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Nutraceuticals are important natural bioactive compounds that

confer health-promoting and medical benefits to humans.

Globally growing demands for value-added nutraceuticals for

prevention and treatment of human diseases have rendered

nutraceuticals a multi-billion dollar market. However, supply

limitations and extraction difficulties from natural sources such

as plants, animals or fungi, restrict the large-scale use of

nutraceuticals. Metabolic engineering via microbial production

platforms has been advanced as an eco-friendly alternative

approach for production of value-added nutraceuticals from

simple carbon sources. Microbial platforms like the most

widely used Escherichia coli and Saccharomyces cerevisiae

have been engineered as versatile cell factories for production

of diverse and complex value-added chemicals such as

phytochemicals, prebiotics, polysaccaharides and poly amino

acids. This review highlights the recent progresses in biological

production of value-added nutraceuticals via metabolic

engineering approaches.
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Introduction
Nutraceutical, a hybrid term from ‘nutrition’ and ‘phar-
maceutical’ coined by Stephen L. DeFelice in 1989, was
defined as ‘any substance that is a food or a part of food
and provides medical or health benefits, including the

prevention and treatment of disease’ [1]. Later on, the
concept of nutraceutical was modified as ‘a product iso-
lated or purified from foods that is generally sold in
medicinal forms not usually associated with food’ [2].
Nutraceuticals are now more specific to structurally and
functionally diverse bioactive compounds that exert long-
tern medicinal or physiological benefits other than purely
nutritional or direct pharmaceutical effects, which distin-
guishes them from functional foods and drugs. They can
be derived from plants (e.g. phytochemicals, vitamins),
from animals (e.g. polysaccharides), from microorganisms
(e.g. poly amino acids) and from marine sources (e.g.
glucosamine and chitosan). Nutraceuticals are widely
used for their health-promoting or disease-preventing
properties especially in preventing aging-associated dis-
eases including oxidative stress, depression, inflamma-
tion, arthritis, osteoporosis, gastrointestinal diseases,
cardiovascular diseases, diabetes and cancer [3]. The
rising demands and interests in maintaining human well-
ness through diet have greatly promoted the growth of the
nutraceutical market. According to Global Information
Inc.’ recent report, the global nutraceutical market was
estimated to exceed $171.8 billion in 2014 and reach
$241.1 billion by 2019, while the US market alone was
about $75.9 billion [3].

However, the expanding nutraceutical market can hardly
be fulfilled by the productivity of conventional nutraceu-
tical industries. Direct extraction strategies are limited by
the availability and cost of raw materials, the quality
control of supplies, and the low content and purity of
nutraceuticals. Although chemical synthesis is an alterna-
tive approach, it is limited to producing simple biochem-
icals and is infeasible for complex biochemicals especially
those that are chemically unfavorable [4]. To address
these issues, microbial-based metabolic engineering is
an appealing approach and has achieved great progress
on production of value-added nutraceuticals in very re-
cent years. The rapid elucidation of biosynthetic path-
ways for natural products and the genetic amenability of
microorganisms have enabled the development of micro-
bial hosts for production of various nutraceuticals. By
further genetic manipulation of host cells and optimiza-
tion of the culture conditions or fermentation processes,
metabolic engineering makes it possible to scale up the
production of nutraceuticals from simple carbon sources.
As a matter of fact, certain commercial E. coli strains and
food-grade S. cerevisiae have been industrially used as cell
factories to produce natural products Generally Recog-
nized As Safe (GRAS). This review covers recent
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advances in nutraceutical production via microbial-based
metabolic engineering, including the well-studied phy-
tochemicals, as well as prebiotics, polysaccaharides and
poly amino acids.

Phytochemicals
Phytochemicals are a broad spectrum of plant-derived
bioactive secondary metabolites that are commonly found
in fruits, vegetables, beans and grains. They are involved
in plant defenses against biotic or abiotic stresses, and also
exhibit health-protecting or disease-preventing effects on
humans [3]. Phytochemicals is a vast and very important
repertoire for nutraceuticals, which include polyphenolic
compounds (flavonoids, isoflavonoids, stilbenoids and
curcuminoids), alkaloids, terpenoids (monoterpenes,
diterpenes, tetraterpenes, polyterpenes, steroid saponins,
lycopene and carotenoids) and their derived compounds.

