
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2015; 27:4412–4422
Published online 19 May 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3542

SPECIAL ISSUE PAPER

Araport: an application platform for data discovery

Matthew R. Hanlon1,*,† , Matthew Vaughn1, Stephen Mock1, Rion Dooley1,

Walter Moreira1, Joe Stubbs1, Chris Town2, Jason Miller2, Vivek Krishnakumar2,

Erik Ferlanti2 and Eleanor Pence2

1Texas Advanced Computing Center, The University of Texas at Austin, Austin,TX, USA
2J. Craig Venter Institute, Rockville, MD, USA

SUMMARY

Araport is an open-source, online community resource for research on the Arabidopsis thaliana genome
and related data. Araport is developed through a partnership between J. Craig Venter Institute, the Texas
Advanced Computing Center at The University of Texas at Austin, and The University of Cambridge. Part
of the open architecture of Araport is the Science Applications Workspace. Taking an ‘app store’ approach,
users can choose applications developed both by the Araport team and community developers to create a cus-
tomized environment for their work. Araport also provides tooling and support for developing applications
for Araport, including an application generator, a rapid development and testing tool, and a straightforward
deployment path for publishing applications into the Araport workspace. Copyright © 2015 John Wiley &
Sons, Ltd.

Received 20 January 2015; Revised 24 March 2015; Accepted 14 April 2015

KEY WORDS: Arabidopsis; bioinformatics; APIs; app store; web applications

1. INTRODUCTION

Araport is an open-source, online community resource for research on the Arabidopsis thaliana

genome and related data, developed through a partnership between J. Craig Venter Institute (JVCI),

the Texas Advanced Computing Center (TACC) at The University of Texas at Austin, and The

University of Cambridge. A. thaliana is a model organism in plant science and was the first plant

genome to be sequenced. Araport is defining a new model for what a data portal can provide to

the community. Traditionally, data portals have hosted curated data sets, databases, and tools for

researchers to search and refine, and download data to be analyzed using their own software tools

and workflows. Many portals also provide tools for common analyses and visualization. The novel

aspect of Araport is that it is designed to be the pinnacle of a data federation ecosystem. The portal

is completely open source‡ and community extensible. In addition to the software tools and data

provided by Araport, users are able to bring their own data and develop their own analysis tools to

build a customized research environment.

A cornerstone feature of Araport, and the subject of this paper, is the science applications

workspace. Users can create multiple workspaces where they can choose from a catalog of ‘science

apps’ to customize their research environment. These science applications are developed both by

the Araport team and community developers. Araport provides tooling and support for developing

science applications, including an application generator, a rapid development and testing tool, and a

straightforward deployment path for publishing an application into the Araport workspace.

*Correspondence to: Matthew R. Hanlon, Texas Advanced Computing Center, The University of Texas at Austin, Austin,
TX, USA.

†E-mail: mrhanlon@tacc.utexas.edu
‡Find all of Araport’s source code at https://github.com/Arabidopsis-Information-Portal/.

Copyright © 2015 John Wiley & Sons, Ltd.

ARAPORT: AN APPLICATION PLATFORM FOR DATA DISCOVERY 4413

2. BACKGROUND

In 2012, a call was made by the International Arabidopsis Informatics Consortium [1] for a new

resource to provide access to community data and outputs in a single interface. This resource was to

provide core functionality while also being community extensible to encourage constant innovation

from a wide range of contributors. Araport has been built to answer that call.

Araport builds upon work by the iPlant Collaborative [2], an National Science Foundation (NSF)

funded cyber-infrastructure project targeting life sciences research. Much of what iPlant has done

to democratize access to high-performance computing resources has helped to pave the way for

Araport. One iPlant project, the Agave Platform, is critical to the federated architecture of Araport.

How Araport is using the Agave Platform is discussed in Section 3. In addition to technology,

Araport leverages iPlant’s cyber-infrastructure directly using, for example, the iPlant Data Store to

host publicly downloadable datasets.

There are existing frameworks that enable the development of individual applications that are

deployed to a web application container. Portlets and portlet containers (Java Specification Request

(JSR) 168 [3] and 286 [4]) are a well-defined framework for deploying modular functionality.

