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We study social choice rules under the utilitarian distortion framework, with an additional metric assumption
on the agents’ costs over the alternatives. In this approach, these costs are given by an underlying metric on
the set of all agents plus alternatives. Social choice rules have access to only the ordinal preferences of agents
but not the latent cardinal costs that induce them. Distortion is then defined as the ratio between the social cost
(typically the sum of agent costs) of the alternative chosen by the mechanism at hand, and that of the optimal
alternative chosen by an omniscient algorithm. The worst-case distortion of a social choice rule is, therefore,
a measure of how close it always gets to the optimal alternative without any knowledge of the underlying
costs. Under this model, it has been conjectured that Ranked Pairs, the well-known weighted-tournament
rule, achieves a distortion of at most 3 (Anshelevich et al. 2015). We disprove this conjecture by constructing a
sequence of instances which shows that the worst-case distortion of Ranked Pairs is at least 5. Our lower
bound on the worst-case distortion of Ranked Pairs matches a previously known upper bound for the Copeland
rule, proving that in the worst case, the simpler Copeland rule is at least as good as Ranked Pairs. And as long
as we are limited to (weighted or unweighted) tournament rules, we demonstrate that randomization cannot
help achieve an expected worst-case distortion of less than 3. Using the concept of approximate majorization
within the distortion framework, we prove that Copeland and Randomized Dictatorship achieve low constant
factor fairness-ratios (5 and 3 respectively), which is a considerable generalization of similar results for the
sum of costs and single largest cost objectives. In addition to all of the above, we outline several interesting
directions for further research in this space.

CCS Concepts: «Theory of computation — Algorithmic game theory and mechanism design; Approximation
algorithms analysis;
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1 INTRODUCTION

Social choice theory is the science of aggregating the varied preferences of multiple agents into a
single collective decision. Ways of doing this aggregation are called social choice rules — functions
that map the given preferences of agents, typically in the form of total orderings over a set of
alternatives, to a single alternative. The conventional approach to reasoning about the quality of
outcomes obtained from these rules has been a normative, axiomatic one. A variety of axiomatic
criteria, corresponding to naturally desirable properties, have been proposed, and a great deal of
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work has been done to understand which axioms can or cannot be satisfied together, and how the
known social choice rules measure up against them. For instance, a few celebrated results (Gibbard
1973; Satterthwaite 1975) rule out the concurrent satisfiability of such basic axioms, and additional
spatial assumptions that help sidestep these impossibilities have been identified (Barbera 2001;
Moulin 1980).

Another approach, which has received a great deal of attention lately (Boutilier et al. 2015;
Caragiannis and Procaccia 2011; Procaccia and Rosenschein 2006), is to assume a utilitarian view, as
is commonplace in economics and algorithmic mechanism design. Every agent has latent cardinal
preferences over the alternatives in terms of utility (or cost) and the social utility of an alternative
is a function of the agents’ utilities. The most commonly used objective is the total sum of agent
utilities for an alternative. Social choice rules are then viewed as approximation algorithms which
try to choose the best alternative given access only to ordinal preferences. Similar to the competitive
ratio of online approximation algorithms, the quantity of interest here is the worst-case value (over
all possible underlying utilities) of the distortion — the ratio of the social utility of the truly optimal
alternative over that of the alternative chosen by the social choice rule at hand (Procaccia and
Rosenschein 2006).

Characterizing the worst-case distortion of social choice functions has emerged as the central
question within the utilitarian approach to social choice. With no assumptions on the utilities, the
distortion of deterministic social choice rules is unbounded (Procaccia and Rosenschein 2006), and
that of randomized social choice rules is Q(m), where m is the number of alternatives (Boutilier
et al. 2015).

Interestingly, some constant factor bounds on the distortion of social choice rules are made
possible with an additional metric assumption on the cardinal preferences of agents, represented
by their costs with respect to alternatives (Anshelevich et al. 2015). These costs are assumed to
form an unknown, arbitrary metric space, and distortion is redefined in terms of these costs. In
this setting, the best known positive result for deterministic social rules is that the distortion of
the Copeland rule, a tournament function, is at most 5 (Anshelevich et al. 2015). It is known that
the worst-case distortion of any deterministic social choice rule is at least 3, and that Ranked
Pairs, a weighted-tournament function, achieves this lower bound given some assumptions on
the ordinal preferences of agents. It is also known that the distortion of any randomized rule is at
least 2, and that of Randomized Dictatorship is at most 3 (Anshelevich and Postl 2016), showing
that randomization helps beat the performance of common deterministic rules with respect to
worst-case distortion.

An important open question here is whether the worst-case distortion of Ranked Pairs is indeed 3,
as has been conjectured (Anshelevich et al. 2015). And given that tournament/weighted-tournament
rules provide the best-known bounds in the deterministic case, another interesting question is
whether they perform well in the randomized case too, and in particular, better than Randomized
Dictatorship. The first half of this paper is devoted to settling these questions, providing answers
in the negative for both. The proof for Ranked Pairs is particularly surprising and intricate.

Under the utilitarian metric distortion approach, in addition to reasoning about the total social
cost, it is natural to ask how “fair” choosing a particular alternative is in terms of the cost incurred
by the agents. For example, let us say there are two agents and two alternatives, and the costs
incurred by the agents are x1, x, (x; # x3) for the first alternative, and (x1 + x2)/2, (x1 + x3)/2 for the
second. It seems natural that the second is more “fair” than the first. Various notions of fairness such
as lexicographic fairness’, prefix-based measures, and the more general approximate majorization
measure, have been studied in the context of routing, bandwidth allocation and load balancing

This is also called max-min fairness in the resource allocation literature.



vy’s cost forc; = 3
= the length of the shortest path.

C3,03 2

Fig. 1. Underlying shortest path metric in Example 1 - each edge is of unit weight

problems (Goel et al. 2001; Kleinberg et al. 1999; Kumar and Kleinberg 2000). Other measures of
fairness such as envy-freeness (Caragiannis et al. 2009; Chen et al. 2013), maximin-shares (Procaccia
and Wang 2014), and leximin (Barbara and Jackson 1988; Rawls 2009) have also been studied in
the context of mechanism design and social choice. We could also look at objectives given by
a-percentiles (@ = 0.5 is the median) for a € [0, 1]. While there are positive results (as achieved
by Copeland) for & € [0.5, 1), it is known that for « € [0, 0.5), all deterministic social choice rules
have unbounded worst-case distortion (Anshelevich et al. 2015).