Polyphenolic compounds

Amongst the phytochemicals, polyphenolic compounds
have been used for decades as effective antioxidants and
food ingredients in the nutraceutical industry. Polyphe-
nolic scaffolds such as flavonoids and stilbenoids are
derived from the phenylpropanoic pathway that extends
from aromatic amino acids L-phenylalanine and L-tyrosine
(Figure 1) [5]. L-Phenylalanine and L-tyrosine are con-
verted to pivotal intermediates cinnamic acid and p-cou-
maric acid via phenylalanine ammonia lyase (PAL) and
tyrosine ammonia lyase (TAL), which are further con-
verted to cinnamoyl-CoA and p-coumaroyl-CoA by 4-cou-
maroyl-CoA ligase (4CL), respectively. Then, three moles
of malonyl-CoA condense with cinnamoyl-CoA or p-cou-
maroyl-CoA to construct the backbone flavanones, stil-
benes or curcuminoids by type III polyketide synthases,
such as chalcone synthase (CHS), curcuminoid synthase
(CUS) or stilbene synthase (STS) [6]. With the action of
tailoring enzymes such as hydroxylases, O-methyltrans-
ferases, glucosyltransferase, lipases and prenyltransferase,
diverse polyphenolic compounds are generated [7].

E. coli and S. cerevisiae have generally been developed as
platform organisms for de novo or semi-de novo production
of almost all kinds of polyphenolic compounds (Table 1).
Some of the biggest advantages of E. coli include its fast
growth and ease of genetic manipulation; for S. cerevisiae
its Generally Regarded As Safe (GRAS) status and its
ability to functionally express plant metabolic enzymes.
In all cases, in order to achieve polyphenolic compound
production in microbes, plant-originated enzymes are
firstly overexpressed via either codon optimization or
construction of enzyme chimeras that facilitate bacterial
expression [8]. The first strategy is feeding precursors to
the heterologous hosts to produce corresponding poly-
phenolic compounds. For example, supplementation
with phenylalanine to E. coli expressing heterologous
pathways produced chrysin (9.4 mg/L) or galangin
(1.1 mg/L) while supplementation with tyrosine led to

the production of apigenin (13 mg/L) or kaempferol
(15.1 mg/L) (Table 1) [9]. This feeding approach is
widely used when precursors are low or cannot be bio-
synthesized in microbes. Flavonoid glucosides like luteolin
40-O- and 70-O-glucosides were produced by feeding luteo-
lin to E. coli expressing glycosyltransferases UGT71G1
[10]. By expressing glycosyltransferases with different
substrate specificities, quercetin 3-O-glucoside, querce-
tin-3-O-glucuronide, quercetin 3-O-galactoside and quer-
cetin-3-O-rhamnoside were respectively produced
(Table 1) [10–12]. The second approach is de novo biosyn-
thesis of phenolic compounds from simple carbon sources
like glucose and glycerol, which is more appealing for
industrial applications. E. coli hosts can be easily metaboli-
cally engineered to overproduce L-phenylalanine and L-
tyrosine from simple carbon sources. The intracellular
concentration of malonyl-CoA, the extender unit for poly-
phenolic backbones, can be greatly enhanced in E. coli by
overexpressing acetyl-CoA carboxylase (ACC) or genome-
scale metabolic optimization or by repressing malonyl-CoA
consumption pathways using antisense RNA [13,14��]. E.
coli has been successfully utilized for de novo biosynthesis
of certain polyphenolic compounds such as pinocembrin,
pinosylvin, sakuranetin and ponciretin [15–17]. Further-
more, substrate promiscuity of authentic or engineered
enzymes has provided with new possibilities to produce
novel or non-natural polyphenolic compounds [18�,19].

Alkaloids

Alkaloids are amino acid-derived nitrogenous compounds
that have important therapeutic values, including anti-
cancer and antimalarial effects [5]. For a long time,
production of alkaloids was limited to plants because of
their complex structure and long biosynthetic pathways.
The three most well-known alkaloids are benzylisoquino-
line alkaloids (BIAs) derived from tyrosine, monoterpene
indole alkaloids (MIAs) derived from tryptophan and
glucosinolates. In recent years, elucidation of many
BIA biosynthetic pathways enabled the reconstruction
of BIA pathways in both E. coli and S. cerevisiae
[20��,21,22]. (S)-reticuline, a branch-point intermediate
for BIA, was biosynthesized from simple carbon sources
with titer of 46.0 mg/L [20��]. Bacteria consortia of E. coli
producing (S)-reticuline and S. cerevisiae producing either
monooxygenase CYP80G2 or the berberine bridge en-
zyme (BBE) yielded 7.2 mg/L magnoflorine and 8.3 mg/L
scoulerine, respectively (Figure 1) [23]. S. cerevisiae was
also enabled to produce (R,S)-reticuline and was further
engineered to generate scoulerine, tetrahydrocolumba-
mine and tetrahydroberberine from (S)-reticuline and
salutaridine from (R)-reticuline [24]. However, metabolic
engineering of MIA alkaloids in microbes is limited.
Recently, de novo production of the MIA alkaloid stricto-
sidine has been achieved in yeast by introducing 21 new
genes and deleting 3 genes in the yeast genome (Table 1)
[25��]. Glucosinolates are sulfur-rich, amino acid-derived
natural compounds. Tryptophan-derived indolylgluco-
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sinolate (IG) has recently  been produced in S. cerevisiae
by inserting eight plant genes into the genome, which
represents a rare example of glucosinolate production in
microbes (Figure 1) [26��]. Although plant platforms are
more suitable for scalable alkaloid production, metabolic
engineering in microbes has shown potential capability

