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ABSTRACT

Many societal decision problems lie in high-dimensional con-
tinuous spaces not amenable to the voting techniques com-
mon for their discrete or single-dimensional counterparts.
These problems are typically discretized before running an
election or decided upon through negotiation by represen-
tatives. We propose a meta-algorithm called Iterative Lo-
cal Voting for collective decision-making in this setting, in
which voters are sequentially sampled and asked to modify
a candidate solution within some local neighborhood of its
current value, as defined by a ball in some chosen norm. In
general, such schemes do not converge, or, when they do,
the resulting solution does not have a natural description.

We first prove the convergence of this algorithm under
appropriate choices of neighborhoods to plausible solutions
in certain natural settings: when the voters’ utilities can be
expressed in terms of some form of distance from their ideal
solution, and when these utilities are additively decompos-
able across dimensions. In many of these cases, we obtain
convergence to the societal welfare maximizing solution.

We then describe an experiment in which we test our algo-
rithm for the decision of the U.S. Federal Budget on Mechan-
ical Turk with over 4,000 workers, employing neighborhoods
defined by £!, £% and £> balls. We make several observa-
tions that inform future practical implementations of such a
procedure.
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1. INTRODUCTION

Methods and experiments to increase large-scale, direct
citizen participation in policy-making have recently become
commonplace as an attempt to revitalize democracy. Com-
putational and crowdsourcing techniques involving human-
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algorithm interaction have been a key driver of this trend [3,
15, 14, 19]. Some of the most important collective deci-
sions, whether in government or in business, lie in high-
dimensional, continuous spaces — e.g. budgeting, taxation
brackets and rates, collectively bargained wages and bene-
fits, urban planning etc. Direct voting methods originally
designed for categorical decisions are typically infeasible for
collective decision-making in such spaces. Although there
has been some theoretical progress on designing mechanisms
for continuous decision-making [18, 4, 16], in practice these
problems are either discretized before running an election, or
are decided upon through negotiation by committee, such as
in a standard representative democracy [3, 21, 22, 8, 23, 9].

We claim that the central challenge in designing good col-
lective decision-making mechanisms in continuous space vot-
ing, and the reason for the current gap between theory and
practice, is behavioral. It is unclear whether existing algo-
rithms can simultaneously be simple enough to explain and
use in practice, be robust to the inevitable deviations from
ideal models of user behavior and preferences, and result in
meaningful solutions with desirable properties. To address
this challenge, a social planner must make practically rea-
sonable assumptions on the nature and complexity of feed-
back that can be elicited from people and then design simple
algorithms that operate effectively under these conditions.

We first tackle the question of what type of feedback voters
can give. In general, for the types of problems we wish to
solve, a voter cannot fully articulate her utility function.
Even if voters had the patience to state preferences for a
reasonably large number of points, there is no reason to
believe that they could do so in any consistent manner.

On the other hand, we posit that it is relatively easy for
people to choose their favorite amongst a reasonably small
set of options, or articulate how they would like to locally
modify a candidate solution to better match their prefer-
ences. Note that with such feedback and without any ad-
ditional assumptions on voter preferences, no algorithm has
any hope of finding a desirable solution that depends on the
cardinal values of voters’ utilities, e.g., the social welfare
maximizing solution (i.e., one that maximizes the sum of
agent utilities). An algorithm that uses only ordinal infor-
mation about voter preferences is insensitive to any scaling
or even monotonic transformations of those preferences.

In this paper, we study and experimentally test a type of
meta-algorithm for large-scale preference aggregation that
effectively leverages the possibility of asking voters such easy
questions. In this algorithm that we call Iterative Local Vot-



Algorithm 1: Iterative Local Voting (ILV)

Inputs: Initial solution zg € X, tolerance ¢ > 0, a
function N (t) that maps time ¢ to an integer in
[0,¢ — 1], initial radius ro > 0, termination time 7.
Output: Solution .
e For ¢t > 1, sample a voter v; € V at random from the
population; set r: = ro/t and elicit

T = [a‘rgmaxze{szﬂsfzt_lHqgrt}fvt (IE)]X, (1)

i.e. ask the voter to move to her favorite point within
the constraints, and []x is a projection onto space X.

e Stop when either ¢ = T, in which case return xr, or
when max; me(n(t),....t} |t — Tm| < €, in which case
return x = x;.

ing (ILV), voters are sequentially sampled and asked to mod-
ify a candidate solution to their favorite point within some
local neighborhood, until a stable solution is obtained (if at
all). One has flexibility in deciding how these local neighbor-
hoods are defined — in this paper we focus on neighborhoods
that are balls in the £? norm, and in particular on the cases
where ¢ =1, 2 or ool.

More formally, consider a M-dimensional societal decision
problem in X C RM and a population of voters V, where
each voter v € V has bounded utility f,(z) € R,Vz € X.
Then we consider the class of algorithms described in Algo-
rithm 1.

