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Abstract Life cycle assessment (LCA) is the standard

technique used to make a quantitative evaluation about the

ecological sustainability of a product or service. The life

cycle inventory (LCI) data sets that provide input to LCA

computations can express essential information about the

operation of a process or production step. As a conse-

quence, LCI data are often regarded as confidential and are

typically concealed through aggregation with other data

sets. Despite the importance of privacy protection in pub-

lishing LCA studies, the community lacks a formal

framework for managing private data, and no techniques

exist for performing aggregation of LCI data sets that

preserve the privacy of input data. However, emerging

computational techniques known as ‘‘secure multiparty

computation’’ enable data contributors to jointly compute

numerical results without enabling any party to determine

another party’s private data. In the proposed approach,

parties who agree on a shared computation model, but do

not trust one another and also do not trust a common third

party, can collaboratively compute a weighted average of

an LCA metric without sharing their private data with any

other party. First, we formulate the LCA aggregation

problem as an inner product over a foreground inventory

model. Then, we show how LCA aggregations can be

computed as the ratio of two secure sums. The protocol is

useful when preparing LCA studies involving mutually

competitive firms.

Keywords Life cycle assessment � Secure multiparty

computation � Aggregation � Privacy � Confidentiality

1 Introduction

1.1 Confidentiality of process inventory data

Industrial Ecology (IE) comprises a collection of research

methodologies for quantifying the flows of materials,

products, and services through the industrial economy and

for estimating the potential social and ecological (collec-

tively environmental) implications of those flows. The

objects of IE research are industrial activities, conducted

either for subsistence or (more commonly) for profit.

Because industrial processes are typically undertaken in a

competitive economic context, the operators of these pro-

cesses would like to prevent potential competitors from

learning sensitive information about their activities. Infor-

mation that may be valuable to a competitor is often termed

confidential business information and therefore is often not

freely available.

At the same time, many different kinds of organizations

are motivated to make public disclosures about their

environmental performance. These motivations may be

inspired by regulatory requirements, marketing initiatives,

or as part of a broader project of corporate sustainability. A

central technique for evaluating sustainability performance

is life cycle assessment (LCA), an analytic methodology

for estimating the cumulative environmental impacts

associated with delivering a particular product or service to
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a consumer (ISO 2006). LCA considers the life cycle of a

product from ‘‘cradle-to-grave,’’ i.e., including impacts all

the way upstream to the extraction of raw materials and all

the way downstream to the final disposal of all products

(Curran 1996; Finnveden et al. 2009).

There is an increasing pressure from consumers and

policy makers to ensure the availability of inventory

information to support LCA studies. Standards and speci-

fications are emerging for a variety of environmental pro-

duct declarations and product environmental footprints

(Hunsager et al. 2014). In many markets, there are

increasing requirements for disclosure of environmental

footprints or availability of environmental data (Bateman

et al. 2017), some of which can be satisfied through EPDs

or other applications of LCA. Moreover, the International

Forum on LCA Cooperation, coorganized by the United

Nations Environment Programme, is supporting an initia-

tive to develop a ‘‘global LCA data access network’’ that

would provide inventory data in a manner ‘‘that allows

defining fitness for purpose by any user’’ (UNEP 2016).

Because of the deeply interconnected nature of the

industrial economy, the operation of a given process may

generate impacts far afield from where the process of

interest is located. Preparing an LCA study thus requires

information about a wide range of industrial processes

sometimes unrelated to the product system under direct

investigation. This information is often provided in the

form of a life cycle inventory (LCI) database, which is a

comprehensive and self-consistent model of select pro-

cesses in the global economy. Preparing an accurate and

comprehensive LCI database is a tremendous task, and the

development and maintenance of these resources are an

ongoing challenge (UNEP/SETAC 2011).

The counterpart to the LCI database is the foreground

data which directly describe the product system of interest

(Kuczenski 2015). The foreground is made up of unit pro-

cesses that together produce the product. A unit process is

defined by its inventory, a list of economic or environmental

flows into and out of an industrial process or network of

processes. The magnitudes of the input and output flows can

be developed through direct observation or engineering or

economic modeling, and can express sensitive information

about the operation of a production step. By implication, the

preparation of LCI resources for general use, as well as the

publication of LCA studies, must be done in a way that

conceals proprietary information, while still establishing

the veracity of the results to an independent observer.