Another example is the OpenSocial specification, originally developed by Google and MySpace and

later becoming Apache Shindig [5], also provides a means for hosting ‘gadgets’ of various trust lev-

els. However, both portlets and gadgets have specific server-side application requirements, limiting

the deployment options for these applications to environments that implement the specifications. In

contrast, Araport science applications are designed specifically to be framework-agnostic and can be

embedded into any existing application without the need for additional server development. Araport

apps conventions are designed specifically so that apps can be embedded in third-party applica-

tions, allowing contributors to write code that works for their own purposes while at the same time

extending Araport. Araport science applications are written in JavaScript and are fully client-side.

The ‘server’ component of these applications comes from the Agave API or other web services,

such as those integrated into Araport’s API space using the Araport Data Mediator API (ADAMA).

These applications can be hosted on almost any platform that can serve HyperText Markup Lan-

guage (HTML) to client browsers, and can even be run as standalone web applications with little to

no modification.

Araport is focused on facilitating the discovery, query, and visualization of structured data sets,

many of which are hosted outside of the immediate Araport platform, and are made accessible

via Araport’s federated architecture. Other web-based science platforms, such as Galaxy [6, 7],

Taverna [8, 9], and the iPlant Discovery Environment [2, 10], provide powerful and extensible work-

flow systems, but are largely focused around the orchestration of computation. Data sharing features

are focused on object-level sharing of files. These workflow systems are appropriate downstream

targets of information gathering conducted at Araport. Consequently, integration with and the ability

to export data to such systems is explicitly on the project road map.

3. ARCHITECTURE AND TECHNOLOGY

The Alpha release of Araport includes several components that are loosely coupled together via

web service APIs and OAuth2 [11] (Figure 1). Even the core components of Araport conform to

the model for federation and interoperability. This allows the core of Araport to also serve as an

example to third party applications and data providers interested in integration with Araport. It has

the additional advantage of allowing each component to operate on an independent development and

release cycle. Araport is distributed across TACC and JCVI infrastructures. The primary Araport

web portal§ is hosted at TACC and is built on the Drupal content management system [12]. Drupal

was selected as a the web framework due to its wide community support, extensibility, and the

development team’s familiarity with the framework. JCVI hosts Thalemine, the Araport deployment

of InterMine [13]. InterMine is an open source data warehouse platform built specifically for hosting

§https://www.araport.org.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412–4422

DOI: 10.1002/cpe

4414 M. R. HANLON ET AL.

Figure 1. The Araport architecture. The top row represents Araport user applications, including, from the
left, Araport Science Apps and other third party applications, the Araport portal, Thalemine, and JBrowse.

All user applications communicate with the rest of the Araport architecture using a single, RESTful API.

complex biological data. InterMine has a web interface for searching and exploring the data mines

as well as powerful APIs that enable remote applications and services to interact with the data mine.

The InterMine data warehouse allows Araport to host both curated datasets as well as third-party

datasets in the case where a particular third party did not want to or was not able to host that dataset

remotely. Also at JCVI are deployments of thick-client applications including JBrowse [14] and

GBrowse [15]. Araport also uses the iPlant Data Store, a hosted data service provided by iPlant, for

storing datasets. These datasets are made available for download on the Araport web portal.

In order to choreograph these services, Araport has adopted the Agave Platform. Agave [16]

is ‘Science-as-a-Service’ platform that provides the plumbing for constructing a virtual cyber-

infrastructure on top of existing resources. It is a hosted, multi-tenant system, allowing platform

developers to quickly bootstrap using Agave without the need to install or run any software. Agave

provides a complete middleware with identity management, authentication, and authorization using

OAuth2, APIs for interacting with compute and storage systems, application management, job

execution, data lifecycle management, monitoring, and notifications. Agave also provides an API

mediation layer for extending the platform to add additional capabilities. It was originally developed

by iPlant and is maintained and extended by TACC.

