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a b s t r a c t

Metabolic engineering and synthetic biology have enabled the use of microbial production platforms for
the renewable production of many high-value natural products. Titers and yields, however, are often too
low to result in commercially viable processes. Microbial co-cultures have the ability to distribute
metabolic burden and allow for modular specific optimization in a way that is not possible through
traditional monoculture fermentation methods. Here, we present an Escherichia coli co-culture for the
efficient production of flavonoids in vivo, resulting in a 970-fold improvement in titer of flavan-3-ols over
previously published monoculture production. To accomplish this improvement in titer, factors such as
strain compatibility, carbon source, temperature, induction point, and inoculation ratio were initially
optimized. The development of an empirical scaled-Gaussian model based on the initial optimization
data was then implemented to predict the optimum point for the system. Experimental verification of
the model predictions resulted in a 65% improvement in titer, to 40.770.1 mg/L flavan-3-ols, over the
previous optimum. Overall, this study demonstrates the first application of the co-culture production of
flavonoids, the most in-depth co-culture optimization to date, and the first application of empirical
systems modeling for improvement of titers from a co-culture system.

& 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

1. Introduction

The microbial production of biofuels, commodity chemicals,
and natural products is continually being improved through the
use of various pathway optimization tools and techniques (Boock
et al., 2015; Cress et al., 2015b; Jones et al., 2015b). Until recently,
these efforts have focused primarily on optimization of single
strain monocultures to facilitate conversion of substrate to pro-
duct. Although successful, these efforts are continually plagued
with the trade-offs associated with choosing a single host strain to

simultaneously perform multiple bioconversions, often having
different precursor and co-factor requirements (Yadav et al., 2012).
Nature has overcome these trade-offs through organelle com-
partmentalization of pathways in higher organisms (Roze et al.,
2011) and through microbial consortia in lower organisms (Koenig
et al., 2011; Paerl and Pinckney, 1996). Humans have taken
advantage of co-culture approaches for wastewater treatment
(Gaikwad et al., 2014; Manz et al., 1994) and fermented food
products (Smid and Lacroix, 2013; Young and Kiefer, 2014) for
decades. However, only recently have scientists begun to investi-
gate the true potential of co-culture techniques in metabolic
engineering and synthetic biology applications (Brenner et al.,
2008).

Recently, several groups have reported elegant applications uti-
lizing co-cultures for the production of pharmaceutical precursors
(Zhou et al., 2015), commodity chemicals (Zhang et al., 2015a,
2015b), and potential biofuels (Saini et al., 2015). In one such
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example, a Saccharomyces cerevisiae–Escherichia coli co-culture was
engineered to take advantage of rapid taxadiene production from E.
coli and the ability of S. cerevisiae to actively express cytochrome
P450s to catalyze taxadiene functionalization into oxygenated tax-
anes. These steps have proven to be inefficient or impossible to
accomplish in either a S. cerevisiae or E. coli monoculture. Albeit
impressive, previous studies have lacked the rigorous optimization
necessary to fully realize the complete production potential of these
co-culture systems.

We report the development and optimization of an E. coli–E.
coli co-culture for the efficient production of flavonoids. Flavo-
noids are high-value molecules with promising potential for
pharmaceutical applications resulting from interesting bioactivity
(Chemler et al., 2007; Bhan et al 2013; Heiss et al., 2003; Hooper
et al., 2012; Monagas et al., 2010). In the case of flavan-3-ols, a
subclass of flavonoid molecules, high-titer production has been
achieved from both the malonyl-CoA requiring upstream module
(phenylpropanoic acids to flavanones) (Leonard et al., 2007; Xu
et al., 2011) and the NADPH requiring downstream module (fla-
vanones to flavan-3-ols) (Zhao et al., 2015). However, when the
complete pathway is expressed in monoculture, reported titers for
flavan-3-ols from phenylpropanoic acids are greater than three
orders of magnitude lower than the independent modules
(Chemler et al., 2007). This observation motivated the choice to
attempt co-culture production of flavan-3-ols in E. coli.

