
Cross-Referenced Dictionaries and the Limits of Write Optimization

Peyman Afshani∗ Michael A. Bender† Mart́ın Farach-Colton‡ Jeremy T. Fineman§

Mayank Goswami¶ Meng-Tsung Tsai‖

Abstract
Dictionaries remain the most well studied class of data
structures. A dictionary supports insertions, deletions,
membership queries, and usually successor, predecessor, and
extract-min. In a RAM, all such operations take O(logN)
time on N elements.

Dictionaries are often cross-referenced as follows. Con-
sider a set of tuples {〈ai, bi, ci . . .〉}. A database might in-
clude more than one dictionary on such a set, for example,
one indexed on the a’s, another on the b’s, and so on. Once
again, in a RAM, inserting into a set of L cross-referenced
dictionaries takes O(L logN) time, as does deleting.

The situation is more interesting in external mem-
ory. On a Disk Access Machine (DAM), B-trees achieve
O(logB N) I/Os for insertions and deletions on a sin-
gle dictionary and K-element range queries take optimal
O(logB N + K/B) I/Os. These bounds are also achievable
by a B-tree on cross-referenced dictionaries, with a slowdown
of an L factor on insertion and deletions.

In recent years, both the theory and practice of external-
memory dictionaries has been revolutionized by write-
optimization techniques. A dictionary is write optimized
if it is close to a B-tree for query time while beating B-
trees on insertions. The best (and optimal) dictionaries
achieve a substantially improved insertion and deletion cost

of O(
log1+Bε N

B1−ε), 0 ≤ ε ≤ 1, amortized I/Os on a single
dictionary while maintaining optimal O(log1+Bε N +K/B)-
I/O range queries.

Although write optimization still helps for insertions
into cross-referenced dictionaries, its value for deletions
would seem to be greatly reduced. A deletion into a cross-
referenced dictionary only specifies a key a. It seems to
be necessary to look up the associated values b, c . . . in
order to delete them from the other dictionaries. This
takes Ω(logB N) I/Os, well above the per-dictionary write-

optimization budget of O(
log1+Bε N

B1−ε) I/Os. So the total

deletion cost is O(logB N + L
log1+Bε N

B1−ε) I/Os.

∗MADALGO, Aarhus University, Aarhus, Denmark. Email:

peyman@madalgo.au.dk.
†Department of Computer Science, Stony Brook University,

Stony Brook, USA. Email: bender@cs.stonybrook.edu.
‡Department of Computer Science, Rutgers University, New

Brunswick, USA. Email: farach@cs.rutgers.edu.
§Department of Computer Science, Georgetown University,

Washington D.C., USA. Email: jfineman@cs.georgetown.edu.
¶Department of Computer Science, Queens College, CUNY,

New York, USA. Email: mayank.goswami@qc.cuny.edu.
‖Department of Computer Science, Rutgers University, New

Brunswick, USA. Email: mtsung.tsai@cs.rutgers.edu.
This research was supported by NSF grants IIS-1247726,

IIS-1251137, CNS-1408695, CCF-1439084, CCF-1617618, CCF-

1617727, CNS-1408782, IIS-1247750, NIH CA198952-01, EMC,
Inc., and Sandia National Laboratories.

In short, for deletions, write optimization offers an ad-
vantage over B-trees in that L multiplies a lower order term,
but when L = 2, write optimization seems to offer no asymp-
totic advantage over B-trees. That is, no known query-
optimal solution for pairs of cross-referenced dictionaries
seem to beat B-trees for deletions.

In this paper, we show a lower bound establishing that
a pair of cross-referenced dictionaries that are optimal for
range queries and that supports deletions cannot match the
write optimization bound available to insert-only dictionar-
ies.

This result thus establishes a limit to the applicability of
write-optimization techniques on which many new databases
and file systems are based.

1 Introduction

Dictionaries remain the most well studied class of data
structures. A dictionary supports insertions, deletions,
membership queries, and usually successor, predecessor,
and extract-min operations. But surprisingly basic
questions about dictionaries remain unanswered.

Some of these basic questions arose as far back as
the pre-computer era, whenever people indexed large
collections of data. The library of Alexandria is thought
to have contained over 600,000 volumes, partitioned
first into seven broad topics and then shelved alpha-
betically by author [11, 28]. Each volume is thought to
have had tags called pinakes,1 which contained meta-
data. Pinakes were also compiled into a separate vol-
ume, which is thought to have been the first library
catalog. Thus, people could search for books using the
pinakes, but only by scanning through the pinakes in
〈subject, author〉 order. It was many centuries before
there were any libraries of size comparable to that of
Alexandria after that library was destroyed, and dur-
ing that time, libraries were indexed using content-
addressable-memory systems— that is, “curators, slaves
or freedmen” [14,17].

Circa 1295, the library at the Collège de Sorbonne
at the Université de Paris introduced indexes [22], in the
sense that there were volumes compiled for the purpose
of locating books according to a variety of criteria. For
the first time it became possible to search the content
of a library according to distinct orders (by author,

1“Pinakes” is ancient Greek for “tables”, and is thus consistent

with modern database nomenclature.

1523 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

subject, or collection2), while the books themselves
were stored on the shelves in any convenient order. In
1791, Enlightenment thinkers of the French Revolution
introduced card catalogs as indexes, making it easier for
the indexes to track the changing collection [13].

Today books are stored on the shelves according
to a subject-classification scheme (usually the Dewey
Decimal System [8] or the Library of Congress Classi-
fication System (LC) [19]) to allow for browsing, but
they are also indexed in other orders (author, title, sub-
ject, keyword). Each particular index on the books is a
dictionary ordered by a different key.