The Araport team worked with the Agave team to develop a set of Gateway DNA components

[17–19] that allow native integration of Agave within the Drupal framework. The Gateway DNA

Drupal modules currently used in the Araport portal provide native Drupal interaction with Agave

Authentication, Profiles, Systems, and Files APIs. Araport also worked with both the Agave team

and the InterMine team build support for Agave and OAuth2 identity management into InterMine.

When users create an account and authenticate at Araport their identity is stored within the Agave

identity management system. Whether a user is accessing the primary web portal, Thalemine, or any

future application or service, they can use their same Araport credentials. This provides a consistent

user experience across all Araport services and applications, from the command line to the web.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412–4422

DOI: 10.1002/cpe

ARAPORT: AN APPLICATION PLATFORM FOR DATA DISCOVERY 4415

4. SCIENCE APPLICATIONS

For real scientific discovery and exploration to occur, researchers need to have more than just access

to data. They need to have tools to which they can interact with the data: (1) create mashups com-

bining multiple data sources to discover hot spots and other points of interest; (2) analyze their own

data against curated, reference data sets; and (3) visualize interactions within the data.

Some early examples of applications developed by the Araport team are the Bio-Analytic

Resource for Plant Biology (BAR) Interaction Viewer, the BAR Expression Viewer, and the

European Bioinformatics Institute (EBI) Interaction Viewer. These applications use APIs mediated

through Agave from the BAR [20] and the EBI [21]. The first two applications are the earliest appli-

cations deployed on the platform. The BAR Interaction Viewer allows users to query a gene by

name or Arabidopsis Gene Identifier (AGI) and returns an interactive visualization of its protein–

protein interactions. The BAR Expression Viewer takes the same query term and returns an image

visualizing the gene’s expression on an Arabidopsis Developmental Map.

The EBI Interaction Viewer application is an example of an early success using the Araport Sci-

ence App generator (discussed in the succeeding paragraphs). The EBI web services were identified

as providing additional data that could be used in an interaction viewer similar to the BAR Interac-

tion Viewer. An intern working at JCVI was able to fork the BAR Interaction Viewer code and wrap

that code in the generated Araport app. Using the EBI web services, she added additional features

that showed, in addition to the protein interactions, the type of interaction, confidence score values,

and sourcing information for supporting literature.

Figure 2. A view of the developer release of the science apps workspace showing two applications: the EBI
Interaction Viewer and the BAR Expression Viewer. EBI, European Bioinformatics Institure; BAR, The

Bio-analytic Resource for Plant Biology.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412–4422

DOI: 10.1002/cpe

4416 M. R. HANLON ET AL.

The Araport team has since developed several more applications, both to serve as examples or

starting points for community developers and to provide some of the basic functionality needed in

the workspace on day one. These apps range from computational apps such as BLAST, to query

apps for querying ATTED-II or RT-qPCR expression data from remote/legacy data services, to more

general-purpose productivity apps such as a notebook application.

Figure 2 shows an example of how the science apps workspace appears on the Araport Developer

Portal at the time of this writing. The workspace will be moving into the main Araport Portal in the

next major release. Users can create and switch between multiple workspace views. Each workspace

is configured with apps arranged in rows and columns, with up to four applications in each row.

Araport science applications are client-side web applications written in JavaScript. They are pri-

marily lightweight tools that provide querying, display, and browsing of data, as well as some

visualization and analysis. These applications leverage RESTful APIs that are part of the Agave

platform, third party data mediated through Agave or the ADAMA, or third party APIs that sup-

port cross-origin resource sharing (CORS). If heavier processing than is feasible in JavaScript is

required, computational apps are possible using either the Agave API or other APIs to offload pro-

cessing to a computational backend. The Araport BLAST application is an example of this, using

Agave to run BLAST jobs on a remote compute resource and then retrieve the results back to the

user’s web browser.

No single team can build a set of tools or analyses that will solve the needs of all users. To this

end, Araport provides tools and support for data scientists and bioinformaticians to develop a novel,

data-driven applications and deploy them to the Araport portal to use and eventually share with

other users. To support the development of these applications, Araport has developed a ‘science app

generator’ using Yeoman [22].