As a consequence of the wide breadth of technical infor-

mation required to prepare a process inventory, preserving the

confidentiality of process information has been a principal

concern since the very beginning of LCA (Hunt and Franklin

1996; Frischknecht 2004). Engagement with stakeholders and

supply chain partners is often required for effective

consideration of life cycle environmental sustainability,

which accentuates confidentiality concerns (Kaenzig et al.

2010). Evenwhen dealingwith direct supply chain partners, it

is not always possible to negotiate access to proprietary data

(Nakano andHirao 2011; Solér et al. 2010).While the secrecy

of private data is often mentioned in publications of LCA

results, there has been no significant development of tech-

niques for managing private data. Trusted data providers

often use aggregation techniques to publish simpler and more

representative inventory models without violating nondis-

closure requirements (Koffler 2016). Aggregation of results is

often assumed to protect confidentiality to a suitable level

(UNEP/SETAC 2011; p. 72; see also Section 1.2), but there is

no established means for evaluating whether publications are

effective at preserving secrecy, nor is there a means for val-

idating the correctness of aggregations without revealing all

the proprietary data to a third party. Finally, aggregation

significantly reduces the transparency of the model, which

limits the usefulness of the results to independent interpreta-

tion and reuse.

No current technique permits LCA to be used to support

a comparison of the performance of mutually competitive

firms, without requiring all the participants to share their

data with a common third party to perform the aggregation.

In this paper, we present a model for a cryptographic

application that would enable a computation to be per-

formed that preserves the privacy of all input data, without

requiring disclosure to any party. All participants in the

computation would together learn the result, but no mem-

ber (nor any third party) would learn anything else. The

parties could then maintain the secrecy of the result and use

it as a benchmark for their own operations. Alternatively,

they could choose to prepare a publication that would

disclose aggregate results that could be used independently

for LCA studies. Either course could be accomplished

without relying on a third party to have direct knowledge of

all the confidential inputs.

1.2 Aggregation in LCA

Data that are regarded as confidential by the owners can be

concealed through aggregation with other data sets (see

UNEP/SETAC 2011; ch. 3). There are several ways of

aggregating data:

• Horizontal aggregation or horizontal averaging is used to

combine the reports of several data providers who are all

operating generally the same industrial process, usually

through a volume-weighted average of data values.

• Vertical or gate-to-gate aggregation refers to combining

several sequential production steps into a single data

set, so that the contributions of the individual steps, as

well as the identities of the data providers, are hidden.
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Vertically aggregated processes are combined by

summing individual inputs weighted by the relative

activity levels of the processes involved in the

aggregation.

• Cradle-to-gate or cradle-to-grave aggregation involves

combining the direct and upstream inputs of some or all

process inputs, including the resolution of loops or

cyclical dependencies in the chain of upstream suppli-

ers. Cradle-to-gate aggregation is usually performed

through matrix inversion or via iterative techniques that

approximate it.

Study authors and database publishers can also design

different combinations of these methods. Interested readers

are directed to the UNEP/SETAC report cited above. All

aggregation methods currently require the data providers to

agree to provide their data to the study author, who

aggregates them and publishes the results. Often this role is

played by an industry association or trade group (World

Steel Association 2011; Franklin Associates 2007). In

consideration of contemporary computer science, this

technique is not regarded to preserve the privacy of the data

contributors, because they may not trust the aggregator to

protect the confidentiality of their information.

The outcome of an aggregation is a computation of a

figure of merit, such as an environmental impact score or a

resource demand that represents the aggregated system. In

the first two types of aggregation, horizontal and vertical,

the aggregation result is obtained from a fixed set of data

contributors, each representing distinct processes, whose

operations are proximate to one another in a given product

system. In the horizontal case, the different processes are

operating in parallel, whereas in the vertical case the pro-

cesses are linked together sequentially. In both these cases,

the processes involved in the computation are all in the

foreground of the study. The computational result of

interest may be represented as a weighted sum. In Sect. 2,

we will show how such a quantity can be computed in a

privacy-preserving manner.