ILV is directly inspired by the stochastic approximation

approach to solve optimization problems [20], especially stochas-

tic gradient descent (SGD) and stochastic subgradient de-
scent (SSGD). The idea is that if (a) voter preferences are
drawn from some probability distribution and (b) the re-
sponse of a voter to the query (1) moves the solution ap-
proximately in the direction of her utility gradient, then this
procedure almost implements stochastic gradient descent for
minimizing negative expected utility.

The caveat is that although the procedure can potentially
obtain the direction of the gradient of the voter utilities,
it cannot obtain any information about its magnitude since
the movement norm is chosen by the procedure itself. How-
ever, we show that for certain plausible utility and voter
response models, the algorithm does indeed converge to a
unique point with desirable properties. Our main theoreti-
cal contributions are as follows:

e Convergence for £P normed utilities: We show that
if the agents cost functions can be expressed as the L£P
distance from their ideal solution, and if agents correctly
respond to query (1), then an interesting duality emerges:
for p = 1, 2 or oo, using L£? neighborhoods, where ¢ =
o0, 2 and 1 respectively, results in the algorithm con-
verging to the unique social welfare optimizing solution.
Whether such a result holds for general (p,q), where g
is the dual norm to p (i.e.,, 1/p + 1/q = 1), is an open
question. However, we show that such a general result
holds if, in response to query (1), the voter instead moves

'The £7 norm ||z||q £ />, |zi]?. ¢ =1, 2 and oo neighbor-
hoods correspond to bounds on the sum of absolute values
of the changes, the sum of the square of the changes, and
the maximum change, respectively.

the current solution in the direction of the gradient of her
utility function to the neighborhood boundary.

e Convergence for other utilities: Next, we show con-
vergence to a unique solution in two cases: (a) when the
voter cost can be expressed as a weighted sum of £? dis-
tances over sub-spaces of the solution space, under £?
neighborhoods — in which case the solution is also Pareto
efficient, and (b) when the voter utility can be additively
decomposed across dimensions, under £ neighborhoods
— in which case the algorithm converges to the median of
the ideal solutions of the voters on each dimension.

We then build a platform and run the first large-scale ex-
periment in voting in multi-dimensional continuous spaces,
in a budget allocation setting. We test three variants of ILV:
with £!, £2 and £> neighborhoods. Our main findings are
as follows:

e We observe that the algorithm with £°° neighborhoods is
the only alternative that satisfies the first-order concern
for real-world deployability: consistent convergence to a
unique stable solution. Both £' and £? neighborhoods
result in convergence to multiple solutions.

e The consistent convergence under £>° neighborhoods in
experiments strongly suggests the decomposability of voter
utilities for the budgeting problem. Motivated by this
observation, we propose a general class of decomposable
utility functions to model user behavior for the budget
allocation setting.

e We make several qualitative observations about user be-
havior and preferences. For instance, voters have large in-
difference regions in their utilities, with potentially larger
regions in dimensions about which they care about less.
Further, we show that asking voters for their ideal budget
allocations and how much they care about a given item
is fraught with UI biases and should be carefully designed.

We remark that an additional attractive feature of such
a local update algorithm in a large population setting is
that strategic behavior from the voters is less of a concern
since the effect of a single voter’s decision on the outcome is
negligible.

The structure of the paper is as follows. After discussing
related work in Section 2, we present convergence results
for our algorithm under different settings in Section 3. In
Section 4, we introduce the budget allocation problem and
describe our experimental platform. In Section 5, we analyze
the experiment results, and then we conclude the paper in
Section 6. The proofs of our results have been omitted due
to space constraints and are available in an online appendix.

2. RELATED WORK

Stochastic Gradient Descent: As discussed in the
introduction, we draw motivation from SGD and SSGD,
and our main proof technique is mapping our algorithm to
SSGD. Beginning with the original stochastic approxima-
tion algorithm by Robbins and Monro [20], a rich literature
surrounds SSGD, for instance see [2, 17, 12].

Iterative local voting: A version of our algorithm,
with £? norm neighborhoods, has been proposed several

. Vo (ze—1)
times [10, 5, 1]. Instead of query 1, the movement Tt
is elicited to try to compute the fixed point E [%] =



Utility Function (p) | Neighborhood (q)
2 2
1 00
00 1

Table 1: Summary of results of Theorem 3.1. If the voter
utilities are L£P, then restricting local movements to a L¢
norm ball leads to convergence to the societal optimum in
the above cases.

0. Similarly, a single step of our algorithm with £2 neigh-
borhoods is similar to quadratic voting [13, 24]. For further
information on the relation between our work and these con-
cepts, see Remark 3.1. To the best of our knowledge, no
work studies such an algorithm with other neighborhoods
and under ordinal feedback, or implements such an algo-
rithm.

