


Algorithm 1: Iterative Local Voting (ILV)

Inputs: Initial solution x0 ∈ X , tolerance ε > 0, a
function N(t) that maps time t to an integer in
[0, t− 1], initial radius r0 > 0, termination time T .
Output: Solution x.

• For t ≥ 1, sample a voter vt ∈ V at random from the
population; set rt = r0/t and elicit

xt = [argmaxx∈{s:‖s−xt−1‖q≤rt}
fvt(x)]X , (1)

i.e. ask the voter to move to her favorite point within
the constraints, and [·]X is a projection onto space X .

• Stop when either t = T , in which case return xT , or
when maxl,m∈{N(t),...,t} |xl − xm| ≤ ε, in which case
return x = xt.

ing (ILV), voters are sequentially sampled and asked to mod-
ify a candidate solution to their favorite point within some
local neighborhood, until a stable solution is obtained (if at
all). One has flexibility in deciding how these local neighbor-
hoods are defined – in this paper we focus on neighborhoods
that are balls in the Lq norm, and in particular on the cases
where q = 1, 2 or ∞1.

More formally, consider a M -dimensional societal decision
problem in X ⊆ R

M and a population of voters V, where
each voter v ∈ V has bounded utility fv(x) ∈ R, ∀x ∈ X .
Then we consider the class of algorithms described in Algo-
rithm 1.

ILV is directly inspired by the stochastic approximation
approach to solve optimization problems [20], especially stochas-
tic gradient descent (SGD) and stochastic subgradient de-
scent (SSGD). The idea is that if (a) voter preferences are
drawn from some probability distribution and (b) the re-
sponse of a voter to the query (1) moves the solution ap-
proximately in the direction of her utility gradient, then this
procedure almost implements stochastic gradient descent for
minimizing negative expected utility.

The caveat is that although the procedure can potentially
obtain the direction of the gradient of the voter utilities,
it cannot obtain any information about its magnitude since
the movement norm is chosen by the procedure itself. How-
ever, we show that for certain plausible utility and voter
response models, the algorithm does indeed converge to a
unique point with desirable properties. Our main theoreti-
cal contributions are as follows:

• Convergence for Lp normed utilities: We show that
if the agents cost functions can be expressed as the Lp

distance from their ideal solution, and if agents correctly
respond to query (1), then an interesting duality emerges:
for p = 1, 2 or ∞, using Lq neighborhoods, where q =
∞, 2 and 1 respectively, results in the algorithm con-
verging to the unique social welfare optimizing solution.
Whether such a result holds for general (p, q), where q
is the dual norm to p (i.e., 1/p + 1/q = 1), is an open
question. However, we show that such a general result
holds if, in response to query (1), the voter instead moves

1The Lq norm ‖x‖q , q
√
∑

i |xi|q. q = 1, 2 and ∞ neighbor-
hoods correspond to bounds on the sum of absolute values
of the changes, the sum of the square of the changes, and
the maximum change, respectively.

the current solution in the direction of the gradient of her
utility function to the neighborhood boundary.

• Convergence for other utilities: Next, we show con-
vergence to a unique solution in two cases: (a) when the
voter cost can be expressed as a weighted sum of L2 dis-
tances over sub-spaces of the solution space, under L2

neighborhoods – in which case the solution is also Pareto
efficient, and (b) when the voter utility can be additively
decomposed across dimensions, under L∞ neighborhoods
– in which case the algorithm converges to the median of
the ideal solutions of the voters on each dimension.

We then build a platform and run the first large-scale ex-
periment in voting in multi-dimensional continuous spaces,
in a budget allocation setting. We test three variants of ILV:
with L1, L2 and L∞ neighborhoods. Our main findings are
as follows:

• We observe that the algorithm with L∞ neighborhoods is
the only alternative that satisfies the first-order concern
for real-world deployability: consistent convergence to a
unique stable solution. Both L1 and L2 neighborhoods
result in convergence to multiple solutions.

• The consistent convergence under L∞ neighborhoods in
experiments strongly suggests the decomposability of voter
utilities for the budgeting problem. Motivated by this
observation, we propose a general class of decomposable
utility functions to model user behavior for the budget
allocation setting.

• We make several qualitative observations about user be-
havior and preferences. For instance, voters have large in-
difference regions in their utilities, with potentially larger
regions in dimensions about which they care about less.
Further, we show that asking voters for their ideal budget
allocations and how much they care about a given item
is fraught with UI biases and should be carefully designed.

We remark that an additional attractive feature of such
a local update algorithm in a large population setting is
that strategic behavior from the voters is less of a concern
since the effect of a single voter’s decision on the outcome is
negligible.