In contrast, cradle-to-gate and cradle-to-grave aggrega-

tion each involve combining part or all of the study fore-

ground with one or many background processes, including

the complete supply chain. Performing this type of aggre-

gation requires access to a complete LCI database or to a

collection of cradle-to-gate inventories derived from such a

database. This computation is not considered in the model

presented here.

1.3 Privacy, secrecy, and anonymity

In computer science, the concept of ‘‘confidentiality’’ is

represented in a variety of forms. Much of cryptography is

concerned with the ability of one or more parties to

perform a computational task in the presence of an

adversary, who wishes to obtain knowledge of the com-

putation. This is familiar in the concept of a ‘‘shared

secret,’’ which is a piece of information exchanged

between parties in a secure communication (Menezes et al.

1996). This model reflects how LCI data providers ideally

interact with data aggregators, including study authors and

LCI database maintainers in current practice. The secret is

known to both the provider and the aggregator but not to

the public, and the aggregator can then perform an LCA

computation to determine whatever result is desired.

In many cases, the aggregator (which may be working

on the data provider’s behalf) may wish to publish the

results of the computation with an audience that may

include the general public at large. In this case, the data

provider will be concerned about the possibility that the

secret can be deduced from the publication. The publica-

tion is said to be ‘‘privacy-preserving’’ if a reader of the

data, who is potentially an adversary, cannot discern any

information that the provider regards as private (Fung et al.

2010). ‘‘Privacy’’ may include any number of things,

including the identity of the data provider, the form of the

data provider’s contribution, and the values of any data

points. In practice, the meaning of privacy is quite vague,

because it is impossible to account for an adversary’s

possible background knowledge about the individual

(Dwork 2006). Privacy can be described in terms of the

concepts of anonymity and secrecy. ‘‘Anonymity’’ indi-

cates that an adversary cannot link a particular individual

to a particular publication or to some aspect of a publica-

tion. On the other hand, ‘‘secrecy’’ indicates that an

attacker cannot know the value of a variable in the

computation.

In LCA, a unit process inventory dataset, a life cycle

inventory, and a life cycle impact assessment result all

constitute results derived from confidential data, and

therefore, the publication of any of these elements should

be considered from the perspective of privacy preservation.

Both anonymity and secrecy are obtained through aggre-

gation. The ‘‘background knowledge’’ held by an adversary

may include first the identities of the various firms involved

in a particular product system, industry group, or region.

The background knowledge of a competitor likely extends

to detailed information about process requirements on a

generic basis. Often in LCA, anonymity is ensured by

aggregating the results of multiple data providers whose

identities are not disclosed (Finnveden et al. 2009; sec. 6).

Secrecy is often provided in the same way by mandating

that every data point represents ‘‘at least three’’ contribu-

tors (e.g., Weidema et al. 2013). The argument, often

unstated, is that if an average result includes only two

contributors, then each member would be able to deduce
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the other’s contribution by subtracting his own from the

total. With three contributors, this is regarded as infeasible.

1.4 Secure multiparty computation

One of the classic problems of cryptography is secure

multiparty computation (SMC), in which number of parties

wish to compute a function over a set of inputs, where one

input is held by each party, and no party wishes to reveal

their input to anyone else (Lindell and Pinkas 2009). The

original formulation, known as the ‘‘millionaire’s prob-

lem,’’ concerns two wealthy people who wish to determine

which one is wealthier without either one revealing her net

worth (Yao 1982). The security of an SMC protocol can be

defined in terms of a number of different boundary con-

ditions, including whether the parties share trust in a third

party, whether an adversary is active or passive, and how

many malicious parties must collude in order to violate the

privacy of an honest party. A protocol involving k parties is

strongly secure only if privacy is still assured even when

k - 1 parties collude. Many SMC problems and solutions

have been developed, but only recently has computing

technology made such approaches feasible for practical use

cases (Pinkas et al. 2009).

One of the simplest distributed SMC problems is the

‘‘secure sum,’’ in which parties wish to compute the sum of

their inputs without revealing them (Kantarcioglu 2008). A

simple system can be implemented using homomorphic

encryption (e.g., Paillier 1999) in which a third party per-

forms the aggregation without being able to learn any of

the inputs. The third party can be implemented with a

secure coprocessor, which is a piece of hardware manu-

factured by a trusted entity and operated in isolation to

support the protocol (Katz 2007). The use of homomorphic

encryption for the computation of sustainability bench-

marks was first proposed in Kerschbaum et al. (2011).

