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Abstract 
 

Citizen science projects face a dilemma in relying 
on contributions from volunteers to achieve their 
scientific goals: providing volunteers with explicit 
training might increase the quality of contributions, 
but at the cost of losing the work done by newcomers 
during the training period, which for many is the only 
work they will contribute to the project. Based on 
research in cognitive science on how humans learn to 
classify images, we have designed an approach to use 
machine learning to guide the presentation of tasks to 
newcomers that help them more quickly learn how to 
do the image classification task while still 
contributing to the work of the project. A Bayesian 
model for tracking volunteer learning is presented.  

1 Introduction  

To be successful, online production communities 
need to sustain a critical mass of skilled and active 
participants [9, 16], which requires attracting 
newcomers and helping them learn to become 
effective participants in the community.  

In traditional organizations, new members often 
go through formal training to learn how to contribute. 
However, the particular characteristics of online 
communities present challenges to newcomer 
orientation and training. Many online groups rely on 
volunteers who contribute in their free time, reducing 
their willingness to participate in formal training 
regimes prior to engaging. A further complication is 
the skewed distribution of contributions seen in most 
projects: most volunteers contribute only a few times 
and only a few become sustained contributors. As a 
result, increasing the barrier to entry and delaying 
newcomers’ contributions might result in many 
participants not contributing at all.  

Some crowdsourcing systems allow newcomers 
to learn through observation of the contributions of 
more experienced users [18]. For instance, Bryant et 
al. [3] found in a study of Wikipedia that new editors 

begin by reading articles before they make their 
initial contribution. However, this form of 
transparency is not possible for all types of online 
work and it can take significant time for newcomers 
to learn through observation.  

To make online communities more effective calls 
for new approaches to newcomer learning that 
redefine the relationship between the humans and the 
infrastructure. The technology must enable motivated 
participants to make productive contributions to the 
community while also supporting an efficient and 
engaging learning process for newcomers.  

In this paper, we present the design of a citizen 
science project site (GravitySpy [27]) that 
incorporates machine learning to guide training for 
new volunteers. Citizen science is a broad term 
describing scientific projects that rely on 
contributions to scientific research from members of 
the general public (i.e., citizens in the broadest sense 
of the term). There are several kinds of citizen 
science projects: some have volunteers collect data, 
while others, including the ones we examine in this 
paper, have volunteers analyze already-collected 
data. The interactions between volunteers and the 
project organizers are typically via the Web, e.g. on a 
site that accepts contributed data or that presents data 
to be analyzed and collects volunteers’ annotations 
(e.g., Zooniverse.org).  

Many online citizen science projects only give 
volunteers a brief overview of the task and the site 
features before allowing them to contribute. This 
approach has some advantages. First, it ensures that 
more of the volunteers’ time is being used for the 
work of the project. Furthermore, knowing that the 
work is useful and being given challenging tasks may 
be motivating for volunteers. However, if it takes 
time to learn to do the task correctly, then the initial 
contributions may not be of high enough quality to be 
useful for science (as experienced by [4]). 
Furthermore, if new volunteers find the task too 
challenging, they may become discouraged and leave 
the project.  

To ensure that volunteers understand the task, a 
few projects (e.g., Stardust@home) provide explicit 



 

training for new users, as would a traditional 
organization. A disadvantage of this approach is that 
during the training newcomers are not being 
productive and indeed, many who participate only for 
a short time might never do any real work. 
Furthermore, developing a training program requires 
additional work by the project developers to create 
appropriate training materials.  

In short, citizen science projects face a dilemma 
in how to handle newcomers. Providing training 
might increase the quality of contributions, but at the 
cost of the work done by newcomers during the 
training period, which for many is the only work they 
will contribute. On the other hand, not providing 
training might mean that initial contributions are not 
useful. Our system addresses this dilemma.  Our 
proposed system makes three linked advances on 
current practice: 1) introducing types of tasks to new 
volunteers gradually rather than all at once; 2) using 
machine classification of images to select initial tasks 
to support learning; and 3) tracing volunteer 
performance to decide when to introduce new tasks.  

2 Theory  

The design of our system draws on cognitive 
theories about how humans learn to classify, leading 
to insights about how a system can train users and 
track human performance to estimate a person’s 
ability at the task. We focus in particular on theories 
about image classification, which is a common 
citizen science data analysis task, and the specific 
focus of the system we are building. For example, in 
the Zooniverse Snapshot Serengeti project, 
volunteers identify the species of animals in 
photographs.  

