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Abstract— We present a single-node, multi-GPU pro-
grammable graph processing library that allows programmers
to easily extend single-GPU graph algorithms to achieve
scalable performance on large graphs with billions of edges.
Directly using the single-GPU implementations, our design only
requires programmers to specify a few algorithm-dependent
concerns, hiding most multi-GPU related implementation de-
tails. We analyze the theoretical and practical limits to scala-
bility in the context of varying graph primitives and datasets.
We describe several optimizations, such as direction optimizing
traversal, and a just-enough memory allocation scheme, for bet-
ter performance and smaller memory consumption. Compared
to previous work, we achieve best-of-class performance across
operations and datasets, including excellent strong and weak
scalability on most primitives as we increase the number of
GPUs in the system.
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I. INTRODUCTION

The potential advantages in performance, performance per
dollar, and performance per watt of the modern graphics
processing unit (GPU) over the traditional CPU [1] has
led to a recent focus on GPU graph analytics [2]-[5].
However, scalable GPU graph analytics frameworks today—
those beyond one GPU—are still primarily in the research
domain. In general, today’s GPU graph analytics frame-
works, which we summarize in Section II-A, do not deliver
both high performance and scalability while maintaining
programmability and algorithm generality.

Single-GPU (“1GPU”) frameworks deliver excellent per-
formance on graphs that fit into the GPU’s (limited) memory.
Scaling to larger graphs and/or achieving higher perfor-
mance require new approaches. We see three directions for
scalability: multiple GPUs on a node (“mGPU”); the most
common approach to date, multiple nodes (“mNode”); or
leveraging the storage of a larger CPU memory (“out-of-
core”). These directions are non-exclusive; future scalable
systems may use more than one. Our performance results
motivate our belief that mGPU graph processing should
become the fundamental building block of GPU graph
analytics.

Our work builds on our open-source “Gunrock” [5] graph-
processing library for GPUs, whose programming model
we summarize in Section II-B. While Gunrock previously
targeted 1GPU and graphs that fit into 1GPU’s memory, we
optimize and extend it in this work to mGPU. We believe

that the conclusions we make in this paper will apply to
other GPU graph frameworks as well.

To achieve high performance, scalability, programmabil-
ity, and generality, we address several key questions:

o What is a general mGPU graph processing model?

« How to transform 1GPU programs to support mGPU?
o What data should be communicated, when, and how?
« How do we synchronize GPUs during computation?

o What is the indicator for convergence?

« What are the potential limiting factors to scalability?

o What are the optimizations for these limiting factors?

Addressing all of these goals is challenging. Supporting
programmability and generality tends toward a high-level,
flexible framework that abstracts away low-level details.
However, performance and scalability concerns instead sug-
gest low-level implementations that can efficiently leverage
the underlying hardware. We also note other factors that
can potentially limit performance and scalability: the type
of graph partitioner used, the topology of the underlying
graphs, and the necessary synchronization and communica-
tion patterns of each individual primitive.

Our work makes the following contributions:

1) Our mGPU graph processing library meets the above
goals. Our framework allows programmers to easily
extend 1GPU primitives to utilize mGPU’s capabilities.

2) We perform a detailed experimental analysis on poten-
tial limiting factors to scalability. We identify commu-
nication bandwidth; synchronization latency; efficient
use of GPU memory; and partitioning strategy as the
most significant obstacles. For partitioning strategy, we
conclude that minimizing the size of partition borders
as opposed to the traditional partitioners’ target of
minimizing edge cuts is the right strategy for our
system.

3) We design and implement generalized optimizations
that effectively target these limiting factors, enhanc-
ing our performance and scalability. Our novel opti-
mizations include efficient mGPU direction-optimizing
traversal, and a just-enough memory allocation strategy
that makes efficient use of GPU memory.

4) We achieve best-in-class performance on mGPU graph
primitives, outperforming primitive-specific implemen-
tations on similar machine configurations. On 6 GPUs,
we achieve more than 900 GTEPS (billion edges tra-



versed per seconds) peak performance for direction-
optimizing breath-first search (DOBFS) [6], and 2.63 %,
2.57x,2.00x, 1.96%, 3.86x geometric mean speedups
as compared to 1GPU, and over various datasets for
breadth-first search (BFS), single-source shortest path
(SSSP), connected components (CC), betweenness cen-
trality (BC) and PageRank (PR) respectively.

II. RELATED WORK
A. Scalable GPU Graph Libraries

Numerous frameworks have targeted scalable graph ana-
lytics with multi-GPU approaches. We argue that in general,
no previous multi-GPU work achieves our balance of high
performance with programmability.

Merrill et al. [7] presented the first notable linear paral-
lelization of the BFS algorithm on the GPU. Their 1GPU
and mGPU implementations achieve excellent performance.
In their mGPU implementation, vertices are distributed to
GPUs, data related to remote vertices are fetched via peer
memory access. Their approach only targets BFS, and ad-
versely affects programmability by forcing programmers to
handle cross-GPU data access within main computing steps.
The peer memory access limits hardware compatibility, and
also introduces load imbalance when accessing both local
and remote vertices, which reduces performance.

The parallel BFS work by Fu et al. [3] extends the expand-
contract BFS algorithm by Merrill et al. to GPU clusters.
They propose a 2D partitioning method, and use MPI to
contract columns on the edge frontiers after each expand
step. The communication pattern limits data access within 1
hop, and thus restricts algorithm generality. Large edge fron-
tiers transmitted between GPUs cause large communication
overheads and limit scalability.

Bisson, Bernaschi, and Mastrofano [8] focused on build-
ing an mNode BFS implementation. They also utilize a 2D-
partitioning scheme to reduce the amount of communication
required. However, because of their use of costly atomic
operations, their performance is limited.

Enterprise [9] is an mGPU work that targets BFS using
BFS-specific optimizations. Their work achieves excellent
performance on rmat graphs, but lacks the generality to
target algorithms beyond BFS.

McLaughlin and Bader [10] targeted BC on GPU clusters,
which distributed BFS work for different source vertices to
different nodes. Its performance scales well in large part
due to its novel use of task parallelism, but a task-parallel
strategy is not applicable to most graph algorithms. Their
framework also duplicates the graph across GPUs, limiting
its scalability to graphs that can fit on 1GPU.