Below, we present a formulation of the LCA aggrega-

tion problem and discuss it in the context of current

research on privacy-preserving computation. We show how

an LCA computation can be performed as a secure multi-

party computation that preserves the privacy of all inputs.

2 Formulating the aggregation problem

The LCA database computation is commonly presented as

a sequence of large matrix multiplications (Heijungs and

Suh 2002):

s ¼ E � B � A�1 � y ð1Þ

where the technology matrix A relates products (in rows) to

processes (in columns); the environment matrix B relates

processes (in columns) to environmental flows (in rows);

the characterization matrix E relates environmental flows

(in columns) to impact categories (in rows). The input

vector y is a column of final demand representing the

functional unit of the study, and the result of the multi-

plication s is a vector of impact scores. Confidential

information is often needed to construct the A and B

matrices. Computing the matrix product Bx ¼ B � A�1

yields an aggregated background database and is consid-

ered to be irreversible (as long as the number of environ-

mental flows is much smaller than the number of

processes).

Practitioners authoring a study are not required to con-

struct a technology matrix nor perform large matrix mul-

tiplication and inversion, instead making use of LCI

databases provided in LCA software. The study-specific

inventory model, called the foreground, makes reference to

processes in the background, but the background does not

make reference to the foreground. This allows the inven-

tory model to be written as a block triangular matrix as

shown in Fig. 1, where the foreground and background

computations can be separated from each other (Kuczenski

2015). In this case, the technology matrix can be broken

into three parts: a foreground matrix Af, a dependency

matrix Ad which shows the relationship of the foreground

to the background, and an identity matrix to stand in for the

background technology matrix, which is included in

aggregated form in Bx. The Bx matrix is augmented by Bf to

represent direct emissions by foreground processes. In

many studies, Bf = 0.

The Ad and Bf matrices make up the private data in the

study because they describe which background processes

are required by the foreground, how much of each back-

ground process is required, and any environmental

exchanges associated with the foreground. A publication of

results can be regarded as privacy-preserving only if it does

not permit an adversary to learn anything about these pri-

vate matrices.

Solving a foreground LCA problem is reduced to

inverting the small Af matrix and using it to determine the

activity levels of the foreground processes. The symbol ~y

represents the final demand of the foreground nodes only,

and ~x represents the activity levels of the foreground nodes.

Often (if the foreground contains no loops) ~x can be

computed via tree traversal, without requiring matrix

inversion. The LCA computation can then be written in

terms of ~x:

ad ¼ Ad � ~x ð2Þ
b ¼ Bf � ~xþ Bx � ad ð3Þ
s ¼ E � b ð4Þ

The results shown above are termed LCA aggregation

results. Computing the intermediate result ad, called a unit
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process aggregation, reports the background activity levels

associated with the foreground. Similarly, computing b is

called an inventory aggregation and computing s is an

impact aggregation. Publishing an aggregation result can

be evaluated with regard to whether it preserves the privacy

of the input data.

3 A privacy-preserving multiparty LCA
aggregation

3.1 Computational model

The foreground study formulation is useful because the

LCA aggregations (at least, when Bf = 0) can be repre-

sented as inner products. In this section, we introduce a

simple protocol to perform an LCA aggregation using

secure sum operations, which would permit the computa-

tions to be performed in a privacy-preserving manner. In

our approach, a secure coprocessor is used to generate a

homomorphic encryption key and perform decryption, and

a separate secure aggregator is used to perform the sum

using a homomorphic encryption scheme with an addition

operator. Under this scheme, all the participating parties

share a common encryption key, but none can decrypt any

encrypted values without the help of the coprocessor. The

secure sum is accomplished as follows:

1. Each party i prepares its input by encrypting it with the

shared key.

2. Each party sends its encrypted input to the aggregator.

3. The aggregator performs the addition on the encrypted

data.

4. The aggregator returns the encrypted sum to all parties.

5. Any party is able to ask the coprocessor to decrypt the

sum.