for cost-efficient production of these plant-derived com-
pounds [7,25��].

Terpenoids

Terpenoids are present in green foods, soy plants and
cereals, and serve as the largest class of phytonutrients
with anti-inflammatory, anti-infectious and anti-cancer
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Examples of microbial-based production of phytochemicals from aromatic amino acids. Arrows represent the metabolic flux from primary

shikimate pathway to target phytochemicals. Polyphenolic compounds are derived from phenylalanine or tyrosine, benzylisoquinoline alkaloids

(BIA) are derived from tyrosine, monoterpene indole alkaloids (MIA) and indolylglucosinolate (IG) are derived from tryptophan.
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properties [3,7]. Terpenoids are isopentenyl pyrophos-
phate (IPP) or dimethylallyl pyrophosphate (DMAPP)
derived compounds of diverse carbon skeletons, including
monoterpenes (C10, e.g. menthol), sesquiterpenes (C15,
e.g. artemisinin), diterpenes (C20, e.g. paclitaxel), triter-
pens (C30, e.g. steroids), tetraterpenes (C40, carotenoids)
and polyterpenes [5]. Microbial production of terpenoids

such as taxadiene (intermediate of anticancer drug pacli-
taxel) and artemisinic acid (precursor of antimalarial drug
artemisinin) exemplified the advances and successes of
metabolic engineering for production of value-added ter-
penoid pharmaceuticals. In nutraceutical industries, tetra-
terpene carotenoids such as b-carotene, lutein, lycopene,
a-carotene and astaxanthin serve as natural food colorants

100 Food biotechnology

Table 1

Biological production of nutraceuticals via metabolic engineering in different hosts.

Nutraceuticals Heterologous hosts Fed precursors Titers (mg/L) References

Polyphenolic compounds

Apigenin (Flavone) E. coli Tyrosine 13 [9]

Chrysin (Flavone) E. coli Phenylalanine 9.4 [9]

Pinocembrin (Flavanone) E. coli Glucose 40.2 [15]

Eriodictyol (Flavanone) E. coli Tyrosine 107 [51]

Naringenin (Flavanone) S. cerevisiae Glucose 108.9 [52�]

Catechin (Flavanonol) E. coli Eriodictyol 910.9 [53]

Genistein (Isoflavonone) E. coli-S. cerevisiae Tyrosine 6 [54]

Resveratrol (Stilbenoid) E. coli Tyrosine 35.02 [55]

Pinosylvin (Stilbenoid) E. coli Glucose 70 [16]

Curcumin (Curcuminoid) E. coli Tyrosine 0.6 [56]

Caffeic acid E. coli Glucose and glycerol 766.68 [57]

Flavonoid derivatives

Sakuranetin E. coli Glucose 42.5 [17]

Ponciretin E. coli Glucose 40.1 [17]

7-O-Methyl aromadendrin E. coli p-coumaric acid 2.7 [58]

Luteolin 4-O-glucosides E. coli Luteolin 10.86 [10]

Luteolin 7-O-glucosides E. coli Luteolin 6.52 [10]

Luteolin-7-O-glucuronide E. coli Luteolin 300 [11]

Kaempferol 3-O-glucoside E. coli Naringenin 109.3 [10]

Kaempferol-3-O-rhamnoside E. coli Kaempferol 150 [12]

Quercetin 3-O-glucoside E. coli Quercetin 11.54 [10]

Quercetin-3-O-glucuronide E. coli Quercetin 687 [11]

Quercetin-3-O-rhamnoside E. coli Quercetin 200 [12]

Anthocyanin E. coli Catechin 110 [59]

Genistein glucosides E. coli Genistein 37.29 [60]

Genistin S. cerevisiae Genistein – [61]

Daidzin S. cerevisiae Daidzein – [8]

3-Hydroxydaidzein E. coli Daidzein 75 [61]

