CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2015; 27:4412-4422
Published online 19 May 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3542

SPECIAL ISSUE PAPER

Araport: an application platform for data discovery

Matthew R. Hanlon!*", Matthew Vaughnl, Stephen Mock!, Rion Dooleyl,
Walter Moreira!, Joe Stubbs!, Chris Town?2, Jason Miller?, Vivek Krishnakumar?,
Erik Ferlanti? and Eleanor Pence?

VTexas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
2J. Craig Venter Institute, Rockville, MD, USA

SUMMARY

Araport is an open-source, online community resource for research on the Arabidopsis thaliana genome
and related data. Araport is developed through a partnership between J. Craig Venter Institute, the Texas
Advanced Computing Center at The University of Texas at Austin, and The University of Cambridge. Part
of the open architecture of Araport is the Science Applications Workspace. Taking an ‘app store’ approach,
users can choose applications developed both by the Araport team and community developers to create a cus-
tomized environment for their work. Araport also provides tooling and support for developing applications
for Araport, including an application generator, a rapid development and testing tool, and a straightforward
deployment path for publishing applications into the Araport workspace. Copyright © 2015 John Wiley &
Sons, Ltd.

Received 20 January 2015; Revised 24 March 2015; Accepted 14 April 2015

KEY WORDS: Arabidopsis; bioinformatics; APIs; app store; web applications

1. INTRODUCTION

Araport is an open-source, online community resource for research on the Arabidopsis thaliana
genome and related data, developed through a partnership between J. Craig Venter Institute (JVCI),
the Texas Advanced Computing Center (TACC) at The University of Texas at Austin, and The
University of Cambridge. A. thaliana is a model organism in plant science and was the first plant
genome to be sequenced. Araport is defining a new model for what a data portal can provide to
the community. Traditionally, data portals have hosted curated data sets, databases, and tools for
researchers to search and refine, and download data to be analyzed using their own software tools
and workflows. Many portals also provide tools for common analyses and visualization. The novel
aspect of Araport is that it is designed to be the pinnacle of a data federation ecosystem. The portal
is completely open source* and community extensible. In addition to the software tools and data
provided by Araport, users are able to bring their own data and develop their own analysis tools to
build a customized research environment.

A cornerstone feature of Araport, and the subject of this paper, is the science applications
workspace. Users can create multiple workspaces where they can choose from a catalog of ‘science
apps’ to customize their research environment. These science applications are developed both by
the Araport team and community developers. Araport provides tooling and support for developing
science applications, including an application generator, a rapid development and testing tool, and a
straightforward deployment path for publishing an application into the Araport workspace.

*Correspondence to: Matthew R. Hanlon, Texas Advanced Computing Center, The University of Texas at Austin, Austin,
TX, USA.

TE-mail: mrhanlon @tacc.utexas.edu
*Find all of Araport’s source code at https://github.com/Arabidopsis-Information-Portal/.

Copyright © 2015 John Wiley & Sons, Ltd.

ARAPORT: AN APPLICATION PLATFORM FOR DATA DISCOVERY 4413

2. BACKGROUND

In 2012, a call was made by the International Arabidopsis Informatics Consortium [1] for a new
resource to provide access to community data and outputs in a single interface. This resource was to
provide core functionality while also being community extensible to encourage constant innovation
from a wide range of contributors. Araport has been built to answer that call.

Araport builds upon work by the iPlant Collaborative [2], an National Science Foundation (NSF)
funded cyber-infrastructure project targeting life sciences research. Much of what iPlant has done
to democratize access to high-performance computing resources has helped to pave the way for
Araport. One iPlant project, the Agave Platform, is critical to the federated architecture of Araport.
How Araport is using the Agave Platform is discussed in Section 3. In addition to technology,
Araport leverages iPlant’s cyber-infrastructure directly using, for example, the iPlant Data Store to
host publicly downloadable datasets.