Optimization without gradients: Because we are con-
cerned with optimization without access to voters’ utility
functions or its gradients, this work seems to be in the same
vein as recent literature on convex optimization without gra-
dients — such as with comparisons or with pairs of function
evaluations [7, 11, 6]. However, in the social choice or hu-
man optimization setting, we cannot estimate each voter’s
gradients exactly rather than up to a scaling term, and so
cannot directly utilize strategies from such work.

3. CONVERGENCE ANALYSIS

In this section, we discuss the convergence properties of
ILV under various utility and behavior models. For the rest
of the technical analysis, we make the following assumptions
on our model.

1. The solution space X C RM is non-empty, bounded,
closed, and convex.

2. Each voter v has a unique ideal solution z, € X.

3. The ideal point z, of each voter is drawn independently
from a probability distribution with a bounded density
function hx.

Furthermore, “convergence” of ILV refers to the convergence

of the sequence of random variables {z;};>1 to some z € X

with probability 1, assuming that the algorithm is allowed

to run indefinitely (this implies the termination of the algo-
rithm with probability 1 for any N(t) <t —1 and ¢ > 0 as

t — o0). Under this model, for a solution x € X, the so-

cietal utility is given by E,[fv(x)]. and the societal welfare

optimizing solution is any ™ € arg maxzex Eq[fv(2)].

3.1 Spatial Utilities

Here we consider spatial utility functions, where the util-
ities of each voters can be expressed in the form of some
kind of spatial distance from their ideal solutions. First, we
consider the following kind of utilities.

Definition 3.1. £? normed utilities: The voter utility
function is LP normed if f,(x) = —||x — xo||p, Vz € X.

Under such utilities, for p = 1, 2 and oo, restricting vot-
ers to a ball in the dual norm leads to convergence to the
societal optimum. Our main result is the following theorem,
summarized in Table 1:

Theorem 3.1. Suppose that the voter utilities are LP normed,

and voters correctly respond to query (1). Then, ILV with

LY neighborhoods converges to the societal optimal point w.p.
L when (p,q) = (2,2), (1,00), or (00,1).

A sketch of the proof is as follows. For the given pairs
(p, q), we show that, except in certain ‘bad’ regions, the
update rule zi11 = argming[||z — zo, ||p : |z — z¢llqg < 74
is equivalent to the stochastic subgradient descent (SSGD)
update rule z441 = @t — 1:ge, for some g € OB, [||x — xo, || p],
and that the probability of being in a ‘bad’ region decreases
fast enough as a function of r,. We then leverage a standard
SSGD convergence result to finish the proof. One natural
question is whether the result extends holds for general dual
norms p, g, where 1/p+1/q = 1. Unfortunately, the update
rule is not equivalent to SSGD in general, and we leave the
convergence to the societal optimum for general (p, ¢) as an
open question.

However, the result does hold for general dual norms (p, q)
if one assumes an alternative behavior model.

Theorem 3.2. Suppose that the voter utilities are LP normed,
and in response to query (1), each voter moves in the di-

rection of the gradient of her utility function (i.e. in the

direction of greatest increase of utility) to the boundary of

the given neighborhood. Then, ILV with L? neighborhoods

converges to the societal optimal point w.p. 1 for any p > 0

and g > 0 such that 1/p+1/q = 1.

This behavior model is reasonable when a voter vaguely
knows how she would like to change a decision but does
not know her exact ideal value within the neighborhood.
The proof uses the following property of £LP normed utilities:
the £ norm of the gradient of these utilities at any point
other than the ideal point is constant. This fact, along with
the voter behavior model, allows the algorithm to implicitly
capture the magnitude of the gradient of the utilities, and
thus a direct mapping to SSGD is obtained. Note that the
above result holds even if we assume that a voter moves to
her ideal point z, in case it falls within the neighborhood
(since, as explained earlier, the probability of sampling such
a voter decreases fast enough).

Next, we introduce another general class of utility func-
tions, which we call Weighted Fuclidean utilities, for which
one can obtain convergence to a unique solution.

Definition 3.2. Weighted Euclidean utilities: Let the
solution space X be decomposable into K different sub-spaces,
sothatx = (z',...,2%) for eachx € X (where Y1, dim(i) =
M ). Suppose that the utility function of the voter v is

K
folz) = =Y willa® — |-
k=1

where w, is a voter-specific weight vector, then the func-
tion is a Weighted Fuclidean utility function. We further
assume that w, € W C Rf and ., are independently drawn
for each voter v from a joint probability distribution with a
bounded and measurable density function, with W nonempty,
bounded, closed, and convex.

This utility function can be interpreted as follows: the

decision-making problem is decomposable into K sub-problems,

and each voter v has an ideal point z* and a weight w¥ for
each sub-problem k, so that the voter’s disutility for a solu-
tion is the weighted sum of the Euclidean distances to the
ideal points in each sub-problems. In this case, we show the
following;:



Theorem 3.3. Suppose that the voter utilities are Weighted
Euclidean, and voters correctly respond to query (1). Then,
ILV with L£? neighborhoods converges with probability 1 to
the unique societal optimal point in the world where the voter
utilities are f,(z) = — Zszl wk|z® — zF||2/||wo 2.