Cognitive theories suggest that people learn to 
classify images though exposure to prototypes and 
exemplars of known categories. Prototypes serve as a 
heuristic: an average representation of an entire 
category [12]. Exemplars function as examples for 
the category [13]. When individuals classify stimuli, 
they find similarity of stimuli with the prototypes and 
exemplars. Here, similarity is based on their own 
internal representation (i.e., psychological 
representation), rather than external properties of 
stimuli [21]. When individuals are asked to 
generalize a category, they evaluate several 
characteristics and weight each of these 
characteristics [e.g., 10, 19, 22, 23]. That is, 
individuals make a decision if a stimulus belongs to a 
category depending on how much the stimulus is 
similar with or different from the prototypes and 
exemplars in certain characteristics and how the 
certain characteristics are important in deciding 

similarity (i.e., weight). As individuals experience 
more stimuli, they update the weights for the 
characteristics of stimuli.  

Therefore, to support learning of image 
classification, volunteers should be continuously 
provided with good prototypes and exemplar images. 
For example, many Zooniverse projects provide a 
“field guide”, with examples of the kinds of objects 
to be classified (for example, see the right side of 
Figure 2).  

To properly target training requires some 
estimation of a volunteer’s current level of 
knowledge. Currently, few citizen science projects 
evaluate volunteers’ knowledge level. Those that do 
generally rely on proxies, such as the number of 
classifications contributed. To track volunteer 
performance, in this paper, we propose an adaption of 
the Bayesian Knowledge Tracing (BKT) Model, 
proposed by Corbett and Anderson [8]. Bayesian 
methods are widely used to improve the performance 
of machine learning systems and human learning [11, 
24]. The BKT Model in particular has been applied to 
model student learning in tutoring system as the 
students practice different skills.  

In addition to determining when a student has 
learned a skill, volunteer models can be used to 
provide individualized feedback on user's action. If 
the system can track what each individual learns, it 
can provide individualized feedback adjusting their 
level of knowledge or skills. Providing proper 
feedback is critical in learning process [7, 14, 17]. In 
an experiment, Corbalan, Kester, and Van 
Merriënboer [7] found that when feedback was 
provided for participants on their performance,  they 
were more motivated than when feedback was not 
provided. In particular, explanatory feedback, 
explaining why their answer is correct or wrong, has 
been found to be more effective than corrective 
feedback, saying whether the answer is correct or 
wrong [6]. Tracking individuals’ performance allows 
a system to provide explanatory feedback suited for 
their level.   

The above discussion has focused on human 
learning of classification tasks, but machine learning 
for image classification is also an active research area 
that has recently seen great advances [e.g, 5]. There 
is evidence that humans and computers offer distinct 
skills in classification. For example, Beaumont et al. 
[2] created a hybrid model of machine learning 
combined with crowdsourced training data from 
citizen scientists for the Milky Way Project. They 
found that “untrained” citizens can identify patterns 
that machines cannot detect without training and that 
machine learning algorithms can use the output of 
citizen science projects as input training sets.  



 

3 Setting  

The Gravity Spy system is being developed to 
support the Laser Interferometer Gravitational-wave 
Observatory (LIGO). LIGO comprises detectors in 
Livingston, Louisiana and Hanford, Washington. 
LIGO detects gravitational waves by using laser light 
to measure slight changes in distance caused by the 
waves as they travel through space. LIGO is the most 
sensitive gravitational wave detector ever built. It is 
able to measure changes in the lengths of its 4 KM 
arms 10,000 times smaller than the diameter of a 
proton. The sensitivity that enables LIGO to detect 
distant astrophysical events also makes it very 
susceptible to non-astrophysical instrumental and 
environmental noise, referred to as glitches. Glitches 
hamper the detection of gravitational wave events, 
either by blocking an event outright or by increasing 
the number of potential events that must be 
examined. At LIGO’s current sensitivity, detectable 
astrophysical events are expected to occur only about 
once a month, while a glitch may occur every few 
seconds, making a search for events akin to a needle 
in a haystack.  