Medusa [2] was the pioneering mGPU graph library,
taking a more general approach. It partitions the graph using
Metis [11], makes replications for neighbor vertices within
n hops, and updates vertex-associated values every n iter-
ations. Their framework is limited in algorithm generality,

because it cannot express algorithms that jump beyond the
n-hop limit, such as Soman et al.’s CC algorithm [12].
Compared to its successors, it does not achieve top perfor-
mance. And due to the data replication caused by a large
number of vertices within n hops of a partition boundary,
their framework is not scalable in memory usage.

Totem [13] is a graph processing engine for GPU-CPU
hybrid systems. It either processes the workload on the
CPU or transmits it to the GPU according to a performance
estimation model. This approach has the potential to solve
the long-tail problem on GPUs, and overcome GPU memory
size limitations. However, it has limitations in algorithm gen-
erality, because it can only work with algorithms that only
access direct neighbors. Repeatedly moving data between
CPUs and GPUs is costly, which makes scalability an issue.

Daga et al. [14] explored using an accelerated processing
unit (APU, a single-chip CPU+GPU heterogeneous proces-
sor) to overcome the PCle bandwidth limitation, but the
APU’s memory bandwidth is significantly smaller than a
discrete GPU, which hampers overall performance.

GraphReduce [15] is an out-of-core graph processing
library for GPU. It uses a Gather-Apply-Scatter (GAS)
framework, so it inherits GAS’s programmability and al-
gorithm generality. Its out-of-core approach addresses the
challenge of the GPU’s limited memory. However, it must
stream the graph to the GPU during the computation, making
the PCle bus a performance bottleneck. Its use of only 1GPU
also makes it unable to achieve performance scalability.

Frog [16], [17] differs from other frameworks here in
requiring (expensive) preprocessing to color the graph into
sets of independent vertices. With the colored graph, they
can process colors asynchronously. However, performance
is restricted by visiting all edges in each single iteration.

More recently, Groute [18] leveraged asynchronous com-
putation to demonstrate impressive multi-GPU performance
particularly on high-diameter, road-network-like graphs, and
primitives that can benefit from prioritized data communi-
cation, such as SSSP and CC.!

B. Gunrock: GPU Graph Analytics

Our GPU-based graph analytics framework, Gunrock,
targets both programmability and performance, and achieved
them on 1GPU [5]. It proposes a data-centric programming
model that presents graph primitives as a series of parallel
graph operations on frontiers, which is a group of vertices
or edges that are actively participating in the computation.
It currently supports three ways to manipulate the frontier:

Advance generates a new frontier by visiting the neighbors
of the current frontier;

Filter generates a new frontier by selecting a subset of the
current frontier based on programmer-specified criteria;

IThe Groute work was published after this paper completed peer re-
view; we compare Gunrock’s performance against Groute on the Gunrock
website. http://gunrock.github.io/gunrock/doc/latest/md_stats_groute.html
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Computation executes an operation on all elements in the
current frontier. This can be combined for efficiency
with advance or filter.

Gunrock programs define graph algorithms as a sequence of
the above three steps, beginning with an initial frontier and
running to convergence.

III. OUR MGPU GRAPH PROGRAMMING ABSTRACTION

Our mGPU programming model is designed to balance
programming complexity and performance. As much as
possible, our philosophy is to enable programmers to specify
algorithms at a high level, targeting a 1GPU implementation,
while allowing our underlying mGPU framework to manage
the necessary parallelization and communication details.
Thus, we make the following design decisions:

1) An mGPU implementation in our system uses a 1GPU
primitive without modification; all mGPU machinery
is transparent to it. This isolation not only simplifies
the 1GPU to mGPU transformation, but also allows
optimizations, either to primitives or to the underlying
framework, to apply to both 1- and m-GPU cases.

2) To support mGPU primitives, programmers must spec-
ify the information listed in Section III-B.

3) Both because of GPU memory limitations and to lever-
age inter-GPU parallelism, our system partitions graphs
across GPUs. We do not restrict the selection of the
partitioner, leaving that decision to the programmer
(Section V-C).

A. Terminology

We define a graph G(V, E) by its vertices V' and edges
E, and its diameter as D. When partitioned, the ith GPU
only holds a subgraph of G, denoted as G;(V;, E;), where
Vi and E; are the vertices and the edges stored on it. B; ; is
the outgoing vertex border from GPU ¢ to GPU j, and B; is
the union of all B; ;, including duplications. We use L; to
represent all vertices hosted by GPU i¢; L; may be a subset
of V;, because V; also contains remote proxy vertices (more
in Section III-C). n is the number of GPUs.

Because our system is bulk-synchronous across all GPUs,
we use the BSP model [19] as a useful tool to analyze
performance-limiting factors (Section V). In the BSP model,
W is the cost of local computation on a single node
(analyzed in Section IV); H is the number of messages trans-
mitted (communication volume, the size of data transmitted
between GPUs); g is the time to deliver a single message
under continuous traffic conditions (we use the inverse of
inter-GPU communication bandwidth); S is the number of
supersteps (iterations); and [ is the synchronization cost
(per-iteration overhead). We use C' to represent the cost
of communication computation, which is the computation
required to facilitate inter-GPU communications.

+ I’aniltion +

{ ‘Remote mpm i Local
frontier \ input frontier

input frontier 1\ input frontier

dala
A

GPU 0 converge

GPU
primitive

Figure 1: mGPU Framework highlighting communications

B. Extending IGPU Programs to mGPU

Our mGPU framework is illustrated in Fig. 1. The core
of an mGPU primitive is an unmodified 1GPU primitive,
which we extend to mGPUs by using the iteration synchro-
nization point to exchange data between GPUs. By making
our mGPU framework transparent to 1GPU primitives, we
separate the concerns of per-GPU computation and inter-
GPU communication: as long as the input frontiers for
each iteration are prepared correctly, and the per-vertex
associative values are updated properly before they are used
in the next iteration, a core graph primitive does not need to
know whether a vertex is hosted on a local or remote GPU.

At the end of an iteration, a 1GPU primitive concludes
its computation and globally synchronizes before beginning
the next iteration. At that point, our framework takes over,
performing the following steps: it splits the output frontier of
vertices into local and remote sub-frontiers, then packages
the remote sub-frontier with its primitive-specific associated
data, identified by the programmers, such as labels or
predecessor vertex ids, and pushes the packaged data to peer
GPUs. When a GPU receives data, our framework combines
that data with that GPU’s local data, and (if necessary) also
adds the received vertices into its input frontier for the next
iteration. A GPU that hosts vertex V' may receive updates
to V from multiple remote GPUs. It must combine those
updates into a single value for V. The programmer specifies
how that combining must be done—for instance, taking the
minimum value from all updates, as in BFS or SSSP—but
the framework will actually perform the combining.