Specifying Operations of a Dictionary. The actual
data structure at work organizing a library is not merely
a set of dictionaries, but a system of cross-referenced
dictionaries, which we call a compound dictionary .
We call a compound dictionary an L-dictionary if it
consists of L cross-referenced dictionaries. A compound
dictionary maintains a cross-reference invariant ,
where each dictionary—which we sometimes call an
index—stores the same set of items but orders them
according to a different comparison function. Thus,
every time that a book is inserted into or deleted from
the library, each index needs to be updated.

An abstraction of a compound dictionary is as
follows. The L-dictionary maintains a set S ⊆ U1 ×
U2 × · · · × UL. Each (potentially infinite) key space Ui
is totally ordered. Items can be inserted, deleted, and
queried:

• insert(x): S ←− S ∪ {x}. That is, add x to S.

• delete(i, x): S ←− S − U1 × · · · × Ui−1 × {x} ×
Ui+1 × · · · × UL.
That is, remove all tuples 〈∗, . . . , ∗, x, ∗, . . . , ∗〉
whose ith component is x.

• lookup(i, x): return S ∩ U1 × · · · × Ui−1 × {x} ×
Ui+1 × · · · × UL.
That is, return all tuples 〈∗, . . . , ∗, x, ∗, . . . , ∗〉
whose ith component is x.

• range(i, r1, r2): return S ∩ U1 × · · · × Ui−1 ×
[r1, r2] × Ui+1 × · · · × UL, where [r1, r2] =
{x | r1 ≤ x ≤ r2}.
That is, return all tuples 〈∗, . . . , ∗, x, ∗, . . . , ∗〉 in S
for which r1 < x < r2.

We refer to the index on Ui as Ii.
Observe that compound dictionaries are distinct

from multi-dimensional indexes because delete and

2No title indexes were compiled, since titles were not fixed at
that time [21].

query operations on compound dictionaries specify only
a single coordinate, whereas delete and query opera-
tions on a multi-dimensional dictionary might allow all
or some of the coordinates of the deleted item or queried
rectangle to be specified.

Compound Dictionaries in Databases. The com-
pound dictionary is one of the most (if not the most)
widely used data-structural abstraction, because it ap-
pears in essentially every relational database manage-
ment system (RDBMS). In database terminology, in-
dexes are sometimes also called tables, and the ele-
ments that are inserted and deleted are typically called
rows.

The actual specification of a database is slightly
different: indexes can be defined on tuples of fields;
deletions can only be specified on so-called primary
keys; and in some databases, only U1 can be primary;
some fields may not have any index associated with
them; etc. Our version of the problem is similar
enough to capture the essential algorithmic challenge
of compound dictionaries.

The Complexity of Deletes in a Compound Dic-
tionary. Considering that compound dictionaries have
been around for 720 years and are the basic data struc-
ture of databases, it may seem surprising that the algo-
rithmic literature is largely silent on this data structure.

On the other hand, at first glance, there’s not
that much to say. Insertions, for example, into an L-
dictionary are simply L times slower than an insertion
into a single dictionary, on both a RAM and in external
memory.

Now consider deletes. On a RAM, deletions take
O(logN) operations on a dictionary and O(L logN) on
an L-dictionary. As with insertions, a deletion from an
L-dictionary can be decomposed into L deletions from
regular dictionaries.

Even in external memory, the problem seemed
trivial until recently. The B-tree [2] achieves optimal
O(logB N+K/B) I/Os for range queries on K elements
and O(logB N) I/Os for insertions and deletions. On
an L-dictionary implemented using B-trees, the deletion
cost is O(L logB N) I/Os. Once again, a deletion to the
compound dictionary is a deletion on each dictionary.

But a little bit more is actually going on, because
a deletion seems to require a search. Consider a 2-
dictionary on U1 × U2. An insertion of 〈u, v〉 consists
of adding 〈u, v〉 into I1 ordered by u and into I2 or-
dered by v. A deletion delete(1, u) seems to require
lookup(1, u) to fetch the pair 〈u, v〉, followed by remov-
ing 〈u, v〉 from both I1 and I2. In short, an actual delete
from a constituent index requires knowing the key to be

1524 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

deleted. But this seems to require a query to find all
the necessary keys.

For a B-tree, this query is not a problem. We get the
desired bounds by noting that deletions take the same
amount of time as searches. One query to get all keys
does not slow down the L deletions from the individual
dictionaries.

Compound Dictionaries and Write Optimiza-
tion. In recent years, both the theory and prac-
tice of external-memory dictionaries have been revo-
lutionized by write-optimization techniques. Write-
optimization is a somewhat informal concept in the file-
system and database communities, but it boils down
to this: a dictionary is write-optimized if insertions and
deletions are substantially better than those of a B-tree,
while point queries are as good or nearly as good.

The best (write-optimized) dictionaries maintain
(optimal) O(log1+Bε N + K/B) I/Os for range queries
while achieving a substantially improved insertion and

deletion cost of O(
log1+Bε N

B1−ε) amortized I/Os, for 0 ≤
ε ≤ 1, while [3, 5, 6].

Write optimization techniques are now widespread
in the database world [1,7,10,18,24,25] and are starting
to have an impact on file systems [9, 15,16,20,30].

