulavie and M. V. Sundaram, un-
published results). Normally, only the duct expresses aff-1
and autofuses, whereas the G1 pore retains its autocellular
junction (Figure 4). In the absence of signaling, neither cell
expresses aff-1, and both retain their autocellular junctions
(Figure 10C). In mutants with constitutive Ras signaling,
both cells express aff-1, and the two cells fuse to make a
binucleate duct (Abdus-Saboor et al. 2011) (Figure 10D).

Luminal matrix maintains lumen shape and tube integrity
during morphogenesis

Subsequent to tubulogenesis and autofusion, the duct elon-
gates and adopts its characteristic asymmetric looping shape
(Figure 4F). The pore also elongates, but to a much lesser
degree. Molecular pathways involved in duct cell and lumen
elongation have not yet been described. erm-1 does not ap-
pear to be expressed or have phenotypes in the duct (Gobel

et al. 2004; Mancuso et al. 2012), so the mechanisms of lu-
men growth and maintenance may differ significantly be-
tween the excretory duct and canal cells.

Duct morphogenesis occurs in the context of a fibrous
luminal matrix that is visible via transmission electron mi-
croscopy (Mancuso et al. 2012) (Figure 9F). At the comple-
tion of morphogenesis, this luminal matrix disappears, and
the duct and G1 pore secrete a luminal cuticle (Figure 9E)
that is contiguous with the epidermal cuticle that covers the
outside of the animal. This cuticle is shed and resynthesized
at each larval molt (Nelson et al. 1983). The luminal matrix
and rigid cuticle in the duct and pore may serve analogous
functions to the terminal web in the canal cell, to maintain
apical domain shape and integrity. Several mutations that
disrupt luminal matrix organization lead to duct lumen
breaks and dilations (Figure 9B) and to physical separation
of the duct and G1 pore cells around the time of hatch
(Mancuso et al. 2012; H. Gill, J. Cohen and M. Sundaram,
unpublished results). Proteins involved in duct luminal in-
tegrity and shape include:

LET-653 is a Zona Pellucida (ZP)-domain and mucin-related
glycoprotein (Jones and Baillie 1995). ZP proteins form
fibrils and contribute to many apical matrices (Plaza et al.
2010), including luminal matrices of the Drosophila tra-
cheal system (Jazwinska et al. 2003), mammalian vascu-
lar system (Govani and Shovlin 2009), and kidney
(Rampoldi et al. 2011). Mucins form gel-like protective
barriers within many tubular epithelia (Johansson et al.
2013; Lillehoj et al. 2013). LET-653 is one key compo-
nent of the early luminal matrix in the duct and pore
(H. Gill, J. Cohen and M. Sundaram, unpublished results).

LET-4 and EGG-6 are extracellular leucine-rich repeat only
(eLRRon) proteins (Mancuso et al. 2012), part of a family
of secreted and transmembrane glycoproteins with di-
verse roles, including collagen fibril assembly, synaptic
adhesion, and signaling regulation (Brose 2009; Merline
et al. 2009). LET-4 and EGG-6 are located in or near the
duct and pore apical membrane and are predicted to
extend their LRR domains into the lumen. let-4 and
egg-6 mutants have defects similar to those of let-653
mutants along with widespread defects in apical ECM
organization and cuticle barrier function, which suggests
that these transmembrane proteins may interact with lu-
minal matrix factors and help organize matrix deposition
or cross-linking.

LPR-1 is a lipocalin (Stone et al. 2009); these are cup-shaped
secreted proteins that bind lipophilic cargoes and have
a broad range of functions related to cargo transport,
sequestration, and signaling (Flower 1996; Sun and
Kawaguchi 2011; Paragas et al. 2012). lpr-1 mutants
strongly resemble let-653, let-4, and egg-6 mutants, but
lpr-1 is capable of acting cell nonautonomously when pro-
vided from outside of the excretory system (Stone et al.
2009), and therefore may act indirectly to affect mem-
brane or matrix integrity.