To accomplish this task, careful experimental optimization of
carbon source, induction temperature, induction point, inoculation
ratio, and strain choice was used to map the production landscape.
The experimental optimization was coupled with extensive
empirical modeling techniques that were applied to predict con-
ditions for optimal production. Searching the solution space sur-
rounding the predicted optimum resulted in a 65% improvement
in flavan-3-ol titer to 40.770.1 mg/L from p-coumaric acid,
representing a 970-fold improvement over previous literature
reports. This study highlights the potential for the use of co-
culture methods to further improve microbial production of plant
natural products in E. coli.

2. Materials and methods

2.1. Bacterial Strains, vectors, and media

E. coli DH5α was used to propagate all plasmids, while the
BL21star™(DE3), BL21star™(DE3)ΔsucCΔfumC, or BL21star™(DE3)
ΔpgiΔppc was used as the hosts for flavonoid production (Chemler
et al., 2010). The ePathBrick vector, pETM6, was used as the basis for
all plasmid construction and pathway expression. Luria Broth (LB)
Lennox modification (Sigma) and Andrew's Magic Medium (AMM)
(He et al., 2015) were used where noted. All plasmid constructs will
be made available through Addgene.org.

2.2. Flavonoid pathways and ePathOptimize library construction

Genes involved in the 12 candidate upstream flavanone pro-
duction pathways were obtained from previously published lit-
erature from the Koffas lab. Vv4CL, Pc4CL, CmCHS, PhCHS, CmCHI,
and MsCHI were obtained in ePathBrick vector pETM6 (Cress et al.,
2015a; Xu et al., 2012), while At4CL was acquired through PCR
amplification (ACCUZYME 2x mix, Bioline) of plasmid #3 DNA
using primers 1 and 2 (Supplementary Table 2) (Lim et al., 2011).
The ePathBrick destination vector, pETM6, and At4CL PCR ampli-
con were digested with restriction enzymes NdeI/XhoI (FastDigest,
Thermo Scientific) and gel purified (E.Z.N.A. MicroElute Gel
Extraction Kit, Omega Bio-tek). Digested At4CL PCR product was
ligated with digested pETM6 backbone to create plasmid 2,

Supplementary Table 1. Constructs were then transformed into
chemically competent DH5α for verification and plasmid propa-
gation. Colonies were screened via restriction digest and further
verified with Sanger sequencing (GENEWIZ, Inc.) using the
sequencing primers 3 and 4 in Supplementary Table 2. Site
directed mutagenesis was then preformed using standard proto-
cols to silently remove the NheI restriction site from At4CL using
primers 5 and 6 (Supplementary Table 2). Complete candidate
pathways were constructed in monocistronic form using standard
ePathBrick methods (Xu et al., 2012) resulting in plasmids 10–27,
Supplementary Table 1. Occasionally the restriction site ApaI was
used to replace SalI when the pathway genes either contained
internal SalI restriction sites or to optimize the insert:backbone
ratio for improved ligation efficiency. Plasmids p148 and p168
containing complete downstream modules were not modified
from previous reports (Zhao et al., 2015).

The upstream pathway genes were cloned in monocistronic
form with randomized promoter strengths using previously pub-
lished methods (Jones et al., 2015). Multiple transformations were
oftentimes completed to ensure sufficient library sampling and
retention. The final plasmid library, pETM6-xxAt4CL-xxPhCHS-
xxCmCHI, was transformed into BL21star™(DE3)ΔsucCΔfumC for
screening. The ‘xx’ feature represents the inclusion of a single
random mutant T7 promoter from the five-member ePathOpti-
mize library.