Deletes and Write Optimization. Write-optimized
databases and file systems show a marked asymmetry
between insertions/deletions and queries in that for
ε < 1, the cost of inserting and deleting is much lower
than the cost of a query. In such data structures,
a delete is typically implemented as the insertion of
a tombstone message, which changes the state of the
data structure so that subsequent queries no longer see
the deleted item. Given the gap in the I/O budgets
of insertion/deletions vs queries, it is not possible to
determine if an insertion is overwriting a previous
insertion, if a delete is deleting an item that actually
belongs to the set, etc. This asymmetry introduces an
algorithmic issue with compound dictionaries.

An L-dictionary composed of write-optimized dic-

tionaries (WODs) takes time O(L
log1+Bε N

B1−ε) to insert
into all indexes. However, consider the deletion al-
gorithm, which includes a search. Searches are much
slower than insertions, and so the time to delete is

O(log1+Bε N + L
log1+Bε N

B1−ε). Write optimization does
help, because the L multiplies a low-order term, but
deletions do not enjoy the full benefits of write opti-
mization.

The alternative is to push the slowdown to the
query: one could keep a data structure of all the dele-
tions. Suppose that there is a set D = {d1, d2, ..., d`} of
deletion delete(1, di). A query range(2, x, y) consid-

ers a sequence 〈ai, bi〉, where x ≤ bi ≤ y. Some of these
ai might belong to D, and any such pair would need to
be filtered out of the answer. These lookups in a data
structure on D would slow down the queries, thus yield-
ing deletions that match the write-optimization bound
for deletions but with suboptimal queries.

In either case, the crux of the difficulty seems to be
the jump from a single dictionary to a 2-dictionary. In
the remainder of the paper, we therefore restrict our at-
tention to 2-dictionaries when talking about compound
dictionaries.

Deletes and Databases. So far, we have described
the problem of deletes in write-optimized indexes. This
problem is of algorithmic interest, certainly, because the
run-time of deletes is a big gap in our understanding of
indexing. However, we did not come to this problem
originally from a consideration of algorithmic issues.
Instead, while building TokuDB [26], we had to deal
with the issue of deletions. Deletions are a big problem
in the design of write-optimized storage systems. What
is particularly interesting to us in this problem is that
the pragmatics of building a database so exactly line up
with the algorithmics of compound dictionaries.

Warming Up. Before we consider the problem of
deletes in 2-dictionaries, we examine the simpler count
problem on single dictionaries. In its simplest version,
the count of a dictionary returns the cardinality of the
set S being indexed.

In many instantiations of a dictionary, such as in
a database, dictionaries support overwrite insertions, in
which a new insertion with the same key replaces the
old key. (Actually, the value associated with the key
replaces the old value). In RAM, such operations takes
O(logN) time, and counts can be computed inO(logN)
time. In a B-tree, such operations take O(logB N) I/Os,
and counts can be computed in O(logB N) I/Os.

In a WOD, however, insertions take very few I/Os
compared to queries. There are not enough I/Os in
an insertion to resolve whether a particular insertion
is a new insertion or an overwrite. It seems that we
need a query to resolve this issue, either at the time
of insertion or at query time, in order to achieve an
accurate count. Once again, the asymmetry between
the cost of insertions and the cost of queries in a WOD
seems to cause some algorithmic problems for some
operations.

Our Results. In this paper, we warm up by show-
ing that the count operation is slow if insertions are
write optimized. Specifically, we show that it is im-
possible to achieve O(logB N) I/Os for count in the

1525 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

external-memory comparison model unless insertions
take Ω(logB N). That is, no write optimization is pos-
sible at all for this problem. This result serves as both
a first proof on the limits of write optimization and as
a simplified proof that shows some of the techniques of
the main result. The details can be found in Section 2.

In Section 3, we establish limits on write optimiza-
tion for deletions on 2-dictionaries. We prove that one
may either achieve fast deletes or optimal range queries
but not both. Our result is not as general as the count
result, because our lower bound establishes that some
parts of the write-optimization tradeoff curve are not
achievable, whereas in the count lower bound, we show
that no write optimization is achievable at all. We con-
jecture that if range queries are optimal, then deletes
takes Ω(logB N) (in the I/O comparison model), that
is, that no write optimization is possible for this prob-
lem either. We leave this conjecture for future work.

Related Lower Bounds. Brodal and Fagerberg [6]
derived lower bounds on the update/query tradeoff for
external memory one-dimensional dictionaries. For the
predecessor problem, they showed that to achieve query

time O(logB N), updates must take Ω(
log1+Bε N

B1−ε) I/Os
amortized. They also constructed buffered-B trees that
achieve this tradeoff, thus essentially solving the 1D
predecessor problem for most choices of parameters.

Verbin and Zhang [27] considered problems like
1D range counting, membership, predecessor, etc., in
dictionaries. They show that: if the update take is less
than 1 I/O, queries must be roughly logarithmic in N ;
and if the update take 1+o(1) I/Os, then hashing gives
O(1) query time.

Ke Yi [29] considered the range query problem in
dictionaries, and showed that essentially all known ver-
sions of dynamic B-trees are optimal for this problem,
as long as logB(N/M) is a constant.

2 Counts and Dictionaries

We define 1-D count problem as follows:

• Static Insertion Phase: Preprocess set S =
{a1, a2, . . . , aN}.

• Dynamic Insertion Phase: Insert a sequence of
√
N

elements D = {d1, d2, . . . , d√N}.

• Counting Phase: Output the count, |S ∪ D|.