The C. elegans Excretory System 51



Future questions

The duct and pore provide opportunities to study important
aspects of tube development such asmolecular control of tube
wrapping and autofusion, roles of receptor tyrosine kinase
signaling in tube shaping, and the role of luminal matrix in
tube shaping and integrity. Furthermore, because the duct is a
permanent epithelial cell, while the G1 pore undergoes
reprogramming, these cells also provide a model for under-
standing the factors that determine fate plasticity.

The G1-to-G2 Pore Swap

Pore identity changes several times during development (Fig-
ure 3, C and D). In themiddle of the L1 stage, the G1 pore cell
delaminates from the excretory system (Figure 4G), reenters
the cell cycle, and divides to generate two neuronal daugh-
ters, the RMHL and RMHR motor neurons (Sulston and
Horvitz 1977; Sulston et al. 1983; Parry and Sundaram
2014). As G1 departs, the G2 epidermal cell undergoes wrap-
ping tubulogenesis around the central lumen cuticle to form a
replacement pore (Figure 4G). During the L2 stage, G2 di-
vides and its posterior daughter (G2.p) becomes the perma-
nent excretory pore (Sulston and Horvitz 1977; Sulston et al.
1983). These dynamic changes in pore identity require sig-
nificant remodeling of cell–cell and cell–matrix attachments
within the excretory organ.

Lineal origins and Notch-dependent fate specification of
G2 and W

G2 andW provide another example of Notch-dependent left/
right asymmetry in the C. elegans embryo (Figure 4C), again
to make an epithelial vs. neuroblast fate decision. G2 and W
are derived from left/right lineal homologs that are initially
equivalent and compete for the G2 fate (Sulston et al. 1983).
LIN-12/Notch promotes the G2 (left) over the W (right) fate;
in lin-12(lf) mutants, both cells adopt a W neuroblast fate,
whereas in lin-12(gf) mutants, both cells adopt a G2 pore cell
fate (Greenwald et al. 1983).

Dynamic behavior of G2 and W parallels that of G1

G2 and W start out as embryonic epidermal cells, but change
their identities to pore tube or neuroblast, respectively, in the
L1 stage (Sulston et al. 1983). During ventral enclosure, G2
and W cells migrate to the ventral midline in unison with
other ventral epidermal cells and with the duct and G1 cells
(Figures 4, A and D). As the duct and G1 cells form tubes, G1
inserts itself between the encroaching G2 andW cells and the
anterior epidermis to contact the outside environment (Fig-
ure 4E); eventually, the ventral apical junction ring of the G1
pore contacts those of G2 and W at a tricellular junction
(Abdus-Saboor et al. 2011) (Figure 11A). At embryonic
stages after 1.5-fold, G2 and W are easily recognizable, be-
cause they are the only ventral epidermal cells in the anterior
central region of the embryo that do not fuse to join the hyp7

syncytium (Podbilewicz and White 1994). These cells retain
long, rectangular apical junction domains throughout much
of embryogenesis (Figure 11B), but their apical junctions
shrink to small rings by the time of hatching (Figure 11C).

Atmid-L1,W(alsoknownasP0.a)delaminates tobecomea
neuroblast and undergoes several rounds of division to gen-
erate four neuronal descendants, including the VB2 (W.aap),
VA1 (W.pa), and VD1 (W.pp) ventral cord motor neurons,
plus one of the AVF interneurons (W.aaa) (Sulston and
Horvitz 1977). Shortly after W delaminates and divides, G1
also delaminates, and G2 becomes the replacement excretory
pore tube (Sulston et al. 1983; Parry and Sundaram 2014)
(Figure 4G, Figure11D).

Cellular events of the G1-to-G2 pore swap

G1 delamination and G2wrapping tubulogenesis occur in the
context of a cuticle-lined pore channel, and the cells appear to
migrate over the luminal cuticle as they change positions
(Parry and Sundaram 2014); therefore, remodeling of apical
cell–matrix connections is likely to be important for delami-
nation. The presence of the cuticle may also help the channel
to remain open throughout the remodeling process.