This means that the algorithm converges to the societal
optimal solution in the world where the voter utilities are
scaled down by ||wy||2. Note that this implies that the re-
sulting solution is Pareto efficient. The intuition for the
result is as follows: as long as the neighborhood does not
contain the ideal point of the sampled voter, the correct re-
sponse to query (1) under weighted Euclidean preferences is
to move the solution in the direction of the ideal point to the
neighborhood boundary, which, as it turns out, is the same
as the direction of the gradient. Thus with radius r¢, the

%. With weighted Euclidean

utilities, ||V fu(z¢)||2 = ||wo|l2 everywhere. Hence, it is as
if the algorithm is obtaining the gradient of the function

fo/llwo|l2.

Remark 3.1. We conjecture that under the choice of rv =
1/t, under £L? neighborhoods, and under general concave util-
ities fu, if the realized sequence of solutions {z+} converges

to some x, then it must satisfy> B, [%] =0. Such a

point has been called Directional Equilibrium (DE) in recent
literature [5]. Several properties of this solution have been
studied (e.g. it is Pareto efficient), starting from [10] to
more recently, [5] and [1]. Computing such a point has been
challenging: these works each have proposed an iterative al-
gorithm similar to ours to compute this point, but except for
special cases (see [1]), convergence is an open question.

effective movement is

3.2 Decomposable utilities

Next consider the general class of decomposable utilities,
motivated by the fact that the algorithm with £°° neighbor-
hoods is of special interest since they are easy for humans to
understand: one can change each dimension up to a certain
amount, independent of the others.

Definition 3.3. Decomposable utilities: A voter utility
function is decomposable if there erists concave functions f;
fori € {1...M} such that f,(z) = M, fi(z?).

If the utility functions for the voters are decomposable,
then we can show that our algorithm under £°° neighbor-
hoods converges to the vector of medians of voters’ ideal
points on each dimension. Suppose that h% is the marginal
density function of the random variable z%, and let Z* be
the unique median of .

Theorem 3.4. Suppose that the voter utilities are decom-
posable, and voters correctly respond to query (1). Then,
ILV with £ neighborhoods converges with probability 1 to
the vector of medians T.

2Note that as 7; — 0, f,(y) can be linearly approximated
by the first term of the Taylor series expansion around x,
for y € {s:||s — z||2 < r¢}. Then, to maximize f,(y) in the
region, if the region does not contain z, voter v chooses y*

* Vf(x . .
sty —r =~ rtm, i.e., the voter moves the solution

approximately in the direction of her gradient to the neigh-
borhood boundary. A similar observation is central to the
idea of Quadratic Voting in discrete solution spaces [13, 24]

Although simply eliciting each agent’s optimal solution
and computing the vector of median allocations on each di-
mension is a viable approach in the case of decomposable
utilities, deciding an optimal allocation across multiple di-
mensions is a more challenging cognitive task than deciding
whether one wants to increase or decrease each dimension
relative to the current solution (see Section 5.2.3 for exper-
imental evidence). In fact, in this case, the algorithm can
be run separately for each dimension, so that each voter ex-
presses her preferences on only one dimension, drastically re-
ducing the cognitive burden of decision-making on the voter,
especially in high dimensional settings like budgeting.

4. EXPERIMENTS WITH BUDGETS

We built a voting platform and ran a large scale experi-
ment, along with several extensive pilots, on Amazon Me-
chanical Turk® (MTurk), with over 4,000 workers partici-
pating in total. The design challenges we faced and voter
feedback we received provide important lessons for deploying
such systems in a real-world setting.

First we present a theoretical model for our setting. We
consider a budget allocation problem on M items. One pos-
sibility is to define X as the space of feasible allocations,
such as those below a spending limit, and to run the algo-
rithm as defined, with projections. However, in such cases,
it may be difficult to theorize about how voters behave; e.g.
if voters knew their answers would be projected onto a bud-
get balanced set, they may respond differently. Rather, we
consider an unconstrained budget allocation problem, one in
which a voter’s utility includes a term for the budget deficit.
Let EC{1...M}, T={1... M}\E& be the expenditure and
income items, respectively. Then the general budget utility
function is fu(x) = gu(x) —d(}.ce ¥°—> ;7 "), where d is
an increasing function on the deficit. In general, nothing is
known about convergence of Algorithm 1 with such utilities,
as the deficit term may add complex dependencies between
the dimensions. However, if the voter utility functions are
decomposable across the dimensions and £°° neighborhoods
used, then the results of Section 3.2 can be applied. We pro-
pose the following class of decomposable utility functions for
the budgeting problem, achieved by assuming that the cost
for the deficit is linear, and call the class “decomposable with
a linear cost for deficit,” or DLCD.