Yeoman is a tool for quickly scaffolding projects and helping those projects adhere to best prac-

tices, coding standards, and accepted libraries. There are a other similar tools such as Lineman [23]

and Brunch [24]. These tools are built for rapid prototyping, interactive development, and encourag-

ing best practices and coding standards. Yeoman and Lineman are both built on top of the Grunt [25]

task runner. Yeoman and Brunch both use Bower [26] for web library package management. In the

end, previous experience with Yeoman led the Araport team to select it for use.

Node.js [27] is a prerequisite to using the Yeoman generator. The first time you use the generator,

you will need to install Yeoman, Bower, and Grunt, as well as the Araport science app genera-

tor [28] using the Node Package Manager. This can be done with a simple, one-line command. Once

installed, kickstarting a new Araport science application is as simple as issuing the command: yo

aip-science-app.

The application generator scaffolds a new application within the current directory. The included

‘test runner’ application contains a built-in, web server, allowing development on the local machine

without the need to install or configure a web server. When running within the test runner, the app

is accessible in a browser at the address http://localhost:9000. The application’s source is

contained within the app/ directory. The rest of the files created by the app generator are related to

the test runner environment.

The test runner environment is a mini-web application, consistent with the environment of the

Araport workspace. Both jQuery [29] and Bootstrap [30] are provided. The Araport theme is derived

from Bootstrap, and by simply following the Bootstrap user interface guidelines, developers can

build applications that are consistent with Araport and other science apps. The test runner also

configures the Agave API with ADAMA, so that developers can build against those APIs without

needing to configure them in their application. Simply create an API key using your Araport cre-

dentials and begin using the API. The test runner will also persist the API credentials (API key and

token; not the developer’s Araport username/password) in the browser’s local storage for future use.

When apps are deployed to the Araport workspace, the current user’s authentication token is used

to make API queries on behalf of that user.

The test runner environment also includes additional features to improve developer productiv-

ity. The environment incorporates JSHint [31] to watch the application source for common coding

mistakes such as syntax errors and misspellings, as well as encourage coding best practices. The

developer is alerted in real time to the areas of concern in their code so they can double check

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412–4422

DOI: 10.1002/cpe

ARAPORT: AN APPLICATION PLATFORM FOR DATA DISCOVERY 4417

Figure 3. The Science Apps Workspace allows users to create and manage multiple customize workspaces,
and also allows app developer to load their own applications into the Araport environment.

for mistakes without having to wonder why something is not working. The test runner also will

automatically trigger the browser to reload when a source file changes, immediately displaying the

change in the browser.

4.1. The workspace

Araport science apps can be run as standalone applications or integrated into other environments,

but the primary interface for using these apps is on the Araport portal, through the Science

Apps Workspace.

The first version of the science apps workspace, available in the Alpha release of Araport, was

based on the Homebox module [32] for Drupal. This module builds upon the Blocks system in

Drupal core and allows administrators to configure pages that users can subsequently customize by

enabling and arranging instances of Drupal blocks. By leveraging Homebox and Blocks, Araport

was able to rapidly deploy early versions of several science apps without having to develop the

functionality for managing user configurations and rendering applications. However, it was quickly

apparent that Homebox would not suffice for much beyond a rapid prototype, as it had several

shortcomings that made it unable to fulfill the requirements of the Araport workspace. These short-

comings include in the following: (1) blocks can only be created by administrators; (2) access

permissions to blocks are coarse; (3) the layout of a Homebox page (the number of columns and

rows) is fixed in the page configuration by an administrator; and (4) users can only customize a

single Homebox layout per page.

The Alpha Prime release of the workspace is a completely redesigned, custom Drupal module

specifically designed to overcome these shortcomings as well as add additional functionality. This

module is build upon Drupal’s Node system, which brings with it much finer, customizable access

permissions, automatic revision history, a publishing workflow, and more.

The application workspace allows users to manage multiple workspaces for different tasks, cus-

tomize each workspace with the apps and arrangement as desired, and easily add their own apps to

the Araport apps catalog (Figure 3).