A question arises as to which one of the above notions of fairness can be adapted to the metric
distortion framework, and moreover yields meaningful results. Even if percentiles were the most
appropriate, they are too strong for this domain given the lower bounds (Anshelevich et al. 2015)
mentioned above; in fact, there are very few resource allocation settings known where simultaneous
maximization or approximation of all percentiles is possible. Notions from cake-cutting such as
envy-freeness and maximin shares do not apply to social choice settings, since these definitions
assume a partition of available goods among agents; in social choice settings, we make a single
societal decision rather than partition resources. We will instead look at approximate majorization,
which attempts to minimize, simultaneously for all k, the sum of the k-largest costs incurred by
agents. This generalizes both lexicographic fairness and total cost minimization, and applies to any
setting where agents receive utilities (or costs), regardless of whether the underlying problem is one
of cake-cutting, resource allocation, or social choice. Further, an approximate majorization ratio of
a guarantees an a-approximation of a large class of fairness measures, including all p-moments of
costs for agents, for p > 1. The second half of this paper states and proves these fairness results.
In particular, we show how the simple Copeland rule approximates a broad class of convex cost
functions.

Warm-up example of metric costs and distortion. Imagine there are three alternatives ¢y, ¢y, 3,
and three agents vy, vy, v3 with preferences ¢; > ¢; > ¢3, ¢; > ¢3 > ¢1 and ¢3 > ¢; > ¢, respectively.
The underlying costs are given by the shortest path metric on the graph in Figure 1. The agent
costs are given by d(., .) as follows:

(i) d(v1,¢1) = d(v1,¢2) = d(v1,03) = 1
(i) d(vz,c2) = d(v2,¢3) = 1, d(v2, c1) = 3
(111) d(U3,63) =0, d(’U3,C1) = d(’U3,C2) =2.

Let’s say that a deterministic rule chooses c; as the winner based on the preferences. Then the
distortion is given by 33,21 2 3 d(vi, ¢1)/Xi=1,2,3 d(vi, c3) = 6/2 = 3. In fact, this metric achieves the
worst-case distortion among all possible metrics that agree with the given preferences.

If a randomized rule picks each of the three alternatives with equal probability, the expected
distortion will be equal to (%6 + %.4 + %.2)/2 = 2. It can be seen, based on symmetry, that this
distribution minimizes the worst-case distortion over all possible metrics that agree with the
preferences.



Let us also look at the fairness ratio when we pick c¢; as the winner. The largest cost for ¢; is
that of v, with d(v, ¢;) = 3. And for the optimal alternative cs, the largest cost is d(vy, c3) = 1. The
ratio of these values is 3. Similarly if we look at the ratio of the two largest costs, then we have
[d(va, 1) + d(vs, c1)]/[d(v1, c3) + d(v2, c3)] = 5/2. For the three largest costs, we have a ratio of 3
from above. Therefore, the alternative c¢; achieves a fairness ratio of max{3, 2.5,3} = 3.

1.1 Our contributions

Our first set of results are in the negative: we show that social choice rules of simple forms cannot
have worst-case distortion ratios matching the known lower bounds. Our second set of results
concern defining fairness in this setting, and upper bounding the fairness ratios of natural social
choice rules, in particular the Copeland rule.

Lower Bounds on Distortion. It has been conjectured that the simple Ranked Pairs rule achieves
the optimal distortion ratio of 3 (Anshelevich et al. 2015). This conjecture is based on the fact that
if the ordinal preferences of agents are restricted to be of a certain form, Ranked Pairs does indeed
have a distortion at most 3 (see Theorem 3.1). Our first main result is disproving this conjecture -
we show that Ranked Pairs, and the related Schulze rule, have a worst-case distortion ratio at least
5, and in this sense, are no better than the Copeland rule when the preferences are general. We do
this by constructing a sequence of instances where the agent preferences are obtained by coupling
cyclic permutations of two equally large sets of alternatives in a one to one fashion.

ResuLT 1 (THEOREM 3.3). Ranked Pairs, and the Schulze rule, have a worst-case distortion ratio of
at least 5.

As stated before, a lower bound of 2 is known on the worst-case distortion of any randomized
rule (Anshelevich and Postl 2016). We show that this lower bound cannot be achieved by any
rule that looks at only the pairwise wins/losses among the alternatives, or the margins of these
wins/losses (tournament rules and weighted-tournament rules - see Section 2.2 for a definition).

REsULT 2 (THEOREM 3.6). The worst-case (expected) distortion of any tournament or weighted-
tournament rule is at least 3.

Fairness properties. We introduce a method of quantifying the “fairness” of social choice rules by
incorporating the concept of approximate majorization (Goel and Meyerson 2006) within the metric
distortion framework. For this purpose, we redefine the social cost of any alternative as the sum of
its k largest agent costs. How fair a given social choice rule is depends on how well the alternative
it chooses performs on this objective compared to every other alternative. To evaluate the fairness
of a social choice rule, we then seek to bound the distortion ratio of this objective simultaneously
over all possible values of k: we call this the fairness ratio (we define this measure formally in the
next section).

The fairness ratio generalizes both the sum of costs objective (utilitarianism), and maxmin fairness
(egalitarianism). Given such a strong definition, it is impossible to achieve a constant fairness ratio
in many settings, and surprisingly, for the metric distortion problem we study in this paper, simple
social choice rules like Copeland and Randomized Dictatorship achieve small constant fairness
ratios that match the best-known distortion bounds for just the sum objective.

ResuLT 3 (THEOREM 4.2). Copeland rule achieves a fairness ratio of at most 5.
ResULT 4 (THEOREM 4.3). Randomized Dictatorship achieves a fairness ratio of at most 3.

Additionally, for deterministic rules, a bound on the fairness ratio translates to an approximation
result for a general class of symmetric convex objectives (see Section 2.5). And therefore, the above



result leads us to the surprising observation that, assuming metric costs, the simple Copeland rule
simultaneously approximates a very broad class of cost functions.

