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Abstract Life cycle assessment (LCA) is the standard
technique used to make a quantitative evaluation about the
ecological sustainability of a product or service. The life
cycle inventory (LCI) data sets that provide input to LCA
computations can express essential information about the
operation of a process or production step. As a conse-
quence, LCI data are often regarded as confidential and are
typically concealed through aggregation with other data
sets. Despite the importance of privacy protection in pub-
lishing LCA studies, the community lacks a formal
framework for managing private data, and no techniques
exist for performing aggregation of LCI data sets that
preserve the privacy of input data. However, emerging
computational techniques known as “secure multiparty
computation” enable data contributors to jointly compute
numerical results without enabling any party to determine
another party’s private data. In the proposed approach,
parties who agree on a shared computation model, but do
not trust one another and also do not trust a common third
party, can collaboratively compute a weighted average of
an LCA metric without sharing their private data with any
other party. First, we formulate the LCA aggregation
problem as an inner product over a foreground inventory
model. Then, we show how LCA aggregations can be
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computed as the ratio of two secure sums. The protocol is
useful when preparing LCA studies involving mutually
competitive firms.
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1 Introduction
1.1 Confidentiality of process inventory data

Industrial Ecology (IE) comprises a collection of research
methodologies for quantifying the flows of materials,
products, and services through the industrial economy and
for estimating the potential social and ecological (collec-
tively environmental) implications of those flows. The
objects of IE research are industrial activities, conducted
either for subsistence or (more commonly) for profit.
Because industrial processes are typically undertaken in a
competitive economic context, the operators of these pro-
cesses would like to prevent potential competitors from
learning sensitive information about their activities. Infor-
mation that may be valuable to a competitor is often termed
confidential business information and therefore is often not
freely available.

At the same time, many different kinds of organizations
are motivated to make public disclosures about their
environmental performance. These motivations may be
inspired by regulatory requirements, marketing initiatives,
or as part of a broader project of corporate sustainability. A
central technique for evaluating sustainability performance
is life cycle assessment (LCA), an analytic methodology
for estimating the cumulative environmental impacts
associated with delivering a particular product or service to
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a consumer (ISO 2006). LCA considers the life cycle of a
product from “cradle-to-grave,” i.e., including impacts all
the way upstream to the extraction of raw materials and all
the way downstream to the final disposal of all products
(Curran 1996; Finnveden et al. 2009).

There is an increasing pressure from consumers and
policy makers to ensure the availability of inventory
information to support LCA studies. Standards and speci-
fications are emerging for a variety of environmental pro-
duct declarations and product environmental footprints
(Hunsager et al. 2014). In many markets, there are
increasing requirements for disclosure of environmental
footprints or availability of environmental data (Bateman
et al. 2017), some of which can be satisfied through EPDs
or other applications of LCA. Moreover, the International
Forum on LCA Cooperation, coorganized by the United
Nations Environment Programme, is supporting an initia-
tive to develop a “global LCA data access network” that
would provide inventory data in a manner “that allows
defining fitness for purpose by any user” (UNEP 2016).

Because of the deeply interconnected nature of the
industrial economy, the operation of a given process may
generate impacts far afield from where the process of
interest is located. Preparing an LCA study thus requires
information about a wide range of industrial processes
sometimes unrelated to the product system under direct
investigation. This information is often provided in the
form of a life cycle inventory (LCI) database, which is a
comprehensive and self-consistent model of select pro-
cesses in the global economy. Preparing an accurate and
comprehensive LCI database is a tremendous task, and the
development and maintenance of these resources are an
ongoing challenge (UNEP/SETAC 2011).

The counterpart to the LCI database is the foreground
data which directly describe the product system of interest
(Kuczenski 2015). The foreground is made up of unit pro-
cesses that together produce the product. A unit process is
defined by its inventory, a list of economic or environmental
flows into and out of an industrial process or network of
processes. The magnitudes of the input and output flows can
be developed through direct observation or engineering or
economic modeling, and can express sensitive information
about the operation of a production step. By implication, the
preparation of LCI resources for general use, as well as the
publication of LCA studies, must be done in a way that
conceals proprietary information, while still establishing
the veracity of the results to an independent observer.