2.3. Small-scale cultivation protocol

Single colonies of each strain were inoculated separately into
25 mL of AMM in a 125 mL non-baffled shake flask with ampicillin
(80 μg/mL) and grown overnight at 37 °C. After 14 h, the overnight
cultures were mixed volumetrically to the indicated inoculation
ratios and were inoculated at 2% (40 uL) into 2 mL of AMM and
allowed to grow at 37 °C before induction with 1 mM IPTG. Upon
induction, the cultures were transferred to the appropriate
induction temperature and grown for 48 h. All small-scale
screening was completed in polypropylene 48-well plates (5 mL,
VWR). Except where noted, the cultures were grown in AMM with
20 g/L Glycerol, 100 mg/L of substrate was added at induction, and
30 °C was used as the induction temperature.

2.4. Bioreactor fermentation protocol

Fed-batch style fermentation was performed using a DASGIP
parallel bioreactor at an initial working volume of 500 mL of AMM
with 20 g/L glycerol as a carbon source. Overnight cultures were
prepared identically to the small-scale protocol presented above.
The bioreactor was inoculated at an initial ratio of 7:3 (C5:p168) at
2% of final volume. The pH and DO of the fermentation broth was
maintained at 7.2 and 50 percent saturation through addition of
6 M sodium hydroxide and application of stirring cascade control,
respectively. The feed solution [250 g/L glycerol, 4 g/L casamino
acids, 7 g/L (NH4)2HPO4, and 80 μg/mL ampicillin] and 2x MOPS
mix (Jones et al., 2015) was fed at 2 mL per hour from 5–15 h and
4 mL per hour from 15–26 h. The fermentation was induced with
IPTG to a final concentration of 1 mM after 7 h of growth
(OD600¼7.1) and the system was cooled to 30 °C. The substrate,
p-coumaric acid, was added in 50 mg/L aliquots at 1, 4, and 7 h
post induction. Samples were taken periodically for measurement
of OD600 and metabolite analysis.

2.5. Metabolite analysis

Fermentation broth was mixed with an equal volume of abso-
lute ethanol and vortexed for 10 seconds prior to centrifugation
(10 min, 20,000g). The supernatant (25 μL) was used for HPLC
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analysis carried out using Agilent 1200 series HPLC equipped with
a ZORBAX SB-18 column (5 μm, 4.6�150 mm) and a diode array
detector. The mobile phase was acetonitrile (solvent A) and
water (solvent B) (both contain 0.1% formic acid) at a flow rate of
1 mL/min. HPLC programwas as follows: 10–40% A (0–10 min) and
40–60% A (10–15 min). Absorbance at 280 nmwas monitored in all
cases. Titer of products was determined using authentic standards
while (þ)-afzelechin was quantified using the (þ)-catechin cali-
bration curve. All experiments were preformed in duplicate. Error
bars represent 71 standard deviation of biological duplicate.
Significance of data was determined using a two-tailed unpaired
t-test with a 95% confidence interval.

2.6. Empirical modeling methods

The empirical model function used is a four-dimensional
scaled-Gaussian function of the form

y xð Þ ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þ4 Σ

�� ��
q e� 1

2 x�μð ÞTΣ� 1 x�μð Þ

where the parameters are ΣAR4�4, μAR4�1, and bAR; and xA
R4�1 contains the values of the experimental variables: induction
point, inoculation ratio, carbon source, induction temperature.
Parameter values were determined by least squares using 72
experimental data points. Fitted parameter values are listed in
Supplementary Table 3. The empirical model was optimized to
find the maximum titer yðxÞ by varying x. The optimization was
performed by equivalently minimizing �yðxÞ using the MATLAB
function fmincon, which utilizes an interior point method to find
the minimum of a constrained nonlinear multivariable function.
All calculations involved in parameter fitting and optimization of

the empirical function were carried out in MATLAB, and scripts can
be viewed in Supplementary materials.

3. Results and discussion

The production of flavan-3-ols from phenylpropanoic acid
precursors proceeds through six enzymatic steps: 4-coumaroyl-
CoA ligase, 4CL; chalcone synthase, CHS; chalcone isomerase, CHI;
flavanone 3β-hydroxylase, F3H; dihydroflavonol 4-reductase, DFR;
leucoanthocyanidin reductase, LAR; (Fig. 1). The complete pathway
is partitioned such that both the upstream and downstream
modules contain three genes. This modularization reduces the
metabolic burden of enzyme overexpression and divides the
pathway according to necessary co-factor requirements: malonyl-
CoA (upstream) and NADPH (downstream).