Definition 4.1. Let f,(x) be DLCD if

@)= 3" ™ - (zxe z) |

ec& €T
where f,* is a concave function for each m and w, € Ry.

In the experiments discussed below in the budget set-
ting, ILV consistently and robustly converges with £°° norm
neighborhoods. Further, it approximately converges to the
medians of the optimal solutions (which are elicited inde-
pendently), as theorized in Section 3.2. Such a convergence
pattern suggests the validity of the DLCD model, though
we do not formally analyze this claim.

4.1 Experimental Setup

Though we make no normative claims about running a
vote in this setting in reality, we asked voters to vote on the

Shttps://www.mturk. com; Turkprime  (https://www.
turkprime.com) was used to manage postings and payment.



U.S. Federal Budget across several of its major categories:
National Defense; Healthcare; Transportation, Science, &
Education; and Individual Income Tax*. This setting was
deemed the most likely to be meaningful to the largest cross-
section of workers and to yield a diversity of opinion, and
we consider budgets a prime application area in general.
The specific categories were chosen because they make up a
substantial portion of the budget and are among the most-
discussed items in American politics.

One major concern was that with no way to validate that a
worker actually performed the task (since no or little move-
ment is a valid response if the solution presented to the
worker was near her ideal budget), we may not receive high-
quality responses. This issue is especially important in our
setting because a worker’s actions influence the initial solu-
tion future workers see. We thus restricted the experiment
to workers with a high approval rate and who have com-
pleted over 500 experiments. Further, we offered a bonus to
workers for justifying their movements well, and more than
80% of workers qualified, suggesting that we also received
high-quality movements. The experiment was restricted to
Americans to best ensure familiarity with the setting.

4.2 Experimental Parameters

Our large scale experiment included 2,000 workers® and
ran over a week in real-time. We tested the £',£2%, and
L°%° mechanisms, along with a “full elicitation” mechanism
in which workers reported their ideal values for each item,
and a “weight” in [0, 10] indicating how much they cared
about the actual spending in that item being close to their
stated value. To test repeatability of convergence, each of
the constrained mechanisms had three copies, given to three
separate groups of people. Each group consisted of two sets
with different starting points, with each worker being asked
to vote in each set in her assigned group. We used a total of
three different sets of starting points across the three groups,
such that each group shared one set of starting points with
each of the other two groups. This setup allowed testing for
repeatability across different starting points and observing
each worker’s behavior at two points. Workers in one group
in each constrained mechanism type were also asked to do
the full elicitation after submitting their movements for the
constrained mechanism, and such workers were paid extra.
These copies, along with the full elicitation, resulted in 10
different mechanism instances to which workers could be
allocated, each completed by about 200 workers.

To update the current point, we waited for 10 submissions
and then updated the point to their average. This averaging
explains the step-like structure in the convergence plots in
the next section. The radius was decreased approximately
every 60 submissions, i.e. r; = H;ig(ﬂ' The averaging and
slow radius decay rate were implemented in response to ob-
serving in the pilots that the initial few voters with a large
radius had a disproportionately high impact, as there were
not enough subsequent voters to recover from large initial
movements away from an eventual fixed point (though in
theory this would not be a problem given enough voters).

4The US Federal Government cannot just decide to set tax
receipts to some value. We asked workers to assume tax
rates would be increased/decreased at proportional rates in
hopes of increasing/decreasing receipts.

SParticipants of any of the pilots were excluded.

4.3 User Experience

As workers arrived, they were randomly assigned to a
mechanism instance. They had a roughly equal probabil-
ity of being assigned to each instance, with slight deviations
in case an instance was “busy” (another user was currently
doing the potential 10*" submission before an update of the
instance’s current point) and to keep the number of work-
ers in each instance balanced. Upon starting, workers were
shown mechanism instructions. We showed the instructions
on a separate page so as to be able to separately measure the
time it takes to read & understand a given mechanism, and
the time it takes to do it, but we repeated the instructions
on the actual mechanism page as well for reference.

On the mechanism page, workers were shown the current
allocation for each of the two sets in their group. They could
then move, through sliders, to their favorite allocation under
the movement constraint. We explained the movement con-
straints in text and also automatically calculated for them
the number of “credits” their current movements were using,
and how many they had left. Next to each budget item,
we displayed the percentage difference of the current value
from the 2016 baseline federal budget®, providing important
context to workers. We also provided short descriptions of
what goes into each budget item as scroll-over text. The re-
sulting budget deficit and its percent change were displayed
above the sliders”. For the full elicitation mechanism, work-
ers were asked to move the sliders to their favorite points
with no constraints (the sliders went from $0 to twice the
2016 value in that category), and then were asked for their
“weights” on each budget item, including the deficit. Fig-
ure 1 shows part of the interface for the £2 mechanism, not
including instructions, with similar interfaces for the other
constrained mechanisms. The full elicitation mechanism ad-
ditionally included sliders for items’ weights. On the final
page, workers were asked for feedback on the experiment®.