The structure of the paper is as follows. After discussing
related work in Section 2, we present convergence results
for our algorithm under different settings in Section 3. In
Section 4, we introduce the budget allocation problem and
describe our experimental platform. In Section 5, we analyze
the experiment results, and then we conclude the paper in
Section 6. The proofs of our results have been omitted due
to space constraints and are available in an online appendix.

2. RELATED WORK
Stochastic Gradient Descent: As discussed in the

introduction, we draw motivation from SGD and SSGD,
and our main proof technique is mapping our algorithm to
SSGD. Beginning with the original stochastic approxima-
tion algorithm by Robbins and Monro [20], a rich literature
surrounds SSGD, for instance see [2, 17, 12].

Iterative local voting: A version of our algorithm,
with L2 norm neighborhoods, has been proposed several

times [10, 5, 1]. Instead of query 1, the movement
∇fv(xt−1)

‖∇fv(xt−1)‖2

is elicited to try to compute the fixed point E
[

∇fv(x)
‖∇fv(x)‖2

]

=



Utility Function (p) Neighborhood (q)
2 2
1 ∞
∞ 1

Table 1: Summary of results of Theorem 3.1. If the voter
utilities are Lp, then restricting local movements to a Lq

norm ball leads to convergence to the societal optimum in
the above cases.

0. Similarly, a single step of our algorithm with L2 neigh-
borhoods is similar to quadratic voting [13, 24]. For further
information on the relation between our work and these con-
cepts, see Remark 3.1. To the best of our knowledge, no
work studies such an algorithm with other neighborhoods
and under ordinal feedback, or implements such an algo-
rithm.

Optimization without gradients: Because we are con-
cerned with optimization without access to voters’ utility
functions or its gradients, this work seems to be in the same
vein as recent literature on convex optimization without gra-
dients – such as with comparisons or with pairs of function
evaluations [7, 11, 6]. However, in the social choice or hu-
man optimization setting, we cannot estimate each voter’s
gradients exactly rather than up to a scaling term, and so
cannot directly utilize strategies from such work.

3. CONVERGENCE ANALYSIS
In this section, we discuss the convergence properties of

ILV under various utility and behavior models. For the rest
of the technical analysis, we make the following assumptions
on our model.
1. The solution space X ⊆ R

M is non-empty, bounded,
closed, and convex.

2. Each voter v has a unique ideal solution xv ∈ X .
3. The ideal point xv of each voter is drawn independently

from a probability distribution with a bounded density
function hX .

Furthermore, “convergence” of ILV refers to the convergence
of the sequence of random variables {xt}t≥1 to some x ∈ X
with probability 1, assuming that the algorithm is allowed
to run indefinitely (this implies the termination of the algo-
rithm with probability 1 for any N(t) ≤ t − 1 and ε > 0 as
t → ∞). Under this model, for a solution x ∈ X , the so-
cietal utility is given by Ev[fv(x)]. and the societal welfare
optimizing solution is any x∗ ∈ argmaxx∈X Ev[fv(x)].

3.1 Spatial Utilities
Here we consider spatial utility functions, where the util-

ities of each voters can be expressed in the form of some
kind of spatial distance from their ideal solutions. First, we
consider the following kind of utilities.

Definition 3.1. Lp normed utilities: The voter utility
function is Lp normed if fv(x) = −‖x− xv‖p, ∀x ∈ X .

Under such utilities, for p = 1, 2 and ∞, restricting vot-
ers to a ball in the dual norm leads to convergence to the
societal optimum. Our main result is the following theorem,
summarized in Table 1:

Theorem 3.1. Suppose that the voter utilities are Lp normed,
and voters correctly respond to query (1). Then, ILV with

Lq neighborhoods converges to the societal optimal point w.p.
1 when (p, q) = (2, 2), (1,∞), or (∞, 1).

A sketch of the proof is as follows. For the given pairs
(p, q), we show that, except in certain ‘bad’ regions, the
update rule xt+1 = argminx[‖x − xvt‖p : ‖x − xt‖q ≤ rt]
is equivalent to the stochastic subgradient descent (SSGD)
update rule xt+1 = xt − rtgt, for some gt ∈ ∂Ev[‖x−xvt‖p],
and that the probability of being in a ‘bad’ region decreases
fast enough as a function of rt. We then leverage a standard
SSGD convergence result to finish the proof. One natural
question is whether the result extends holds for general dual
norms p, q, where 1/p+1/q = 1. Unfortunately, the update
rule is not equivalent to SSGD in general, and we leave the
convergence to the societal optimum for general (p, q) as an
open question.