Theorem 2.1. In the comparison-based external-
memory model, for any algorithm that solves the 1-D
count problem using O(N logB N) I/Os for the static
insertion phase, there is a constant c < 1 so that if it
performs at most c

√
N logB N I/Os for the dynamic

insertion phase, it must perform Ω(
√
N logB N) I/Os

in the worst case to output the count |S ∪ D|.

Proof. Let the sorted order of S be a1 < a2 <
· · · < aN . Suppose the adversary reveals that each
dk is in a disjoint subrange of S as follows: a1 ≤
d1 ≤ a√N , a

√
N+1 ≤ d2 ≤ a2

√
N , . . . , a(

√
N−1)

√
N+1 ≤

d√N ≤ aN . In the comparison-based model, the only
information that the algorithm can learn about dk is
the set of possible ai that might match dk, i.e. that
dk = ai, for some i, or that there it lies in some open
interval (ai, aj), but the relative order of ai+1 and dk
is unknown, (and symmetrically with aj−1). We say
that dk is resolved if we know that dk = ai or dk ∈
(ai, ai+1), for some i. Otherwise it is unresolved on
some interval (ai, aj), j > i+1. We note here that in this
setting, the algorithm knows that d1 < d2 < · · · < d√N ,
so no extra information can be inferred by comparing
pairs of elements in D.

Suppose that the adversary reveals to the algorithm
the additional information |S ∪D| is either N +

√
N or

N +
√
N − 1. That means at most one member of D

matches some member of S.
To distinguish between the two cases, the algorithm

can be forced to identify the predecessors and successors
for the each dk. The adversary never declares that
an element of D is equal to an element of S and this
forces the algorithm to resolve all the intervals. To
see this, suppose at the end of Counting Phase some
dk is unresolved in interval (ai, aj), j > i + 1. For
all the other members of D, the adversary chooses to
have those elements be distinct from the elements of S;
this is possible since the adversary has never declared
the existence of an equality between elements of D and
S. Now, the adversary can choose to set dk = ai or
ai < dk < ai+1 that results in an incorrect count.

Therefore, all the elements of D must be resolved,
however, if dk is resolved, then the algorithm knows the
successor and predecessor of dk. It is known that find-
ing the predecessors for each dk requires Ω(

√
N logB N)

(say, at least c+
√
N logB N) I/Os [4, Theorem 7]. We

set c = c+/2, and since the I/Os spent on the sec-
ond phase is c

√
N logB N (choose c < c+/2), the

third phase must pay off the difference c+
√
N logB N −

c
√
N logB N ∈ Ω(

√
N logB N), hence proving the theo-

rem.

3 Deletes and 2-Dictionaries

In this section we show that a 2-dictionary support-
ing optimal range queries cannot achieve the write-

optimization bound (O(
log1+Bε N

B1−ε)) for any ε ∈ (0, 1/3).
Brodal and Fagerberg [6] proved a lower bound on
the update/query tradeoff for the predecessor prob-

1526 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

lem in one-dimensional external memory dictionaries,
and showed that the buffered-Bε tree achieves the op-
timal write-versus-query tradeoff (same as the write-
optimization bound mentioned earlier). Here we show
that such a tradeoff is not possible in cross-referenced
dictionaries.

Specifically, we show a lower bound for 2-
Dictionary Deletion Problem (2DD), which we
define as the problem of performing the following
compound-dictionary commands, during three different
phases.

• Phase 1: Let A = {ai} and B = {bi} be sorted sets
of N elements each. This phase consists of inserting
a set S = {〈ai, bj〉}, by performing N insertions
insert(ai, bj). Define π by ai = π(bj).

• Phase 2: This phase consists of a set D = {di} ⊆ A
of
√
N deletions delete(1, di) on the first coordi-

nate.

• Phase 3: This phase consists of one range query
range(2, b`, br) on the second coordinate.

In the general setting, inserts, deletes and range queries
can be provided in any order. This general problem
is obviously harder than the “three phase” problem
defined above (the defined problem is an instance), so
a lower bound on our problem is a lower bound on
the general cross-referenced 2-dictionary maintenance
problem.

Our main result is the following theorem:

Theorem 3.1. For any data structure that solves
the 2DD problem, if an insertion takes amortized
O(logB N) I/Os and a deletion takes amortized
O((logB N)/Bα) I/Os for any constant α > 2/3, then
some range query range(2, b`, br) requires ω(logB N +
K/B) I/Os, where K = |B ∩ [b`, br]| is the number of
b’s inserted (but not deleted) in the range [b`, br].

3.1 Proof Outline. As in the proof of Theorem 2.1,
we specify that the members of D come from disjoint
ranges of A, each of size

√
N . We perform the allowed

I/Os and find the uncertainty ranges for all the dele-
tions. In this proof, we more carefully quantify the un-
certainty that remains in all the deletions, because we
need this uncertainty to be large enough to lower bound
the number of I/Os of a range query.

In other words, counts take O(logB N) I/Os,
whereas range queries take O(logB N + K/B). If K
is large, then this term dominates the I/O complexity
of a range query. Specifically, it is not enough simply to
figure out that there are unresolved deletions, since the
unresolved deletions could potentially be resolved while

answering the range query. Thus, we need to make sure
that the I/Os required to resolve the deletion completely
cannot be amortized against those used to answer the
range query.

To begin, we need to refine Theorem 7 from [4]
(which states that not all searches can fully resolve in
less than c+ logB N I/Os per query, for some constant
c+) with a stronger lower bound on the total size of the
unresolved intervals. (See Lemma 3.2.)