S. RESULTS AND ANALYSIS

We now discuss the results of our experiments.

5.1 Convergence

One basic test of a voting mechanism is that whether it
produces a consistent and unique solution, given a voting
population and their behaviors. If an election process can
produce multiple, distinct solutions purely by chance, oppo-
nents can assail any particular solution as a fluke and call
for a re-vote. The question of whether the mechanisms con-
sistently converge to the same point thus must be answered
before analyzing properties of the equilibrium point itself.
In this section, we show that the £2 and £' algorithms do

5The 2016 budget estimate was obtained from
http://federal-budget.insidegov.com/1/119/
2016-Estimate and  http://atlas.newamerica.org/
education-federal-budget

" Assuming other budget items are held constant.

8We plan on posting the data, including feedback. In gen-
eral, workers seemed to like the experiment, though some
complained about the constraints, and others were gener-
ally confused. Some expressed excitement about being asked
their views in an innovative manner and suggested that ev-
eryone could benefit from participating as, at the least, a
thought exercise. The feedback and explanations provided
by workers were much longer than we anticipated, and they
convince us of the procedure’s civic engagement benefits.



Set 1

Current Credit Allocation

187

Credits left: 19.8

Reset All Sliders

The deficit will be $746.37B. This is a 21.16% increase from the 2016 budget deficit.

National Defense @

-19.76%

Medicare & Health @

+17.94%

Education, Science, Environment, & Transportation @
+8.95%

Individual Income Tax @

-2.05%

434.08

1184.2

330.12

$1430 03 8

Set2

Figure 1: UI Screenshot for 1 set of the £2 Mechanism

not appear to converge to a unique point, while the £
mechanism converges to a unique point across several initial
points and with distinct worker populations.

The solutions after each voter for each set of starting
points, across the 3 separate groups of people for each con-
strained mechanism are shown in Figure 2. Each plot shows
all the trajectories with the given mechanism type, along
with the median of the ideal points elicited from the separate
voters who only performed the full elicitation mechanism.
Observe that the three mechanisms have remarkably differ-
ent convergence patterns. In the £! mechanism, not even
the sets done by the same group of voters (in the same or-
der) converged in all cases. In some cases, they converged for
some budget items but then diverged again. In the £2 mech-
anism, sets done by the same voters starting from separate
starting points appear to converge, but the three groups of
voters seem to have settled at two separate equilibria in each
dimension. Under the £°° neighborhood, on the other hand,
all six trajectories, performed by three groups of people,
converged to the same allocation very quickly and remained
together throughout the course of the experiment. Further-
more, the final points, in all dimensions except Healthcare,
correspond almost exactly to the median of values elicited
from the separate set of voters who did only the full elicita-
tion mechanism. For Healthcare, the discrepancy could re-
sult from biases in full elicitation (see Section 5.2.4), though
we make no definitive claims. These patterns shed initial
insight on how the use of £? constraints may differ from
theory in prior literature and offer justification for the use
of DLCD utility models and the £°° constrained mechanism.

One natural question is whether these mechanisms really
have converged, or whether if we let the experiment con-
tinue, the results would change. This question is especially
salient for the £2 trajectories, where trajectories within a
group of people converged to the same point, but trajecto-
ries between groups did not. Such a pattern could suggest
that our results are a consequence of the radius decreasing
too quickly over time, or that the groups had, by chance,
different distributions of voters which would have been cor-
rected with more voters. However, we argue that such does
not seem to be the case, and that the mechanism truly found
different equilibria. We can test whether the final points
for each trajectory are stable by checking the net move-

ment in a window, normalized by each voter’s radius, i.e.
F >oey_n ==L, for some N. If voters in a window are
canceling each other’s movements, then this value goes to 0,
and the algorithm would be stable even if the radius does not
decrease. The notion is thus robust to apparent convergence
just due to decreasing radii. The net movement normalized
in a sliding window of 30 voters, for each dimension and
mechanism, is shown in Figure 3. It seems to die down for
almost all mechanisms and budget items, except for a few
cases which do not change the result. We conclude it likely
that the mechanisms have settled into equilibria which are
unlikely to change given more voters.

5.2 Understanding Voter Behavior

A mechanism’s practical impact depends on more than
whether it consistently converges, however. We now turn our
attention to understanding how voters behave under each
mechanism and whether we can learn anything about their
utility functions from that behavior. We find that voters
understood the mechanisms but that their behaviors suggest
large indifference regions, and that the full elicitation scheme
is susceptible to biases that can skew the results.

5.2.1 Voter Understanding of Mechanisms

One important question is whether, given very little in-
struction on how to behave, voters understand the mech-
anisms and act approximately optimally under their (un-
known to us) utility function. This section shows that the
voters behaved as expected for each mechanism.