However, the result does hold for general dual norms (p, q)
if one assumes an alternative behavior model.

Theorem 3.2. Suppose that the voter utilities are Lp normed,
and in response to query (1), each voter moves in the di-
rection of the gradient of her utility function (i.e. in the
direction of greatest increase of utility) to the boundary of
the given neighborhood. Then, ILV with Lq neighborhoods
converges to the societal optimal point w.p. 1 for any p > 0
and q > 0 such that 1/p+ 1/q = 1.

This behavior model is reasonable when a voter vaguely
knows how she would like to change a decision but does
not know her exact ideal value within the neighborhood.
The proof uses the following property of Lp normed utilities:
the Lq norm of the gradient of these utilities at any point
other than the ideal point is constant. This fact, along with
the voter behavior model, allows the algorithm to implicitly
capture the magnitude of the gradient of the utilities, and
thus a direct mapping to SSGD is obtained. Note that the
above result holds even if we assume that a voter moves to
her ideal point xv in case it falls within the neighborhood
(since, as explained earlier, the probability of sampling such
a voter decreases fast enough).

Next, we introduce another general class of utility func-
tions, which we call Weighted Euclidean utilities, for which
one can obtain convergence to a unique solution.

Definition 3.2. Weighted Euclidean utilities: Let the
solution space X be decomposable into K different sub-spaces,
so that x = (x1, . . . , xK) for each x ∈ X (where

∑K
i=1 dim(i) =

M). Suppose that the utility function of the voter v is

fv(x) = −

K
∑

k=1

wk
v‖x

k − xk
v‖2.

where wv is a voter-specific weight vector, then the func-
tion is a Weighted Euclidean utility function. We further
assume that wv ∈ W ⊂ R

K
+ and xv are independently drawn

for each voter v from a joint probability distribution with a
bounded and measurable density function, with W nonempty,
bounded, closed, and convex.

This utility function can be interpreted as follows: the
decision-making problem is decomposable intoK sub-problems,
and each voter v has an ideal point xk

v and a weight wk
v for

each sub-problem k, so that the voter’s disutility for a solu-
tion is the weighted sum of the Euclidean distances to the
ideal points in each sub-problems. In this case, we show the
following:



Theorem 3.3. Suppose that the voter utilities are Weighted
Euclidean, and voters correctly respond to query (1). Then,
ILV with L2 neighborhoods converges with probability 1 to
the unique societal optimal point in the world where the voter
utilities are fv(x) = −

∑K
k=1 w

k
v‖x

k − xk
v‖2/‖wv‖2.

This means that the algorithm converges to the societal
optimal solution in the world where the voter utilities are
scaled down by ‖wv‖2. Note that this implies that the re-
sulting solution is Pareto efficient. The intuition for the
result is as follows: as long as the neighborhood does not
contain the ideal point of the sampled voter, the correct re-
sponse to query (1) under weighted Euclidean preferences is
to move the solution in the direction of the ideal point to the
neighborhood boundary, which, as it turns out, is the same
as the direction of the gradient. Thus with radius rt, the

effective movement is ∇fv(xt)
||∇fv(xt)||2

. With weighted Euclidean

utilities, ‖∇fv(xt)‖2 = ‖wv‖2 everywhere. Hence, it is as
if the algorithm is obtaining the gradient of the function
fv/‖wv‖2.

Remark 3.1. We conjecture that under the choice of rt =
1/t, under L2 neighborhoods, and under general concave util-
ities fv, if the realized sequence of solutions {xt} converges

to some x, then it must satisfy2 Ev

[

∇fv(x)
||∇fv(x)||2

]

= 0. Such a

point has been called Directional Equilibrium (DE) in recent
literature [5]. Several properties of this solution have been
studied (e.g. it is Pareto efficient), starting from [10] to
more recently, [5] and [1]. Computing such a point has been
challenging: these works each have proposed an iterative al-
gorithm similar to ours to compute this point, but except for
special cases (see [1]), convergence is an open question.

3.2 Decomposable utilities
Next consider the general class of decomposable utilities,

motivated by the fact that the algorithm with L∞ neighbor-
hoods is of special interest since they are easy for humans to
understand: one can change each dimension up to a certain
amount, independent of the others.

Definition 3.3. Decomposable utilities: A voter utility
function is decomposable if there exists concave functions fi
for i ∈ {1 . . .M} such that fv(x) =

∑M
i=1 f

i
v(x

i).

If the utility functions for the voters are decomposable,
then we can show that our algorithm under L∞ neighbor-
hoods converges to the vector of medians of voters’ ideal
points on each dimension. Suppose that hi

X is the marginal
density function of the random variable xi

v, and let x̄i be
the unique median of xi

v.