Changes in theactincytoskeletonprecedeG1delamination
(Parry and Sundaram 2014). In the early L1 stage, F-actin
localizes apically along the G1 autocellular junction, but just
prior to G1 delamination, this F-actin disperses. Since F-actin
strengthens junctions (Huveneers and de Rooij 2013), actin
relocalization may loosen the adherens junction to allow
subsequent dynamic changes. After actin relocalization,
G1 appears to stretch dorsally and “unzip,” converting its
autocellular junction to an intercellular junction with G2
(Parry and Sundaram 2014) (Figure 11D). G2 concomitantly
forms an autojunction and “zips up” beneath G1, such that a
region of two-celled tube is formed at their intersection. Sub-
sequently, G1 junctions gradually shrink and disappear, and
G1 then divides. Relatively little is known yet about the mo-
lecular control of these various G1 and G2 cell behaviors, but
Ras signaling in the duct is required for G1 junction loss
(Figure 11D; see below). Gene expression changes that must
accompany the epithelial-to-neuronal transition remain to be
characterized.

G1 and G2 behave independently

Although G1 delamination and G2 intercalation are closely
coordinated during wild-type development, G1 and G2 can
execute these behaviors independently. For example, in lin-12
(lf) mutants, there is no G2 cell (Greenwald et al. 1983), but
G1 still delaminates, and the duct then connects directly to
the hypodermis to maintain a functional system (Abdus-
Saboor et al. 2011) (Figure 11F). In let-60(gf) mutants, there
is no G1 cell to delaminate, but G2 still wraps around the base
of the duct to form a pore tube (Abdus-Saboor et al. 2011)
(Figure 11G). In let-60(lf) mutants, where two G1 cells but
no duct are present, both G1 cells appear to initiate delami-
nation behaviors, which suggests that the duct is not needed
to instruct these behaviors (Abdus-Saboor et al. 2011; Parry
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and Sundaram 2014). G1 and G2 may be executing intrinsi-
cally programmed behaviors, or they may be responding to
cues from the canal cell or from somewhere outside of the
excretory system.

A cell-nonautonomous role for LET-60/Ras signaling in G1
pore delamination

Ras signaling in the duct cell is required for successful exe-
cution of the final steps of G1 delamination (Parry and
Sundaram 2014) (Figure 11D). SOS-1 is the guanine nucle-
otide exchange factor that activates LET-60/Ras during most
Ras signaling events (Chang et al. 2000). In temperature-
sensitive sos-1 mutants that are upshifted to restrictive tem-
perature as early L1 larvae, the pore swap initiates normally,
but the G1 cell junctions do not shrink and disappear, and G1
remains stuck within the excretory system (Parry and
Sundaram 2014). This delamination defect can be rescued
by expressing constitutive LET-60(gf) in the duct, but not in
the G1 pore, showing that signaling acts cell nonautono-
mously. Potential models are that Ras signaling in the duct
triggers production of a secreted factor that then acts on G1
or its matrix (Figure 11D), or that Ras signaling in the duct
acts more directly to modulate duct–G1 adhesion. These re-
sults suggest that Ras signaling might also have nonautono-
mous effects on epithelial-to-mesenchymal transitions during
tumor metastasis.

Why swap?

Why does the worm bother with these complex and poten-
tially dangerous cellular gymnastics? The functions of the G1
and G2 pores do not differ in any known way. The function of
the RMH neurons is still unknown—they presumably act in
the motor circuit based on their pattern of synaptic connec-
tions (White et al. 1986), but let-60(gf) mutants, which lack
G1 (Abdus-Saboor et al. 2011) (and thus presumably lack the
RMHneurons), are viable and have not been reported to have

motility defects. Presuming that the RMH neurons do have
somemore subtle yet important function, why generate them
in this way? The rationale is not clear, but many neuroblasts
in C. elegans and other organisms are generated from epithe-
lial progenitors (Sulston et al. 1983; Colman 1999; Technau
et al. 2006; Jarriault et al. 2008; Lassiter et al. 2014), as are
many other cell types in mammals (Kalluri and Weinberg
2009), suggesting that epithelial cells have a general propen-
sity for such reprogramming. Along with other similar exam-
ples in the worm (Zuryn et al. 2012), the excretory pore
provides a simple and tractable model for studying epithelial
reprogramming and delamination.