Regardless of the exact form of the utility function, one
would expect that, in the £ constrained mechanism, a voter
would use most of her movement credits in the dimension
about which she cares most. In fact, in either the Weighted
Euclidean preferences case (and with ‘sub-space’ being a sin-
gle dimension) or with a small radius, a voter would move
only on one dimension. With £? constraints, one would
expect a voter to apportion her movement more equally be-
cause she pays an increasing marginal cost to move more in
one dimension (people were explicitly informed of this conse-
quence in the instructions). Under the Weighted Euclidean
preferences model, a voter would move in each dimension
proportional to her weight in that dimension. Finally, with
L°° constraints, a voter would move, in all dimensions in



—— £' Group1,Set0 —— L' Group 2, Set 0 £ Group 3, Set 0 - Ideal Pts. median
—— £ Group1,Setl —— £ Group2,Setl —— L' Group3,Set1
Defense

1300 Healthcare

Transportation, Science, & Education

$ (Billions)

1800 Income Tax

0 50 100 150 200
Iteration

(a) £*

—— £2Group1,8et0 —— L2 Group 2, Set 0 L2 Group 3, Set 0 - Ideal Pts. median
—— £%Group1,Setl —— L2 Group2,Setl —— L2 Group 3, Set1
Defense

500

700

600 \___\———1

00 T e —

i —

200

1300 Healthcare

1200

$ (Billions)
N

300
20

100
1800 Income Tax
1700
1600
1500, T e R ————
1400—<
1300
1200 -

Deficit

100
Iteration

(b) £

—— L™ Group 1, Set 0 —— L Group 2, Set 0 £ Group 3, Set 0 +  Ideal Pts. median
—— L™ Group 1, Set 1 —— L Group 2, Set 1 —— L Group 3, Set 1

200. Defense

700

600

400

300 e

200

1300 Healthcare

1200

1
1000-

Transportation, Science, & Education

“» 700
a4 7
£
g
- Income Tax
-
Deficit
100 150 200
Iteration
e}
(c) £

Figure 2: Solution over time for each mechanism type

which she is not indifferent, to her favorite point in the
neighborhood for that dimension (most likely an endpoint),
independently of other dimensions. One would thus expect

a more equal distribution of movements.
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Figure 3: Net normalized movement in window of N = 30

Figure 4 shows the average movement (as a fraction of
the voter’s total movement) by each voter for the dimension
she moved most, second, third, and fourth, respectively, for
each constrained mechanism. We reserve discussion of the
full elicitation weights for Section 5.2.4. The movement pat-
terns indicate that voters understood the constraints and



moved accordingly — with more equal movements across di-
mensions in £2 than in £, and more equal movements still
in £7. We dig deeper into user utility functions next, but
can conclude that, regardless of their exact utility functions,
voters responded to the constraint sets appropriately.

B Full Elicitation Weights ~©mm ! mmm .2 @ L

Movement as fraction of total movement

First Second Third Fourth
Ranking of dimensions by movement for each voter

Figure 4: Average movement in dimension over total move-
ment for each voter, with dimensions sorted

5.2.2 Large Indifference Regions

Although it is difficult to extract a voter’s full utility func-
tion from their movements, the separability of dimensions
(except through the deficit term) under the £ constraint
allows us to test whether voters behave according to some
given utility model in that dimension, without worrying
about the dependency on other dimensions.

Figure 5 shows, for the £°° mechanism, a histogram of
the movement on a dimension as a fraction of the radius
(we find no difference between dimensions here). Note that
a large percentage of voters moved very little on a dimen-
sion, even in cases where their ideal point in that dimension
was far away (defined as being unreachable under the cur-
rent radius). This result cannot be explained away by work-
ers clicking through without performing the task: almost
all workers moved at least one dimension, and, given that
a worker moved in a given dimension, it would not explain
smaller movements being more common than larger move-
ments. That this pattern occurs in the £°° mechanism is
key — if a voter feels any marginal disutility in a dimension,
she can move the allocation without paying a cost of more
limited movement in other dimensions. We conclude that,
though voters may share a single ideal point for a dimension
when asked for it, they are in fact relatively indifferent over
a potentially large region — and their actions reflect so.

Furthermore, this lack of movement is correlated with a
voter’s weights when she was also asked to do the full elici-
tation mechanism. Conditioned on being far from her ideal
point, when a voter ranked an item as one of her top two
important items (not counting the deficit term), she moved
an average of 74% of her allowed movement in that dimen-
sion; when she ranked an item as one of least two important
items, she moved an average of 61%, and the difference is
significant through a two sample t-test with p = .013. We
find no significant difference in movement within the top
two ranked items or within the bottom two ranked items.
This connection suggests that one can determine which di-
mensions a voter cares about by observing these indifference
regions and movements, even in the £°° constrained case.