There are existing frameworks that enable the development of individual applications that are
deployed to a web application container. Portlets and portlet containers (Java Specification Request
(JSR) 168 [3] and 286 [4]) are a well-defined framework for deploying modular functionality.
Another example is the OpenSocial specification, originally developed by Google and MySpace and
later becoming Apache Shindig [5], also provides a means for hosting ‘gadgets’ of various trust lev-
els. However, both portlets and gadgets have specific server-side application requirements, limiting
the deployment options for these applications to environments that implement the specifications. In
contrast, Araport science applications are designed specifically to be framework-agnostic and can be
embedded into any existing application without the need for additional server development. Araport
apps conventions are designed specifically so that apps can be embedded in third-party applica-
tions, allowing contributors to write code that works for their own purposes while at the same time
extending Araport. Araport science applications are written in JavaScript and are fully client-side.
The ‘server’ component of these applications comes from the Agave API or other web services,
such as those integrated into Araport’s API space using the Araport Data Mediator API (ADAMA).
These applications can be hosted on almost any platform that can serve HyperText Markup Lan-
guage (HTML) to client browsers, and can even be run as standalone web applications with little to
no modification.

Araport is focused on facilitating the discovery, query, and visualization of structured data sets,
many of which are hosted outside of the immediate Araport platform, and are made accessible
via Araport’s federated architecture. Other web-based science platforms, such as Galaxy [6, 7],
Taverna [8, 9], and the iPlant Discovery Environment [2, 10], provide powerful and extensible work-
flow systems, but are largely focused around the orchestration of computation. Data sharing features
are focused on object-level sharing of files. These workflow systems are appropriate downstream
targets of information gathering conducted at Araport. Consequently, integration with and the ability
to export data to such systems is explicitly on the project road map.

3. ARCHITECTURE AND TECHNOLOGY

The Alpha release of Araport includes several components that are loosely coupled together via
web service APIs and OAuth2 [11] (Figure 1). Even the core components of Araport conform to
the model for federation and interoperability. This allows the core of Araport to also serve as an
example to third party applications and data providers interested in integration with Araport. It has
the additional advantage of allowing each component to operate on an independent development and
release cycle. Araport is distributed across TACC and JCVI infrastructures. The primary Araport
web portal® is hosted at TACC and is built on the Drupal content management system [12]. Drupal
was selected as a the web framework due to its wide community support, extensibility, and the
development team’s familiarity with the framework. JCVI hosts Thalemine, the Araport deployment
of InterMine [13]. InterMine is an open source data warehouse platform built specifically for hosting

Shttps://www.araport.org.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412-4422
DOI: 10.1002/cpe

4414 M. R. HANLON ET AL.

CLI clients,
Scripts, 3" party
applications

Single-sign on
Metering
Unified logging

APl versioning
Automatic HTTPS + CORS

rofile
= Agave Core

meta manage
API Types
systems apps jobs files } * Query

o E e . Map*
[T T T [|

* Generic
AIP + 31 party data * Pass-through
providers

P . __—— ,f, :-~: _________ Chado &
7 - Tripal
Computing e AN Cal L ~~~~~
4
REST* New Web
Storage

Figure 1. The Araport architecture. The top row represents Araport user applications, including, from the
left, Araport Science Apps and other third party applications, the Araport portal, Thalemine, and JBrowse.
All user applications communicate with the rest of the Araport architecture using a single, RESTful API.

Physical resources

complex biological data. InterMine has a web interface for searching and exploring the data mines
as well as powerful APIs that enable remote applications and services to interact with the data mine.
The InterMine data warehouse allows Araport to host both curated datasets as well as third-party
datasets in the case where a particular third party did not want to or was not able to host that dataset
remotely. Also at JCVI are deployments of thick-client applications including JBrowse [14] and
GBrowse [15]. Araport also uses the iPlant Data Store, a hosted data service provided by iPlant, for
storing datasets. These datasets are made available for download on the Araport web portal.