Conjectures and open problems. There are many directions for further research on the metric
distortion problem. We mention some of these in context as we go along (Conjectures 3.5, 3.7).
More details can be found in the full version of our paper (Goel et al. 2016). For example, for
randomized rules, we suggest an interesting variation of the distortion measure, one that is more
adversarial than the standard measure.

1.2 Related Literature

Several interesting problems pertaining to the distortion arising from the mapping of cardinal
preferences to ordinal information have been studied (Moulin et al. 2016). The worst-case distortion
of social choice rules, with unrestricted or normalized utilities, is known to be unbounded (Procaccia
and Rosenschein 2006). With randomized mechanisms, it is possible to achieve a distortion of
Q(y/mlog® m), where m is the number of alternatives (Caragiannis and Procaccia 2011). The
standard assumption here is that agents translate cardinal scores into ordinal preferences in the
straightforward way — the alternative with the k-th highest utility is placed in the k-th position. If
this mapping could be done in any other way, it is possible to construct low distortion embeddings
of cardinal preferences into (ordinal) social choice rules like plurality (Caragiannis and Procaccia
2011). Another interesting result here is that is possible to construct a truthful-in-expectation
mechanism whose worst-case distortion is O(m*/*) (Filos-Ratsikas and Miltersen 2014).

Analysis of cardinal preferences under spatial models of proximity has had a long history in
social choice (Enelow and Hinich 1984; Moulin 1980). Such models, especially those with Euclidean
spaces, have also been commonly studied in the approximation algorithms literature on facility
location problems (Arya et al. 2004; Drezner and Hamacher 1995). In these models, the cost of an
agent for an alternative is given by the distance between the two. As mentioned earlier, our work
follows the literature on the analysis of distortion of social choice rules under the assumption that
agent costs form an unknown metric space (Anshelevich et al. 2015; Anshelevich and Postl 2016).
We have already mentioned that several lower and upper bounds for both the sum of costs and
percentile objectives are known in this setting. In addition, it is known that a distortion of at most
4 for the median objective can be achieved by a randomized mechanism that chooses from the
uncovered set (Anshelevich and Postl 2016). In the deterministic case, an interesting result we must
mention is that the distortion of the Single Transferable Vote (STV) is at most log(m) (Skowron
and Elkind 2017).

It is important to note that in the special case of Euclidean metrics, it possible to design low
distortion mechanisms, with the additional constraint of their being truthful-in-expectation (Feld-
man et al. 2016). Additionally, the metric distortion framework has also been used to study other
problems such as finding an approximate maximum weight matching with access to only ordinal
preferences (Anshelevich and Sekar 2016).

In the distortion framework, both the interpersonal comparison of utilities, and the goal of utility
maximization, are implicitly assumed to be valid. While the interpersonal comparison of utilities is
more meaningful in some contexts than others (Boutilier et al. 2015), we take it for granted.

While the results on the distortion of the sum of costs (or utilities) objective are extremely
interesting, minimization of total cost (or maximization of total utility) is not the only imaginable
goal of social choice mechanisms. The first step toward other understanding the distortion of
other objectives is apparent in the various results on the distortion of the median cost objective
(Anshelevich et al. 2015; Anshelevich and Postl 2016). We take a further step in this direction by
drawing on the notions of fairness that have been studied in the context of network problems such



as bandwidth allocation and load balancing (Goel et al. 2001; Kleinberg et al. 1999; Kumar and
Kleinberg 2000).

2 PRELIMINARIES
2.1 Social Choice Rules

Let V be the set of agents and C the set of alternatives. We will use N to denote the total number of
agents, i.e.,, N = |'V|. Every agent v € V has a strict (no ties) preference ordering o, on C. For any
¢,c’ € C,we will use ¢ >, ¢’ to denote the fact that agent v € V prefers c over ¢’ in her ordering o,,.
Let S be the set of all possible preference orderings on V. We call a profile of preference orderings
o € SN as an instance.

Based on the preferences of agents, we want to determine a single alternative as the winner, or a
distribution over the alternatives and pick a winner according to it. A deterministic social choice
rule is a function f : SV — C that maps each instance to an alternative. A randomized social
choice rule is a function g : SN — A(C), where A(C) is the space of all probability distributions
over the set of alternatives C.

To define the social choice rules that we use in this paper, we need a few additional definitions.
An alternative ¢ pairwise-beats ¢’ if [{v € V : ¢ >, ¢'}| = % with ties broken arbitrarily. Given
an instance o, a complete weighted digraph G;(o) with C as the set of nodes, and the weight of
any edge ¢ — ¢’ given by w(c,¢’) = {v € V : ¢ >, ¢}, is called the weighted-tournament graph
induced by 0. An unweighted digraph G,,(c) with C as the set of nodes such that an edge from
¢ — ¢’ exists iff ¢ pairwise beats ¢’ is called the tournament graph induced by o.

e Ranked Pairs: Given an instance o, sort the edges of the weighted-tournament graph
G, (o) according to the values w(., .) in some non-decreasing order (breaking ties arbitrarily).
Start with a graph G = (C, 0) and iterate over the edges in the order determined above. At
each step, add the edge to G if it does not create a cycle, and discard the edge otherwise.
The winning alternative is the source node of the resulting directed acyclic graph.

e Copeland: Given an instance o, define a score for each ¢ € C given by |{¢’ € C :
¢ pairwise beats c’}|. The alternative with the highest score (the largest number of pairwise
victories) is chosen to be the winner. In other words, the winning alternative is the node in
the tournament graph Gy, (o) with the maximum out-degree (breaking ties arbitrarily).

¢ Randomized Dictatorship: Choose alternative ¢ € C with probability p(c) equal to
|[Ve|/N where V. ={v €V :c >, ¢/, V¢’ # c}.

e Schulze (Schulze 2003) In the weighted-tournament graph, a path of strength p from
alternative c to alternative ¢’ is a sequence of candidates ¢y, ¢z, . . . , ¢, with the following
properties: (i) c; = cand ¢, = ¢/, (ii) foralli = 1,...,(n — 1), w(c;, ¢i+1) = w(civ1,¢i), and
(iii) foralli = 1,..., (n — 1), w(c;, civ1) = p.

Let p(c, ¢’) be the strength of the strongest path from c to ¢’. If there is no path from c
to ¢/, then p(c,c’) = 0.