3.1. Independent optimization of upstream and downstream
modules

The ability to tailor the genetic optimization of each strain in a
co-culture system for improved flux towards necessary co-factors
and substrates through the pathway of interest and away from
unwanted side products is a major advantage over monoculture
methods. We began our modular optimization by focusing on the
upstream strain containing 4CL, CHS, and CHI. Building on pre-
vious efforts to optimize malonyl-CoA availability, BL21star™(DE3)
ΔsucCΔfumC was chosen as the host strain for this upstream
module (Xu et al., 2011). We then chose homologs for each of the
three enzymes from different plant sources, resulting in 12 com-
binations of potential upstream pathways. Upon screening for
functional conversion of two phenylpropanoic acid precursors to

Fig. 1. Flavonoid pathway highlighting upstream (green) malonyl-CoA dependent and downstream (blue) NADPH dependent co-culture modules. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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their corresponding flavanones, several high-titer homolog com-
binations were discovered (Fig. 2A). Constructs containing the 4CL
from Arabidopsis thaliana (At4CL) showed significantly (po0.001)
higher conversion leading towards the choice of construct con-
taining At4CL, PhCHS, and CmCHI for further optimization.

Using the recently published ePathOptimize technique for
modulating the transcriptional landscape (Jones et al., 2015), the
promoter strengths of each gene in the upstream module were
randomized to one of five mutant T7 promoters of various
strength. The library members were then screened for conversion
of p-coumaric acid to naringenin in vivo (Fig. 2B). The results
indicated high sensitivity to promoter strength and resulted in one
mutant (C5 or pFlavoopt) that out-performed the consensus T7
control strain by 24%. This pFlavoopt mutant was sequenced and
was found to have the consensus T7 sequence controlling
expression of At4CL and PhCHS, while the strong mutant promoter
C4 was found to control expression of CmCHI. The nomenclature
C5 or pFlavoopt refers to the transcriptionally optimized plasmid
expressed in the flavanone expression strain BL21starTM(DE3) (S4,
Supplementary Table 1) and contains the incorporation of

ePathOptimize mutant T7 promoter C4 controlling the expression
of CmCHI. This transcriptionally optimized plasmid was then uti-
lized in future co-cultures.

Optimization of the downstream pathway has been previously
explored through screening of 18 homolog gene combinations
resulting in two combinations that exhibit efficient conversion of
both naringenin and eriodictyol substrates across a wide range of
substrate concentrations (Zhao et al., 2015). To confirm the find-
ings of this previous study, both the p148 and p168 constructs
were tested using a cultivation protocol and substrate concentra-
tion realistic to the levels expected in the current study. Similar
titers and trends were obtained with p168 slightly out-performing
p148 (Supplementary Fig. 1), leading towards the choice of p168
for the downstream module in the co-culture optimization. Fur-
ther optimization of plasmid p168 was not performed due to
limiting fluxes through the upstream module. With independent
genetic optimization of the upstream and downstream modules
completed, the lead candidates for each module were then
screened for strain compatibility in co-culture.

Fig. 2. Upstream strain optimization and co-culture compatibility determination. (A) Screening of 12 potential upstream homolog combinations resulted in several high-titer
pathways. (B) Application of ePathOptimize technique for transcriptional optimization resulted in high sensitivity to changes in the transcriptional landscape. (C) Lead strains
from the individual strain optimization studies were grown in co-culture to determine strain compatibility prior to additional fermentation optimization. All data was
obtained in AMM – 2% glucose, 30 °C induction temperature. Error bar represent7one standard deviation from duplicate experiments.
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3.2. Determination of co-culture compatibility

Strain compatibility is a significant factor in any co-culture
system. The strains must be able to efficiently grow in the same
media, have the same antibiotic selection, and must not produce
toxic compounds that significantly harm the other members of the
microbial community. Many of these criteria can be easily
addressed by using strains of similar background, but module
specific mutations towards improving intercellular conditions for
the pathway of interest can impact cellular compatibility in co-
culture. Furthermore, pathway metabolites that connect the indi-
vidual members of the co-culture must be readily transferred
across the cell membrane from the producer to the consumer.