As a consequence of the wide breadth of technical infor-
mation required to prepare a process inventory, preserving the
confidentiality of process information has been a principal
concern since the very beginning of LCA (Hunt and Franklin
1996; Frischknecht 2004). Engagement with stakeholders and
supply chain partners is often required for effective
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consideration of life cycle environmental sustainability,
which accentuates confidentiality concerns (Kaenzig et al.
2010). Even when dealing with direct supply chain partners, it
is not always possible to negotiate access to proprietary data
(Nakano and Hirao 2011; Solér et al. 2010). While the secrecy
of private data is often mentioned in publications of LCA
results, there has been no significant development of tech-
niques for managing private data. Trusted data providers
often use aggregation techniques to publish simpler and more
representative inventory models without violating nondis-
closure requirements (Koffler 2016). Aggregation of results is
often assumed to protect confidentiality to a suitable level
(UNEP/SETAC 2011; p. 72; see also Section 1.2), but there is
no established means for evaluating whether publications are
effective at preserving secrecy, nor is there a means for val-
idating the correctness of aggregations without revealing all
the proprietary data to a third party. Finally, aggregation
significantly reduces the transparency of the model, which
limits the usefulness of the results to independent interpreta-
tion and reuse.

No current technique permits LCA to be used to support
a comparison of the performance of mutually competitive
firms, without requiring all the participants to share their
data with a common third party to perform the aggregation.
In this paper, we present a model for a cryptographic
application that would enable a computation to be per-
formed that preserves the privacy of all input data, without
requiring disclosure to any party. All participants in the
computation would together learn the result, but no mem-
ber (nor any third party) would learn anything else. The
parties could then maintain the secrecy of the result and use
it as a benchmark for their own operations. Alternatively,
they could choose to prepare a publication that would
disclose aggregate results that could be used independently
for LCA studies. Either course could be accomplished
without relying on a third party to have direct knowledge of
all the confidential inputs.

1.2 Aggregation in LCA

Data that are regarded as confidential by the owners can be
concealed through aggregation with other data sets (see
UNEP/SETAC 2011; ch. 3). There are several ways of
aggregating data:

e Horizontal aggregation or horizontal averaging is used to
combine the reports of several data providers who are all
operating generally the same industrial process, usually
through a volume-weighted average of data values.

e Vertical or gate-to-gate aggregation refers to combining
several sequential production steps into a single data
set, so that the contributions of the individual steps, as
well as the identities of the data providers, are hidden.
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Vertically aggregated processes are combined by
summing individual inputs weighted by the relative
activity levels of the processes involved in the
aggregation.

e Cradle-to-gate or cradle-to-grave aggregation involves
combining the direct and upstream inputs of some or all
process inputs, including the resolution of loops or
cyclical dependencies in the chain of upstream suppli-
ers. Cradle-to-gate aggregation is usually performed
through matrix inversion or via iterative techniques that
approximate it.

Study authors and database publishers can also design
different combinations of these methods. Interested readers
are directed to the UNEP/SETAC report cited above. All
aggregation methods currently require the data providers to
agree to provide their data to the study author, who
aggregates them and publishes the results. Often this role is
played by an industry association or trade group (World
Steel Association 2011; Franklin Associates 2007). In
consideration of contemporary computer science, this
technique is not regarded to preserve the privacy of the data
contributors, because they may not trust the aggregator to
protect the confidentiality of their information.

The outcome of an aggregation is a computation of a
figure of merit, such as an environmental impact score or a
resource demand that represents the aggregated system. In
the first two types of aggregation, horizontal and vertical,
the aggregation result is obtained from a fixed set of data
contributors, each representing distinct processes, whose
operations are proximate to one another in a given product
system. In the horizontal case, the different processes are
operating in parallel, whereas in the vertical case the pro-
cesses are linked together sequentially. In both these cases,
the processes involved in the computation are all in the
foreground of the study. The computational result of
interest may be represented as a weighted sum. In Sect. 2,
we will show how such a quantity can be computed in a
privacy-preserving manner.