The Excretory Gland

Excretory gland structure and ultrastructure

The excretory gland is an A-shaped binucleate cellular syn-
cytium that connects to the canal cell immediately adjacent to
the canal–duct junction; this connection point has been
termed the secretory–excretory junction (SEJ) (Nelson
et al. 1983) (Figure 3E, Figure 12, A and B). As seen under
TEM, the gland cytoplasm contains many electron-dense pu-
tative secretory granules in close proximity to Golgi com-
plexes and the SEJ; these granules disappear in dauer
larvae. The gland presumably secretes material into the duct
channel for passage to the outside environment and/or se-
cretes material into the canal lumen for transport to other
parts of the body, but the nature of any such secretions is
unknown. The anterior gland processes appear to make syn-
apses with the nerve ring, suggesting possible neuronal con-
trol of secretion (Nelson et al. 1983).

Lineal origin and development of the excretory gland

The gland is derived from two left/right lineal homo-
logs that migrate to the ventral midline during ventral

Figure 11 G2 and W epidermal cells and the
G1-to-G2 pore swap. (A–C) Schematic ventral
views of apical junctions in the pore region,
with G2 and W flanking the G1 pore opening,
based on Abdus-Saboor et al. (2011). (A) Lima
bean-stage embryo, when the pore tube first
forms. (B) Threefold embryo. G2 and W have
rectangularly shaped apical junctions. (C) Early
L1. G2 and W junctions are ring shaped. (D) At
mid-L1, during the G1-to-G2 swap, G1 appears
to stretch dorsally and “unzip,” while G2 con-
comitantly forms an autojunction and “zips up”
to form a replacement pore (Parry and Sundaram
2014). An unknown Ras-dependent signal (?)
from the duct may promote G1 junction loss
(Parry and Sundaram 2014). (E–G) L4 excretory
system. (E) In wild type, G2p is the pore. (F) In
the absence of G2, as in lin-12(lf) mutants,
there is no longer a pore after G1 delaminates,
and the duct connects directly to the hypoder-

mis (Abdus-Saboor et al. 2011). (G) In the absence of G1, as in let-60(gf) mutants, the duct connects directly to the hypodermis (see Figure 10D). G2p
usually wraps around the base of the duct tube and occasionally inserts to form a true pore (Abdus-Saboor et al. 2011).
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enclosure and then fuse at two separate points (Nelson
et al. 1983; Sulston et al. 1983) (Figure 3E, Figure 4). The
first fusion event occurs between processes linking the
cells near their junction to the canal and duct. The second
fusion event occurs between the tips of two narrow
processes that the gland cells extend toward the nerve
ring (these form the tip of the A-shape). It is not yet
known if gland fusion requires the fusogens AFF-1 or
EFF-1.

The LIM homeodomain transcription factor LIM-6 is
expressed in the excretory gland cell and serves as a useful
marker for its morphology, but the impact of lim-6 muta-
tion on the gland is unknown (Hobert et al. 1999)
(Figure 3E).

Possible functions of the excretory gland

One hypothesized function for the gland is the production of
hormones. The gland stains with the neurosecretory marker
paraldehyde-fuschin (PAF) (Nelson et al. 1983) and with
the sterol-binding agents dehydroergosterol (DHE) and fil-
ipin (Merris et al. 2003), consistent with steroid hormone
production. In the absence of hermaphrodites, male plep-1
mutants attempt to copulate with the excretory pore of
other males (Noble et al. 2015), consistent with some at-
tractive secretion emanating from the pore, and possibly
originating in the gland. Singh and Sulston (1978) and
Nelson and Riddle (1984) investigated the effects of gland
ablation in larvae and found no disruption in osmoregula-
tion, molting, dauer formation, or dauer exit, but other as-
pects of the animal’s physiology or behavior were not
examined. Several other functions have been proposed for
the gland in other nematodes (see below), including secre-
tion of the epicuticle (Page et al. 1992a), but this function
remains untested in C. elegans.