4.2. Araport science app lifecycle

The lifecycle of an Araport science app is fairly typical: development, local testing, production test-

ing or staging, quality assurance, and publication. After publication, apps can be further developed,

re-tested, and redeployed with an updated version. Once an app has been developed using the app

generator and test runner application, before a developer can deploy that app to Araport, the devel-

oper must commit the application to a public git repository that supports anonymous cloning over

Hypertext Transfer Protocol (HTTP), such as Github or Bitbucket.¶ This is in concert with Araport’s

commitment to open source.

¶Github and Bitbucket are not the only solutions for public git services. There are many options available including both
cloud-hosted and self-hosted solutions.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412–4422

DOI: 10.1002/cpe

4418 M. R. HANLON ET AL.

Figure 4. Creating a new science app on Araport. The Araport portal must download the apps source and
then resolve its runtime dependencies before the application can be used.

After committing the application to a git repository, from the Araport workspace, users can select

‘Create a New App’ from the workspace toolbar. This form (Figure 3, right) prompts the user for

a name for the app, the URL to the application’s git repository, and an optional release version and

description. After saving, the user will be taken to the app’s dedicated page and will initially see a

progress page indicating that the application is still being processed (Figure 4). In the background,

the Araport portal will download the app’s source for the specified version, defaulting to the lat-

est revision in the master branch, and resolve any third-party dependencies before the app can

be used.

Once the app has been processed, it is available to use in the Araport workspace; however,

the application is restricted to the creator’s own sandbox environment. Only the user who created

the app will be able to access it in Araport. Application sharing is a future development item. In the

interim, there is a workaround that will enable application sharing: if a developer wants to share an

app with another Araport user, that user can create their own version of the application within their

own sandbox environment simply by creating a ‘new’ app with the same source repository.

Users will notice that when configuring their workspaces they have available to them two sets

of applications: User applications and Public applications. User applications are those applications

which reside in the user’s own sandbox. Public applications are applications that the Araport team

has reviewed and published for use by all Araport users. After application sharing is implemented,

a third set for ‘Shared applications’ will be available. A formalized publication pipeline within the

Araport portal is also being developed, but in the meantime users can contact Araport and request

that an application be published. For publishing, Araport staff will review the application for cod-

ing errors, to ensure that the app will behave nicely with other applications in the workspace, and

to check for any possible security vulnerabilities or misuse. After approval, published apps are

available for use by any user.

4.3. Application security

Drupal provides support for two filesystem classes: public and private. The public filesystem is

web-accessible, that is, assets and media in the public filesystem are directly accessible via some

uniform resource identifier (URI). The private filesystem is not web-accessible, and assets stored in

the private filesystem cannot be accessed via a URI. Instead, they pass though the application layer

for logical processing to ensure, for example, access permissions. As mentioned earlier, applications

created by users in the Araport workspace are available for use only by the users who create them.

To ensure this, when the portal downloads an app’s source, it does so to a private filesystem location

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412–4422

DOI: 10.1002/cpe

ARAPORT: AN APPLICATION PLATFORM FOR DATA DISCOVERY 4419

unique to that app. When a user that has permission to access that app navigates to a workspace page

that hosts it, the app’s assets are added to the page. However, they are not directly accessible via

a URI. This prevents, for example, a nefarious user creating an application that dumps a malicious

payload into the Araport web space, and subsequently attempts to infect other sites using Araport

URIs in a cross-site scripting attack.

Furthermore, the private filesystem ensures that the assets downloaded with an app are not exe-

cutable on the server, are partitioned from both the portal’s own code and filesystem as well as

partitioned from the source code of other apps. Araport science apps only execute in the browser

of the user, and as such, apps from ‘unknown’ users cannot be executed by anyone other than that

same user.

Finally, all API actions taken by an app execute within the context of the current user. The

API token used by an app grants only the permissions that that user already has. This prevents

the development of an app that allows a user to access protected data or information belonging to

another user.