In order to choreograph these services, Araport has adopted the Agave Platform. Agave [16]
is ‘Science-as-a-Service’ platform that provides the plumbing for constructing a virtual cyber-
infrastructure on top of existing resources. It is a hosted, multi-tenant system, allowing platform
developers to quickly bootstrap using Agave without the need to install or run any software. Agave
provides a complete middleware with identity management, authentication, and authorization using
OAuth2, APIs for interacting with compute and storage systems, application management, job
execution, data lifecycle management, monitoring, and notifications. Agave also provides an API
mediation layer for extending the platform to add additional capabilities. It was originally developed
by iPlant and is maintained and extended by TACC.

The Araport team worked with the Agave team to develop a set of Gateway DNA components
[17-19] that allow native integration of Agave within the Drupal framework. The Gateway DNA
Drupal modules currently used in the Araport portal provide native Drupal interaction with Agave
Authentication, Profiles, Systems, and Files APIs. Araport also worked with both the Agave team
and the InterMine team build support for Agave and OAuth2 identity management into InterMine.
When users create an account and authenticate at Araport their identity is stored within the Agave
identity management system. Whether a user is accessing the primary web portal, Thalemine, or any
future application or service, they can use their same Araport credentials. This provides a consistent
user experience across all Araport services and applications, from the command line to the web.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412-4422
DOLI: 10.1002/cpe

ARAPORT: AN APPLICATION PLATFORM FOR DATA DISCOVERY 4415

4. SCIENCE APPLICATIONS

For real scientific discovery and exploration to occur, researchers need to have more than just access
to data. They need to have tools to which they can interact with the data: (1) create mashups com-
bining multiple data sources to discover hot spots and other points of interest; (2) analyze their own
data against curated, reference data sets; and (3) visualize interactions within the data.

Some early examples of applications developed by the Araport team are the Bio-Analytic
Resource for Plant Biology (BAR) Interaction Viewer, the BAR Expression Viewer, and the
European Bioinformatics Institute (EBI) Interaction Viewer. These applications use APIs mediated
through Agave from the BAR [20] and the EBI [21]. The first two applications are the earliest appli-
cations deployed on the platform. The BAR Interaction Viewer allows users to query a gene by
name or Arabidopsis Gene Identifier (AGI) and returns an interactive visualization of its protein—
protein interactions. The BAR Expression Viewer takes the same query term and returns an image
visualizing the gene’s expression on an Arabidopsis Developmental Map.

The EBI Interaction Viewer application is an example of an early success using the Araport Sci-
ence App generator (discussed in the succeeding paragraphs). The EBI web services were identified
as providing additional data that could be used in an interaction viewer similar to the BAR Interac-
tion Viewer. An intern working at JCVI was able to fork the BAR Interaction Viewer code and wrap
that code in the generated Araport app. Using the EBI web services, she added additional features
that showed, in addition to the protein interactions, the type of interaction, confidence score values,
and sourcing information for supporting literature.

ThaleMine - Genome Browsers - Community -~ [ESETUSYRSSN Downloads Developer Zone

Science Apps Workspace

Community Apps Testing i Edit workspace e =
Enter a gene name to see its protein- Enter an AGI ID to see its expression as
protein interactions an Electronic Fluorescent Pictograph
Query (Any gene name or AGI ID, e.9. ASK1, AT1G10940, AT3G62980): (eFP)

AT3G62980 ‘ m Query (Any AGI ID, e.g. AT1G10940, AT3G62980):

Map g swom m

Avatxdopss of P Browsar ot bar utoronto ca

= N
= 06006000

% @ 4308
I}
Data & web services provided by The Bio-Analytic Resource for Plant Biology (BAR):
http-//bar.utoronto.ca/webservices/
|
Interaction determination by line color Line thickness by EBI's mi-score
confidence value.
+ pull down
<030
« anti tag coimmunoprecipitation —— 030:0.40
+ molecular sieving s 0.40-0.50
— 0.50-0.60
I 0.60-0.70