Alkaloids

(S)-reticuline (Benzylisoquinoline alkaloid) E. coli Glycerol 46 [20��]

Strictosidine (Monoterpene indole alkaloid) S. cerevisiae Glucose 0.53 [25��]

Indolylglucosinolate (Glucosinolate) S. cerevisiae Glucose 1.07 [26��]

Terpenoids
Lycopene E. coli Glucose 18 mg/g [62]

b-Carotene E. coli Glucose 2100 [27]

Zeaxanthin E. coli Glucose 43.46 [28]

Astaxanthin E. coli Glucose 1.4 mg/g [29]

Prebiotics

2-Fucosyllactose E. coli Lactose and glycerol 20280 [39�]

Galactooligosaccharides Lactococcus lactis Lactose 197000 [37]

Polysaccaharides

Heparosan E. coli Glycerol 1880 [46]

Hyaluronan Streptomyces albulus Sucrose 6200 [42]

Scleroglucan Sclerotium rolfsii Uridine Mono-phosphate 22320 [63]

Chondroitin E. coli Glucose 2400 [45��]

Poly amino acids

Poly-e-L-lysine Streptomyces sp. M-Z18 Glucose and glycerol 35140 [64]

Poly-g-glutamic acid Bacillus subtilis BL53 L-glutamic acid and glycerol 17000 [65]

Cyanophycin E. coli Yeast extract 120 mg/g [48]
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and feed supplements [5]. Combinatorial carotenoid bio-
synthesis in heterologous non-carotenogenic hosts like
E. coli and S. cerevisiae has been achieved for decades.
Since then, metabolic engineering efforts have mainly
focused on large-scale production of carotenoids. Strain
optimization via systematic and combinatorial gene knock-
outs significantly increased lycopene production in E. coli
[6]. Engineering central metabolic modules of E. coli to
increase ATP and NADPH supplies improved b-carotene
production to 2.1 g/L b-carotene with a yield of 60 mg/g
DCW [27]. Lycopene derived zeaxanthin was biosynthe-
sized and its production improved to 43.46 mg/L via protein
fusion approaches for coordinating expression of lycopene
b-cyclase gene crtY and b-carotene 3-hydroxylase gene crtZ
[28]. A plasmid-free E. coli strain with the xanthophyll
biosynthetic genes chromosomally integrated produced
astaxanthin with a yield of 1.4 mg/g DCW [29]. Besides
conventional carotenoids, discovery and production of new
carotenoids with health-promoting benefits have also in-
creased the pool of available carotenoids. Novel carote-
noids such as 4-ketozeinoxanthin and the rare C50

carotenoids sarcinaxanthin, decaprenoxanthin and sar-
prenoxanthin have been produced in lycopene-produc-
ing E. coli hosts [30,31]. Recently, a non-natural purple
carotenoid C50-astaxanthin was produced in E. coli using

mutants of the first two pathway enzymes, farnesyl di-
phosphate synthase (FDS) and carotenoid synthase
(CrtM), with shifted size-range substrate selectivities
to enhance production of C50 backbone while suppress
non-target compounds [32��].

Prebiotics
A prebiotic is defined as ‘a nonviable food component that
confers a health benefit on the host associated with
modulation of the microbiota’ by The Food and Agricul-
ture Organization of the United Nations (FAO) [33].
Prebiotics are non-digestible saccharide polymers that
contain 3–10 monomeric sugar units (Figure 2). The
beneficial effects of prebiotics on humans lie in their
modulation on diversity and metabolic activity of the gut
microbiota, which may consequently have significant
impact on the host immune system. Thus, prebiotics
could be used to treat inflammatory diseases by boosting
probiotics like Bifidobacteria or Lactobacillus species with-
in the gut microbiota [34]. Representative prebiotics
include inulin, fructo-oligosaccharides (FOS) and
galacto-oligosaccharides (GOS). Inulin and inulin-type
fructans, also known as soluble dietary fibers, could be
produced by probiotic Lactobacillus gasseri strains [35].
GOS are lactose-derived galactose polymers with shorter
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polymer chains. GOS could be produced by Kluyveromyces
lactis with a titer of 177 g/L from 400 g/L lactose [36].
Expression of codon-optimized b-galactosidase from the
hyperthermophile Sulfolobus solfataricus in Lactococcus
lactis efficiently converted lactose to GOS [37]. 20-Fuco-
syllactose (20-FL) is one of the most abundant oligosac-
charides in human milk and has been approved as
nutritional additive in term infant and toddler formulas.
By increasing the availability GDP-L-fucose and over-
expression of fucosyltransferase, 20-FL could be largely
produced from lactose and glycerol in E. coli [38,39�].