The Canal-Associated Neurons

CAN structure

The canal-associated neurons CANL and CANR are named
for their close physical association with the excretory canal
cell arms (White et al. 1986) (Figure 2, Figure 3F). The two
CANs are born in the head region (Figure 4A) and then
migrate posteriorly during late embryogenesis to their fi-
nal positions in the midbody, immediately adjacent to the
two posterior canal arms (Hedgecock et al. 1987). CAN
neurons extend one axon into the head, and a second pos-
teriorward into the tail, between the excretory canal and
basement membrane (White et al. 1986) (Figure 6B,
Figure 12C).

At birth, the CAN cell bodies resemble those of other
neurons. After migration, the cell bodies swell to a much
larger size (Figure 12C) and may form gap junctions to the
excretory canals (White et al. 1986). This observation, plus
the fact that the CANs do not make obvious synapses with
other neurons, suggests that the function of these cells may
be neurosecretory (White et al. 1986).

Transcription factors important for CAN differentiation

Transcription factors expressed in the CANs (Figure 3F)
include:

CEH-10 is a paired-type homeodomain factor (Svendsen
and McGhee 1995) required for CAN differentiation
(Forrester et al. 1998; Manser and Wood 1990). In
ceh-10 null mutants, the CANs fail to express CEH-23::GFP
and do not migrate to their correct positions; it is not
clear if the mutant CANs adopt an alternative identity
or simply fail to differentiate.

CEH-23 is a divergent homeodomain factor (Wang et al.
1993). CEH-23::GFP is often used as a CAN marker
(Figure 12C), but ceh-23 deletion mutants are viable
and do not have apparent defects in CAN development
or function (Altun-Gultekin et al. 2001).

UNC-39 is a Six5-related homeodomain factor required for
CAN migration and axon pathfinding (Manser and Wood
1990; Yanowitz et al. 2004).

Regulators of CAN migration and axon outgrowth

Many studies of the CAN neurons have focused on their long-
range migration during embryogenesis. Mispositioning of
both CAN cells, or more specifically, failure of the posterior
CAN axons to reach their normal posterior regions, leads to a
characteristic withered tail (Wit) phenotype in which the
posterior half of the animal is much thinner than the anterior
half; this phenotype has facilitated genetic screens for migra-
tionmutants (Manser andWood 1990; Forrester et al. 1998).
Many CAN migration mutants also have defects in axonal
extension and/or pathfinding, but the two defects are sepa-
rable (Lundquist et al. 2001; Yanowitz et al. 2004).

Figure 12 The excretory gland and CAN neurons. (A) The A-shaped
excretory gland (gl) visualized with B0403.4promoter::GFP (Hunt-
Newbury et al. 2007). Image is courtesy of Don Moerman (University
of British Columbia). (B) The gland empties into the canal sinus at the
secretory junction. Note luminal matrix (gray). Black arrowheads, junc-
tions. TEM image of late threefold embryo is courtesy of Richard Fetter
and Cornelia Bargmann (The Rockefeller University). (C) CAN neuron
(lateral view) visualized with ceh-23promoter::GFP (Forrester and
Garriga 1997).
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Among the genes important for CAN migration are many
that are also important for excretory canal outgrowth, such as
epi-1/laminin alpha, ina-1/integrin alpha, unc-34/Enabled,
mig-10/Lamellipodin, unc-73/Trio, and vab-8/Kinesin-like
(Manser and Wood 1990; Forrester et al. 1998). Multiple
Rac genes are also important and likely act downstream of
UNC-73 (Lundquist et al. 2001). Proper CAN migration also
requires the ROR family receptor tyrosine kinase CAM-1 and
multiple Wnt-related ligands (Forrester et al. 1999).