Two strains from each the upstream and downstream module
were tested for their cross compatibility in co-culture. For the
upstream strain, the transcriptionally optimized pFlavoopt mutant
and the consensus control plasmid (#17, Supplementary Table 1)
were used in strain BL21star™(DE3)ΔsucCΔfumC, while for the
downstream module a single plasmid, p168, was tested in two
host strains: wild type BL21star™(DE3) and BL21star™(DE3)
ΔpgiΔppc. The authors have noticed a significant decrease in cell
growth for the ΔpgiΔppc strain background and hypothesized
that this would affect strain performance in co-culture. Four co-
culture combinations were tested across various initial inoculation
cell ratios (Fig. 2C) and a significant reduction in flavan-3-ol titer
was seen for the two co-cultures containing BL21*(DE3)ΔpgiΔppc
(po0.001). Nearly identical performance was achieved by strains
containing either the consensus control or the pFlavoopt mutant
upstream module. From these results, the authors chose BL21*
(DE3)ΔsucCΔfumC with the pFlavoopt mutant upstream module

and the wild type BL21*(DE3) with the p168 plasmid for further
optimization.

3.3. Determination of important optimization parameters

To begin fermentation optimization of the co-culture system,
we identified two key parameters predicted to result in high
sensitivity: induction point and inoculation ratio. Both the
upstream and downstream modules contain pET expression cas-
settes controlled by the T7-lac system, and therefore protein
production is inducible with the addition of IPTG. A wide variety of
optimum induction points have been presented in the primary
literature for pET-based systems indicating that the optimum
induction point is linked to division of cellular resources and is
more complex than purely affecting protein production levels
(Andrianantoandro et al., 2006; Jones et al., 2015a). Due to this
complexity, the optimum induction point is specific to the parti-
cular system and set of cultivation conditions and must be deter-
mined experimentally.

The initial inoculation ratio of upstream to downstream cells in
the fermentation is another important parameter that adds to the
complexity of co-culture systems. Variation of this ratio allows for
changes to be made in population dynamics, accounting for dif-
ferences in population growth rate and specific activity of the
strains in co-culture. Interestingly, when various induction points
were crossed with multiple inoculation ratios, we saw an ortho-
gonal response in product titer from the two parameters (Fig. 3A).
The system demonstrated a peak induction point of 4 h post-
inoculation regardless of inoculation ratio and a peak inoculation
ratio of 9:1 regardless of induction point, resulting in the point of
highest titer at a 4-h induction and an initial inoculation ratio of

Fig. 3. Sensitivity to induction point, inoculation ratio, and induction temperature for the co-culture system. (A) Variations in induction point and inoculation ratio
demonstrate orthogonal response in product titer. Data obtained in glucose only media at an induction temperature of 30 °C. (B–D) Variations in the induction temperature
show significant shifts to the magnitude and profile of the production landscape. Data obtained in glycerol only media. (B) 10 °C induction temperature. (C) 20 °C induction
temperature. (D) 30 °C induction temperature. Data labels represent the highest titer reported in each window. Error bars represent7one standard deviation from duplicate
or greater (nZ2) experiments.
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9:1 (C5:p168). This finding led to the decision to screen all future
parameters across various induction points and inoculation ratios
to visualize the production landscape. Furthermore, the observed

trends indicate that the system is stable over a wide range of initial
inoculation ratios, showing no tipping point where one strain
demonstrates a propensity to dominate the population with time.
Additional analysis of substrate and flavanone intermediate con-
centrations also vary as expected with variable inoculation ratio
(Supplementary Fig. 2). In co-cultures with dominant upstream
ratios, considerable initial substrate is utilized and intermediate
product is accumulated, but little intermediate is converted to final
product; while co-cultures with dominant downstream ratios
utilized little initial substrate, limiting flux through the entire
system. However, at intermediate inoculation ratios, high amounts
of initial substrate are utilized while low intermediate product
titers are present due to efficient conversion to the final product.