Similar glitches may have a common cause that 
can eliminated if it can be identified, so finding and 
classifying glitches stand out as core tasks for 
improving the LIGO detector. However, with 
thousands of glitches, the LIGO researchers do not 
have the manpower to examine them all. Relying on 
computers alone has also so far fallen short, as the 
diversity of glitches defies easy attempts at 
classification. At present, there are 20 known types of 
glitches, but many glitches do not fit one of these 
categories and so may be examples of as-yet-
unidentified classes of glitch. Presently, humans are 
much better at the visual processing needed to 
identify similar types of glitches. Given these 
constraints, the project is developing a citizen science 
approach to classifying glitches, in a system called 
Gravity Spy [27].  

4 Machine-learning-supported training  

To address the training problem faced by citizen 
science projects, we are building a system that will 
enable a symbiotic relationship between citizen 
science volunteers and computer algorithms, each 
helping the other learn to classify images. Volunteers 
will sort through vast amounts of data to build a 
robust “gold standard” image dataset that will train 
machine-learning algorithms. As the ML algorithms 
learn from this classified dataset, they will be able to 
select images that assist humans to learn.  

4.1 Data  

In addition to a store of images to be classified, 
the system includes two data sets: the image-
taxonomy and the gold-standard data sets. The first is 
the descriptions and examples of image classes. The 
second data store contains a subset of the images 
(referred to as “gold standard” data) that have been 
labelled by human experts with the correct 
classification, including “none of the above” for 
images that do not fit any of the known classes. In 
our system, these are images of glitches sorted into 
the currently known classes.   

4.2 Machine learning 

Machine learning (ML) models are trained using 
the gold standard data (one model for each class of 
image). The trained ML models are applied to all 
unlabelled images, annotating each unlabelled images 
with the ML model’s level of confidence that the 
image is a member of each class. Often, the 
confidence level for one of the classes will be much 
higher than for the others, suggesting that that image 
is a member of that class. But it also possible for 
none of the confidence levels to be high, meaning 
that the ML models are not able to classify the image 
or for more than one confidence to be at an 
intermediate level, meaning that the ML models are 
uncertain about the classification.  

As noted above, ML models and human experts 
do not necessarily see the same things in data. The 
relation between the ML-determined degree of 
confidence and likelihood of the image being of the 
given class is expected to show a distribution as 
shown in Figure 1. We expect that nearly all images 
above a certain threshold of ML confidence will be 
judged by the human experts to be of that class; 
nearly all below a certain threshold as not of that 
class; and in the intermediate range of confidence, a 
mix of in and not in the class.  

4.3 Training citizen science volunteers 

Using a citizen science platform such as 
Zooniverse, volunteers are presented with images and 
asked to classify them into one of the known 
categories, none of the above or “no image” for 
images that in fact do not include an object of 
interest. The current interface for the Gravity Spy  
[25] system is shown in Figure 2: an image of a glitch 
to be classified is shown on the left and possible 
classifications, on the right. The system supports 
volunteer learning in four ways.   



 

Explicit training. First, citizen science projects 
typically (and Gravity Spy specifically) provide a 
brief introduction to the project, explaining its goals, 
how to interpret the images and how to use the 
classification interface. The training is provided as a 
popup when a volunteer first visits the site.  

Exemplar images. Second, the research on 
learning reviewed above suggests that an effective 
way to train humans to perform image classification 
tasks is to provide exemplary images from which to 
learn. Accordingly, the classification interface shows 
volunteers examples of images of the various classes 

 
Figure 1. Relationship between ML confidence (x-axis) in a glitch belonging to a class and proportion of 
images assessed by human exports as belong to that class, with examples of glitches in each grouping. 

Figure 2. Gravity Spy classification interface (http://gravityspy.org/).  



 

as exemplars to guide the choice. When a 
classification is selected, a larger image and a brief 
description can be displayed to reinforce the 
exemplar.  Exemplars are also shown in more detail 
in a “field guide”.  

Providing exemplary images to classify. Third, 
as noted above, the main advance in our system is 
that we use machine learning results to train the 
human volunteers. The system, guided by the ML 
results, moves new volunteers through a sequence of 
levels in which they are presented with different 
classification tasks intended to improve their ability 
to classify images [21]. Essentially, the system acts 
like a tutoring system in picking tasks to help a 
beginner to learn, but selecting from the natural tasks 
of the citizen science project rather than from a 
predefined set of training materials. 