4.4. Data APIs in Araport: Araport data mediator API

Araport science apps are only useful if there are data available to use within those apps. While there

are many data services available, much of the data of interest is accessible only via legacy web

applications that may or may not offer web service API. Even if a web service API is available, it

almost certainly does not conform to a uniform data standard. In order to provide a solution to this,

Araport has developed the ADAMA. ADAMA works alongside of Agave to allow users to quickly

modernize legacy data services into an HTTP web service that supports Secure Sockets Layer, stan-

dard HTTP verbs (notably, GET), and supports protocols such as CORS for interoperability. It also

provides an easy and direct path for creating new data services, much like the science app gener-

ator. Finally, ADAMA serves as a collection point for data services, allowing these services to be

discoverable through an Araport ‘data store’ much like the app store.

ADAMA provides four API types: query, map, generic, and passthrough. The primary API type

encouraged by Araport is the query API. The query API serves as a ‘gold standard’ for data APIs in

Araport, as these APIs must have an input parameter space and output specification that is consistent

for all query APIs. Query APIs output JSON responses and can be implemented for any legacy data

source. Map APIs are useful when the existing legacy service already serves JSON, but when it is

useful to transform that JSON into, for example, JSON according to Araport object specifications.

The generic API allows the return of non-JSON data, for example binary image data. The final

API type, passthrough, simply allows existing APIs to become discoverable through ADAMA, but

inputs and outputs remain under the control of the remote service.

By collecting data services through ADAMA, Araport is hoping to create a data store alongside

the app store for science applications. This will serve both as a resource for the community, but also

help to give existing data services and data providers additional visibility. ADAMA development is

continuing, and additional discussion of it in detail can be expected in future papers by the authors.

Current documentation for ADAMA can be found in the Araport Developer Zone.

5. ADOPTION AND USAGE

The first launch of the Araport portal that was open to user registration was made available on 1

April 2014. At that time, the science apps workspace and platform was still under development. Six

months later, the first version of the apps workspace and platform was released and user registration

has doubled since then. Araport is currently seeing over 2 000 unique visitors per month with about

50% of those being returning visitors. Much of the data currently hosted by Araport is available

through Thalemine and JBrowse without registration. The newest features, such as the Science Apps

Workspace, require registration. Since the launch of the workspace at the end of 2014, we have seen

our registered user count double. In addition, Araport has over 30 registered app developers.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412–4422

DOI: 10.1002/cpe

4420 M. R. HANLON ET AL.

Currently, Araport hosts the TAIR10 annotated genome release, which is makes available for

download. The next annotated release, AIP11, is in progress. In addition to TAIR10, there are many

other data sets that are integrated into the Thalemine data warehouse. The currently available data

sets are listed on the Thalemine Data Sources page.||

6. FUTURE WORK

The Araport project is the result of a 2-year planning grant that solicited requirements from the

entire Arabidopsis research community. The portal, as it exists at the time of this writing, is techni-

cally a prototype and still in an active development phase with a regular release cycle. Despite its

prototype status, Araport is already engaging with users and developers within the Arabidopsis com-

munity. In November of 2014, Araport held a developer workshop at the TACC. At this workshop,

attendees were introduced to Araport apps, the workspace, and ADAMA. Attendees participated in

guided sessions, in which they developed a science application from scratch and deployed it onto

the Araport developer portal. Optional breakout sessions were held, where attendees were able to

get familiar with ADAMA as well as collaborate in small groups to design and build applications

of their own. Much experience was gleaned from that workshop, both by attendees and the Araport

team. Many new development items were added to the roadmap taking into account the experiences

of the workshop attendees and their feedback. While a great portion of this included hardening

of the environment, better error reporting and logging available to users, and improved documen-

tation, one item in particular stands out for discussion: the development of a formalized science

app manifest.

6.1. Science apps manifest

The currently supported science apps have an implicit application manifest, which is the files cre-

ated by the app generator in the app/ directory. Prior to the workshop, the Araport team had

discussed the need for apps to be able to host additional assets beyond these, such as images. How-

ever, the workshop showed that in reality, apps in general need a more flexible hosting structure

that not only allows for images, but multiple HTML, JavaScript, and CSS files, as well as support

for other media types. For example, apps built using the Processing.js framework [33] use a script

type text/processing and a file extension *.pde. The science apps themselves and the apps

workspace are framework agnostic, and the current generation of Araport apps and the workspace

can work frameworks like Processing. However, to do so, developers are made to construct apps

out of composable libraries managed with Bower. This was designed to keep the apps themselves

lightweight and encourage reuse, but early developer feedback has shown than this is not how the

community would like it to work. The science apps manifest should be flexible enough to accommo-

date more flexible asset loading for frameworks like Processing or any other of the every growing

catalog of client-side frameworks.