Our mGPU framework also initializes the computation by
partitioning the graph and its associated per-{vertex, edge}
data, reordering or relabeling if necessary, distributing all
data to the correct GPUs, and initializing the starting frontier.

Programmers must specify the following information:
Core single-GPU primitive Use Gunrock operators to de-

fine a series of operations on input frontiers.

Data to communicate What kinds of data associated with
vertices must be pushed to remote GPUs? We have not
seen primitives that require per-edge communication
between GPUs, and argue that any such primitive will



scale poorly based on the large volume and computation
workload required by per-edge communication.

Combining remote and local data Specify the operation
to combine local and (possibly multiple) received data
at the beginning of an iteration, except the first one.

Stop condition Define the local and/or global stop con-
dition so that each local GPU will properly exit its
computing iteration when the algorithm finishes.

and the framework handles all other aspects:

Split frontier Split the output frontier of an iteration into
local and remote sub-frontiers.

Package data Package the remote sub-frontiers with the
associated data that specified by the programmer. Data
packaging can be done together with frontier splitting.

Push to remote GPUs Manage communication so that
each GPU pushes the right information to the right GPU
for use in the next iteration.

Merge local and received sub-frontiers Using the com-
biner specified by the programmer, efficiently merge
the local sub-frontier with all received sub-frontiers to
get the input frontier for the next iteration.

Manage GPUs Our framework manages each GPU by a
dedicated CPU thread to avoid false dependencies be-
tween GPUs. It also uses multiple GPU streams on a
GPU to overlap computation and communication, by
separating them into different streams. We synchro-
nize and establish dependencies between GPUs with-
out CPU intervention by using cudaStreamWait-
Event ().

C. Vertex Duplication and Communication Strategy
We partition the graph (Section V-C) as a pre-processing
stage, and currently support partitioners that do edge cuts,
i.e., vertices are distributed to individual GPUs, together with
their outgoing edges. To isolate the computation to local
data only, remote vertices need to be duplicated locally. We
implemented two strategies for this duplication:
Duplicate-1-hop: create a local proxy vertex only for the
immediate remote neighbors of L; on GPUj;; vertices
in V; are renumbered with continuous IDs.
Duplicate-all: create a local proxy vertex for every remote
vertex, i.e., force V; to be V. We still distribute E, so
remote vertices in V; have 0 outgoing edges on GPU 1.
We also implemented two strategies for communication:
Broadcast: in each iteration, each GPU broadcasts the
whole generated frontier to all other GPUs.
Selective-communicate: we send frontier vertices to only
their hosting GPUs or to the GPUs that host their
proxies. This requires a splitting step on the vertex
frontier to assemble a separate sub-frontier of vertices
to each remote GPU.
The programmer can choose the strategies. Duplicate-1-
hop uses less memory space, but requires ID conversion for
communication; on the other hand, duplicate-all requires no

ID conversion but uses more memory. Broadcasting saves
the work required to split the frontier, but consumes more
memory and communication bandwidth, and introduces a
higher computation workload when combining received
data. Selective communication requires less memory and
communication bandwidth, but it cannot bypass the splitting
step. If an algorithm only needs to access the immediate
neighbors of incoming or outgoing edges, then duplicate-
1-hop and selective-communication are better choices; oth-
erwise, algorithms that access both incoming and outgoing
neighbors (e.g., DOBES), or that visit vertices with more
than one hop distance (e.g., CC), require broadcasting, and
usually use the duplicate-all strategy.

IV. ALGORITHMS IN OUR ABSTRACTION

We implemented six graph primitives with our framework,
several of which are straightforward extensions (from the
programmer’s perspective) from 1GPU implementations. In-
cluded in Appendix A is an example BFS implementation
using the mGPU framework, with programmer provided
blocks highlighted. Because DOBFS has different runtime
and communication properties, and thus different scaling
behavior, we consider it as a separate algorithm in our scala-
bility analysis. SSSP and BC have similar scaling properties
to BFS, while CC and PR are both non-traversal primitives
that operate on all vertices and all edges of the graph. We
thus select DOBFS, BFS, and PR as representative primitives
for further analysis, and summarize all six algorithms in
Table 1. Except for DOBFS and for graphs that have too little
computation to fill the GPU on an iteration, most primitives
are bounded by computation.

Algorithm 1 Multi-GPU BFS

Vertex duplication: Duplicate-all. We trade memory
usage for better performance for BFS.

Computation: An advance kernel followed by a filter
kernel, as introduced by Merrill et al. [7]. WeO(|E;]).
Communication: Selective-communicate. Only the re-
mote vertices are sent.

Combination: If a received vertex has not been visited
before, update its label and place it in the input frontier
on the next iteration. H€O(|B;|), and CeO(|V}]).
Convergence: All frontiers are empty. Sx~D/2.

Algorithm 2 Multi-GPU DOBFS

Vertex duplication: Duplicate-all. It couples better with
the broadcast communication strategy.

Computation: Summarized in Section VI-A. For graphs
with high average out-degrees, WeO(|L;|); for other
graphs in practice, WeO(a x |E;|) where a < 1.
Communication: Broadcast, because an upcoming iter-
ation may use either the forward or backward direction.
Combination: Same as BFS. HeO(|V]) and
CeO((n— V).




Primitive Computation (W)

Communication Computation (C)

Communication Volume (H) Iterations (.S)

BFS O(|E;]) O(|Vil)
DOBES O(a x |E;]) o(v|)
SSSP O(b x |Ey)) O(b x |Vi])
BC O(2 x |Ey]) o2 x |V;| +|V])
CC log(D/2) x O(|E4) S x O(|Vi])
PR S x O(|E;l) S x O(|Bil)

O(1Bil) ~D/2
O((n—1) x |V]) ~ D/2
O(2b x |B;]) ~bx D/2
O(5|Bi| +2(n — 1) x |Ly]) ~D/2
S x 02|Vi]) 2-5
S x O(|Bil) data-dependent

Table I: Summary of Algorithms. Terminology is summarized in Section III-A.

Convergence: Same as BFS. S~D/2.