Because the remaining uncertainty is large, there
are many tuples in I2 that might be deleted. We want
to find a range query that has many such potential
deletions. In Lemma 3.3 we show that such hot regions
exist they involves a sufficient number of different di’s.
We need to show that not too many of these di’s can be
filtered out as having been deleted (it is important to
know that it is enough for the range query to simply not
output any of the di’s rather than fully resolve them).
This is done by showing that not too many of these
deletions can be fetched into memory as a byproduct
when the algorithm fetches other di’s. To guarantee
this, we require π to satisfy two conditions, Ca and
Cb, that roughly speaking require that π sufficiently
“shuffles” the elements of A and B. Lemma 3.1
guarantees the existence using the probabilistic method
and Turán’s Theorem [23].

3.2 Preliminaries. We assume that every I/O can
read/write a disk page capable of storing B = logτ N
tuples for some sufficiently large constant τ , the physical
memory can store M = O(Nµ) tuples, and the range
query has size K = Nδ and µ < δ < 1/4 are constants.
The constants τ and δ are found during the course of
the proof.

Specifying the insertions and deletions. Let
a1, . . . , aN be the sorted order of A and b1, . . . , bN the
sorted order of B. We assume that ai 6= ai+1 and
bi 6= bi+1, for 1 ≤ i < N , that is, A and B each have
N distinct values. Recall that the N inserted tuples
be (π(bi), bi) for i ∈ [N], where π is a mapping from
{b1, . . . , bN} to {a1, . . . , aN}.

We will break A into chunks of size
√
N as we did

in the proof of Theorem 2.1. We say that ai has color
k, abbreviated as c(ai) = k, if di/

√
Ne = k. We say bi

has color k if π(bi) has color k and overload the color
function so that c(T) = {c(bi) : bi ∈ T}. For every fixed
constant r ∈ (0, 1) and 1 ≤ t ≤ N1−r, we define the sets

St,Nr = {bi : di/Nre = t}.

Not every π is suitable for our lower bound. Con-
sider, for example, the degenerate case that π(bi) = ai
for all i ∈ [N]. If π(bi) is directly computable from ai

1527 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

A : ︷ ︸︸ ︷

√
N

︸︷︷︸

N δ

Figure 1: We decompose the ordered list of elements in
A into

√
N chunks of size

√
N . The elements in the

same chunk are assigned the same color. Each chunk is
further decomposed into subchunks of size Nδ for some
parameter δ to be fixed later.

with no I/Os, then the theorem does not hold. We can
insert a deletion message into both indices and write
optimization works just fine.

Hence, to prove the theorem, we cannot choose π
arbitrarily. We will pick a π that satisfies the following
two conditions.

Ca. c(bi) 6= c(bj) if bi 6= bj and bi, bj ∈ St,√N for some

t ∈ [
√
N].

In other words, the permutation must be compatible
with the following: Break B into chunks of size

√
N in

order. Take the elements of each of these chunks and
map them to some element inA, so that no two elements
in the same chunk of B fall within the same chunk of
size
√
N in A.

Cb. |c(St,Nδ) ∩ c(St′,Nδ)| = O(1) for every t 6= t′ ∈
[N1−δ], for some fixed constant δ ∈ (0, 1/4).

This is a crucial property. Note here that |c(St,√N) ∩
c(St′,

√
N)| =

√
N given Ca. This condition requires

that if we break B into finer chunks of size Nδ, that we
call subchunks, then the pairwise intersections must
have constant size. See Figure 1. The following lemma
shows the existence of such a π.

Lemma 3.1. For every N and δ ∈ (0, 1/4), there exists
some π that satisfies both Ca and Cb.

Proof. To satisfy Ca, it is required that c(St,
√
N) =

{1, 2, . . . ,
√
N} for every t ∈ {1, 2, . . . ,

√
N}. Hence,

c(b1), c(b2), . . . , c(bN) is a concatenation of
√
N permu-

tations of {1, 2, . . . ,
√
N}.

There are (
√
N)! such permutations but, to satisfy

Cb, some permutations cannot be placed together in
the concatenation. We construct a graph G = (V,E) to
describe which permutations cannot be placed together.
Each node in G denotes a permutation and thus |V | =
(
√
N)!. If two permutations cannot be placed together

in the concatenation due to Cb, then we connect the
representative nodes by an edge. Because of symmetry,
the graph is regular.

Here we upper bound the degree of each node.
Let π0 be a permutation specified by some fixed node
and πrand be a permutation specified by the node
picked uniformly at random. Let T be the threshold
constant in Cb (i.e. |c(St,Nδ) ∩ c(St′,Nδ)| < T). Let
further Pr[i1, i2, . . . , iT ;πrand] be the probability that
i1, i2, . . . , iT fall within the same subchunk of πrand.
Then, each node in G has degree

d =
(√

N
)

! · Pr[π0 and πrand can’t be placed together]

≤
(√

N
)

!
∑

i1,i2,...,iT distinct, and
are in the same π0’s subchunk

Pr[i1, i2, . . . , iT ;πrand]

≤
(√

N
)

!
(
N1/2−δ

)(Nδ

T

)(
1

N1/2−δ

)T (
N1/2−δ

)

≤
(√

N
)

!
(
N1−2δ−T (1/2−2δ)

)
(note that δ < 1/4)

≤
(√

N
)

!/N (pick a sufficiently large T)

By Turán’s Theorem, the graph G = (V,E) has an
independent set of size at least

|V |2
|V |+ 2|E| ≥

((√
N
)

!
)2

(√
N
)

! +
((√

N
)

!
)2

/N
= N − o(1),

meaning that some carefully chosen
√
N permutations

can be placed together in the concatenation without
violating Cb. As a result, the desired π exists.