Define a relation >* as follows: Y, ¢/, ¢ >* ¢/ & p(c,c’) > p(c’, ¢). It can be proven
that >* defines a transitive relation. The alternative (with arbitrary tie-breaking, as there
may be many such) ¢*, such that p(c*, ¢) > p(c, ¢*) for all other alternatives c, is chosen as
the winner.

2.2 Tournament and weighted-tournament rules

Any social choice rule that chooses an alternative, or a distribution over the alternatives, based on
just the tournament graph is called a tournament rule (Moulin et al. 2016). These are also called C1
functions according to Fishburn’s classification (Fishburn 1977). Any rule that is a function of the



weighted-tournament graph is a weighted-tournament rule, as long as it is not a tournament rule
(Moulin et al. 2016). According to Fishburn’s classification, these rules are also called C2 functions
(Fishburn 1977). Such rules do not need knowledge of all the preferences orderings, just the
aggregated information in terms of the tournament/weighted-tournament graph. From the above
definitions, we see that Ranked Pairs is a deterministic weighted-tournament rule, and Copeland a
tournament rule. Randomized Dictatorship is neither a tournament rule nor a weighted-tournament
rule, because it needs to know which alternative is first in each ordering.

2.3 Metric costs

We assume that the agent costs over the alternatives is given by an underlying metric d on C U V.
d(v, c) is the cost incurred by agent v when alternative c is chosen as the winning alternative.

Definition 2.1. A functiond : CUV XCUV — Ry is a metric iff Vx, y,z € C UV, we have the
following: (1) d(x,y) > 0, (2) d(x,x) =0, (3) d(x,y) = d(y,x) , and (4) d(x,z) < d(x,y) + d(y, z).

We can do with a much simpler yet equivalent assumption on the agents’ costs (see Lemma 2.3).
We need to first define a q-metric (“q” for quadrilateral) by replacing the triangle inequalities by
“quadrilateral” inequalities (Condition 2 in the definition below).

Definition 2.2. A functiond : V X C — Ry is a q-metric iff Vv, v” € V, and V¢, ¢’ € C, we have
the following:
(1) d(v,c) 20
(2) d(v,c) <d(v,c¢’)+d@,c")+d(v,c)

The following equivalence result could be of independent interest in problems involving metrics.
We make heavy use of it in later sections to prove our results.

LEmMA 2.3. Ifd is a g-metric, then there exists a metricd’ such that d(v,c) = d'(v,c) forallv € V
andc € C.

Proor. Forall v,v’ € V and c, ¢’ € C, we define

d'(v,c) =d'(c,v) =d(v,c), (1)
d'(c,c') = max |d(v,c) —d(v, )], (2)
d' (v,v) = max ld(v,c) —d(v’, c)l. (3)

Clearly, by the above definitions, and that of a q-metric, for all x,y € C UV, we have d(x,y) > 0,
d(x,x) = 0 and d(x,y) = d(y, x).

Consider ¢y, ¢z, ¢35 € C. Without loss of generality with respect to cy, ¢3, 3, there exists u € V
such that

d’(c1,c3) = d(u,cy) — d(u,c3)
=d(u,c1) —d(u,c;) + d(u,c;) —d(u,c3)
< |d(u, c1) —d(u, c2)| + |d(u, c2) — d(u, c3)l
<d'(c1,c3) +d'(co, c3).



Consider v1,v; € V and ¢ € C. Again without loss of generality with respect to vy, v,, there
exists ¢’ € C such that

d’(v1,v2) = d(vy,¢’) = d(vs, ¢’)
< d(vy,¢) +d(vg,c)
=d’(vi,c) + d'(vy,¢).

The inequality in the second line of the above follows by Condition 2 in Definition 2.2. Inequalities
corresponding to Condition 4 in Definition 2.1 for triangles given by vy, v, v3 and v, ¢4, ¢z for all
v, 01,02, 03 € V and ¢y, ¢; € C follow analogously. ]

Henceforth, we will deal mainly with g-metrics and use the terms metric and g-metric inter-
changeably.

2.4 Distortion

We say that a metric d is consistent with an instance o, if whenever any agent v prefers ¢ over
¢’, then the her cost for ¢ must be at most her cost for ¢/, i.e.,, ¢ >, ¢/ = d(v,¢) < d(v,c’). We
denote by p(o) the set of all metrics d that are consistent with o.

The social cost of an alternative is taken as the sum of agent costs for it. For any metric d, we
define ¢(c,d) = Y,y d(v,c). For any instance o, a consistent metric d, and any deterministic
social choice rule f, define ®(f(0),d) = ¢(f(0),d). If f is a randomized social choice rule, we
define ®(f(0),d) = E[¢(f (). d)].

As mentioned before, we want to measure how close a social choice rule gets to the optimal
alternative in terms of social cost. We view every social choice as trying to approximate the
optimal alternative, with knowledge of only the agent preference instance o, but not the underlying
metric cost d that induces . To measure this performance, we take the ratio of the social cost of
the alternative chosen by the rule for o, and the optimal alternative according to d. Distortion
(Procaccia and Rosenschein 2006) is then defined as the worst-case value of this quantity over all
metrics d that are consistent with o:

dist(f,0) = sup —J @)

dep(c) MceC QS(C, d)
In other words, the distortion of a rule f on an instance o is the worst-case ratio of the social cost ®
of f(o), and that of the optimal alternative. By worst-case we mean the largest value of the above
over all possible metrics d that could induce o, since f does not know what the true underlying
metric is. In fact, we look to bound the quantity dist(f, o) over all possible instances, so as to have
a measure of performance for the given rule f independent of the what the instance is, i.e., the
worst-case distortion of f.

2.5 Fairness

Given an underlying metric, based on the alternative chosen, the costs incurred might vary widely
among the agents. We want to formally quantify how “fair” choosing a particular alternative is. For
this purpose, we look at social cost defined as the sum of k largest agent costs, forall 1 < k < N.
For any metric d and ¢ € C, we define Y1 < k < N,
,d) = d(v,c).
Pele.d) = max D d(v.c)
veV
For a deterministic social choice rule f, we define ®x(f(0),d) = ¢x(f(0),d), for all instances
o and consistent metrics d. If f is a randomized social choice rule, we define ®x(f(0),d) =



E[px(f(c),d)]?, for all instances o and consistent metrics d. We define the fairness-ratio of f as
follows:

@ ,d
fairness(f,0) = sup max M‘
dep(o) 1sk<N mincec Pk (c, d)

The fairness ratio of a rule f on an instance ¢ is a worst-case bound on how well it simultaneously
(for all k) approximates the social cost given by &y of f(c), compared to the optimal alternative,
over all possible metrics d that could induce o, without knowing what the true underlying metric
is.