Theorem 3.4. Suppose that the voter utilities are decom-
posable, and voters correctly respond to query (1). Then,
ILV with L∞ neighborhoods converges with probability 1 to
the vector of medians x̄.

2Note that as rt → 0, fv(y) can be linearly approximated
by the first term of the Taylor series expansion around x,
for y ∈ {s : ||s− x||2 ≤ rt}. Then, to maximize fv(y) in the
region, if the region does not contain xv voter v chooses y∗

s.t. y∗ − x ≈ rt
∇f(x)

||∇f(x)||2
, i.e., the voter moves the solution

approximately in the direction of her gradient to the neigh-
borhood boundary. A similar observation is central to the
idea of Quadratic Voting in discrete solution spaces [13, 24]

Although simply eliciting each agent’s optimal solution
and computing the vector of median allocations on each di-
mension is a viable approach in the case of decomposable
utilities, deciding an optimal allocation across multiple di-
mensions is a more challenging cognitive task than deciding
whether one wants to increase or decrease each dimension
relative to the current solution (see Section 5.2.3 for exper-
imental evidence). In fact, in this case, the algorithm can
be run separately for each dimension, so that each voter ex-
presses her preferences on only one dimension, drastically re-
ducing the cognitive burden of decision-making on the voter,
especially in high dimensional settings like budgeting.

4. EXPERIMENTS WITH BUDGETS
We built a voting platform and ran a large scale experi-

ment, along with several extensive pilots, on Amazon Me-
chanical Turk3 (MTurk), with over 4,000 workers partici-
pating in total. The design challenges we faced and voter
feedback we received provide important lessons for deploying
such systems in a real-world setting.

First we present a theoretical model for our setting. We
consider a budget allocation problem on M items. One pos-
sibility is to define X as the space of feasible allocations,
such as those below a spending limit, and to run the algo-
rithm as defined, with projections. However, in such cases,
it may be difficult to theorize about how voters behave; e.g.
if voters knew their answers would be projected onto a bud-
get balanced set, they may respond differently. Rather, we
consider an unconstrained budget allocation problem, one in
which a voter’s utility includes a term for the budget deficit.
Let E ⊆ {1 . . .M}, I = {1 . . .M}\E be the expenditure and
income items, respectively. Then the general budget utility
function is fv(x) = gv(x)−d(

∑

e∈E xe−
∑

i∈I xi), where d is
an increasing function on the deficit. In general, nothing is
known about convergence of Algorithm 1 with such utilities,
as the deficit term may add complex dependencies between
the dimensions. However, if the voter utility functions are
decomposable across the dimensions and L∞ neighborhoods
used, then the results of Section 3.2 can be applied. We pro-
pose the following class of decomposable utility functions for
the budgeting problem, achieved by assuming that the cost
for the deficit is linear, and call the class“decomposable with
a linear cost for deficit,” or DLCD.

Definition 4.1. Let fv(x) be DLCD if

fv(x) =

M
∑

m=1

fm
v (xm)− wv

(

∑

e∈E

xe −
∑

i∈I

xi

)

,

where fm
v is a concave function for each m and wv ∈ R+.

In the experiments discussed below in the budget set-
ting, ILV consistently and robustly converges with L∞ norm
neighborhoods. Further, it approximately converges to the
medians of the optimal solutions (which are elicited inde-
pendently), as theorized in Section 3.2. Such a convergence
pattern suggests the validity of the DLCD model, though
we do not formally analyze this claim.

4.1 Experimental Setup
Though we make no normative claims about running a

vote in this setting in reality, we asked voters to vote on the
3https://www.mturk.com; Turkprime (https://www.
turkprime.com) was used to manage postings and payment.



U.S. Federal Budget across several of its major categories:
National Defense; Healthcare; Transportation, Science, &
Education; and Individual Income Tax4. This setting was
deemed the most likely to be meaningful to the largest cross-
section of workers and to yield a diversity of opinion, and
we consider budgets a prime application area in general.
The specific categories were chosen because they make up a
substantial portion of the budget and are among the most-
discussed items in American politics.

One major concern was that with no way to validate that a
worker actually performed the task (since no or little move-
ment is a valid response if the solution presented to the
worker was near her ideal budget), we may not receive high-
quality responses. This issue is especially important in our
setting because a worker’s actions influence the initial solu-
tion future workers see. We thus restricted the experiment
to workers with a high approval rate and who have com-
pleted over 500 experiments. Further, we offered a bonus to
workers for justifying their movements well, and more than
80% of workers qualified, suggesting that we also received
high-quality movements. The experiment was restricted to
Americans to best ensure familiarity with the setting.