The setup is shown in Fig. 2. The result being computed

could be at any level of aggregation: process level,

inventory, or impact. The parties must agree in advance

what metric is being evaluated and how to calculate it.

They individually compute their inputs: a market volume

or activity level for each entity (xi), and a representative

value of the metric for aggregation (ai). The market shares

could either be agreed upon in advance or selected pri-

vately. Parties are assumed to be passive (honest-but-cu-

rious) adversaries who do not collude.

Electric Grid

Process Steam
Nat. gas combustion

Transport, freight, truck

Transport, freight, rail

......
Steel disposal

Plastic disposal

carbon dioxide
nitrogen oxides

......

a0

a1

a2

a3

a4

a5

a6

a7

a8

Background – BxDependencies – Ad

Foreground Emissions – Bf

Foreground – Af
Unit Process aggregation:

x = A−1 · y

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Af 0

Ad I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
...

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

ad = Ad · x̃

Inventory aggregation:

b = Bf Bx · x
b = Bf · x̃+Bx ·ad
(Bx = B ·A−1 is a background LCI databse)

Impact aggregation:

s = E ·b= E ·B · x

The foreground is modeled as a
directed graph. The arrows show
the direction of dependency.
Each node is a process in the
aggregation. The double-circled
node indicates the reference flow
(first row/column of A matrix).
Foreground activity levels (x̃)
can be computed through tree
traversal.

Fig. 1 LCA aggregation results. An LCA foreground study is

modeled as a directed graph (top left). The arrows show the direction

of dependency. Each node is a process in the aggregation. The

double-circled node indicates the reference flow. Foreground activity

levels (~x) can be computed through tree traversal

Environ Syst Decis (2017) 37:13–21 17

123



The foreground matrix for the aggregation is shown

below using the convention that positive values are outputs

and negative values are inputs:

Af ¼

R1 0 0 � 0

�x1 1 0 � 0

�x2 0 1 � 0

� � � � �
�xk 0 0 � 1

2
66664

3
77775

ð5Þ

where R1 represents the sum of all market shares.

Then, ~x ¼ 1 x1 x2 � xk½ �T solves for the final

demand:

Af � ~x ¼ R1 0 0 0 � � �½ �T ð6Þ

The parties then compute two secure sums: to the first,

each party sends xi (which is aggregated to R1), and to the

second, each party sends aixi (which is aggregated to R2).

The ratio R2=R1 is the market-weighted average of the

environmental parameter. Each party can gain insight by

comparing their private value to the average. No partici-

pant, nor any third party, has gained any private knowl-

edge. This computation is illustrated schematically in

Fig. 3.

3.2 Example

Consider the production of acetic acid via the catalytic

carbonylation of methanol (Franklin Associates 2007).

Acetic acid is a widely produced and inexpensive chemical

intermediate, but there exist a variety of methods for

producing it. A simplified production model for acetic acid

is shown in Fig. 4. The two material inputs are methanol

(CH3OH, often abbreviated MeOH) and carbon monoxide

(CO). Both inputs are typically produced from natural gas.

The process also requires thermal energy from natural gas

combustion, electricity, and the use of a catalyst. In the

following example, the numbers are made up.

Facility operators may be interested to compare their

efficiency or environmental performance with those of

their peers or competitors without revealing details about

their own processes. Suppose an environmental analyst had

assembled a number of representatives of acetic acid

manufacturing plants in order to assess their environmental

performance as a group. These representatives are to be the

parties to a secure computation. To protect the anonymity

of the participants, each facility could be represented by an

intermediary.

In order for the computation to take place, the following

requirements must be met (see Fig. 4):

a. Agree on a set of participants The representatives must

decide who among them wishes to participate.

b. Agree on a production model The parties must share a

common model of the ‘‘black box’’ enclosing their

processes. Although each specific plant will have a

complex design, the generalized schematic shown in

Fig. 4 can be applied to nearly any plant.