Bounds for general convex costs via the fairness ratio. Another reason for studying the fairness
ratio is that for deterministic social choice rules, a bound on the fairness-ratio translates to an
approximation result with respect to any canonical cost function — a symmetric convex function F
of the vector of agent costs such that F (6) = 0 and F is non-decreasing in each argument (Goel
and Meyerson 2006).

For any ¢ € C, define ci(c) = [d(vy,¢),...,d(vN,c)], where V = {vy,...,oN}.

THEOREM 2.4. For any deterministic social choice rule f, instance o, consistent metric d, and
canonical cost function F, if fairness(f, o) < a, then for anyc € C,

F(m) < F(d(c)).

[24

ProoF. For any vector ¥ € RV, let X(1) = X@2) = ...X34 2= ...x() denote its components
arranged in some non-decreasing order. For any 1 < k < N, define S (X) = Zle X(i)-

A vector X is said to be a-submajorized by 7 iff Si (X) < aSk(¥)), forall 1 < k < N.

If fairness(f, o) < «, then for any ¢ € C, we have that c?(f(d)) is a-submajorized by J(c) This

implies that F (@) <F (ci(c)) (Theorem 2.3 in (Goel and Meyerson 2006)). O

If a deterministic social choice rule has a fairness ratio of at most a, then for all p > 1, the [, norm
of the cost vector for the agents under this social choice rule is at most « times the optimum, giving
an “all-norms” approximation (Corollary 2.5). As special cases, this gives an a-approximation for
many objective functions such as the sum, the maximum, and the £, norm of the agentsfi costs for
an alternative, using p = 1, oo, and 2 respectively.

COROLLARY 2.5. For any deterministic social choice rule f, instance o, andp > 1, if fairness(f, o) <
a, then foranyc € C,

- -

d(f(o)llp < alld(e)llp-

3 LOWER BOUNDS ON DISTORTION

In this section, we will establish that Ranked Pairs fails to achieve a distortion of at most 3,
contrary to what has been conjectured (Anshelevich et al. 2015), thereby falling short of the lower
bound on the worst-case distortion of any deterministic rule. We also show a similar result on
how tournament/weighted-tournament rules fail to come close to the lower bound of 2 on the
worst-case distortion of any randomized rule.

2We could define variations of this objective, leading to interesting open questions (Goel et al. 2016).
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Fig. 2. Weighted-tournament Graph: A cycle of heavy edges making c; the Ranked Pairs winner.

3.1 Ranked Pairs

In our first result, we will show that the worst-case distortion of Ranked Pairs is at least 5. (An-
shelevich et al. 2015) conjectured that the worst case bound here is 3. This conjecture was based
on the result that if the tournament graph does not have cycles of length greater than 4, then the
distortion of Ranked Pairs is, in fact, bounded above by 3.

THEOREM 3.1. (Anshelevich et al. 2015) The distortion of ranked pairs is at most 3, as long as the
tournament graph has circumference at most 4.

Assume for a moment that among the set of alternatives C, c is the Ranked Pairs winner, and ¢’
is the optimal alternative that minimizes the sum of agent costs. To achieve a large distortion, ¢’
must beat ¢ often. And since c is the Ranked Pairs winner, at the step when ¢’ — c is considered in
the Ranked Pairs iteration over edges, a path from ¢ to ¢’ must already be in place.

One way of achieving this structure is to have n agents, each with a preference ordering that
is a different cyclic permutation of c1, ¢, . .., cy. ¢1 is then a Ranked Pairs winner (assuming ties
are broken in its favor), and the cycle ¢; — ¢z,¢; — ¢3,...,¢cp-1 = Cn, ¢y — ¢1 has edges of (equal)
weight larger than those of edges not on the cycle (Figure 2). The worst-case distortion in this case,
however, is only 3.

3.1.1  Coupling of two sets of cyclic permutations. To achieve a larger distortion, we engineer
an overall cyclic structure similar to Figure 2 on 2n + 1 alternatives with n + 2 agents as follows:

construct n agents with distinct preference orderings by taking each cyclic permutation of ¢;, . . . , ¢,
and coupling it with a corresponding permutation of ¢z, . . ., c2p+1, pivoted about c,.1. We add
two agents with the preference exactly ¢y, ¢z, . . ., Can+1-

To understand this coupling, let us look at a related example when n = 2.

Example 3.2. We couple ¢4 > c5 with ¢; > ¢1, and ¢5 > ¢4 with ¢; > ¢, using c3 as a pivot to get
two agents vy and v, as in Figure 3. To make c; the unique Ranked Pairs winner, we make n copies
each of v; and v,, and add n + 1 copies of a third agent vy, with preference ¢; > ¢z > ¢3 > ¢4 > cs.
We will see in the proof of Theorem 3.3 that the following is a valid metric:

C4 > C5 >y C2 >o; €3 >y o,

——— ———
d(vy,.) =1 d(vy,.)=3 d(vy,.) =5
Cs >vz C3 >‘Uz Cq >‘uz C1 >vz C2,

N—— ~ — N———
d(vy, .) =0 d(vy, ) =2 d(vy, ) =4
C1 >0y €2 >y C3 >y C4 >1y, C5 -

d(vp, ) =2



<—cyc1ic orders of ¢4, cs \

'
:
|
'
' \ cyclic orders of ¢;, c2
:
\
:

P AN \‘ —————————— /’ cp < C
’C4<C5‘<CQ *{C3 *\Cl' !

cg is the plvot N

Fig. 3. Coupling example: n = 2

The ratio of the total costs of ¢; and ¢s here is ?EZ;:@E:;:%EZ:R = 131::22, which is more than 3 for

n > 3. This serves as simple counter-example to the conjecture that Ranked Pairs achieves a
distortion of 3.