In contrast, cradle-to-gate and cradle-to-grave aggrega-
tion each involve combining part or all of the study fore-
ground with one or many background processes, including
the complete supply chain. Performing this type of aggre-
gation requires access to a complete LCI database or to a
collection of cradle-to-gate inventories derived from such a
database. This computation is not considered in the model
presented here.

1.3 Privacy, secrecy, and anonymity
In computer science, the concept of “confidentiality” is

represented in a variety of forms. Much of cryptography is
concerned with the ability of one or more parties to

perform a computational task in the presence of an
adversary, who wishes to obtain knowledge of the com-
putation. This is familiar in the concept of a “shared
secret,” which is a piece of information exchanged
between parties in a secure communication (Menezes et al.
1996). This model reflects how LCI data providers ideally
interact with data aggregators, including study authors and
LCI database maintainers in current practice. The secret is
known to both the provider and the aggregator but not to
the public, and the aggregator can then perform an LCA
computation to determine whatever result is desired.

In many cases, the aggregator (which may be working
on the data provider’s behalf) may wish to publish the
results of the computation with an audience that may
include the general public at large. In this case, the data
provider will be concerned about the possibility that the
secret can be deduced from the publication. The publica-
tion is said to be “privacy-preserving” if a reader of the
data, who is potentially an adversary, cannot discern any
information that the provider regards as private (Fung et al.
2010). “Privacy” may include any number of things,
including the identity of the data provider, the form of the
data provider’s contribution, and the values of any data
points. In practice, the meaning of privacy is quite vague,
because it is impossible to account for an adversary’s
possible background knowledge about the individual
(Dwork 2006). Privacy can be described in terms of the
concepts of anonymity and secrecy. “Anonymity” indi-
cates that an adversary cannot link a particular individual
to a particular publication or to some aspect of a publica-
tion. On the other hand, “secrecy” indicates that an
attacker cannot know the value of a variable in the
computation.

In LCA, a unit process inventory dataset, a life cycle
inventory, and a life cycle impact assessment result all
constitute results derived from confidential data, and
therefore, the publication of any of these elements should
be considered from the perspective of privacy preservation.
Both anonymity and secrecy are obtained through aggre-
gation. The “background knowledge” held by an adversary
may include first the identities of the various firms involved
in a particular product system, industry group, or region.
The background knowledge of a competitor likely extends
to detailed information about process requirements on a
generic basis. Often in LCA, anonymity is ensured by
aggregating the results of multiple data providers whose
identities are not disclosed (Finnveden et al. 2009; sec. 6).
Secrecy is often provided in the same way by mandating
that every data point represents “at least three” contribu-
tors (e.g., Weidema et al. 2013). The argument, often
unstated, is that if an average result includes only two
contributors, then each member would be able to deduce
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the other’s contribution by subtracting his own from the
total. With three contributors, this is regarded as infeasible.

1.4 Secure multiparty computation

One of the classic problems of cryptography is secure
multiparty computation (SMC), in which number of parties
wish to compute a function over a set of inputs, where one
input is held by each party, and no party wishes to reveal
their input to anyone else (Lindell and Pinkas 2009). The
original formulation, known as the “millionaire’s prob-
lem,” concerns two wealthy people who wish to determine
which one is wealthier without either one revealing her net
worth (Yao 1982). The security of an SMC protocol can be
defined in terms of a number of different boundary con-
ditions, including whether the parties share trust in a third
party, whether an adversary is active or passive, and how
many malicious parties must collude in order to violate the
privacy of an honest party. A protocol involving k parties is
strongly secure only if privacy is still assured even when
k — 1 parties collude. Many SMC problems and solutions
have been developed, but only recently has computing
technology made such approaches feasible for practical use
cases (Pinkas et al. 2009).

One of the simplest distributed SMC problems is the
“secure sum,” in which parties wish to compute the sum of
their inputs without revealing them (Kantarcioglu 2008). A
simple system can be implemented using homomorphic
encryption (e.g., Paillier 1999) in which a third party per-
forms the aggregation without being able to learn any of
the inputs. The third party can be implemented with a
secure coprocessor, which is a piece of hardware manu-
factured by a trusted entity and operated in isolation to
support the protocol (Katz 2007). The use of homomorphic
encryption for the computation of sustainability bench-
marks was first proposed in Kerschbaum et al. (2011).