Possible functions of the CAN neurons

Laser ablation or genetic removal of a single CAN cell has no
obvious effect on the animal, but removal of both CAN cells
causes a rod-like lethal phenotype (Forrester and Garriga
1997; Forrester et al. 1998). Based on the similarity of this
lethal phenotype to that observed after ablation of the excre-
tory canal, duct, or pore cells, the CANs were proposed to
regulate excretory system function, but this has not been
demonstrated.

Functions of the Nematode Excretory System

Adenophorean vs. Secernentean systems

The functions of the nematode “excretory–secretory” (ES)
system have been a source of debate for well over a century,
since not all nematode species contain the canal cell, but it
appears that all species contain an excretory gland cell
(Bastian 1866; Schneider 1866; Chitwood and Chitwood
1974). A simpler “Adenophorean” system is found particu-
larly in marine species such as Enoplus and Monhystera
(van de Velde and Coomans 1987; Turpeenniemi and
Hyvarinen 1996), which live in an environment where envi-
ronmental osmolarity is generally stable. In these animals,
the ES system consists of a single large ventral gland (or
“renette” cell) leading directly to a cuticle-lined duct and/or
pore located ventrally anywhere from behind the terminal
bulb forward to just behind the buccal cavity, depending on
the species (Chitwood and Chitwood 1974; van de Velde and
Coomans 1987) (Figure 13).

The C. elegans excretory system is an example of the more
complicated “Secernentean” ES system found in most terres-
trial species that experience large changes in osmolarity
(Chitwood and Chitwood 1974). Secernentean species all
contain a branched canal cell, but variations between species
include the number and position of canals (Chitwood and
Chitwood 1974; de Grisse 1977; Bird and Bird 1991), the
number of excretory cell nuclei (Wharton and Sommerville
1984), fusion of the duct and pore cells (Narang 1972), and
even the presence of muscles associated with the system in
the parasite Brugia malayi (Moreno et al. 2010).

Secretory function of the ES system

The ubiquitous presence of gland cells suggests that secretion
is a critical function of the ES system in all nematodes.
Excretion of mucilaginous material has been observed from

the excretory pore of many species (Maggenti 1962;
Premachandran et al. 1988; Bird and Bird 1991). Proposed
functions of this material include:

To help digest prey (Lee 1970; van de Velde and Coomans
1987).

To effect changes in the animal’s life cycle (Bird and Bird
1991), such as molting (Singh and Sulston 1978) or en-
trance or exit from the dauer or dispersive phase of nem-
atode growth (Nelson and Riddle 1984).

To coat the cuticle with physically or osmotically protective
material (Blaxter et al. 1992; Page et al. 1992a,b).

To help parasitic nematodes infect a host organism and
evade its immune response (Blaxter et al. 1992; Moreno
et al. 2010). Consistent with such a role, ES system-
associated muscles in Brugia malayi appear to be the
relevant target of the nematocide ivermectin (Moreno
et al. 2010).

Efforts in the parasitic nematode research community
have characterized secreted ES products aiding in host in-
fection (Hewitson et al. 2009), but whether these originate
from the ES gland or from other bodily sources has been
addressed in only a few cases (Page et al. 1992a; Moreno
et al. 2010). A better understanding of excretory gland de-
velopment and function in C. elegans could have important
implications for the role of the gland in other nematodes
and suggest new ways to prevent and treat parasitic nema-
tode infections.

Osmoregulatory function of the excretory system

Nematodes maintain a hyperosmotic coelomic fluid to in-
flate the body cavity and keep the hypodermis rigid for
effective muscle attachment and movement (Harris and
Crofton 1957; Nelson and Riddle 1984; Wright 2004). A
body cavity osmolarity higher than that of the environ-
ment attracts water that leaks through the tissues ex-
posed to the environment, especially cuticle (Perry 1977;
Wharton et al. 1988; Bird and Zuckerman 1989) and in-
testinal cells (Stephenson 1942; Wright and Newall 1976),
so the animal must eliminate excess water to maintain
homeostasis.