This example can be modified to give a sequence of instances that lead to a distortion of 5 in the

limit. In every instance in this sequence, we will see that the Ranked Pairs winner does not depend
on how ties are broken.

THEOREM 3.3. There exists a sequence of instances {c™M} 5, such that

lim dist(Ranked-Pairs, c™) = 5.
n—oo

Proor. For each n > 2, construct an instance ¢(™ and a corresponding metric d as follows:

There are n + 2 agents given by V = {v,, vé, U1,V2,...,0n}, and 2n + 1 alternatives given by
C = {clac23 oo ,c2n+1}-

Both vy and v have the preference order ¢; > c; > ... > can41, and d(vy, ¢) = d(vy, c) = 2 for
allc € C.

For 1 < i < n, v; has the preference order

Cntitl > «oo > C2nt1 > Cit1 > oo > Cpyj > C1 > oo > Cj

d(vi,.) =1 d(vi, .) =3 d(vi,.) =5
Also, define d as follows, for all ¢ € C:

1, ifn+i+1<j<2n+1,
d(’Ui,Cj): 3, ifi+1$j§fl+i,
5, if1<j<i.

First, we show that d thus constructed is a valid g-metric. For all (v,c¢) € V X C, d(v,c) > 0 is
trivially satisfied. Let A = {cy,c2,...,¢cn} and B = {cy41,. .., Con+1}. Foralla,a’ € A,and b,b’" € B,

andv €V,
|d(v, a) — d(v, b)| < 4,
|d(v,a) —d(v,a’)| < 2,
|d(v, b) — d(v,b")| < 2.



The first holds with equality when d(v, a) = 5, d(v, b) = 1, the second when one of d(v, a), d(v, a’)
is 5 and the other is 3, and the third when one of d(v, b),d(v, b’) is 3 and the other is 1. We also
have

d(v,a) +d(v,b) > 4,
d(v,a) +d(v,a’) > 4,
d(v,b) +d(v,b) > 2.

The first holds with equality when d(v, a) = 3,d(v,b) = 1 or d(v, a) = d(v,b) = 2, the second
when d(v,a) = d(v,a’) = 2, and the third when d(v,b) = d(v,b’) = 1. Putting the above
inequalities together, we see that d is a valid q-metric since it satisfies Definition 2.2.

Also from the above, we have Y ,cq d(v,¢1) =5n+ 4 and Y ,cq d(v, c2n+1) = n + 4, and so

li ZUE‘V d(U, cl) _
im ———— =5.
n—c ey d(0, C2ns1)

We will now show that ¢; is the Ranked Pairs winner, irrespective of how ties are broken, in
every o™,

Recall that w(i,j) = [{v € V : ¢; >, cj}|, the strength of edge ¢; — c¢; in the weighted-
tournament graph obtained from o,,. We will first show that forall 1 <i < 2n, w(i,i+1) =n+1: If
1<i<nthenw(i,i+ 1) =n+1,since ¢; >, ¢;41 forallv € V except v;. If n + 1 < i < 2n, then
w(i,i+ 1) = n+ 1, since ¢; >, c;41 for all v € V except v;_p,.

All other edges i — j fall into the following cases:

e i<j-1Ifj<n+1,thenc; >, c;foralli <k < j— 1. Asimilar argument holds when
n+1<iIfi<nandj>n+2,thenc; >, c;atleastfork =i,j—n-1;
e i> j thenc; >, c; at least for v € {vy, vy}

In all these cases, ¢; >, c; at least for two agents, and thereby w(i, j) < n. Therefore, the edges
¢; = cj41 for 1 < i < 2n have the largest weights (with no ties) and consequently ¢; is the Ranked
Pairs winner. m|

The Schulze method (Schulze 2003) also gives priority to edges of larger weight, albeit in a more
complicated way. The above result holds for the Schulze rule since it also picks c¢; as the winner in
the instances constructed.

COROLLARY 3.4.
lim dist(Schulze, o™ = 5.
n—oo

Proor. The proof follows from the fact that the Schulze rule also chooses c; as the winner in
every instance in the sequence (0™} ,50, irrespective of how ties are broken. ]

Since methods like Ranked Pairs and the Schulze rule (Schulze 2003) fall in the category of
weighted-tournament rules (C2 functions), we believe that no weighted-tournament rule can
achieve a worst-case distortion of less than 5.

CONJECTURE 3.5. Any weighted-tournament rule has a worst-case distortion of at least 5.

Copeland falls in the category of tournament rules (C1 functions), and we know that Copeland,
and other similar rules related to the uncovered set (Moulin 1986), achieve a worst-case distortion
of 5 (Anshelevich et al. 2015). In fact, a lower bound of 5 for the worst-case distortion of Copeland
is established via an instance where the tournament graph is a 3-node cycle (Anshelevich et al.



2015). It therefore follows that the worst-case distortion of any deterministic tournament rule is at
least 5°(since such a rule has no way of distinguishing between the 3 nodes).

3.2 Randomized tournament/weighted-tournament rules

We will now turn our attention to randomized social choice rules. The worst-case distortion in
this case is at least 2 (Anshelevich and Postl 2016). Continuing our discussion on tournament and
weighted-tournament rules, we show that in the worst-case randomized tournament/weighted-
tournament rules do not get close to the above lower bound. We will construct a sequence of
instances where any randomized tournament or weighted-tournament rule achieves a distortion of
3 in the limit.

THEOREM 3.6. The worst-case distortion of any randomized tournament/weighted-tournament rule
is at least 3.

ProoF. Construct an instance o™ and a corresponding metric as follows: There are m + 1
alternatives given by C = {c*,c1,¢2,...,cm}. And there are 2m agents given by V, and V is
divided into two groups V = {v1, vy, ..., vt and U = {uy, ..., up}.

vy has the preference order ¢* >, ¢1 >4, ... >g, ¢m. For 2 < i < m, agent v; has the preference
order ¢* >, ¢; >u,; Cit1 >v; - -+ >v; Cm >v; €1 >ov; - - - Ci1.

u; has the preference order ¢y, >y, ... >y, €1 >y, ¢ For 2 < i < m, agent v; has the preference
order ¢j_1 >y, ...C1 >u; Cm >u; -« >u; Cit1 >u; Ci >u; €

Define a metric d as: Yv € V, d(v,¢*) = 0 and d(v,c) = 2, Ve # ¢*; and Yu € U, d(u,c) = 1,
for all ¢ € C. We omit the details, but this is indeed a valid metric (see Figure 4 for a graphical
illustration).