Figure 2. A view of the developer release of the science apps workspace showing two applications: the EBI
Interaction Viewer and the BAR Expression Viewer. EBI, European Bioinformatics Institure; BAR, The
Bio-analytic Resource for Plant Biology.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412-4422
DOI: 10.1002/cpe

4416 M. R. HANLON ET AL.

The Araport team has since developed several more applications, both to serve as examples or
starting points for community developers and to provide some of the basic functionality needed in
the workspace on day one. These apps range from computational apps such as BLAST, to query
apps for querying ATTED-II or RT-qPCR expression data from remote/legacy data services, to more
general-purpose productivity apps such as a notebook application.

Figure 2 shows an example of how the science apps workspace appears on the Araport Developer
Portal at the time of this writing. The workspace will be moving into the main Araport Portal in the
next major release. Users can create and switch between multiple workspace views. Each workspace
is configured with apps arranged in rows and columns, with up to four applications in each row.

Araport science applications are client-side web applications written in JavaScript. They are pri-
marily lightweight tools that provide querying, display, and browsing of data, as well as some
visualization and analysis. These applications leverage RESTful APIs that are part of the Agave
platform, third party data mediated through Agave or the ADAMA, or third party APIs that sup-
port cross-origin resource sharing (CORS). If heavier processing than is feasible in JavaScript is
required, computational apps are possible using either the Agave API or other APIs to offload pro-
cessing to a computational backend. The Araport BLAST application is an example of this, using
Agave to run BLAST jobs on a remote compute resource and then retrieve the results back to the
user’s web browser.

No single team can build a set of tools or analyses that will solve the needs of all users. To this
end, Araport provides tools and support for data scientists and bioinformaticians to develop a novel,
data-driven applications and deploy them to the Araport portal to use and eventually share with
other users. To support the development of these applications, Araport has developed a ‘science app
generator’ using Yeoman [22].

Yeoman is a tool for quickly scaffolding projects and helping those projects adhere to best prac-
tices, coding standards, and accepted libraries. There are a other similar tools such as Lineman [23]
and Brunch [24]. These tools are built for rapid prototyping, interactive development, and encourag-
ing best practices and coding standards. Yeoman and Lineman are both built on top of the Grunt [25]
task runner. Yeoman and Brunch both use Bower [26] for web library package management. In the
end, previous experience with Yeoman led the Araport team to select it for use.

Node.js [27] is a prerequisite to using the Yeoman generator. The first time you use the generator,
you will need to install Yeoman, Bower, and Grunt, as well as the Araport science app genera-
tor [28] using the Node Package Manager. This can be done with a simple, one-line command. Once
installed, kickstarting a new Araport science application is as simple as issuing the command: yo
aip-science-app.

The application generator scaffolds a new application within the current directory. The included
‘test runner’ application contains a built-in, web server, allowing development on the local machine
without the need to install or configure a web server. When running within the test runner, the app
is accessible in a browser at the address http://localhost : 9000. The application’s source is
contained within the app/ directory. The rest of the files created by the app generator are related to
the test runner environment.

The test runner environment is a mini-web application, consistent with the environment of the
Araport workspace. Both jQuery [29] and Bootstrap [30] are provided. The Araport theme is derived
from Bootstrap, and by simply following the Bootstrap user interface guidelines, developers can
build applications that are consistent with Araport and other science apps. The test runner also
configures the Agave API with ADAMA, so that developers can build against those APIs without
needing to configure them in their application. Simply create an API key using your Araport cre-
dentials and begin using the API. The test runner will also persist the API credentials (API key and
token; not the developer’s Araport username/password) in the browser’s local storage for future use.
When apps are deployed to the Araport workspace, the current user’s authentication token is used
to make API queries on behalf of that user.