Given a mapping π that satisfies the both condi-
tions, the adversary conducts the following adversarial
sequence of insertions and deletions:

• Insertion Phase: The adversary inserts, in any
order, N tuples (π(bi), bi) for every i ∈ [N].

• Deletion Phase: The adversary deletes, in any
order,

√
N tuples (dk, ∗) for every k ∈ [

√
N], where

dk = ai for some ai whose color is k.

At the beginning of the deletion phase, each dk, for
k ∈ [

√
N], might match any ai whose color is k. We say

that dk has uncertainty u, abbreviated as U(dk) = u,
if the number of ai’s that can match dk equals u. While
performing the I/Os for deletions, some comparisons
between a’s and d’s are made and thus the uncertainly
U(dk) of any dk might shrink, but we claim that not
by too much, in aggregate, of all k. Here we prove a
quantitative bound for the sum of the U(dk) at the end
of the deletion phase.

1528 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

Lemma 3.2. Any algorithm for 2DD over an adversar-
ial sequence using amortized O(logB N) I/Os per in-
sertion and O(logB N/B

α) I/Os per deletion, for any
constant α ∈ (2/3, 1), has

∑

k∈[
√
N],U(dk)>1

U(dk) = Ω(N/B1−α)

at the end of the deletion phase.

Proof. It suffices to show that the desired lower bound
holds even if the adversary reveals some information for
each dk at the beginning of the deletion phase. For
each k ∈ [

√
N], the adversary partitions the range

[(k − 1)
√
N + 1, k

√
N] into Br equal-sized consecutive

subranges for some constant r determined later. See
Figure 3. It then randomly picks a subrange and reveals
to the algorithm that dk equals some ai in the subrange.
After such a revelation,

∑

k∈[
√
N],U(dk)>1

U(dk) = Ω(N/Br).

A : ︷ ︸︸ ︷

√
N

︸︷︷︸√
N

Br

dk

Figure 2: Partitioning a chunk into Br subranges. dk
will be chosen inside the some subrange inside the k-th
chunk.

Claim 3.1. For some combination of randomly picked
subranges and r ∈ (0, 1/3), the sum of uncertainty
Ω(N/Br) cannot be further narrowed down by any
superconstant factor at the end of the deletion phase.

Proof. Let us consider the I/Os performed during the
deletion phase. These I/Os can bring a’s from disk to
memory for subsequent comparisons with d’s, and thus
the uncertainty of d’s can be reduced. For each a that
is brought into memory, it is only possible to reduce the
uncertainty of one d. We assume that the adversary
reduces the uncertainty of the appropriate d, even if
that d isn’t in memory. Thus, we give the algorithm
more power than any actual algorithm could have.

We say that some a is fresh if it has not yet
been brought into memory since the beginning of the
deletion phase, and therefore only fresh a’s can be used
to reduce the uncertainty further given the assumption.
We note that only fetching the disk pages written in
the insertion phase can give the algorithm fresh a’s.

Those written in the deletion phase cannot, since all
uncertainty is maximally reduced when an a is fetched
during the deletion phase. There are O(N logB N) disk
pages written in the insertion phase, and therefore the
number of disk pages that can contain some fresh a’s is
O(N logB N).

Pi :
︸ ︷︷ ︸
Pi,k

Figure 3: The i-th block written during the insertion
phase. It may contain elements of different color with
Pi,k referring to the elements that have color k.

Let Pi ⊆ {aj : j ∈ [N]} denote the aj ’s contained in
the ith disk page written in the insertion phase. Note
that |Pi| ≤ B. Let Pi,k = {aj ∈ Pi : c(aj) = k} (see
Figure 3). We partition Pi into two disjoint sets Hi and
Li, where Li = Pi \Hi and

Hi = {aj ∈ Pi : |Pi,c(aj)| ≥ Br}.

That is Hi is the set of elements in Pi whose color is
frequently represented in Pi. Let Rk be the randomly
picked subrange for dk. Let Xi,k denote the random
variable |Rk ∩ Pi|. Then Xi,k ∈ [0, |Pi,k|], E [Xi,k] =
|Pi,k|/Br, and all Xi,k’s are independent for every fixed
i. Let

Yi =
∑

k∈[
√
N],Pi,k⊆Li

Xi,k,

and from linearity of expectation

E [Yi] =
∑

k∈[
√
N],Pi,k⊆Li

E [Xi,k] =
|Li|
Br

.

By Hoeffding’s inequality [12], we have

Pr
[
Yi − E [Yi] ≥ B1−r] ≤ exp


− 2(B1−r)2

∑
Pi,k⊆Li
k∈[
√
N]

|Pi,k|2




≤ e−Ω
(
B2−2r

B1+r

)
,

which is e−B
Ω(1)

= e− logΩ(τ) N = 1/N2 if we pick any
constant r ∈ (0, 1/3) and pick τ to be sufficiently
large. By the union bound, we know that for some
combination of Rk for k ∈ [

√
N],

Yi ≤ E [Yi] +B1−r ≤ 2B1−r

for every disk page written in the insertion phase.

1529 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

The adversary picks some such combination of Rk,
and reveals the information to the algorithm. No
matter what O(

√
N logB N/B

α) I/Os are fetched by the
algorithm in the deletion phase — w.l.o.g. let them be
P1, P2, . . . , PT for T = O(

√
N logB N/B

α) — we have:

• The number of colors contributed by Hi for i ∈ [T]
is at most (

√
N logB N/B

α)(B/Br).