3.4. Effect of carbon source

Previous literature reports and early experimental evidence
(data not shown) fueled the decision to use the Andrew's Magic
Medium (AMM) with 20 g/L of glucose as the initial production
media for individual strain optimization and preliminary co-
culture experiments. In an attempt to reduce the production
costs at the industrial scale, and because of the increased interest
to utilize glycerol for industrial fermentations (Da Silva et al.,
2009; Martínez-Gómez et al., 2012), we varied the proportion of
glucose to glycerol in the culture media. In addition to economic
incentives, the preference for glycerol over other carbon sources
has been reported for different microbial strains due to strain-
specific differences in gene expression and metabolite profiles
upon growth on glycerol (Bizzini et al., 2010). With all media
having 20 g/L total carbon source, five carbon source ratios were
tested ranging from glucose only to glycerol only (Fig. 4A–E).
Several trends in the production landscape were observed upon
the shift from growth on glucose to glycerol. The most noticeable
trend was higher optimum titers with increasing proportion of
glycerol. Upon growth on increasing proportions of glycerol, a shift
in the production landscape resulted in higher titers appearing at
later induction points and peak inoculation ratios with higher
proportion of the downstream strain. Additionally, glucose-grown
cultures demonstrate a sharp peak in the production landscape,
where glycerol-grown cultures show a plateau with many high-
titer solutions.

3.5. Induction temperature optimization

Fermentation temperature can affect cellular growth dynamics,
enzyme folding, and specific enzyme activity (Hannig and
Makrides, 1998). These effects have not been well documented on
the systems level, such that optimum fermentation temperature
could be predicted for any given system a priori. We therefore
decided to test co-culture production at induction temperatures of
10, 20, or 30 °C. The co-culture was grown at 37 °C prior to
induction at which the temperature was then dropped to the
specified induction temperature after induction. Previous efforts
have maintained an induction temperature of 30 °C. A significant
decrease in optimal titer was observed in the 10 °C case with the
20 and 30 °C cases showing similar maximum achieved titers
(Fig. 3B–D). Although similar in optimum titer, the 20 and 30 °C
cases did show different production landscapes such that the 20 °C

Fig. 4. Effect of carbon source composition on product titer and the shape of the pro-
duction landscape. (A–E) Increasing the proportion of glycerol in the production media
results in higher titers, later induction point optimums, and optimum inoculation ratios
with higher proportion of the downstream strain. (A) Glucose Only. (B) 1:1 Glucose:Gly-
cerol. (C) 1:3 Glucose:Glycerol. (D) 1:9 Glucose:Glycerol. (E) Glycerol Only. Data labels
represent the highest titer reported in each window. Error bars represent7one standard
deviation from duplicate or greater (nZ2) experiments.
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case had a sharp optimum while the 30 °C case demonstrated
more of a plateau with many conditions resulting in moderately
high titers. Additionally, similar trends were observed for
increasing induction temperature as were seen for increasing
proportion of glycerol in the media. Notably, increases in induction
temperature resulted in a shift of the production landscape
towards optimum solutions with later induction points and
inoculation ratios favoring more of the downstream strain.