Algorithm 3 Multi-GPU PR

Vertex duplication: Either duplicate-all or duplicate-
1-hop. The remote sub-frontiers do not change over
iterations. We get all these sub-frontiers during the
initialization step, and only send ranking values during
actual computation. There is no significant performance
or memory usage difference between these two, and we
use duplicate-all to better trace the program.
Computation: A filter kernel updating the PR values
(except 1% iteration), followed by an advance kernel ac-
cumulating the PR values for each vertex. WeO(|E;]).
Communication: Selective-communicate. Push locally
accumulated ranks of each vertex to its hosting GPU.
Combination: Do an at omicAdd to combine received
rank with the local copy. H€O(|B;|) and C€O(|B;]).
Convergence: Terminates when all ranking value up-
dates are smaller than a pre-defined threshold ratio, or a
given maximum number of iterations is reached. S does
not affect the scalability.

V. PERFORMANCE LIMITING FACTOR ANALYSIS

In this section, we describe and analyze potential perfor-
mance bottlenecks for our mGPU implementation that are
specific to graph computation and mGPU systems. The BSP
computation model [19] states that the total computation cost
of a parallel program can be expressed as W + Hg + SI.

A. Communication

The inter-GPU bandwidth 1/g is determined by the
system. Certainly, any mGPU system should enable the
highest-bandwidth connection. For instance, enabling peer
GPU-GPU communication on our system (K40s on the
same PCle3 root hub) increases GPU-GPU bandwidth from
~16 GB/s to ~20 GB/s with a corresponding latency
decrease from ~25 us to ~7.5 us.

What software can affect is the communication volume H.
H is perhaps the most important factor in scaling for a given
primitive. We list H for individual primitives in Table I.
To get a clearer idea how H affects the performance, we
artificially increased it and found that in general, runtime
varies linearly with the increase of H. We also found
that increasing H affects DOBFS more than BFS and PR,
because W and H of DOBEFS are close in scale, especially

when running on rmat graphs (both are roughly in O(|V])),
whereas W is larger than H for BFS and PR. Datasets
with high vertex counts suffered more from H increases.
Another possible factor that may influence performance is
communication latency, but it’s only a small portion of [,
and even when we artificially increase it by a factor of ten,
we see no appreciable difference in performance.

B. Synchronization

The per-iteration synchronization latency [ includes the
effects of kernel launch overheads (~3 ps per kernel) during
primitive computation, load imbalance between GPUs, and
API and kernel launching overheads of the communication-
computation kernels. In our experiments, ! is significant
when the other parts run in the sub-us range or S is large.

The GPU also needs a large workload to maintain high
processing rates [20]. If per-GPU workloads aren’t large
enough, kernel launch overheads also occupy a large portion
of the total running time. Traversal on road networks is
one example that suffers from both launch latency and GPU
under-utilization; one iteration of even a large road network
traversal doesn’t have enough work to keep even 1GPU busy.
We also see this overhead when processing, for instance,
DOBFS on rmat, where many iterations only take a few ps.

To study the effect of I, we let each GPU visit only 1
vertex and 1 edge in each iteration. This is the smallest
per-iteration workload possible, and the BFS running time
on it can be used as an measurement of [. The running
time is linear with .S, and the average per-iteration time for
large S for {1,2,3,4} GPUs is {66.8, 124, 142, 188} ps. The
jump from one to two GPUs reflects the effect of inter-GPU
synchronization and communication latency.

C. PFartitioner

We recognize that good partitioners can help increase
mGPU graph processing performance. Most partitioners at-
tempt to minimize the number of edges cut across partitions.
However, in our system, it is instead the size of partition
borders (B;, the number of vertices on partition edges,
as summarized in Table I) that is most important to our
performance. This is because our framework communicates
values associated with vertices, and multiple cut edges from
the same GPU that point to the same remote vertex only
need to transmit one set of values regarding that vertex.
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Figure 2: Performance impact of partitioners on 3 primitives
x 3 datasets.

To gain insight into partitioner behavior, we use three
different partitioners, listed in increasing order of partitioner
runtime: random (randomly assign vertices to GPUs), bi-
ased random (like random, but biased toward assigning a
vertex to a GPU that contains more of its neighbors), and
Metis [11]. We summarize their effects in Fig. 2. While
the random partitioner captures no graph locality, it does
achieve excellent load balancing, and performs fairly well
across our tests. Biased random tries to reduce the border
size without affecting the load balancing too much, and
shows performance very close to the random partitioner.
Metis only wins in a few situations, with small margins, but
takes a much longer time to partition. With this in mind, all
other experiments in this paper use the random partitioner.
Without ideal partitioner candidates, we chose to make our
partitioner interface modular and allow users to specify any
existing partitioner or implement their own; we ensure that
the framework and primitives will run correctly regardless
of the choice of partitioner.

VI. OPTIMIZATIONS

With 1GPU Gunrock, we begin with a framework that
already has numerous optimizations for good performance.
We add several more to specifically address mGPU operation
and the performance-limiting factors from Section V.

A. Direction-optimizing Traversal

Traditional BFS performs a forward (“push”) traversal
where vertices in the current frontier add their unvisited
neighbors to the output frontier. Beamer et al.’s DOBFS [6]
adds the ability to perform a backward (“pull”) traversal,
beginning from a frontier of all unvisited vertices, to visit
parent vertices. If one of those parent vertices is in the
current frontier, visiting all other edges can be skipped. This
“edge skipping” can significantly improve BFS performance
for small-diameter graphs, but mapping existing implemen-
tations to a distributed context is a challenge.

Beamer et al. implemented this operation by scanning all
vertices and processing the unvisited ones. This is ineffi-
cient, and introduces load imbalance between visited and

unvisited vertices. Our previous 1GPU implementation had
two deficiencies when parallelized across GPUs.

First, our 1GPU advance kernel parallelizes across edges
and thus cannot efficiently skip edges once a parent is found.
We added an advance mode that parallelizes across vertices,
thus serializing edge visits and allowing us to stop work
when we discover a valid parent. We then split the unvisited
vertex frontier from the previous iteration into two parts,
newly-discovered vertices and unvisited vertices. The newly
discovered vertex frontier is important for our mGPU imple-
mentation, because it gives a direction-independent view for
the framework (advances in both directions output the newly
discovered vertices), and also a cost-free transformation
from backward to forward.