The excretory canals are ideally located to collect this
excess water, as they stretch along the entire body adjacent
to the pseudocoelom, separated solely by a basement mem-
brane.Watermay enter the canal cell by diffusion or via gap
junctions with the hypodermis (Nelson et al. 1983; Altun

Figure 13 Adenophorean ES system. Diagram of ES system from
Monhystera disjuncta, based on drawings by Bird and Bird (1991) and
van de Velde and Coomans (1987).
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et al. 2009), and then be transported via canaliculi to the
lumen for excretion (Figure 8). Since water follows os-
motic gradients, the canaliculi and lumenmust concentrate
ions to attract water. The canal cell expresses multiple types
of membrane channels and transporter proteins for reg-
ulated movement of water and ions (Spencer et al. 2011)
(Table 1). Ion-selective electrical measurements at the
excretory pore show effluxes of Mg++, K+, H+, Na+,
and Ca++ (Teramoto et al. 2010; Adlimoghaddam et al.
2014; Wang et al. 2014a), as would be expected from
concentration and release of these ions by the excretory
system.

A speculative model for transport of water through the
canaliculi and lumen is presented in Figure 8, in analogy to
the well-studied vacuolar ATPase/acid-driven excretion of
water by the tubular water vacuole of the freshwater pro-
tozoan Paramecium (Plattner 2015). The V-ATPase proton
pump concentrates cations, while anion channels provide
anions to neutralize the acidic charge while increasing
osmolarity. AQP-8/aquaporin channels allow excess water
to cross membranes easily from the cytoplasm to the
areas of high osmolarity. Upon docking with the apical
membrane, canaliculi release the water and ions into the
lumen.

Themorphological structure of the canals shares features
with the vertebrate lymphatic system, in that both contain
narrow tubes reaching throughout the organism to collect
fluid, and both require the PROS-1 transcription factor
(Kolotuev et al. 2013). In addition, the osmoregulatory
function of the canals shares features with the vertebrate
renal system. Although the primary pump driving ion ho-
meostasis in the kidney nephrons is the sodium/potassium
exchanger (Ross et al. 1974; Geering 1997), V-ATPase plays
critical roles in intercalated cells especially of the tubular
epithelia of the collecting duct (Brown et al. 2012). The
protons pumped into the lumen are used to drive water to
be excreted from the plasma into the collecting duct lumen
via aquaporins through the neighboring principal cells. Reg-
ulation of water permeability is modified via regulated
trafficking of vesicles carrying aquaporin to the plasma
membrane (Kwon et al. 2009; Nedvetsky et al. 2009). Loss
of either collecting duct aquaporin or V-ATPase function
causes renal tubular acidosis and osteopetrosis (Borthwick
and Karet 2002). Other C. elegans excretory system pro-
teins with direct vertebrate renal homologs include proteins
discussed above: NHR-31 (homolog to human HNF-4a)
(Hahn-Windgassen and Van Gilst 2009; Menezes et al. 2012);
CEH-6 (mouse BRN1) (Burglin and Ruvkun 2001); EXC-6
(formin INF2) (Shaye and Greenwald 2015), and channels
listed in Table 1.

In addition to the excretory system, the hypodermis and
other tissues in C. elegans play key roles in fluid homeostasis,
a topic that has been reviewed separately (Choe and Strange
2007). The physiology of the excretory system, and how it
functions coordinately with other tissues, are relatively un-
explored areas that warrant further study.