c. Agree on a system boundary The parties must include

and exclude the same elements from their computa-

tions. For instance, the parties must agree whether or

Fig. 2 Schematic diagram of

the secure sum protocol. Each

party has direct communication

with a secure processor, which

performs the homomorphic

decryption, and a secure

aggregator, which computes the

sum of encrypted inputs

Aggregation metric

1 2 3 4 k· · ·

Private inputs – a1, . . . ,ak

Market share – x1, . . . ,xk Σ1 = x1+ x2+ · · ·+ xk

Σ2 = ad · x̃ = 0 a1 a2 · ak ·

⎡
⎢⎢⎢⎢⎢⎢⎣

1
x1
x2
·
xk

⎤
⎥⎥⎥⎥⎥⎥⎦

φ =
Σ2

Σ1
(weighted average)

Parties to the
computation

Fig. 3 Privacy-preserving

market-weighted average. The

foreground model for a

horizontal average is a tree of

height 1. The sum of activity

levels R1 and the sum of

activity-level-weighted

aggregation values R2 are

computed via distinct secure

sums

18 Environ Syst Decis (2017) 37:13–21

123



not the production of the intermediates (methanol and

carbon monoxide) is included in the boundary. For the

schematic in Fig. 4, the production of intermediates is

assumed to happen outside the boundary.

d. Agree on measurements The parties agree to measure

electricity and thermal energy use, and to weight their

inputs by total production. Catalyst use is excluded

from the measurement.

e. Agree on a reference flow In order to make the

comparison more meaningful, the parties agree to

report on their facilities’ total output during a common

time period, in this example March of 2016.

Following the agreement, each party prepares its private

inputs: total production, total electricity use, and total

thermal energy use during the time period. In Eqs. (5) and

(6), the total production corresponds to xi, total electricity

use corresponds to a1xi, and total thermal energy use cor-

responds to a2xi. In Fig. 4, one fictitious party’s private

inputs are shown in blue.

The parties then compute the secure sums and simulta-

neously learn the following results (also fictitious):

R1 ¼ x1 þ x2 þ x3 � � � ¼ 5; 680; 000 kg ð7Þ
R2 ¼ a1x1 þ a2x2 þ a3x3 � � � ¼ 241 MWh ð8Þ
R3 ¼ a1x1 þ a2x2 þ a3x3 � � � ¼ 43; 721 GJ ð9Þ

The ratios R2=R1 and R3=R1 report the production-

weighted average values for a1 and a2, respectively, which

in this case are 0.071 kWh electricity and 4.3 MJ of ther-

mal energy per kg of product. Each party can privately

compare its performance to the average.

4 Discussion

When an LCA model is formulated as a foreground study,

it is possible to give a precise definition to an LCA

aggregation as an inner product of activity levels with some

process-level environmental metric. We have shown how

such a computation can be performed in a privacy-pre-

serving way using a secure sum protocol. At the end of the

computation, each party will have learned the average

value of the environmental parameter, which can be com-

pared against the private value. Our scheme uses a secure

coprocessor implementing a homomorphic addition, but

more robustly secure methods could also be applied (e.g.,

Goryczka et al. 2013). In practice, the demands for more

technical security would not be required until the parties

involved have developed a more sophisticated or routine

usage of the technique presented; in the meantime, non-

technical challenges associated with the encryption tech-

nology would outweigh the likely benefits to security that

came from the enhanced techniques.

4.1 Limitations to SMC

The secure sum approach provides stronger privacy pro-

tection than current practice because the parties can com-

pute the results without sharing their data with a common

third party in clear text. However, it is also subject to a

number of limitations. Foremost, the validity of the com-

putation requires all parties to be honest. While computa-

tional methods can ensure that each party follows the

protocol correctly, it is impossible to prevent a party from

simply reporting a false number unless a third-party audit

of the private inputs is permitted. Schemes have been

developed that would permit a public audit of inputs while

still maintaining privacy (e.g., Baum et al. 2014).

Second, though the parties may not trust each other or a

third party with their private data, technical trust in the

algorithm is still required. This is similar to any other cryp-

tographic application: the user must trust that the software is

well made, correct, and free of vulnerabilities. Third, the

parties must trust each other to maintain the secrecy of the

results: since all parties learn the same result, any one party

can reveal it. Fourth, the privacy-preserving characteristics

are weaker when parties are allowed to collude. In case of

p corrupted parties, the aggregate results of the remaining

k - p parties can easily be found if the parties collude.