Below, we present a formulation of the LCA aggrega-
tion problem and discuss it in the context of current
research on privacy-preserving computation. We show how
an LCA computation can be performed as a secure multi-
party computation that preserves the privacy of all inputs.

2 Formulating the aggregation problem

The LCA database computation is commonly presented as
a sequence of large matrix multiplications (Heijungs and
Suh 2002):

s=E-B-A'.y (1)

where the technology matrix A relates products (in rows) to
processes (in columns); the environment matrix B relates
processes (in columns) to environmental flows (in rows);
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the characterization matrix E relates environmental flows
(in columns) to impact categories (in rows). The input
vector y is a column of final demand representing the
functional unit of the study, and the result of the multi-
plication s is a vector of impact scores. Confidential
information is often needed to construct the A and B
matrices. Computing the matrix product B, =B A~
yields an aggregated background database and is consid-
ered to be irreversible (as long as the number of environ-
mental flows is much smaller than the number of
processes).

Practitioners authoring a study are not required to con-
struct a technology matrix nor perform large matrix mul-
tiplication and inversion, instead making use of LCI
databases provided in LCA software. The study-specific
inventory model, called the foreground, makes reference to
processes in the background, but the background does not
make reference to the foreground. This allows the inven-
tory model to be written as a block triangular matrix as
shown in Fig. 1, where the foreground and background
computations can be separated from each other (Kuczenski
2015). In this case, the technology matrix can be broken
into three parts: a foreground matrix Ay, a dependency
matrix Ay which shows the relationship of the foreground
to the background, and an identity matrix to stand in for the
background technology matrix, which is included in
aggregated form in B,. The B, matrix is augmented by By to
represent direct emissions by foreground processes. In
many studies, By = 0.

The A4 and By matrices make up the private data in the
study because they describe which background processes
are required by the foreground, how much of each back-
ground process is required, and any environmental
exchanges associated with the foreground. A publication of
results can be regarded as privacy-preserving only if it does
not permit an adversary to learn anything about these pri-
vate matrices.

Solving a foreground LCA problem is reduced to
inverting the small A; matrix and using it to determine the
activity levels of the foreground processes. The symbol y
represents the final demand of the foreground nodes only,
and x represents the activity levels of the foreground nodes.
Often (if the foreground contains no loops) X can be
computed via tree traversal, without requiring matrix
inversion. The LCA computation can then be written in
terms of x:

ad:Ad~)E (2)
b=B;-%+B,-aq (3)
s=E-b 4)

The results shown above are termed LCA aggregation
results. Computing the intermediate result ay, called a unit
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traversal.

Foreground — A4

Unit Process aggregation:

The foreground is modeled as a
directed graph. The arrows show
the direction of dependency.
Each node is a process in the
aggregation. The double-circled
node indicates the reference flow
(first row/column of 4 matrix).
Foreground activity levels (X)
can be computed through tree X =

[ e e

- -|{ —® Electric Grid
- | - Process Steam

- - —e Steel disposal

- - —e Nat. gas combustion
- - —e Transport, freight, truck
- - —e Transport, freight, rail

ag = Ad -X
Inventory aggregation:

b =|B;i B X

b :Bf-)f—l—Bx'ad

Foreground Emissions — By

Fig. 1 LCA aggregation results. An LCA foreground study is
modeled as a directed graph (top left). The arrows show the direction
of dependency. Each node is a process in the aggregation. The

process aggregation, reports the background activity levels
associated with the foreground. Similarly, computing b is
called an inventory aggregation and computing s is an
impact aggregation. Publishing an aggregation result can
be evaluated with regard to whether it preserves the privacy
of the input data.