3.6. System modeling for prediction of optimum operating conditions

The aforementioned observations suggested that the titer
achieved by the system could be improved by selecting optimized
experimental conditions. To identify potential conditions that
could result in an optimal titer, an empirical modeling approach
was utilized (Bhadouria et al., 2014; Dai et al., 2014). Due to the
trends observed from preliminary data showing the dependence
of titer on induction point, inoculation ratio, carbon source, and
induction temperature, we constructed an empirical scaled-
Gaussian model, which uses these four experimental variables as
inputs and computes the titer. This model contains 21 parameters
that were fitted using 72 experimental data points. In particular,
titer was measured at each combination of the following: induc-
tion point – 3, 4, 5, 6 h; inoculation ratio (upstream:down-
stream) – 49:1, 9:1, 1:1; carbon source (glucose:glycerol) – 1:0, 1:1,
0:1; induction temperature – 20, 30 °C. The model demonstrates a
close fit with the training data, and follows the general trend of
additional data that were not used for model fitting (Fig. 5). The
optimal point of the model function was determined computa-
tionally, and was used to direct future experiments in search of
optimal operating conditions to maximize titer. Interestingly, the
optimal point of the model function was found to be at operating
conditions not tested previously, and within a gap between pre-
viously tested experimental points. Specifically, the optimal con-
ditions predicted by the model were: induction point of 5.5 h;
inoculation ratio of 7:3 (upstream:downstream); carbon source
ratio of 0:1 (glucose:glycerol); and induction temperature of 25 °C.

Experiments were subsequently performed at conditions in the
region of the model-predicted optimum (Fig. 5 and Supplementary
Fig. 3). These experiments resulted in a maximum titer of
40.770.1 mg/L, a 65% increase over the highest titer measured

prior to computational optimization. This maximal titer was
achieved experimentally at an induction point of 6 h; inoculation
ratio of 8:2 (upstream:downstream); carbon source ratio of 0:1
(glucose:glycerol); and induction temperature of 30 °C. This point
was within the set of experimental points we tested based on
proximity with the model-predicted optimum, but the point dif-
fers slightly from the model-predicted optimum. This is not sur-
prising, as a scaled-Gaussian model was used for fitting the data
and computing the optimum, whereas the behavior of the true
system is likely more complex than can be fully captured by such
an empirical model. That being said, using a scaled-Gaussian
model represented a good trade-off between model complexity
and quality of fit for the available data, and the model was ulti-
mately successful in guiding experiments to achieve substantially
higher titers. This suggests that relatively simple empirical models
can be effective tools for informing titer optimization efforts.

3.7. Bioreactor scale-up: proof of principle

To demonstrate the stability and scalability of our co-culture
system, we show scale-up of the fermentation from a 2 mL culture
in a 48-well plate directly to a bioreactor with a 500 mL working
volume. Utilizing near optimum conditions from previous small-
scale optimization experiments, the bioreactor demonstrated
slightly lower (34 vs. 41 mg/L) product titers than that of the
optimized small-scale system (Supplementary Fig. 4). We predict
this is due to a shift in the production landscape as a result of
scale-up but believe that global trends due to induction point,
inoculation ratio, media composition, and induction temperature
will remain constant for the system. The additional control gained
through the use of bioreactors also results in additional complexity
from a pathway optimization standpoint. To that end, the com-
plete fermentation optimization of our co-culture system is
beyond the scope of this work but represents a promising direc-
tion for future optimization studies.

4. Conclusions

The ability to harness the power of multiple strains in co-
culture allows for a division of metabolic burden across the

Fig. 5. Experimental points vs. model predictions for the co-culture system. Columns represent experimental data points, while the surface plot (black) represents the
model-predicted production landscape. Purple columns represent data included in the model training set, while green columns represent the points selected for model
validation. Data were measured at an induction temperature of 30 °C in 20 g/L glycerol media. (A) 3D comparison of model predicted vs. experimentally determined
production landscape. (B) Comparison of experimental data to model at model predicted optimum induction point, 5.67 h. Error bars represent7one standard deviation
from duplicate or greater (nZ2) experiments. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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population, as well as the ability to genetically optimize each
module individually for specific co-factor and precursor require-
ments. Through exploitation of these advantages and empirical
modeling techniques, we were able to improve production of fla-
vonoids to 40.770.1 mg/L, a 970-fold improvement over previous
monoculture efforts. These results suggest that future attempts to
expand to poly-culture production, with three or more strains in
co-culture, should be addressed from a tandem systems modeling/
experimental approach.
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