The test runner environment also includes additional features to improve developer productiv-
ity. The environment incorporates JSHint [31] to watch the application source for common coding
mistakes such as syntax errors and misspellings, as well as encourage coding best practices. The
developer is alerted in real time to the areas of concern in their code so they can double check

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412-4422
DOLI: 10.1002/cpe

ARAPORT: AN APPLICATION PLATFORM FOR DATA DISCOVERY 4417

(. Arapeit” P— EIESES [Arport == RIS ([Avdport ' [~ -1

Science Apps Workspace Configuration Edit Workspace Edit Science App BAR Expression Viewer

‘Your Workspaces e e
Conrase b T
Commty Aopa Testng s e Jre—

Figure 3. The Science Apps Workspace allows users to create and manage multiple customize workspaces,
and also allows app developer to load their own applications into the Araport environment.

for mistakes without having to wonder why something is not working. The test runner also will
automatically trigger the browser to reload when a source file changes, immediately displaying the
change in the browser.

4.1. The workspace

Araport science apps can be run as standalone applications or integrated into other environments,
but the primary interface for using these apps is on the Araport portal, through the Science
Apps Workspace.

The first version of the science apps workspace, available in the Alpha release of Araport, was
based on the Homebox module [32] for Drupal. This module builds upon the Blocks system in
Drupal core and allows administrators to configure pages that users can subsequently customize by
enabling and arranging instances of Drupal blocks. By leveraging Homebox and Blocks, Araport
was able to rapidly deploy early versions of several science apps without having to develop the
functionality for managing user configurations and rendering applications. However, it was quickly
apparent that Homebox would not suffice for much beyond a rapid prototype, as it had several
shortcomings that made it unable to fulfill the requirements of the Araport workspace. These short-
comings include in the following: (1) blocks can only be created by administrators; (2) access
permissions to blocks are coarse; (3) the layout of a Homebox page (the number of columns and
rows) is fixed in the page configuration by an administrator; and (4) users can only customize a
single Homebox layout per page.

The Alpha Prime release of the workspace is a completely redesigned, custom Drupal module
specifically designed to overcome these shortcomings as well as add additional functionality. This
module is build upon Drupal’s Node system, which brings with it much finer, customizable access
permissions, automatic revision history, a publishing workflow, and more.

The application workspace allows users to manage multiple workspaces for different tasks, cus-
tomize each workspace with the apps and arrangement as desired, and easily add their own apps to
the Araport apps catalog (Figure 3).

4.2. Araport science app lifecycle

The lifecycle of an Araport science app is fairly typical: development, local testing, production test-
ing or staging, quality assurance, and publication. After publication, apps can be further developed,
re-tested, and redeployed with an updated version. Once an app has been developed using the app
generator and test runner application, before a developer can deploy that app to Araport, the devel-
oper must commit the application to a public git repository that supports anonymous cloning over
Hypertext Transfer Protocol (HTTP), such as Github or Bitbucket. This is in concert with Araport’s
commitment to open source.

IGithub and Bitbucket are not the only solutions for public git services. There are many options available including both
cloud-hosted and self-hosted solutions.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412-4422
DOI: 10.1002/cpe

4418 M. R. HANLON ET AL.

e
A

[, AR
3 ThaleMine ~ Genome Browsers ~ Community ~ Science Apps ~ Downloads Developer Zone My account ~

ATExpressionProfilingApp

¢ Preparing this application...
We are still getting this application ready. Please check back soon!

Status

& Application checked out
& Dependencies resolved
OFiles ready

Figure 4. Creating a new science app on Araport. The Araport portal must download the apps source and
then resolve its runtime dependencies before the application can be used.

After committing the application to a git repository, from the Araport workspace, users can select
‘Create a New App’ from the workspace toolbar. This form (Figure 3, right) prompts the user for
a name for the app, the URL to the application’s git repository, and an optional release version and
description. After saving, the user will be taken to the app’s dedicated page and will initially see a
progress page indicating that the application is still being processed (Figure 4). In the background,
the Araport portal will download the app’s source for the specified version, defaulting to the lat-
est revision in the master branch, and resolve any third-party dependencies before the app can
be used.