Second, the traditional DOBFS computation for switching
between push and pull would require additional computation
(potentially of the same scale of the actual traversal) to get
the number of edges needed to visit in the next iteration.
We change the direction-selection condition to only require
inputs that are already available. Let () be the current
frontier and U and P the unvisited and visited vertices.
We can estimate the number of forward edges visited as
FV = ‘%‘{/lf"" and the number of backward edges visited
as BV = 7‘[]";%'. We begin with forward traversal; then at
the beginning of each subsequent iteration, if we see that
FV > BV -do_a, we switch from forward to backward;
if 'V < BV -do_b, we switch from backward to forward.
Because every time we switch from forward to backward,
we must scan all vertices for unvisited ones, we only allow
this switch once. The optimal values of do_a and do_b for
similar graph types appear to be consistent; for example,
do_a = 0.01 and do_b = 0.1 gives good performance for
social graphs. We found these parameters are mostly mGPU-
independent, i.e., the same set of parameters can be used for
different numbers of GPUs.

These optimizations permit a significantly more efficient
mGPU DOBFS, one that outperforms previous BFS and
DOBFS implementations by a significant margin, but also
uncovers a more fundamental bottleneck. DOBFS’s prin-
cipal computation advantage is effectively reducing W to
O(a - |E;|), where a is less than 1. For graphs where
|E;|>|Vi|, such as rmat graphs with large edge factors,
W reduces to O(|V;]). But because the upcoming iteration
may use either direction, which essentially requires sending
the newly discovered frontiers to all peers (i.e., broadcast),
H and C thus increase to O(|V]), which can be on par
with W. The result is an implementation that is primarily
bound by communication with flat strong and weak scaling
behavior (Section VII-B). Reducing communication cost is
the priority for future mGPU DOBFS implementations.

B. Just-enough Memory Allocation

Because GPU memory capacity is limited, it is crucial to
use it efficiently, particularly for large graphs. What makes
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schemes on kron, soc-orkut, and uk-2002 running BFS.
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this challenging is that iterative graph primitives usually
produce frontiers with a size that is unknown until the finish
of an advance or filter kernel. One option is to allocate
memory that is large enough to handle any case, e.g., a size
|E| array for advance. However, this maximum allocation
artificially limits the size of the subgraph we can place onto
one GPU, which either (a) requires us to use more GPUs
to solve a particular problem or (b) limits our scalability to
less than we could potentially achieve.

Instead of worst-case allocation, we implement a just-
enough memory allocation scheme to use our memory
more efficiently. We make a reasonable estimate of memory
allocation before computation and then reallocate if this allo-
cation is insufficient. In practice, our “reasonable” estimates
are usually sufficient so reallocation, which is expensive,
is infrequent. We mainly reallocate before advance, filter,
or communicate operations. For advance, we leverage Gun-
rock’s load-balancing computations to correctly compute
output size or add an extra reduction to determine output
size. For filter, the output size is at most the size of input,
and for most filters, the output size is capped by |V;|. For
communication, the required size is given by the framework.

We compare just-enough memory allocation against 3
alternatives (Fig. 3): a fixed preallocation using sizing
factors calculated from previous runs of similar graphs; a
maximum allocation; and preallocation plus kernel fusion
(in Section VI-C). The just-enough memory allocation is
still in effect when these alternatives are used, to prevent
illegal memory access, although this only happens rarely.
Each of the different memory allocation schemes have
near-identical computation times. Just-enough allocation is
critical in reducing our memory footprint, which allows us
to fit larger subgraphs into memory. Consequently, we can
achieve higher performance with fewer GPUs than other
frameworks that lack sophisticated memory management
strategies (Section VII-C). Our implementation of (DO)BFS,
SSSP and BC use preallocation plus kernel fusion (Sec-
tion VI-C); we use fixed preallocation for CC and PR,
as their memory requirements can be determined before
running these primitives.

C. Kernel Fusion

Kernel fusion (automatically combining two sequential
kernels into one) is a well-known technique for high-
performance GPU graph analytics [7], [20]. Our previous
1GPU work [5] fused Gunrock compute operators with
advance or filter operators. In this work, we added the
ability to fuse an advance operator with a filter operator that
follows it. In addition to the usual advantages of reducing
kernel launch overhead and increasing producer-consumer
locality, this particular fusing eliminates the need to store the
intermediate frontier (potentially as large as O(|E|)) in GPU
memory, enabling us to store larger subgraphs per GPU.

VII. RESULTS

We begin by summarizing the results that we present in
more detail later in this section.

o Primitives in our framework scale reasonably well from
1 to 6 GPUs (geometric mean of speedup: 2.52x across
five primitives), except for DOBFS, whose scalability
is limited by communication overhead.

+ (DO)BFS and PR show good weak scaling. BFS and
PR exhibit strong scaling, but DOBFS does not.

e We compared our performance against previously-
published in-core multi-GPU systems on the datasets
highlighted by those systems. In general, we signifi-
cantly outperform other systems given the same number
of GPUs, and often systems with many more GPUs.

A. Experimental Setup

We run most tests on nodes with 6 NVIDIA Tesla K40
cards, a 10-core Intel Xeon E5-2690 v2, and 128 GB CPU
memory, running on CentOS 6.6 with CUDA 7.5 (both
driver and runtime) and gcc 4.8.4. We conduct strong and
weak scaling experiments on 2 systems: (1) 4 NVIDIA Tesla
K80 cards (each with 2 GPUs and 12 GB DRAM/GPU) and
(2) 4 Tesla P100s (PCIe, 16 GB DRAM, CUDA 8.0). Direct
peer-to-peer inter-GPU communication is enabled in groups
of 4 GPUs where appropriate. All programs are compiled
with the -O3 flag and set to target the actual streaming
multiprocessor generation of the GPU hardware.

The dataset information is listed in Table II in three
representative groups. The real-world graphs are from the
UF sparse matrix collection [21] and the Network Data
Repository [22]. The “soc” and “web” groups are online
social networks and web crawls of different domains. For
SSSP, edge values are randomly generated integers from
[0, 64]. We implement a GPU-based R-MAT “rmat” graph
generator faithful to GTgraph [23]; the rmat parameters are
{A, B, C, D} = {0.57, 0.19, 0.19, 0.05}. All three kinds
of graphs follow a power-law distribution. Road networks,
and high-diameter, low-degree graphs in general, have very
different scalability characteristics than power-law graphs.
They have insufficient parallelism to saturate even 1GPU,
much less mGPUs; as a result, iteration overhead occupies