3 A privacy-preserving multiparty LCA
aggregation

3.1 Computational model

The foreground study formulation is useful because the
LCA aggregations (at least, when By = 0) can be repre-
sented as inner products. In this section, we introduce a
simple protocol to perform an LCA aggregation using
secure sum operations, which would permit the computa-
tions to be performed in a privacy-preserving manner. In
our approach, a secure coprocessor is used to generate a
homomorphic encryption key and perform decryption, and
a separate secure aggregator is used to perform the sum
using a homomorphic encryption scheme with an addition

(Bx = B-A7" is a background LCI databse)

1
_:, L | —e Plastic disposal
1
i Background — B,
| | P |
___:,__.:r__1:.-i_:y—a——i—— - — —ecarbon dioxide
L -1 - —-1__1.1_¢ —e--'-—| — -enitrogen oxides

Impact aggregation:
s =E-b=FE-B-x

double-circled node indicates the reference flow. Foreground activity
levels (x) can be computed through tree traversal

operator. Under this scheme, all the participating parties
share a common encryption key, but none can decrypt any
encrypted values without the help of the coprocessor. The
secure sum is accomplished as follows:

1. Each party i prepares its input by encrypting it with the
shared key.

2. Each party sends its encrypted input to the aggregator.

3. The aggregator performs the addition on the encrypted
data.

4. The aggregator returns the encrypted sum to all parties.

5. Any party is able to ask the coprocessor to decrypt the
sum.

The setup is shown in Fig. 2. The result being computed
could be at any level of aggregation: process level,
inventory, or impact. The parties must agree in advance
what metric is being evaluated and how to calculate it.
They individually compute their inputs: a market volume
or activity level for each entity (x;), and a representative
value of the metric for aggregation (a;). The market shares
could either be agreed upon in advance or selected pri-
vately. Parties are assumed to be passive (honest-but-cu-
rious) adversaries who do not collude.
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Fig. 2 Schematic diagram of
the secure sum protocol. Each
party has direct communication

with a secure processor, which Public Ke
performs the homomorphic
decryption, anq a secure Encrypted
aggregator, which computes the i Resul
sum of encrypted inputs “‘“ 4&

Secure Clear Result

CO-processor Secure
Aggregator

The foreground matrix for the aggregation is shown
below using the convention that positive values are outputs
and negative values are inputs:

2y 00 0
—X1 1 0 0

Af = —X? 0 1 0 (5)
—Xk 0 0 1

where 2| represents the sum of all market shares.

Then, x=[1 x; x x¢ |” solves for the final
demand:
Ap-x=[2 0 0 0 -] (6)

The parties then compute two secure sums: to the first,
each party sends x; (which is aggregated to 2), and to the
second, each party sends a;x; (which is aggregated to 2»).
The ratio X,/%; is the market-weighted average of the
environmental parameter. Each party can gain insight by
comparing their private value to the average. No partici-
pant, nor any third party, has gained any private knowl-
edge. This computation is illustrated schematically in
Fig. 3.

3.2 Example

Consider the production of acetic acid via the catalytic
carbonylation of methanol (Franklin Associates 2007).
Acetic acid is a widely produced and inexpensive chemical
intermediate, but there exist a variety of methods for

Fig. 3 Privacy-preserving Market share — xi, ... .. X

producing it. A simplified production model for acetic acid
is shown in Fig. 4. The two material inputs are methanol
(CH;0H, often abbreviated MeOH) and carbon monoxide
(CO). Both inputs are typically produced from natural gas.
The process also requires thermal energy from natural gas
combustion, electricity, and the use of a catalyst. In the
following example, the numbers are made up.

Facility operators may be interested to compare their
efficiency or environmental performance with those of
their peers or competitors without revealing details about
their own processes. Suppose an environmental analyst had
assembled a number of representatives of acetic acid
manufacturing plants in order to assess their environmental
performance as a group. These representatives are to be the
parties to a secure computation. To protect the anonymity
of the participants, each facility could be represented by an
intermediary.

In order for the computation to take place, the following
requirements must be met (see Fig. 4):

a. Agree on a set of participants The representatives must
decide who among them wishes to participate.

Agree on a production model The parties must share a
common model of the “black box” enclosing their
processes. Although each specific plant will have a
complex design, the generalized schematic shown in
Fig. 4 can be applied to nearly any plant.