Finally, secure aggregation via homomorphic encryption

requires fixed-point arithmetic. While most foreground

aggregations can be performedwith limited precision without

significant information loss, the fixed-point requirement

severely limits the capacity for privacy-preserving life cycle

impact assessment (LCIA) owing to the wide dynamic range

of emission factors and characterization factors.

4.2 Applications and utility

The model presented in this paper is suitable for per-

forming any computation that can be represented as a set of

AA Production
(March 2016)

MeOH

CO

(d) Measurements

Catalyst Spent Catalyst

Acetic Acid
(e) Reference flow

(c) System Boundary

Electricity NG Combusted

CO prod.

MeOH prod.

(b) Production Model

8.5 MWh 520 GJ

120,000 kg

Fig. 4 Schematic representation of a black-box model for production

of acetic acid from methanol and carbon monoxide. The figure makes

reference to the list of requirements for privacy-preserving LCI

computation in Sect. 3.2. One contributor’s fictitious private inputs

are shown alongside requirements (d) and (e)
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weighted sums, which includes foreground aggregation

problems such as horizontal averaging and vertical aggre-

gation. These operations are typically associated with the

preparation of inventory data for publication, such as

preparing industry-averaged models for inclusion in LCI

databases. Current techniques for managing this style of

data may appear to provide adequate mechanisms for

preserving privacy. However, they suffer from the draw-

back that the aggregation process must be performed by a

trusted party. This can constrain participation in the data

collection effort and may provide an insurmountable bar-

rier to entry for more secrecy-minded industries. The use of

cryptographic techniques, such as the one presented here,

may expand the reach of LCA into industries that are not

presently well represented in the existing inventory data-

bases, such as many classes of chemicals and pharmaceu-

ticals, detergents, oil refineries, textile and dye producers,

and others. Coupled with an auditing mechanism, privacy-

preserving techniques may improve the accuracy of

inventory results by broadening the base of participation

and introducing the capacity to automate and self-manage

inventory data gathering.

While the technique presented here focuses on hori-

zontal averaging, the situation is similar for aggregation

along a supply chain. The same challenges identified in

Sect. 3.2 apply to the vertically aggregated case, but some

aspects are much more complex. In particular, the coordi-

nation of multiple parties along a supply chain becomes

much more difficult when the array of processes being

considered is more diverse.

The privacy-preserving approach presented here also

targets a new domain of information gathering that is not

well addressed by conventional LCA studies—that of cross-

firm collaboration for performance improvement. Rather

than being motivated by a desire to publish environmental

product declarations, firms who are confident in the privacy

of their data may pursue benchmarking activities whose

intended audience is strictly internal. At present, maintain-

ing and updating a dataset managed by a third party require a

renewal of effort on a periodic basis to elicit contributions

from participants and a burdensome manual data collection;

privacy-preserving techniques would allow interested par-

ties to pursue information independently of a third party

(Kerschbaum et al. 2011). Automated benchmarking,

enabled by the use of privacy-preserving methods, could

reduce the cost and effort required, after initial investments

to establish the participant group and the technical infras-

tructure. This would enable participants to obtain routine

and regularly updated benchmarking information to pursue

broad-based improvement in environmental performance

across an industry group.

The potential benefits would be large in the context of

environmental product declarations and regulatory

reporting requirements, enabling firms to collaborate to

produce mutually privacy-protecting publications of a

product. Very large groups of firms could conceivably

participate in a mega-scale privacy-preserving computation

to estimate national or global normalization values. More

research is needed to demonstrate the technique in

application.

5 Conclusion

When the scope of an LCA study includes firms that are in

competition with one another, it can be challenging to gain

much more cumbersome to obtain confidentiality. A single

entity must be trusted by all contributors to view private

information. The approach presented here may be useful

when mutually competitive firms wish to gain private

knowledge about their environmental performance by

benchmarking against a cohort of similar firms.

The same model can be applied to vertical aggregation

problems, such as those involving sequential steps in a

product model. Using SMC techniques, firms that are

supply chain partners could publish a validated report of

their combined environmental footprint without exposing

information to one another.

This innovation can increase the scope of participation

in multistakeholder LCA projects, such as inventory data-

base development and aggregated inventory publishing, by

providing improved protection of confidential information.

The aggregation model can also improve transparency in

critical review by mechanizing key aspects of model

structure, data validation, and computation.
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