group name 4 |E| D  group name V] |E| D group name 4 |E| D
soc soc-LiveJournall 4.85M  85.7M 13 web indochina-2004  7.41M  302M 24 rmat rmat_n20_512 1.05M 728M  6.26*
soc hollywood-2009 1.14M 113M 8 web uk-2002 18.5M  524M 25 rmat  rmat_n21_256 2.10M 839M  7.22*
soc soc-orkut 3.00M 213M 7 web arabic-2005 227M  1.11B 28 rmat rmat_n22_128 4.19M 925M  7.56*
soc soc-sinaweibo 58.7M 523M 5 web uk-2005 39.5M  1.57B 23 rmat rmat_n23_64 8.39M  985M  8.32*
soc soc-twitter-2010  21.3M  530M 15 web webbase-2001 118M  1.71B 379 rmat rmat_n24_32 16.8M 1.02B  8.61*

rmat rmat_n25_16 33.6M 1.05B 9.06*

Table II: Datasets we used to evaluate our work. |V| and |E/| are vertex and edge counts; d is the graph diameter, * indicates
an approximated diameter computed by multiple run of random-sourced BFS.
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Figure 4: mGPU speedup over 1GPU performance for BC,
BES, CC, DOBEFS, PR and SSSP. All numbers shown are
geometric means of runtime speedup over all datasets.

a significant portion of the runtime, and we observed per-
formance decreases on mGPU. If otherwise unspecified, all
graphs we use are converted to undirected graphs. Self-
loops and duplicated edges are removed. All tests have
been repeated at least 10 times with average runtime used
for results. Computations are verified for correctness. The
instructions and the scripts to reproduce the results can
be found at https://github.com/gunrock/gunrock/tree/master/
dataset/test-scripts/ipdps17.

B. Overall Results

The overall speedup of all the primitives is shown in
Fig. 4, normalized to the performance of 1GPU as 1. The
speedup of a given primitive using a given number of GPUs
is the geometric mean of speedups from all datasets tested
for that configuration. Most of the primitives scale well from
1 to 6 GPUs, resulting in 2.63%, 2.57x%, 2.00x, 1.96x and
3.86x speedup for BFS, SSSP, CC, BC and PR respectively
using 6 (K40) GPUs. The performance curve of DOBFS
mostly stays flat, as it’s limited by communication overhead.
This agrees with our scaling analysis in Section V and VI-A.

As in Section IV, we focus on (DO)BFS and PR as
representative primitives for further analysis. Fig. 5 shows
strong and weak scaling of these selected primitives. While
providing both weak-vertex and -edge scaling, DOBFS
doesn’t have good strong scaling, because its computation
and communication are both roughly in the order of O(|V;]).
This effect is more obvious on P100, as computation is
faster but inter-GPU bandwidth stays mostly the same. As
a result, the peak BFS performance (513 GTEPS on K40,
and 900 GTEPS on P100) is achieved by 1GPU DOBFS

with rmat_n20_512. In contrast, BFS and PR achieve almost
linear weak and strong scaling from 1 to 8 GPUs.

We show more detailed speedups separated by graph type
in Fig. 6. DOBFS scaling suffers the most for rmat datasets,
because the volume and computation for communication
vs. the core computation complexity is higher, resulting
in a correspondingly larger portion of per-iteration time
for inter-GPU communications. On the other hand, the
larger |E;|/|V;| ratio of rmat graphs helps BFS and PR in
scalability, because the core computation cost is O(| E;|) and
the communication cost is at most O(|V;|), reducing the cost
of communication compared to computation.

C. Comparisons vs. Previous mGPU Work

We compare our work with previous GPU in-core systems
in Table III, and with previous GPU out-of-core or CPU
systems in Table IV. The datasets we choose for comparison
against each system are those specifically highlighted by the
authors in their results, presumably the datasets where their
systems show the best results. We make our best efforts
to reproduce all reported results from open-source single-
node implementations on our system for direct comparison.
Some of them run into issues with reproducibility, and
we have communicated with the respective authors of the
libraries to resolve these issues. Some reported results use
K20 GPUs; as we do not have access to this particular GPU,
for these comparisons, we instead scale our speedups by the
memory bandwidth ratio between the K20 and K40 we use.
This comparison disfavors Gunrock because we verified that
Gunrock’s relative performance reduction is always smaller
than the relative memory bandwidth reduction on Kepler
GPUs for large rmat and social networks.

Enterprise [9] is a hardwired DOBFS implementation with
various optimizations. It is considered state of the art for a
traditional DOBFS implementation on GPUs within a single
node. Our DOBFS outperforms it by 2-5x, even given less
than ideal scalability with DOBFS and rmat. The results
of the BFS-specific implementation in B40C by Merrill
et al. [7] without directional optimization are particularly
impressive; to be consistent with other comparisons, our
29.9 GTEPS result is produced by DOBFS; our normal BFS
records 12.9 GTEPS, ~1.15x compared to B40C. We use
Merrill’s rmat parameters ({A, B, C, D} = {0.45, 0.15, 0.15,
0.25}) for this particular comparison.
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Figure 5: Scalability of DOBFS, BFS, and PR. {Strong, weak edge, weak vertex} scaling use rmat graphs with {224, 219,
219 % |GPUs|} vertices and edge factor {32, 256 |GPUs|, 256} respectively.

graph ref. ref. hw. ref. perf. our hw. our perf. comp.
kron_n24_32 (16.8M, 1.07B, UD) Liu [9] {2, 4} xK40x1 {15, 18} GTEPS {2, 4} xK40  {77.7, 67.7} GTEPS {5.18, 3.76} x
kron_n24_32 (16.8M, 1.07B UD) Liu [9] 8xK40x 1 18.4 GTEPS 4xK80 40.2 GTEPS 2.18x%
rmat_2Mv_128Me (2M, 128M, D) Merrill [7] 4xK40x 1N 11.2 GTEPS 4xK40 29.9 GTEPS 2.67x%
coPapersCiteseer (0.43M, 32.1M, UD) Zhong [2] 4xC2050%1E 2.69 GTEPS 4xK40 3.31 GTEPS 1.23x
com-orkut (3M, 117M, UD) Bisson [8] 1xK20X x4 2.67 GTEPS 4xK40 14.22 GTEPS 5.33x | 4.62x*
com-Friendster (66M, 1.81B, UD) Bisson [8] 1 xK20X x 64 15.68 GTEPS 4xK40 14.1 GTEPS 0.90x | 0.78x*
kron_n23_16 (8M, 256M, UD) Bernaschi [24] 1 xK20X x4 ~1.3 GTEPS 4xK40 30.8 GTEPS 23.7x | 20.6x*
kron_n25_16 (32M, 1.07B, UD) Bernaschi [24] 1 xK20Xx 16 ~3.2 GTEPS 6x K40 31.0 GTEPS 9.69% | 8.41x*
kron_n25_32 (32M, 1.07B, D) Fu [25] 2xK20x32 22.7 GTEPS 4xK40 32.0 GTEPS 141x | 1.02x*
kron_n23_32 (8M, 256M, D) Fu [25] 2xK20x2 6.3 GTEPS 4xK40 27.9 GTEPS 443%x | 3.20x*
twitter-mpi (52.6M, 1.96B, D) Bebee [26] 1 xK40x 16 224.2 ms 3x K40 94.31 ms 2.38x%