Agree on a system boundary The parties must include
and exclude the same elements from their computa-

tions. For instance, the parties must agree whether or

b.

X =xitxt

market-weighted average. The
foreground model for a
horizontal average is a tree of
height 1. The sum of activity
levels Z; and the sum of
activity-level-weighted

O)

®

1

Parties to the

. X1
computation

¥ =ag-X :[0 a; a ak]- X3

aggregation values X, are
computed via distinct secure

¢

+-1+8

Xk

o-J----F

sums

1
e —— -~ — — & —

¢

- — —e Aggregation metric =5, (weighted average)

Private inputs — ay, ...,
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(b) Production Model

(c) System Boundary Catalyst Spen;CataIyst
‘ N )/ |
MeOH prod. |- \ X , |
‘ I
! \ AA Production | (e) Reference flow
‘ March 2016 T >Acetic Acid
! P ‘ : | 120,000 kg
CO prod. |- - - > |
| 8.5 MWh 520GJ |
} Electricity NG Combusted }

(d) Measurements

~

Fig. 4 Schematic representation of a black-box model for production
of acetic acid from methanol and carbon monoxide. The figure makes
reference to the list of requirements for privacy-preserving LCI
computation in Sect. 3.2. One contributor’s fictitious private inputs
are shown alongside requirements (d) and (e)

not the production of the intermediates (methanol and
carbon monoxide) is included in the boundary. For the
schematic in Fig. 4, the production of intermediates is
assumed to happen outside the boundary.

d. Agree on measurements The parties agree to measure
electricity and thermal energy use, and to weight their
inputs by total production. Catalyst use is excluded
from the measurement.

e. Agree on a reference flow In order to make the
comparison more meaningful, the parties agree to
report on their facilities’ total output during a common
time period, in this example March of 2016.

Following the agreement, each party prepares its private
inputs: total production, total electricity use, and total
thermal energy use during the time period. In Eqgs. (5) and
(6), the total production corresponds to x;, total electricity
use corresponds to a,x;, and total thermal energy use cor-
responds to a,x;. In Fig. 4, one fictitious party’s private
inputs are shown in blue.

The parties then compute the secure sums and simulta-
neously learn the following results (also fictitious):

2i=x1+x+x---= 5,680,000 kg (7)
2y = aix; + axxy + azxz - - - = 241 MWh (8)
2y =a1x1 + axx, +asxz--- = 43,721 GJ (9)

The ratios X,/X; and X5/X| report the production-
weighted average values for a; and a,_ respectively, which
in this case are 0.071 kWh electricity and 4.3 MJ of ther-
mal energy per kg of product. Each party can privately
compare its performance to the average.

4 Discussion
When an LCA model is formulated as a foreground study,

it is possible to give a precise definition to an LCA
aggregation as an inner product of activity levels with some

process-level environmental metric. We have shown how
such a computation can be performed in a privacy-pre-
serving way using a secure sum protocol. At the end of the
computation, each party will have learned the average
value of the environmental parameter, which can be com-
pared against the private value. Our scheme uses a secure
coprocessor implementing a homomorphic addition, but
more robustly secure methods could also be applied (e.g.,
Goryczka et al. 2013). In practice, the demands for more
technical security would not be required until the parties
involved have developed a more sophisticated or routine
usage of the technique presented; in the meantime, non-
technical challenges associated with the encryption tech-
nology would outweigh the likely benefits to security that
came from the enhanced techniques.

4.1 Limitations to SMC

The secure sum approach provides stronger privacy pro-
tection than current practice because the parties can com-
pute the results without sharing their data with a common
third party in clear text. However, it is also subject to a
number of limitations. Foremost, the validity of the com-
putation requires all parties to be honest. While computa-
tional methods can ensure that each party follows the
protocol correctly, it is impossible to prevent a party from
simply reporting a false number unless a third-party audit
of the private inputs is permitted. Schemes have been
developed that would permit a public audit of inputs while
still maintaining privacy (e.g., Baum et al. 2014).