Specifically, a new volunteer will be presented 
with images to classify that have been classified by 
the ML models as being likely to be of one of only 
two distinctive classes. Volunteers will be asked to 
classify the image as being of one of the two classes 
or “none of the above” (i.e., with a reduced version of 
the interface). Because the ML has a high level of 
confidence in the classification of the images, it is 
most likely that these images are of the identified 
class and so will be exemplary images that will 
further help the volunteer to learn how to identify that 
class of image. Having only two distinctive classes of 
image to handle will also make it easier for the 
volunteer to learn to distinguish the images.  

Once the volunteer is classifying images of the 
initial classes successfully, the volunteer will be 
advanced to the next training level, in which they see 
images believed by the ML to be of additional 
classes. Again, during the training period, volunteers 
will only see images that the ML model has classified 
with high confidence, which should serve as good 
exemplars from which to learn the additional classes. 

Once volunteers have completed all rounds of 
training introducing the classes of images, they can 
be considered fully qualified and given images to 
classify at varying levels of ML certainty in all 
known classes or even images for which the ML has 
no good classification, thus contributing to the work 
of the project.  

In addition to being helpful to support learning, 
progression through levels of training is also 
expected to motivate volunteers by appealling to their 
sense of accomplishment. This motivation can be 
further emphasized in the interface, e.g., by showing 
the additional classifications to be presented in the 
future greyed out or with a lock icon and with 
appropriate messaging when mastery at the current 
level is achieved.  

Feedback on classification. Finally, feedback on 
performance is effective in promoting learning. It 
may therefore be desirable to give beginning 
volunteers a few images from the gold standard data 
set to classify, since knowing the correct 
classification makes it possible to give the volunteers 
feedback on the correctness of their classifications. 
Depending on the ML performance, it might also be 
possible to use the ML classification as a basis for 
feedback, that is, if there is a level of ML confidence 
above which essentially all images are in fact of the 
predicted class, then users could be given feedback 
on those images as well.  

4.4 Modelling volunteers’ ability 

To determine when volunteers have mastered the 
classification tasks, the system maintains a model of 
each volunteer’s ability that is updated with each 
classification. In the Gravity Spy project, we are 
experimenting with different approaches to modelling 
user ability. In this paper, we propose using Corbett 
and Anderson’s [8] BKT model as a basis for the 
volunteer model, with modifications to account for 
the possibility that the ML classification might be 
incorrect, rather than the volunteer’s classification. 
Classifications of gold standard data can also be used 
to update the volunteer model without the uncertainty 
of the ML classification.  

A plate diagram for the proposed model is shown 
in Figure 2. The plate diagram shows that a 
volunteer’s answer y for the classification of an 
image depends on a set of parameters for the 
volunteer, for the skill of being able to recognize a 
particular class of image and for the particular image.  

For the volunteer, the model maintains an 
estimate of , the probability that the volunteer 

 

Figure 2. Plate diagram for Knowledge Tracing 
model, with an added factor M for confidence in 

ML classification of the image. 



 

has learned how to classify after having classified n 
images of this class. , the initial estimate of a 
volunteer’s ability, is a parameter of the model. 

The estimate is updated in two ways. First, it is 
updated from the prior estimate of learning in a 
Markov process that models a volunteer transitioning 
from not knowing to knowing how to classify. From 
[8], the formula to update the model’s estimate of the 
volunteer’s ability is equation 1 in Table 1 (below), 
where  is the probability of learning to classify if 
the volunteer does not already know how. Note that 
the BKT model does not include forgetting.  

Second, the model updates the estimates of 
volunteers’ ability based on their performance. 

, the updated probability that 
volunteers know how to classify given their answer 
for the current image (either agreeing or disagreeing 
with the ML classification), is estimated using 
Bayesian inference, as shown in equation 2 [1].  

The components of equation 2 are defined in 
equations 3–5. From [8], there are two parameters 
that affect a volunteer’s answer when classifying 
images of a particular class: , the probability of 
a volunteer getting the answer right without knowing 
how to classify (guessing) and , the probability 
of getting the answer wrong even while knowing how 
to classify (slipping). Note that a volunteer’s answer 
being right or wrong is defined according the image’s 
(unknown) true classification.  

Finally, in these equations, the parameter  is 
the estimated probability that the particular image 
seen on this step is of the class identified by the ML 

model. This factor is novel in our system and reflects 
the fact that rather than a set of exercise for which the 
system knows the correct answer, we instead have a 
set of images for which we believe we know the 
correct classification, but could be mistaken.  