6.2. Attribution in apps and services

Another major area that is actively being designed centers around the topic of attribution. The devel-

opers of applications know the source of the data provided by their ADAMA APIs, and used by their

science apps. However, for published apps, unless the developer explicitly sources the data and pro-

vides proper attribution, there is little to no chance that the user will know the data’s source or that

the data provider will receive acknowledgment. It is obvious that this is unacceptable, even in the

short run. While the Araport team has made an effort to establish best practices for data attribution

in apps, it will be necessary to ensure that sourcing information is contained in every API response

and, ideally, automatically included in every science app and workspace page, to ensure that data

providers receive proper attribution.

||https://apps.araport.org/thalemine/dataCategories.do.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412–4422

DOI: 10.1002/cpe

ARAPORT: AN APPLICATION PLATFORM FOR DATA DISCOVERY 4421

ACKNOWLEDGEMENTS

Araport is funded by a grant from the National Science Foundation (DBI-1262414) and co-funded by a
grant from the Biotechnology and Biological Sciences Research Council (BB/L027151/1). The Araport team
would also like to acknowledge the iPlant Collaborative for the use of the Agave Platform and the iPlant
Data Store.

REFERENCES

1. The International A I C. Taking the next step: building an Arabidopsis information portal. The Plant Cell Online

2012; 24(6):2248–2256.

2. Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, Matasci N, Wang L, Hanlon M, Lenards A, Muir

A, Merchant N, Lowry S, Mock S, Helmke M, Kubach A, Narro M, Hopkins N, Micklos D, Hilgert U, Gonzales M,

Jordan C, Skidmore E, Dooley R, Cazes J, McLay R, Lu Z, Pasternak S, Koesterke L, Piel WH, Grene R, Noutsos

C, Gendler K, Feng X, Tang C, Lent M, Kim Seung-jin, Kvilekval K, Manjunath BS, Tannen V, Stamatakis A,

Sanderson M, Welch SM, Cranston K, Soltis P, Soltis D, O’Meara B, Ane C, Brutnell T, Kleibenstein DJ, White JW,

Leebens-Mack J, Donoghue MJ, Spalding EP, Vision TJ, Myers CR, Lowenthal D, Enquist BJ, Boyle B, Akoglu A,

Andrews G, Ram S, Ware D, Stein L, Stanzione D. The iPlant collaborative: cyberinfrastructure for plant biology.

Frontiers in Plant Science 2011; 2(34):1–16.

3. The Java Community Process(SM) Program - JSRs | Java specification requests - detail JSR#168.html. (Available

from: https://www.jcp.org/en/jsr/detail?id=168) [Accessed on August 26, 2014].

4. The Java Community Process(SM) Program - JSRs | Java specification requests - detail JSR#286.html. (Available

from: https://www.jcp.org/en/jsr/detail?id=286) [Accessed on August 26, 2014].

5. Shindig - welcome to apache Shindig.

6. Goecks J, Nekrutenko A, Taylor J, Team The Galaxy. Galaxy: a comprehensive approach for supporting accessible,

reproducible, and transparent computational research in the life sciences. Genome Biology 2010; 11(8):1–13.

7. Galaxy. (Available from: https://usegalaxy.org/) [Accessed on March 23, 2015].

8. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, Soiland-Reyes S, Dunlop I, Nenadic A,

Fisher P, Bhagat J, Belhajjame K, Bacall F, Hardisty A, Nieva de la Hidalga A, Balcazar Vargas MP, Sufi S, Goble

C. The taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the

cloud. Nucleic Acids Research 2013; 41(W1):W557–W561.

9. Taverna - open source and domain independent Workflow Management System. (Available from: http://www.taverna.

org.uk) [Accessed on March 23 2015].