Second, though the parties may not trust each other or a
third party with their private data, technical trust in the
algorithm is still required. This is similar to any other cryp-
tographic application: the user must trust that the software is
well made, correct, and free of vulnerabilities. Third, the
parties must trust each other to maintain the secrecy of the
results: since all parties learn the same result, any one party
can reveal it. Fourth, the privacy-preserving characteristics
are weaker when parties are allowed to collude. In case of
p corrupted parties, the aggregate results of the remaining
k — p parties can easily be found if the parties collude.

Finally, secure aggregation via homomorphic encryption
requires fixed-point arithmetic. While most foreground
aggregations can be performed with limited precision without
significant information loss, the fixed-point requirement
severely limits the capacity for privacy-preserving life cycle
impact assessment (LCIA) owing to the wide dynamic range
of emission factors and characterization factors.

4.2 Applications and utility

The model presented in this paper is suitable for per-
forming any computation that can be represented as a set of
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weighted sums, which includes foreground aggregation
problems such as horizontal averaging and vertical aggre-
gation. These operations are typically associated with the
preparation of inventory data for publication, such as
preparing industry-averaged models for inclusion in LCI
databases. Current techniques for managing this style of
data may appear to provide adequate mechanisms for
preserving privacy. However, they suffer from the draw-
back that the aggregation process must be performed by a
trusted party. This can constrain participation in the data
collection effort and may provide an insurmountable bar-
rier to entry for more secrecy-minded industries. The use of
cryptographic techniques, such as the one presented here,
may expand the reach of LCA into industries that are not
presently well represented in the existing inventory data-
bases, such as many classes of chemicals and pharmaceu-
ticals, detergents, oil refineries, textile and dye producers,
and others. Coupled with an auditing mechanism, privacy-
preserving techniques may improve the accuracy of
inventory results by broadening the base of participation
and introducing the capacity to automate and self-manage
inventory data gathering.

While the technique presented here focuses on hori-
zontal averaging, the situation is similar for aggregation
along a supply chain. The same challenges identified in
Sect. 3.2 apply to the vertically aggregated case, but some
aspects are much more complex. In particular, the coordi-
nation of multiple parties along a supply chain becomes
much more difficult when the array of processes being
considered is more diverse.

The privacy-preserving approach presented here also
targets a new domain of information gathering that is not
well addressed by conventional LCA studies—that of cross-
firm collaboration for performance improvement. Rather
than being motivated by a desire to publish environmental
product declarations, firms who are confident in the privacy
of their data may pursue benchmarking activities whose
intended audience is strictly internal. At present, maintain-
ing and updating a dataset managed by a third party require a
renewal of effort on a periodic basis to elicit contributions
from participants and a burdensome manual data collection;
privacy-preserving techniques would allow interested par-
ties to pursue information independently of a third party
(Kerschbaum et al. 2011). Automated benchmarking,
enabled by the use of privacy-preserving methods, could
reduce the cost and effort required, after initial investments
to establish the participant group and the technical infras-
tructure. This would enable participants to obtain routine
and regularly updated benchmarking information to pursue
broad-based improvement in environmental performance
across an industry group.

The potential benefits would be large in the context of
environmental product declarations and regulatory
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reporting requirements, enabling firms to collaborate to
produce mutually privacy-protecting publications of a
product. Very large groups of firms could conceivably
participate in a mega-scale privacy-preserving computation
to estimate national or global normalization values. More
research is needed to demonstrate the technique in
application.

5 Conclusion

When the scope of an LCA study includes firms that are in
competition with one another, it can be challenging to gain
much more cumbersome to obtain confidentiality. A single
entity must be trusted by all contributors to view private
information. The approach presented here may be useful
when mutually competitive firms wish to gain private
knowledge about their environmental performance by
benchmarking against a cohort of similar firms.

The same model can be applied to vertical aggregation
problems, such as those involving sequential steps in a
product model. Using SMC techniques, firms that are
supply chain partners could publish a validated report of
their combined environmental footprint without exposing
information to one another.

This innovation can increase the scope of participation
in multistakeholder LCA projects, such as inventory data-
base development and aggregated inventory publishing, by
providing improved protection of confidential information.
The aggregation model can also improve transparency in
critical review by mechanizing key aspects of model
structure, data validation, and computation.
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