We now explain equations 3–6. The chance of 
the volunteer agreeing with the ML classification of 
an image while knowing how to classify is the chance 
that the ML is correct and the volunteer has not 
slipped or that the ML is incorrect and the volunteer 
slipped (equation 3). The unconditional probability of 
the volunteer agreeing with the ML classification is 
the probability that both the ML and the volunteer are 
correct or both are incorrect (equation 4). Finally, the 
probability that the volunteer correctly classifies the 
image is the probability that the volunteer knows how 
to classify and did not slip or that the volunteer does 
not know but guessed correctly (equation 5). The 
formula for the case of the volunteer disagreeing with 
the ML model (equation 6) is just the inverse: since 
agreeing and disagreeing are binary decisions, the 
probability of disagreeing is one minus the 
probability of agreeing. When volunteers disagree 
with the ML classification, that answer might be 
taken as evidence about their ability at their chosen 
classification as well. 

The same model (specifically equation 4) can be 
used to predict whether volunteers’ classifications of 
images will agree or disagree with the ML 
classifications given their ability as estimated from 
their answers on previous classifications. The 
parameters, , ,  and initial ability, 

, can thus be estimated by 
fitting the model to minimize the 
prediction error for an initial dataset 
of responses. However, [25] noted 
that it is impossible to distinguish 
empirically between a high initial 
state of knowledge ( ) and a 
high rate of successful guessing 
( ). These alternatives must be 
resolved by setting constraints on 
what are considered reasonable 
solutions for the parameters.  

The same parameters can be 
used for all classes of image, 
reducing the number of parameters 
to be estimated, or, with enough 
data, different parameters can be 
estimated for each class (e.g., to 
allow some classes to be harder to 
learn or easier to confuse). More 
advanced approaches to estimation 
have been suggested that take into 
account features of the answer in 

Table 1. Model for volunteer learning.  

1)   

2)   

3)   

4)   

5)   

6)   

Model parameters 

  volunteer knows how to classify after n classifications   
  volunteer learns how to classify on this classification 

  ML classification of nth image is correct  
  volunteer classifies incorrectly even though they know how (slip) 
  volunteer classifies correctly even though they do not know how 

(guess)  
 the volunteer classification, volunteer either agrees or disagrees 
with ML classification of image 



 

estimating the probability of a slip or guess [1] or to 
estimate models with parameters individualized for 
each student [26].  

Once estimated on an initial dataset, the model 
can be used to track a learning for new volunteers 
and for deciding when to introduce additional tasks. 
A key parameter here is the required level of 
performance. Corbett and Anderson [8] used a 
threshold of 0.95, though without specific 
justification. A simulation of the model given above 
with  and  shows that if 
volunteers agree with the ML classification on each 
image, they reach the 0.95 level of performance after 
classifying only 3 images when given images that are 
at least 0.95 likely to be of the given class. With 
images that are at least 0.8 likely, the process takes 4 
steps. Of course, volunteers may not always agree 
with the ML if they are still learning to classify or if 
they slip. In [1], the baseline probability of a slip was 
44% and of a guess, 6.6%. While it is unlikely that 
these numbers apply exactly to the citizen science 
tasks, using the parameters in the simulation and 
allowing for occasional disagreement raises the 
median number of classifications needed in each 
condition by 1, though the learning process is 
occasionally extended.  On balance though, we 
expect volunteers to be able to make progress 
through the training reasonably quickly.  

 

4.5 Image classification 

The goal of the Gravity Spy system is to provide 
information to the LIGO scientists on the 
classification of glitches. The system uses judgement 
from multiple volunteers to make the final decisions 
on classification of images. Explicitly modelling the 
level of confidence in the classification of an image 
should make much more efficient use of human effort 
than the usual approach of having each item looked at 
by as many as fifteen volunteers to find a consensus, 
the practice in many current systems. We anticipate 
that images may be classified with only a few 
human classifications if the ML confidence is high 
and the volunteers agree with that classification.  

The system maintains a model of the likely 
classification of each image that is initialized by the 
ML model (i.e., ) and updated with each 
human classification. As with the volunteer model, 
we are currently experimenting in the project with 
different approaches to modelling images. The BKT 
model developed above for volunteers can be used 
for images as shown in equations 7–9 in Table 2. In 
these equations, n is also the number of 
classifications, but in this case, the number of 
classification of a particular image done by different 

volunteers. Note that this model takes into account 
differences in volunteer ability when forming a belief 
for the classification of images (that is, the elements 
of the equations are drawn from Table 1 and so 
incorporate  for the volunteer making a 
classification).   