Table III: Comparison with previous in-core GPU BFS work. Ref. hardware is denoted by intra-node GPU countx GPU
modelxnode count. We use the same number of GPUs whenever possible within the constraints of a single node. * indicates
speedup adjustment by memory bandwidth ratio, N indicates results reproduced on our system, and F indicates issues in

reproducing results; refer to Section VII-C for details.

graph algo ref. ref. perf. our hw. our perf.
uk-2002 {BFS, SSSP, CC, PR}  Sengupta [15], 1 xK40F {49, 80, 153, 162} sec 1xK40 {0.059, 0.76, 1.85, 1.99} sec
twitter-rv {BFS, SSSP, CC, PR} Shi [17], 1xK40V {46, 40%, 29, 80} sec {1,2,3, 1}xK40  {0.098, 0.837%, 1.71, 49.7} sec
LiveJournall ~ {BFS, SSSP, CC, PR} Shi [16], 1 xK40N {66.4, 245%, 213, 105} ms 1xK40 {122, 63.2%, 93.6, 45.7} ms
twitter-rv {SSSP, CC, PR} Lee [27], 4 coresx21 nodes {126, 304, 149} sec {2, 3, 1} xK40 {2.20, 1.71, 49.7} sec
witter-mpi (BFS, SSSP, BC, PR} Gharaibeh [13], 2x {0.698, 2.67, 3.90, AxKAD {0.0785, 1.62, 2.37,

K40+2x Xeon 2637V

0.581 / iter} sec

0.471 / iter} sec

Table IV: Comparison with previous out-of-core GPU or CPU graph processing work. Our framework can process the largest
datasets that were reported by most previous works (except Totem), on all reported primitives, using much less processing
time. {uk-2002, twitter-rv, LiveJournall, twitter-mpi} are directed graphs with {18.5M, 42M, 5M, 52.6M} vertices and
{298M, 1.5B, 68M, 1.96B} edges. N and F indicators are the same as in Table III. I notes that Frog uses 1 uniformly as
edge weights for SSSP, which we also use for Frog+SSSP comparisons only.
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Figure 6: mGPU geometric mean speedups over 1GPU
performance on rmat, soc and web graphs separately and
in geometric means (all) for DOBFS, BFS, and PR.

T
c  web

The graphs selected by Zhong et al. [2] are not considered
as large ones, and most of our runtime would be on iteration
overhead introduced by Gunrock’s load balancing steps that
are more useful for large graphs. Despite that, we still see
1.23x speedup as compared to their best BFS result.

Works by Bisson et al. [8], Bernaschi et al. [24], Fu et
al. [25], and Bebee et al. [26] are GPU-cluster-based im-
plementations. Our results with 4-6 GPUs show significant
speedup compared to theirs with 4-16 GPUs in a cluster.
Using 4 GPUs we achieve similar performance as their 64-
GPU clusters. We note that inter-GPU bandwidth within a
node is larger than inter-node bandwidth, so our comparisons
must be considered in this light; however, as we noted in
Section I, we believe that our results motivate a future focus



graph algo perf.

friendster (125M, 3.62B, UD) BFS 339 ms

friendster (125M, 2.59B, D) PR 1024 ms / iter
sk-2005 (50.6M, 1.9B, D) BFS 2717 ms

sk-2005 (50.6M, 1.9B, D) PR 154 ms / iter
rmat_n24_32 (UD, 32bit eID) BFS 67.6 GTEPS
rmat_n24_32 (UD, 64bit eID) BFS 52.6 GTEPS
rmat_n24_32 (UD, 64bit vID) BFS 33.9 GTEPS

Table V: Our performance on large graphs.

on scaling up (fewer but more powerful nodes, each with
more GPUs) in preference to scaling out (more nodes).

GraphReduce [15] and Frog (asynchronous) [16], [17] are
out-of-core GPU approaches, GraphMap [27] targets CPU
distributed-memory clusters, and Totem [13] is an hetero-
geneous CPU-GPU approach. While out-of-core approaches
have the promise to process graphs much larger than in-core
work such as ours, our framework can comfortably process
the largest graphs they used in any of their results [15]-[17],
[27]. For these comparisons, we use the smallest number
of GPUs possible for individual comparisons, and achieve
much less processing time. For comparisons with Totem,
we use the same number of processors (4 GPUs vs. 2
CPUs + 2 GPUs), and achieve better performance. GPU
memory capacity is certainly an important concern, but
careful memory management (Section VI-B) can allow even
mGPUs to run graphs of significant size directly from GPU
memory. When graphs can fit into GPU memory, in-core is
preferable than out-of-core in view of performance.

We also compare our work (using a system with an
Intel Xeon E3 1225 v3 CPU and a single NVIDIA Tesla
K40c GPU) with Daga et al. [14]. On 8 of the 9 graphs
they used (the wiki graph is no longer available online),
Gunrock shows 5 to 10x performance (TEPS) as compared
to Hybrid++(CPU+dGPU) and about 3.5 efficiency (TEPS
per Watt) as compared to Hybrid++(APU), with the excep-
tion of the road network, for which Gunrock’s performance
and efficiency are only half of Daga’s. Although the APU
provides the GPU with direct access to the main memory,
its overall limited bandwidth bottlenecks its performance.

Compared to previous work, the performance advantages
of our framework come from:

e our novel optimizations (Section VI) that speed up
computation or reduce memory usage;

e using cudaStream to asynchronously launch compu-
tation and communication workloads, and cudaEvent
to establish workload dependencies, allowing overlap-
ping workloads when possible;

« additional computation required by the framework is as
lightweight as possible, reducing mGPU overhead; and

« using high-performance, extensible single-GPU primi-
tives as our building blocks.

D. Larger Graphs

We also ran tests on larger graphs on 4 GPUs (Table V).
We achieve good performance on graphs up to 3.62B edges.
As graphs approach larger sizes, 32-bit vertex and edge
IDs are no longer sufficient, so our system supports 64-
bit vertex and edge IDs. In practice this doubles bandwidth
requirements and our performance drops accordingly.