4.2 Experimental Parameters
Our large scale experiment included 2,000 workers5 and

ran over a week in real-time. We tested the L1,L2, and
L∞ mechanisms, along with a “full elicitation” mechanism
in which workers reported their ideal values for each item,
and a “weight” in [0, 10] indicating how much they cared
about the actual spending in that item being close to their
stated value. To test repeatability of convergence, each of
the constrained mechanisms had three copies, given to three
separate groups of people. Each group consisted of two sets
with different starting points, with each worker being asked
to vote in each set in her assigned group. We used a total of
three different sets of starting points across the three groups,
such that each group shared one set of starting points with
each of the other two groups. This setup allowed testing for
repeatability across different starting points and observing
each worker’s behavior at two points. Workers in one group
in each constrained mechanism type were also asked to do
the full elicitation after submitting their movements for the
constrained mechanism, and such workers were paid extra.
These copies, along with the full elicitation, resulted in 10
different mechanism instances to which workers could be
allocated, each completed by about 200 workers.

To update the current point, we waited for 10 submissions
and then updated the point to their average. This averaging
explains the step-like structure in the convergence plots in
the next section. The radius was decreased approximately
every 60 submissions, i.e. rt u

r0
dt/60e

. The averaging and

slow radius decay rate were implemented in response to ob-
serving in the pilots that the initial few voters with a large
radius had a disproportionately high impact, as there were
not enough subsequent voters to recover from large initial
movements away from an eventual fixed point (though in
theory this would not be a problem given enough voters).

4The US Federal Government cannot just decide to set tax
receipts to some value. We asked workers to assume tax
rates would be increased/decreased at proportional rates in
hopes of increasing/decreasing receipts.
5Participants of any of the pilots were excluded.

4.3 User Experience
As workers arrived, they were randomly assigned to a

mechanism instance. They had a roughly equal probabil-
ity of being assigned to each instance, with slight deviations
in case an instance was “busy” (another user was currently
doing the potential 10th submission before an update of the
instance’s current point) and to keep the number of work-
ers in each instance balanced. Upon starting, workers were
shown mechanism instructions. We showed the instructions
on a separate page so as to be able to separately measure the
time it takes to read & understand a given mechanism, and
the time it takes to do it, but we repeated the instructions
on the actual mechanism page as well for reference.

On the mechanism page, workers were shown the current
allocation for each of the two sets in their group. They could
then move, through sliders, to their favorite allocation under
the movement constraint. We explained the movement con-
straints in text and also automatically calculated for them
the number of “credits” their current movements were using,
and how many they had left. Next to each budget item,
we displayed the percentage difference of the current value
from the 2016 baseline federal budget6, providing important
context to workers. We also provided short descriptions of
what goes into each budget item as scroll-over text. The re-
sulting budget deficit and its percent change were displayed
above the sliders7. For the full elicitation mechanism, work-
ers were asked to move the sliders to their favorite points
with no constraints (the sliders went from $0 to twice the
2016 value in that category), and then were asked for their
“weights” on each budget item, including the deficit. Fig-
ure 1 shows part of the interface for the L2 mechanism, not
including instructions, with similar interfaces for the other
constrained mechanisms. The full elicitation mechanism ad-
ditionally included sliders for items’ weights. On the final
page, workers were asked for feedback on the experiment8.

5. RESULTS AND ANALYSIS
We now discuss the results of our experiments.

5.1 Convergence
One basic test of a voting mechanism is that whether it

produces a consistent and unique solution, given a voting
population and their behaviors. If an election process can
produce multiple, distinct solutions purely by chance, oppo-
nents can assail any particular solution as a fluke and call
for a re-vote. The question of whether the mechanisms con-
sistently converge to the same point thus must be answered
before analyzing properties of the equilibrium point itself.
In this section, we show that the L2 and L1 algorithms do

6The 2016 budget estimate was obtained from
http://federal-budget.insidegov.com/l/119/
2016-Estimate and http://atlas.newamerica.org/
education-federal-budget
7Assuming other budget items are held constant.
8We plan on posting the data, including feedback. In gen-
eral, workers seemed to like the experiment, though some
complained about the constraints, and others were gener-
ally confused. Some expressed excitement about being asked
their views in an innovative manner and suggested that ev-
eryone could benefit from participating as, at the least, a
thought exercise. The feedback and explanations provided
by workers were much longer than we anticipated, and they
convince us of the procedure’s civic engagement benefits.
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