If the level of belief in a particular classification 
crosses a desired threshold, meaning that there is a 
consensus among the ML models and the human 
volunteers on the classification, the image can be 
given that classification. Contrariwise, if after some 
number of human classifications there is no 
consensus, then the image can be labelled as none of 
the above. The efficiency of the process depends on 
the accuracy of the human labelers. If the chance that 
volunteers slip is too high (for example), it is hard to 
learn from their answers. 

Successfully classified images will be provided to 
the science team to use. They can also be added to 
the gold standard data and used to retrain the ML 
model for image classification, thus using human 
judgement to improve the machine learning model. 
Indeed, the system can pick images for the volunteers 
to classify that will be particularly informative for 
improving the ML models (e.g., images that have 
confidence levels between the cutoffs), a process 
called active machine learning.  

Similarly, since the system is tracking each 
volunteer’s ability, it can also assign tasks based on 
ability (e.g., assigning harder tasks to more capable 
volunteers). However, as Lin and Weld [15] point 
out, when picking an item to be classified in a 
crowdsourcing setting, the number of existing 
classifications should be considered. If the item 
already has many human classifications, another will 
not reduce the ML model uncertainty. Finally, the 
parameters for learning model can be periodically re-
estimated using the additional data.  

Table 2. Model for image classification.

7)   

8)   

9)   

Model parameters 

  ML classification is correct after n volunteer 
classification  

   volunteer agrees or disagrees with ML 
classification of image 



 

5 Discussion 

In this paper, we have presented a system that 
uses ML classifications of images to guide training 
for human volunteers in a citizen science project. The 
goal of the training is to help volunteers more quickly 
learn how to classify images and thus become 
productive contributors to the project. We expect that 
this training will also motivate users to contribute 
more. If the system works as expected, it will be an 
approach that should be of interest to other citizen 
science projects.  

An important benefit of this approach is that 
because the ML cannot be certain of the 
classification, having a volunteer confirm the 
classification—even a beginner still being trained—is 
still useful to the project. This approach contrasts 
with training that is either entirely preset or that relies 
exclusively on gold standard data. In those cases, the 
work done by the volunteer as part of the training is 
does not directly advance the project’s work. As 
many volunteers report that they are motivated by the 
fact that they are contributing to science [20], 
keeping the work real is important.  

The system described above also offers an 
interesting platform for experimentation. Our first 
planned experiment is to compare the performance of 
volunteers who have gone through the training 
process described above to the performance of those 
who start right away with the full set of classes for 
classification (i.e., the typical approach for citizen 
science projects). We want to test if users who get the 
training contribute more and show better 
performance on the classification tasks.  

Second, the training system described above has a 
large number of parameters (e.g., how many and 
which classes to introduce at each level, the ML 
certainty cutoffs or the right mix of images of 
different certainties at different points in the process). 
Experimentation will be useful to determine the 
optimal settings. For example, we can test the 
benefits and tradeoffs of advancing volunteers to 
higher levels more quickly: quicker advancement 
might be good for motivation but negative for 
performance (and vice versa).  

Finally, the system will enable us to experiment 
with other factors that affect volunteer performance, 
e.g., the kinds of motivational messages provided or 
information on the novelty of images. A particularly 
interesting set of questions are around the effects of 
feedback that can be provided to volunteers based on 
the ML certainties. Again, it is possible that there are 
tradeoffs involved, e.g., that letting a volunteer know 
what the ML evaluation was might be useful 
feedback to improve performance but also potentially 

demotivating if the ML and the volunteer disagree or 
volunteers feel that their contributions are 
unnecessary given the ML. A further problem is that 
this approach to feedback runs the risk of training the 
human volunteers in the idiosyncrasies of the ML, 
thus reducing the benefit of having diverse kinds of 
classifiers in the system.  

The main contribution of the paper has been to 
discuss how machine learning can be used to support 
learning in a citizen science project and to present a 
Bayesian model for tracking learning progress in this 
setting. The proposed system embodies a redesigned 
relationship between the technology of the system 
and the human volunteers to facilitate learning by 
both.  
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