VIII. CONCLUSIONS

Increasing graph sizes and performance requirements pro-
vided the motivation to explore graph analytics on multiple
GPUs. The size concern is particularly pressing for the
limited memory space in current GPUs. Our chief goals
were generality (can target many graph algorithms), pro-
grammability (particularly a simple extension from single-
GPU programs to the multi-GPU ones), and scalability in
performance and memory usage.

The most helpful decision we made was our unified
framework for authoring a range of graph primitives, with
high-level programmability for expressing the primitives and
common components to extend these primitives to multiple
GPUs. One challenge was the design of our abstraction
that allowed both multi-GPU generality/programmability
and scalable performance, but doing so both allowed a
straightforward extension for programmers from single to
multiple GPUs, as well as a higher-level view of the key
building blocks of a multi-GPU implementation, showing
which operations are common to multiple algorithms, and
what optimizations can be done at the framework level.
Thus, improvements we make to the core of our framework
apply to all graph primitives.

We see two key next steps. First, while we achieve good
scalability in most cases, road networks and DOBFS do not
scale well. How can we tackle these graphs from a systems
perspective, whether that be GPU/platform hardware, system
software, or our platform software? Second, can we achieve
further scalability (scale-out) with multiple nodes, and given
the increased latency and decreased bandwidth of those
nodes, is it profitable to do so?
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APPENDIX A.
MULTI-GPU BFS CODE EXAMPLE

This code list shows a multi-GPU BFS implementation
using the proposed framework. Programmer provided,
primitive specific code is highlighted. This implementation
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may not cover all available optimizations, as the main
purpose is to illustrate how to extend a single GPU primitive

onto multi-GPU.

struct BFSProblem public ProblemBase ({

// maximum number of associative values to

// send per-vertex, of type VertexT

static const int MAX_NUM_VERTEX_ASSOCIATES =
(MARK_PREDECESSORS) ? 1 : 0 ;

// maximum number of associative values to send
// send per-vertex, of types ValueT
static const int MAX_NUM_VALUE__ASSOCIATES = O;

// Per—-GPU problem specific data structure
struct DataSlice BaseDataSlice {
The same as on single GPU; };

ArraylD<DataSlice> *data_slices;
BFSProblem() BaseProblem(...) {}

void Init (Csr *graph, int num_gpus, ...) {
// Init BaseProblem, include partitioning
// of the graph, and generating
// partition_tables and conversion_tables
BaseProblem::Init (graph, num_gpus, ...);
data_slices =

for (int gpu = 0; gpu < num_gpus; gpu++) {
DataSlice &data_slice = data_slices[gpu]
data_slice.Allocate(l, DEVICE | HOST) ;

data_slice.Init (sub_graphs[gpul, ...);
if (MARK PREDECESSORS && num_gpus > 1)
data_slice.vertex associate_orgs|[0] =
preds.GetPointer (DEVICE) ;

}

// Reset data to be ready for new traversal
void Reset (VertexT src, ...) {
for (int gpu = 0; gpu < num_gpus;
data_slices[gpu] —-> Reset(...);
// host GPU of the source vertex
int src_gpu = 0;
// the Vertex Id of src on its host GPU
VertexT tsrc = src;
if (num_gpus > 1) {
src_gpu = partition_ tables[0] [src];
tsrc = conertion_tables[0] [src];

gpu++)

}

i

new ArraylD<DataSlice>[num_gpus];

Init label and pred for tsrc on GPU src_gpu;
Put tsrc into initial frontier on GPU src_gpu;

}
}; // end of struct BFSProblem

// Kernel to combine received and local data
__global__ void Expand_Incoming_Kernel(...)

{

SizeT i = blockIdx.x*blockDim.x + threadIdx.x;

while (i < num_received_vertices) {
VertexT v = received_vertices[i];
if (label < atomicMin (
data_slice -> labels + key,
vertices_out[atomicAdd (out_length,
if (MARK PREDECESSORS)

label)) {
1)]

data_slice -> preds|[v] = vertex associate_in[i];

}

i += blockDim.x * gridDim.x;
}
struct BFSIteration public IterationBase {

static void Expand_Incoming(...) {
Expand_Incoming_Kernel<<<...>>>(...); }

= v;

// Core of BFS implementation, for 1 iteration
static void FullQueue_Core(...) {
Same as on single GPU;}

// BFS uses the default Stop_Condition(),

// which exits the iteration loop when all

// frontiers are empty, or any error occurs
bi

// Control thread on CPU
BFSThread (Thread_Slice *thread_slice) {

thread_slice —-> status = Idle;
while (thread_slice -> status != ToKill) {
while (thread_slice -> status == Wait ||
thread_slice -> status == Idle)
sleep(0) ;
if (thread_slice -> status == ToKill) break;

// Perform one BFS iteration loop

gunrock::app::Iteration_Loop<BFSIteration>
(thread_slice);

thread_slice -> status = Idle;

}

struct BFSEnactor public EnactorBase {
ThreadSlice *thread_slices;
CUThread *thread_ids;
BFSEnactor(...) EnactorBase(...), ... {}

void Init(...) {
BaseEnactor::Init (...);

for (int gpu = 0; gpu < num_gpus; gpu++) {
prepare thread_slices([gpul;
thread_ids[gpu] = cutStartThread(

BEFSThread<...>, thread_slices[gpu]);
}
wait for all threads to be idle;

}

void Reset () {
BaseEnactor: :Reset () ;
for (int gpu = 0; gpu < num_gpus; gpu++)
thread_slices[gpu].status = Wait;

}

void Enact (VertexT src, ...) {
Set initial frontier size on each GPU;
//Signal GPUs to start working
for (int gpu = 0; gpu < num_gpus; gpu++)
thread_slices[gpu].status = Running;
//Wait for GPUs to finish
for (int gpu = 0; gpu < num_gpus; gpu++)
while (thread_slices[gpu].status != Idle)
sleep(0);
}
}; // end of struct BFSEnactor
void BFS(Csr graph, int num_gpus, vector<> srcs)
BFSProblem problem() ;
BFSEnactor enactor();
problem.Init (graph, num_gpus, ...);
enactor.Init (...);
for (auto src srcs) |
problem.Reset (src, ...);
enactor.Reset () ;
// the actual traversal
enactor.Enact (src, ...);