Furthermore, we note that while such indifference regions
conflict with the utility models under which the £2 con-
straint mechanism converges in theory, it fits within the
DLCD framework introduced in Section 4.
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Figure 5: Fraction of possible movement in each dimension
in £, conditioned on distance to ideal pt. The ‘All’ condi-
tion contains data from all three £ instances, whereas the
others only from the instance that also did full elicitation.

5.2.3 Mechanism Time

In this section, we note one potential problem with schemes
that explicitly elicit voter’s optimal solutions — for instance,
to find the component-wise median — as compared to the
constrained elicitation used in ILV: it seems to be cogni-
tively difficult for voters. In Figure 6, the median time per
page, aggregated across each mechanism type, is shown. The
“Mechanism” time includes a single user completing both
sets in each of the constrained mechanism types, but not
does include the time to also do the extra full elicitation task
in cases where a voter was asked to do both a constrained
mechanism and the full elicitation. The full elicitation bars
include only voters who did only the full elicitation mecha-
nism, and so the bars are completely independent. On aver-
age, it took longer to do the full elicitation mechanism than
it took to do two sets of any of the constrained mechanisms,
suggesting some level of cognitive difficulty in articulating
one’s ideal points and weights on each dimension — even
though understanding what the instructions are asking was
simple, as demonstrated by the shorter instruction reading
time for the full elicitation mechanism. The £°° mechanism
took the least time to both understand and do, while the £
mechanism took the longest to do, among the constrained
mechanisms. This result is intuitive: it is easier to move
each budget item independently when the maximum move-
ment is bounded than it is to move the items when the sum
or the sum of the changes squared is bounded (even when
these values are calculated for the voter). In practice, with
potentially tens of items on which constituents are voting,
these relative time differences would grow even larger, poten-
tially rendering full elicitation or £2 constraints unpalatable
to voters.

5.2.4 Ul Biases

We now turn our attention to the question of how workers
behaved under the full elicitation mechanism and highlight
some potential problems that may affect results in real de-
ployments. Figures 7 and 8 show the histogram of values



and weights, respectively, elicited from all workers who did
the full elicitation mechanism. Note that in the histogram
of values, in every dimension, the largest peak is at the
slider’s default value (at the 2016 estimated budget), and
the histograms seem to undergo a phase shift at that peak,
suggesting that voters are strongly anchored at the slider’s
starting value. This anchoring could systematically bias the
medians of the elicited values. A similar effect occurs in
eliciting voter weights on each dimension. Observe that in
Figure 4 the full elicitation weights appear far more bal-
anced than the weights implied by any of the mechanisms
(for the full elicitation mechanism, the plot shows the av-
erage weight over the sum of the weights for each voter).
From the histogram of full elicitation weights, however, we
see that this result is a consequence of voters rarely moving
a dimension’s weight down from the default of 5, but rather
moving others up. This pattern demonstrates the difficulty
in eliciting utilities from voters directly; even asking vot-
ers how much they care about a particular budget item is
extremely susceptible to the user interface design. Though
such anchoring to the slider default undoubtedly also occurs
in the £%° constrained mechanism, it would only slow the
rate of convergence, assuming the anchoring affects different
voters similarly. These biases can potentially be overcome
by changing the UI design, such as by providing no default
value through sliders. Such design choices must be carefully
thought through before deploying real systems, as they can
have serious consequences.
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6. CONCLUSION

We evaluate a natural class of iterative algorithms for
collective decision-making in continuous spaces that makes
practically reasonable assumptions on the nature of human
feedback. We first introduce several cases in which the algo-
rithm converges to the societal optimum point, and others
in which the algorithm converges to other interesting solu-
tions. We then experimentally test such algorithms in the
first work to deploy such a scheme. Our findings are signif-
icant: even with theoretical backing, two variants fail the
basic test of being able to give a consistent decision across
multiple trials with the same set of voters. On the other
hand, a variant that uses £°° neighborhoods consistently
leads to convergence to the same solution, which has attrac-
tive properties under a likely model for voter preferences
suggested by this convergence. We also make certain ob-
servations about other properties of user preferences — most

Defense

140
120
100

S0

o0

1

G

Healt]are

250 Transportation, Science, & Education
200
100

50

o
200 Income Tax
150
100

50

[

160 Deficit
i ni I
120
16

50

o

it

bt

(

—500 0 500 1000 1500 2000 2500
Full Elicitation Value (Billions of $)

Number of Voters

Figure 7: Histogram of values from all full elicitation data.
The red vertical lines indicate each slider’s default value (at
the 2016 estimated budget).
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saliently, that they have large indifferences on dimensions
about which they care less.

In general, this work takes a significant step within the
broad research agenda of understanding the fundamental
limitations on the quality of societal outcomes posed by the
constraints of human feedback, and in designing innovative
mechanisms that leverage this feedback optimally to obtain
the best achievable outcomes.
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