• The number of aj ’s contributed by Li for i ∈ [T] is

at most (
√
N logB N/B

α)(2B1−r).

• The number of aj ’s is in memory at the beginning
of the deletion phase is at most M = o(Nδ).

If we pick α > 1 − r, there are o(
√
N) dk’s whose

uncertainty can be further narrowed down by the aj ’s
fetched by some Hi. Furthermore, the number of aj ’s
contained in some Li and in memory at the beginning of
the deletion phase is bounded by o(

√
N), which means

that few dk’s can have a comparison with aj in some
Li to further narrow down the uncertainty. As a result,
Ω(
√
N) dk’s have the uncertainty unchanged since the

revelation, yielding the total uncertainty Ω(N/Br).

Since r can be any constant in (0, 1/3), then α can
be any constant in (2/3, 1). By Claim 3.1, we complete
the proof of Lemma 3.2.

After performing all deletions, the number of disk
pages that contain some di for i ∈ [

√
N] is at most

(
√
N logB N)/Bα (i.e. no more than the budget of I/Os

for deletions).
We are now in a position to prove the existence of

a range query that requires superlinear number of I/Os.
Observe that if a range query contains some bj whose
π(bj) still might match some di, to answer the range
query correctly, the algorithm must, due to Ca: (1)
fetch some disk page that contains di, and (2) compare
bj with di to see whether bj is deleted. By Lemma 3.2,
we know that there are Ω(N/B1−α) such bj ’s and thus
some range query of size Nδ has Ω(Nδ/B1−α) such bj ’s,
which is more than the claimed budget O(logB N +
Nδ/B). We note here that the number of d’s that
are already in memory at the beginning of the range
query phase is M = O(Nµ) = o(Nδ/B1−α), and thus
are insufficient to change the bound. By the Markov
inequality, we can say something stronger:

Lemma 3.3. There are Ω(N1−δ/B1−α) range queries
of size Nδ so that, to answer any of the queries correctly,
any algorithm needs to fetch Ω(Nδ/B1−α) different di’s
for the required comparisons.

However, the observation is not sufficient to prove
Theorem 3.1 because a single I/O might fetch back

multiple di’s for the required comparisons. That is the
reason why we need Cb. Observe further that every
such expensive query range(2, (i−1)Nδ+1, iNδ) needs
the existence of some disk page that contain Ω(Bα)
different dj ’s for required comparisons, denoted by the
set Di. Note that c(Di) ⊆ c(Si,Nδ) and therefore
|c(Di) ∩ c(Dj)| ≤ |c(Si,Nδ) ∩ c(Sj,Nδ)| = O(1) for

every i 6= j. Since there are at most o(
√
N) disk

pages containing some di, and each of the disk page
can be a superset of O(B1−α) different Di’s because
|c(Di)∩ c(Dj)| = O(1) for i 6= j, Bα > B2/3 >

√
B and

the following lemma:

Lemma 3.4. Let T1, T2, . . . , TC be the subsets of S,
where |Ti ∩ Tj | = O(1) for every i 6= j ∈ [C] and |Ti| =
∆ = ω(

√
|S|) for each i ∈ [C], then C = O(|S|/∆).

Proof. We prove this by a counting argument. Consider
the elements in Di = Ti\

⋃
j<i Tj . Since |Ti∩Tj | = O(1)

for every j < i, |Di| = ∆−O(i). We are done because

|S| ≥
∑

i∈[C]

|Di| =
∑

i∈[C]

|Ti| − O(i)

and thus C = O(|S|/∆), where the last equality holds
due to the fact that ∆ = ω(

√
|S|).

The number of different Di’s that are subsets of
some disk page is only o(N1/2B1−α). However, the
number of different Di’s needed for the expensive range
queries is Ω(N1−δ/B1−α), implying that some range
query requires ω(logB N +K/B) I/Os. This establishes
Theorem 3.1.

4 Conclusion

In this paper, we consider issues of both practical
and theoretical importance in implementations of and
algorithms for dictionaries. The development of write
optimization has reduced the cost of insertions and
deletions. As this tide of insertion/deletion cost recedes,
the cost of queries becomes significant in many settings.

We show that natural operations, including count in
single dictionaries and delete in compound dictionaries,
limit the applicability of write optimization. Our
lower bounds correspond to our experience, that these
operations do, in fact, sometimes reduce the benefits of
write optimization and can become bottlenecks of actual
systems.

In addition to showing lower bounds that start to
put a boundary around the applicability of write opti-
mization and that provide an explanation for the diffi-
culty of implementing fast versions of some operations in
databases and file systems, we consider one of our con-
tributions to be the introduction of a set of problems

1530 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

around compound dictionaries, which are a heretofore
poorly studied aspects of dictionaries, despite being one
of the most common ways in which they are used.

We leave one major open question: can the lower
bound for deletes in 2-dictionaries be extended to the
entire write-optimization range and raised to show that
deletes take Ω(logB N) time, in compound dictionaries
with optimal range queries? In other words, can it be
shown that each delete requires a search?

In this paper we worked in the external memory
comparison model. One natural question to investigate
is whether hashing allows for write-optimization in a
cross-referenced dictionary. By an easy application
of hashing, we can show that one can achieve write-
optimized bounds for insertions, O(1) update time for
deletions, and answer range queries optimally. Thus
the picture is already different since in the comparison
model we conjecture an Ω(logB N) update I/O cost for
our problem. We believe there is potential to prove
non-trivial cell probe lower bounds for our problem but
we remark that doing so very likely is going to require
investigating the batched predecessor problem [4] in the
cell-probe model, which is a difficult problem. We leave
this for future work.