Once the app has been processed, it is available to use in the Araport workspace; however,
the application is restricted to the creator’s own sandbox environment. Only the user who created
the app will be able to access it in Araport. Application sharing is a future development item. In the
interim, there is a workaround that will enable application sharing: if a developer wants to share an
app with another Araport user, that user can create their own version of the application within their
own sandbox environment simply by creating a ‘new’ app with the same source repository.

Users will notice that when configuring their workspaces they have available to them two sets
of applications: User applications and Public applications. User applications are those applications
which reside in the user’s own sandbox. Public applications are applications that the Araport team
has reviewed and published for use by all Araport users. After application sharing is implemented,
a third set for ‘Shared applications’ will be available. A formalized publication pipeline within the
Araport portal is also being developed, but in the meantime users can contact Araport and request
that an application be published. For publishing, Araport staff will review the application for cod-
ing errors, to ensure that the app will behave nicely with other applications in the workspace, and
to check for any possible security vulnerabilities or misuse. After approval, published apps are
available for use by any user.

4.3. Application security

Drupal provides support for two filesystem classes: public and private. The public filesystem is
web-accessible, that is, assets and media in the public filesystem are directly accessible via some
uniform resource identifier (URI). The private filesystem is not web-accessible, and assets stored in
the private filesystem cannot be accessed via a URL. Instead, they pass though the application layer
for logical processing to ensure, for example, access permissions. As mentioned earlier, applications
created by users in the Araport workspace are available for use only by the users who create them.
To ensure this, when the portal downloads an app’s source, it does so to a private filesystem location

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412-4422
DOI: 10.1002/cpe

ARAPORT: AN APPLICATION PLATFORM FOR DATA DISCOVERY 4419

unique to that app. When a user that has permission to access that app navigates to a workspace page
that hosts it, the app’s assets are added to the page. However, they are not directly accessible via
a URI. This prevents, for example, a nefarious user creating an application that dumps a malicious
payload into the Araport web space, and subsequently attempts to infect other sites using Araport
URIs in a cross-site scripting attack.

Furthermore, the private filesystem ensures that the assets downloaded with an app are not exe-
cutable on the server, are partitioned from both the portal’s own code and filesystem as well as
partitioned from the source code of other apps. Araport science apps only execute in the browser
of the user, and as such, apps from ‘unknown’ users cannot be executed by anyone other than that
same user.

Finally, all API actions taken by an app execute within the context of the current user. The
API token used by an app grants only the permissions that that user already has. This prevents
the development of an app that allows a user to access protected data or information belonging to
another user.

4.4. Data APIs in Araport: Araport data mediator API

Araport science apps are only useful if there are data available to use within those apps. While there
are many data services available, much of the data of interest is accessible only via legacy web
applications that may or may not offer web service API. Even if a web service API is available, it
almost certainly does not conform to a uniform data standard. In order to provide a solution to this,
Araport has developed the ADAMA. ADAMA works alongside of Agave to allow users to quickly
modernize legacy data services into an HTTP web service that supports Secure Sockets Layer, stan-
dard HTTP verbs (notably, GET), and supports protocols such as CORS for interoperability. It also
provides an easy and direct path for creating new data services, much like the science app gener-
ator. Finally, ADAMA serves as a collection point for data services, allowing these services to be
discoverable through an Araport ‘data store’ much like the app store.

ADAMA provides four API types: query, map, generic, and passthrough. The primary API type
encouraged by Araport is the query APIL. The query API serves as a ‘gold standard’ for data APIs in
Araport, as these APIs must have an input parameter space and output specification that is consistent
for all query APIs. Query APIs output JSON responses and can be implemented for any legacy data
source. Map APIs are useful when the existing legacy service already serves JSON, but when it is
useful to transform that JSON into, for example, JSON according to Araport object specifications.
The generic API allows the return of non-JSON data, for example binary image data. The final
API type, passthrough, simply allows existing APIs to become discoverable through ADAMA, but
inputs and outputs remain under the control of the remote service.