10. iPlant collaborative discovery environment. (Available from: https://de.iplantcollaborative.org/de/) [Accessed on 23

March 2015].

11. OAuth 2 specification. (Available from: http://oauth.net/2) [Accessed on 29 March 2013].

12. Drupal - open source CMS | Drupal.org. (Available from: https://www.drupal.org) [Accessed on August 26 2014].

13. Smith R N S, Aleksic J, Butano D, Carr A, Contrino S, Hu F, Lyne M, Lyne R, Kalderimis A, Rutherford K, Stepan

R, Sullivan J, Wakeling M, Watkins X, Micklem G. Intermine: a flexible data warehouse system for the integration

and analysis of heterogeneous biological data. Bioinformatics 2012; 28:3163–3165.

14. JBrowse | A fast, embeddable genome browser built with HTML5 and JavaScript. (Available from: http://jbrowse.

org/) [Accessed August 26 2014].

15. GBrowse - GMOD. (Available from: http://gmod.org/wiki/GBrowse) [Accessed on August 26 2014].

16. Dooley R, Vaughn M, Stanzione D, Terry S, Skidmore E. Software-as-a-service: the iPlant foundation API. 5th IEEE

Workshop on Many-Ttask Computing on grids and Supercomputers, Salt Lake City, UT, 2012.

17. Dooley R, Hanlon M R. Recipes 2.0: building for today and tomorrow. Concurrency and Computation: Practice and

Experience 2014. DOI: 10.1002/cpe.3285.

18. deardooley / agave/gateway-dna – Bitbucket. (Available from: https://bitbucket.org/deardooley/agave-gateway-dna)

[Accessed on August 26 2014].

19. mrhanlon / gateway-dna-drupal – Bitbucket. (Available from: https://bitbucket.org/mrhanlon/gateway-dna-drupal)

[Accessed on 26 August 2014].

20. The BAR Webservices. (Available from: http://bar.utoronto.ca/webservices/) [Accessed on 26 August 2014].

21. www.ebi.ac.ul/intact/. (Available from: http://www.ebi.ac.uk/intact/) [Accessed on 26 August 2014].

22. The web’s scaffolding tool for modern webapps | Yeoman. (Available from: http://yeoman.io/) [Accessed on 26

August 2014].

23. Lineman | Build awesome web apps, easily. (Available from: http://linemanjs.com/) [Accessed on 26 August 2014].

24. Brunch | ultra-fast HTML5 build tool. (Available from: http://brunch.io/) [Accessed on 62 August 2014].

25. Grunt: the JavaScript task runner. (Available from: http://gruntjs.com/) [Accessed on 26 August 2014].

26. Bower. (Available from: http://bower.io/) [Accessed on 26 August 2014].

27. node.js. (Available from: http://www.nodejs.org/) [Accessed on 26 August 2014].

28. AIP science app generator. (Available from: https://www.npmjs.org/package/generator-aip-science-app) [Accessed

on 26 August 2014].

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412–4422

DOI: 10.1002/cpe

4422 M. R. HANLON ET AL.

29. jQuery. (Available from: http://jquery.com/) [Accessed on 18 January 2015].

30. Bootstrap - the world’s most popular mobile-first and responsive front-end framework. (Available from: http://

getbootstrap.com/) [Accessed on 18 January 2015].

31. JSHint, a JavaScript Code Quality Tool. (Available from: http://jshint.com/) [Accessed on 18 January 2015].

32. Homebox | Drupal.org. (Available from: https://www.drupal.org/project/homebox) [Accessed on 26 August 2014].

33. Processing.js. (Available from: http://processingjs.org/) [Accessed on 18 January 2015].

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412–4422

DOI: 10.1002/cpe

	Araport: an application platform for data discovery*-6pt
	Summary
	Introduction
	Background
	Architecture and Technology
	Science Applications
	The workspace
	Araport science app lifecycle
	Application security
	Data APIs in Araport: Araport data mediator API

	Adoption and Usage
	Future work
	Science apps manifest
	Attribution in apps and services

	REFERENCES