References

[1] Apache. HBase. http://hbase.apache.org, Last
Accessed May 16, 2015, 2015.

[2] R. Bayer and E. M. McCreight. Organization and
maintenance of large ordered indexes. Acta Informat-
ica, 1(3):173–189, Feb. 1972.

[3] M. A. Bender, M. Farach-Colton, J. T. Fineman,
Y. Fogel, B. Kuszmaul, and J. Nelson. Cache-oblivious
streaming B-trees. In Proc. 19th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA),
pages 81–92, 2007.

[4] M. A. Bender, M. Farach-Colton, M. Goswami,
D. Medjedovic, P. Montes, and M. Tsai. The batched
predecessor problem in external memory. In A. S.
Schulz and D. Wagner, editors, Proc. 22th Annual Eu-
ropean Symposium (ESA), pages 112–124, 2014.

[5] G. S. Brodal, E. D. Demaine, J. T. Fineman, J. Iacono,
S. Langerman, and J. I. Munro. Cache-oblivious
dynamic dictionaries with update/query tradeoffs. In
Proc. 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1448–1456, 2010.

[6] G. S. Brodal and R. Fagerberg. Lower bounds for ex-
ternal memory dictionaries. In Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA ’03), pages 546–554, Baltimore, MD,
2003.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for

structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

[8] M. Dewey. Decimal Classification and Relative Index
for Libraries, Clippings, Notes, Etc. Library Bureau,
1891.

[9] J. Esmet, M. A. Bender, M. Farach-Colton, and B. C.
Kuszmaul. The TokuFS streaming file system. In
Proc. 4th USENIX Workshop on Hot Topics in Storage
(HotStorage), Boston, MA, USA, June 2012.

[10] Google, Inc. LevelDB: A fast and lightweight key/value
database library by Google. http://github.com/

leveldb/, Last Accessed May 16, 2015, 2015.
[11] D. Heller-Roazen. Tradition’s destruction: On the

Library of Alexandria. October, 100:133–153, 2002.
[12] W. Hoeffding. Probability inequalities for sums of

bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

[13] J. Hopkins. The 1791 French cataloging code and the
origins of the card catalog. Libraries & Culture, pages
378–404, 1992.

[14] G. W. Houston. Inside Roman Libraries: Book Collec-
tions and Their Management in Antiquity. UNC Press
Books, 2014.

[15] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet,
Y. Jiao, A. Mittal, P. Pandey, P. Reddy, L. Walsh,
M. A. Bender, M. Farach-Colton, R. Johnson, B. C.
Kuszmaul, and D. E. Porter. Betrfs: A right-optimized
write-optimized file system. In Proc. 13th USENIX
Conference on File and Storage Technologies (FAST),
pages 301–315, February 2015.

[16] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Es-
met, Y. Jiao, A. Mittal, P. Pandey, P. Reddy,
L. Walsh, M. A. Bender, M. Farach-Colton, R. John-
son, B. C. Kuszmaul, and D. E. Porter. Betrfs: Write-
optimization in a kernel file system. Transactions on
Storage, 11(4):18:1–18:29, October 2015.

[17] W. Johnson, Oct. 2015. Personal communication.
[18] A. Lakshman and P. Malik. Cassandra: a decentralized

structured storage system. ACM SIGOPS Operating
Systems Review, 44(2):35–40, 2010.

[19] L. of Congress. Library of Congress classification
outline, 2015. Viewed November 8, 2015.

[20] K. Ren and G. A. Gibson. TABLEFS: Enhancing
metadata efficiency in the local file system. In USENIX
Annual Technical Conference, pages 145–156, 2013.

[21] M. Rouse, Oct. 2015. Personal communication.
[22] R.-H. Rouse. The early library of the Sorbonne.

Scriptorium, 21(1):42–71, 1967.
[23] T. Tao and V. H. Vu. Additive Combinatorics. Cam-

bridge University Press, 2009.
[24] Tokutek, Inc. TokuDB: MySQL Performance,

MariaDB Performance . http://www.tokutek.com/

products/tokudb-for-mysql/.
[25] Tokutek, Inc. TokuMX—MongoDB Performance

Engine. http://www.tokutek.com/products/

tokumx-for-mongodb/.
[26] Tokutek, Inc. TokuDB and TokuMX, 2014. http:

//www.tokutek.com.

1531 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

[27] E. Verbin and Q. Zhang. The limits of buffering:
A tight lower bound for dynamic membership in the
external memory model. SIAM J. Comput., 42(1):212–
229, 2013.

[28] F. J. Witty. The Ṕınakes of Callimachus. The
Library Quarterly: Information, Community, Policy,
28(2):132–136, 1958.

[29] K. Yi. Dynamic indexability and the optimality of b-
trees. J. ACM, 59(4):21:1–21:19, Aug. 2012.

[30] J. Yuan, Y. Zhan, W. Jannen, P. Pandey, A. Aksh-
intala, K. Chandnani, P. Deo, Z. Kasheff, L. Walsh,
M. A. Bender, M. Farach-Colton, R. Johnson, B. C.
Kuszmaul, and D. E. Porter. Optimizing every oper-
ation in a write-optimized file system. In Proc. 14th
USENIX Conference on File and Storage Technologies
(FAST), pages 1–14, Santa Clara, CA, February 2016.

1532 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