For any given distribution ¥ over the alternatives C, we must have some alternative a such that

Xq < % In this instance, we have w(a,b) = {v €e VUU :a >, b}| = mforalla # b € C, i.e.,
Wl(ff,’lb) = 0.5. Since the tournament/weighted-tournament graph is completely symmetric (since
the edge weight is equal to 0.5 on all directed edges), we can assume without loss of generality that
c*=a.

The expected cost for ¢* is

Z d(v,c*) + Z d(u,¢*) = m(0) + m(1) = m.

veV uelU

The expected cost for the distribution X is

Zxc Z d(v,c) + Zxc Z d(u,c) = xc Z d(t,c*) + Z Xe Z d(t,c).

ceC veV ceC uelU teVuU c#c* teVuU
Since d(v,c¢*) = 0forallv € V, and d(u,c*) = 1 for all u € U, we get Y ;cyuy d(t, ¢*) = m. For
any ¢ # ¢, t € VUU, we defined d(t, ¢) = 3, which implies that };cyyy d(t,¢) = 3m.
Using the above, the expected cost becomes

Xex(m) + Z xc.(3m) = xex(m) + (1 — x+)(3m) = 3m — x«(2m) > 3m — l(2m) =3m-2.
m

c#c*

Therefore, the distortion ratio is at least (3m — 2)/m = 3 — 2/m which tendsto3asm —» c0. O

3We thank Reyna Hulett for pointing this out.

“Tournament/weighted-tournament rules are inherently anonymous, but the winner in this case will depend on how ties
are broken. We can get around this issue by tailoring the constructed instance appropriately, i.e., swapping the roles of c*
and the chosen winner.
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Fig. 4. Underlying metric in proof of Theorem 3.6

Putting Theorems 3.3 and 3.6 together, we see that Copeland does at least as well as Ranked
Pairs, and randomized tournament/weighted-tournament rules perform no better than Randomized
Dictatorship with respect to the worst-case distortion of the sum of costs objective. In the next
section, we will show that the upper bounds on the distortion of the sum of costs, for both Copeland
and Randomized Dictatorship, hold much more generally.

3.3 Instance Optimal Distortion

For any given instance, the single alternative that achieves the least worst-case distortion over
all consistent metrics can be found in polynomial time (by solving a polynomial number of linear
programs). This follows in a straightforward fashion from the fact that the metric inequalities are
linear. The same is true also in the randomized case, perhaps not so directly, in that we can find the
optimal distribution over alternatives in polynomial time. The technical details of this claim are
provided in our full report (Goel et al. 2016). Given the computability of these instance optimal
functions, we believe that:

CONJECTURE 3.7. There exists a deterministic social choice rule that achieves a worst-case distortion
of at most 3, and a randomized rule that achieves a worst-case distortion of at most 2.

4 FAIRNESS IN DISTORTION

As mentioned before, we introduce a way of quantifying the fairness of social choice rules by
using the concept of approximate majorization within the metric distortion framework. One
could hope to adapt other notions of fairness like envy-freeness (Lipton et al. 2004) and leximin
(Barbara and Jackson 1988; Rawls 2009) (actually leximax since we are dealing with costs) into the
distortion framework. While the standard definition of envy-freeness applies to problems involving
the division of goods, and requires no inter-personal comparison of utilities, we could perhaps
re-purpose it to our setting by looking at the difference between the largest and smallest costs for
any given alternative. This quantity in itself cannot be bounded because it is not scale-invariant -
for whenever it is positive, the metric can be scaled to make the envy unbounded. Unfortunately,
using this “envy” as the objective in the distortion ratio is also fruitless (see Example 4.1 below).

We know that Copeland achieves a worst-case distortion of 5 for objectives given by a-percentiles
for @ € [0.5, 1) (Anshelevich et al. 2015). Here the a-percentile cost with respect to any alternative
¢ € C corresponds to the smallest value x € {d(v,c)| v € V} for which w > . It
is easy to see that such an upper bound for all a € [0, 1) would subsume our results. However,
for & € [0,0.5), any deterministic rule has unbounded distortion in the worst case. To see this,
consider the following example.

Example 4.1. Consider two alternatives cy, c2. There are two sets of agents U and V of size N/2
each which have preference ¢; > ¢z and ¢z > ¢; respectively. Assume without loss of generality
that ¢; is picked as the winner by the given social choice rule.

Let d(v,c1) =1 < d(v,¢c2) = 1forallv € V, and d(u,c;) = € < d(u,c;) = 1 forallu € U. By
invoking Lemma 2.3, we can see that this gives us a consistent metric.

For a € [0,0.5), we have that the a-percentile costs for ¢; and c¢; are 1 and € respectively. The
distortion ratio is then é, which goes to co as € — 0.



Now assume c; is picked as the winner. The maximum envy in this case is 1 — €. And in the case
of ¢; the maximum envy is 0, leading to an unbounded ratio.

The above example also shows us why a leximax comparison does not work. Ordering the costs
for ¢; and c; in non-decreasing order, let us compare the costs at the first position at which these
orders differ. At the (N/2 + 1)-th position, the cost for ¢; is 1, and that for ¢, is €, leading to an
unbounded ratio as € — 0.

4.1 Bounding the fairness ratio of Copeland rule

In this section, we show that Copeland achieves a fairness ratio of at most 5. Besides Copeland,
other weighted-tournament rules such as those selecting winners from the minimal covering set,
the bipartisan set, banks set, or any other subset of the uncovered set, also achieve a fairness-ratio
of at most 5.

THEOREM 4.2. For any instance o, if x is the Copeland winner, and z is any other alternative, then

. maxsc«:|S|=k Z’UES d(v,x)
fairness(Copeland,c) = sup max <5.
dep(o) 1Sk<N maXscy.|s|=k Loves 4(v, 2)

Proor. Fix any k € {1,2,...,N}.