Polysaccharides
Polysaccharides are sugar polymers of versatile structures
that can be largely produced by several bacteria, yeast and
fungi or extracted from plant and animal tissues
(Figure 2). Microbial polysaccharides have been recog-
nized as a source for nutraceuticals owing to their health-
beneficial properties. Bacterial polysaccharides such as
xanthan, gellan, dextrans and alginate can be commercial-
ized via microbial production and purification [40]. Exo-
polysaccharides (EPS) are preferentially produced via
metabolic engineering of Lactococcus and Streptococcus for
their wide use in dairy products. Especially, bioactive
fungal polysaccharides have demonstrated extensive
immunostimulating, antitumor, antimicrobial, antioxidant,
hypocholesterolaemic and hypoglycaemic benefits, thus
indicating great potential in both nutraceutical and phar-
maceutical applications [41]. Potential antitumor and anti-
viral polysaccharide scleroglucan is an extracellular glucan
excreted by mycelia of Sclerotium rolfsii, whose yields could
be enhanced via addition of L-lysine and uridine mono-
phosphate (UMP) [41]. Instead of extraction from animal
tissues, several animal polysaccharides like hyaluronic acid
(HA), chondroitin and heparosan have also been produced
by microbial hosts. Microbial production of hyaluronic acid
has been achieved in various hosts including E. coli, Lacto-
coccus lactis and Streptomyces albulus [42–44]. Medicinally
important polysaccharides such as heparosan and chon-
droitin can be produced by engineered E. coli reaching a
relatively high titer of 1.88 g/L and 2.4 g/L, respectively
(Table 1) [45��,46].

Poly amino acids
Poly amino acids are synthesized in microorganisms
from one or two type of amino acids by ribosome-
independent enzymatic processes that distinguish them
from protein synthesis. Three kinds of poly amino acids,
namely poly-g-glutamic acid (g-PGA), poly-e-L-lysine
(e-PL) and multi-L-arginyl-poly(L-aspartic acid) (cya-
nophycin), are present in nature (Figure 2). g-PGA is a
water-soluble and biodegradable polymer that can be
used as a degradable biomaterial such as drug carriers or
hydrogels. g-PGA can be largely produced (20–50 g/L)
by Bacillus species when feeding L-glutamic acid. In
order to achieve g-PGA production from glucose, opti-
mization of co-cultivation of Corynebacterium glutamicum

and Bacillus subtilis could maximally produce 32.8 g/L g-
PGA [47]. Cyanophycin was produced from equimolar
amounts of arginine and aspartic acid by cyanobacteria
and some other chemotrophic bacteria (e.g. Acinetobacter
calcoaceticus), which can be used as a precursor of dipep-
tides for nutritional and therapeutic applications.  Over-
expression of cyanophycin synthetase  cphA from
Synechocystis sp. PCC 6803 in E. coli achieved cyanophy-
cin production with productivity  of 120 mg/g CDW [48].
e-PL is a microbial-derived homo-poly amino acid that
is synthesized by polymerization of lysine via e-PL
synthetase (PLS). e-PL possesses antibacterial and an-
ticancer activities and has been approved as food pre-
servative or dietary agent in Japan and United States
[49]. e-PL was produced by Streptomyces species such as
Streptomyces albulus. Production of e-PL in Streptomyces
sp. M-Z18 could reach 35.14 g/L when using glucose
and glycerol as carbon sources [64].

Conclusions
The last few decades have witnessed the remarkable
progresses of nutraceuticals production via metabolic en-
gineering of microbial-based platforms, which is in re-
sponse to the great demands for value-added
nutraceuticals to fortify humans against diseases. Metabol-
ic engineering in microbes made possible not only the
laboratory-scale preparation but also industrial-scale pro-
duction of complex natural products such as carotenoids
from simple carbon sources. Especially, with the elucida-
tion of biosynthetic pathways and development of synthet-
ic biology strategies, novel or more complicated value-
added compounds could be produced in microbes in a
naturally developed manner. The amenability of genetic
manipulation and tolerance of heterologous enzymes en-
abled microbes to produce diverse nutraceuticals via har-
nessing their native metabolic networks. One of the major
limitations of microbial platform is the efficiency of plant or
animal-derived enzymes that limit the productivity of the
target compounds. While other non-microbial production
platforms such as algae and plant-derived cell cultures have
also been developed to produce natural or non-natural
value-added nutraceuticals, there is little doubt that con-
tinuing advances in metabolic engineering and synthetic
biology will allow the production of virtually any nutraceu-
tical through a microbial host.
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