The C. elegans Excretory System as a Model for
Understanding Human Diseases

The morphology of the C. elegans excretory system is very
different from that of the kidney or other vertebrate multi-
cellular tubular organs. Excretory tubes do not have cilia, and
their shaping does not involve cell division or cell death, so
the system cannot be used to model those important process-
es. Nevertheless, as highlighted above, many aspects of sig-
naling, cytoskeletal and matrix organization, and vesicle
trafficking are conserved between different tube types, and
between C. elegans and vertebrates. Furthermore, unicellular
excretory tubes are topologically similar to endothelial capil-
laries and to wrapping glia such as Schwann cells, and are
particularly good models for studying the mechanisms that
form, shape, and stabilize these types of narrow tubes.

Examples of specific disorders that might be better un-
derstood through study of the excretory system include:

Ion channel-associated diseases, as listed in Table 1.
Achlorhydria: Loss of hydrochloric acid secretion of the

stomach parietal cells is caused by knockdown of the
ERM-1 homolog ezrin (Tamura et al. 2005; Yoshida
et al. 2016). In this condition, tubulovesicular structures
of these cells fail to fuse with the central canaliculus to
secrete stomach acid, reminiscent of the effects of erm-1
mutation on canalicular vesicle fusion.

Cerebral cavernous malformation (CCM): is a stroke-
predisposing syndrome associated with abnormal brain
capillary bed structure (Draheim et al. 2014). Studies in
both C. elegans and Drosophila suggested that unicellular
tubes (such as 75% of brain capillaries) (Bär et al. 1984)
are particularly sensitive to CCM3 loss (Song et al. 2013;
Lant et al. 2015). CCM-3 orthologs act with STRIPAK to
affect Golgi organization and/or vesicle trafficking in
multiple cell types (Fidalgo et al. 2010; Kean et al.
2011; Song et al. 2013; Lant et al. 2015). The precise
roles of CCM in mediating CDC42 activity and apical
membrane recycling, however, are still unclear.

Hereditary hemorrhagic telangiecstasia (HHT): is another
stroke disorder with more widespread defects in capillar-
ies throughout the body (Govani and Shovlin 2009).
Mutations in the luminal ZP protein endoglin are a fre-
quent cause of HHT (McAllister et al. 1994). A key role of
endoglin is to bind and influence signaling by TGFb
family receptors (Guerrero-Esteo et al. 2002). The mech-
anism by which the ZP protein LET-653 and other lumi-
nal factors affect excretory duct tube integrity is not yet
known, but studies in both C. elegans and Drosophila
suggest that ZP proteins within luminal matrices are es-
pecially critical for maintaining patency of small unicel-
lular tubes (Jazwinska et al. 2003; H. Gill, J. Cohen and
M. Sundaram, unpublished results).

Focal segmental glomerulosclerosis (FSG): is a kidney dis-
ease associated with loss and scarring of glomeruli,
where capillary beds interface with kidney podocytes
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(D’Agati et al. 2011). Mutations in the EXC-6 homolog
INF2 are one cause of FSG (Brown et al. 2010). Studies of
EXC-6 confirmed that the disease-causing mutations are
dominant gain of function and showed that both actin
and MT-binding activities are important for function
(Shaye and Greenwald 2015).

Charcot-Marie-Tooth (CMT) disease: These peripheral neu-
ropathies often involve aberrant structure of glial Schwann
cells that ensheath peripheral neurons (Vallat et al. 2013).
Mutations in the EXC-5 ortholog FGD4 cause a particular
CMT syndrome in which Schwann cell growth is initially
normal, but fails during the period of rapid nerve growth
during puberty (Delague et al. 2007). The requirement for
EXC-5 in recycling endosome trafficking and apical do-
main maintenance (Mattingly and Buechner 2011) sug-
gests that FGD4 may also play a similar role. Mutations
in the EXC-6 ortholog INF2 also cause CMT in addition to
glomerulosclerosis (Mathis et al. 2014).

Though few in number, the cells of the C. elegans excretory
system use a wealth of conserved mechanisms and molecules
to create a complex and vital organ. Continued studies to
determine how the nematode integrates all of the elements
discussed above to specify, form,maintain, and use these cells
will inform our knowledge of basic cell biological processes as
well as our understanding of many disease mechanisms.
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