For any a, b € C, denote the set of agents that prefer a over b by G, = {v € V : a >, b}.
And for any t € C, let

S, £ ar max E d(v,t).
t gsgv:|5|=k (v.1)
vES

Since x is the Copeland winner, we know, from the connection to the uncovered set (Moulin
1986), that either (A) |Gy.| > ¥, or (B) y € C, such that |Gyl = % and |Gy;| > % . We deal with
each case separately.

Case (A): Let g : 'V — V be any one-one map such that if v € Sy \ G, then g(v) € Gy,. One
such map exists because |Sy \ Gyz| < [V \ Gyl < % < |Gyzl. Let A = Sy N Gy, and B = Sy \ Gy,.

Z d(v,x) = Z d(v,x) + Z d(v, x)

VES, VEA veEB

< Z d(v,z) + Z d(v, x)

veEA vEB

< D, d@.2) + ) ([d(g).x) +d(g(v).2) + d(v.2))

veEA vEB

D d@,2) + Y (d(g(v),x) +d(g(v), 2))

VES, veEB

D dv,z) + )| 2d(9(v),2)

VES vEB

<3 Z d(v,z).

vES,

A

IA

In the above sequence, the first inequality follow from the fact thatv € A = v € G, and
for any v € Gy, d(v,x) < d(v,z) by definition. The second inequality follows after invoking
Condition 2 from Definition 2.2. The third inequality is true because g(v) € Gy, by definition, and
the fourth because for any S C V such that |S| < k, 3,5 d(v, 2) £ Y ,es, d(v, z) by the definition
of S,.



Case (B): For a complete treatment of this case, we refer the reader to the full version of this
paper (Goel et al. 2016). However, a bound of 9 is easy to see from a repeated application of case

(A). )

The fact that the inequality in Theorem 4.2 above is tight follows from the known example
(Anshelevich et al. 2015) in which Copeland achieves a distortion of 5 with respect to the sum of
costs objective.

As mentioned before Copeland also does well with respect to other objectives such as median
and a-percentiles for @ € [0.5, 1) (Anshelevich and Postl 2016). These functions are not convex
and hence do not fall under the category of functions that can be approximated with the help of
the fairness ratio. An interesting question is to characterize the entire class of functions for which
Copeland achieves a constant factor bound on the distortion.

4.2 Randomized Dictatorship
For randomized rules, the connection of the fairness-ratio to convex cost functions does not hold
in terms of the expectation variants of the quantities involved. However, the fairness ratio in its
own right is a generalization of both max-min fairness and total cost minimization, and is hence
worth studying in the case of randomized social choice rules.

Our last result is that Randomized Dictatorship, which achieves a worst-case distortion of 3, also
achieves a fairness ratio of 3 in expectation.

THEOREM 4.3. For any instance o, alternativey, and X chosen according to Randomized Dictatorship

E[maxscy.|si=k 2oes d(v,X)]
sup max
dep(o) 1Sk<N  MaXscy:si=k Loes 4(V, Y)

Proor. Fix any k € {1,2,...,N}, and any alternative y € C.

Forallc € C, denote the set of agents with ¢ as their top choice by V. = {v € V : ¢ >, ¢/, V¢’ # ¢},
and the size of this set as N, = |V.|. Let the total number of agents be given by N = |V|.

For any alternative ¢ € C, denote the set of agents that maximize the sum of k costs for it by
Sc = argmaxscy:(s|=k Loes 4(0,¢).

For all ¢ € C, by the triangle inequality we have

D dw,e) < ) (d(v,y) +d(e,y)
vES, vES,
<k-de,y)+ ). d,y), (4)
VESy
where the second inequality follows by the definition of S,.
Foranyc € C,ifv € V,, we have d(v, ¢) < d(v,y) (by the definition of V), and d(v, ¢) +d(v, y) >

d(c.y)
2

d(c,y) (by the triangle inequality), which together imply d(v, y) > . Therefore,

Sdwy) =Y Y dwy) 2 Y NI ©)

veV ceCveV, ceC

Consequently, we get




where the first inequality follows by the definition of S, and the second from the inequality in 5.
We can now bound the expected distortion as follows:

E[maxscy.isi=k Loes d(0,X)]  Xcec NW Yoves, d(v,c)

maxscy:(si=k Does 4(0,y) Yves, d(v,y)
_ Zeec R (k-d(c,y) + Toes, d(v,1))
= Toes, d@.)
DiceC %k -d(c,y) <14 K Seec Ne-d(c,y) -
- Zoves, d(@y) T £ 5 o N 4o
We have made use of 4 and 6 to get the first and third inequalities in the above sequence. O

To make amply clear that the bound on the fairness ratio of randomized does not extend to
convex functions, we will now look at an example where the distortion of randomized dictatorship
is unbounded when the objective used is the square of the sum of costs.

Example 4.4. Consider two agents {ci, c;} and N; + N, agents in total divided into two groups V;
and V5. Assume all of the above are points in R. ¢; = 0 and ¢; = 1. Every agent in V; is at 0, and
every agent in V; is at 1. Also assume that N; > N;.

Let C(¥) = (3; x;)%. With C as the cost objective, the optimal alternative is c;. The social cost of

this alternative is equal to NZ.
N,
N, +1N2

and ¢, with probability —2—. The

Randomized dictatorship chooses ¢; with probability NN

expected cost is equal to
N, N.
NZ—1_ 4 N2
N; + N, N; + N,
The distortion ratio is Ny N, /N22 = N;/N; which is unbounded in the limit N; — oo for any fixed
N;.

= N1N2.

The fact that the distortion of Randomized Dictatorship with respect to convex cost objectives is
unbounded makes the fairness properties of Copeland even more interesting. It seems surprising
that a simple rule like Copeland can approximate the optimal alternative over a very general class
of cost functions.

5 CONCLUSIONS

In this paper, we further the understanding of the performance of social choice rules under metric
preferences with respect to the distortion measure. We provide lower bounds on worst-case distor-
tion for deterministic rules such as Ranked Pairs and Schulze, and randomized tournament/weighted-
tournament rules. We introduce a framework to study the fairness properties of social choice rules
within the distortion framework, and provide low constant-factor upper bounds on the fairness
ratios of some well-known mechanisms like Copeland and Randomized Dictatorship. In particular,
what stands out is that Copeland not only achieves the best known upper bound for deterministic
rules, but also simultaneously approximates a large class of cost functions. We also point out a few
interesting directions for future research.
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