By collecting data services through ADAMA, Araport is hoping to create a data store alongside
the app store for science applications. This will serve both as a resource for the community, but also
help to give existing data services and data providers additional visibility. ADAMA development is
continuing, and additional discussion of it in detail can be expected in future papers by the authors.
Current documentation for ADAMA can be found in the Araport Developer Zone.

5. ADOPTION AND USAGE

The first launch of the Araport portal that was open to user registration was made available on 1
April 2014. At that time, the science apps workspace and platform was still under development. Six
months later, the first version of the apps workspace and platform was released and user registration
has doubled since then. Araport is currently seeing over 2 000 unique visitors per month with about
50% of those being returning visitors. Much of the data currently hosted by Araport is available
through Thalemine and JBrowse without registration. The newest features, such as the Science Apps
Workspace, require registration. Since the launch of the workspace at the end of 2014, we have seen
our registered user count double. In addition, Araport has over 30 registered app developers.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412-4422
DOI: 10.1002/cpe

4420 M. R. HANLON ET AL.

Currently, Araport hosts the TAIR10 annotated genome release, which is makes available for
download. The next annotated release, AIP11, is in progress. In addition to TAIR10, there are many
other data sets that are integrated into the Thalemine data warehouse. The currently available data
sets are listed on the Thalemine Data Sources page."

6. FUTURE WORK

The Araport project is the result of a 2-year planning grant that solicited requirements from the
entire Arabidopsis research community. The portal, as it exists at the time of this writing, is techni-
cally a prototype and still in an active development phase with a regular release cycle. Despite its
prototype status, Araport is already engaging with users and developers within the Arabidopsis com-
munity. In November of 2014, Araport held a developer workshop at the TACC. At this workshop,
attendees were introduced to Araport apps, the workspace, and ADAMA. Attendees participated in
guided sessions, in which they developed a science application from scratch and deployed it onto
the Araport developer portal. Optional breakout sessions were held, where attendees were able to
get familiar with ADAMA as well as collaborate in small groups to design and build applications
of their own. Much experience was gleaned from that workshop, both by attendees and the Araport
team. Many new development items were added to the roadmap taking into account the experiences
of the workshop attendees and their feedback. While a great portion of this included hardening
of the environment, better error reporting and logging available to users, and improved documen-
tation, one item in particular stands out for discussion: the development of a formalized science
app manifest.

6.1. Science apps manifest

The currently supported science apps have an implicit application manifest, which is the files cre-
ated by the app generator in the app/ directory. Prior to the workshop, the Araport team had
discussed the need for apps to be able to host additional assets beyond these, such as images. How-
ever, the workshop showed that in reality, apps in general need a more flexible hosting structure
that not only allows for images, but multiple HTML, JavaScript, and CSS files, as well as support
for other media types. For example, apps built using the Processing.js framework [33] use a script
type text /processing and a file extension * . pde. The science apps themselves and the apps
workspace are framework agnostic, and the current generation of Araport apps and the workspace
can work frameworks like Processing. However, to do so, developers are made to construct apps
out of composable libraries managed with Bower. This was designed to keep the apps themselves
lightweight and encourage reuse, but early developer feedback has shown than this is not how the
community would like it to work. The science apps manifest should be flexible enough to accommo-
date more flexible asset loading for frameworks like Processing or any other of the every growing
catalog of client-side frameworks.

6.2. Attribution in apps and services

Another major area that is actively being designed centers around the topic of attribution. The devel-
opers of applications know the source of the data provided by their ADAMA APIs, and used by their
science apps. However, for published apps, unless the developer explicitly sources the data and pro-
vides proper attribution, there is little to no chance that the user will know the data’s source or that
the data provider will receive acknowledgment. It is obvious that this is unacceptable, even in the
short run. While the Araport team has made an effort to establish best practices for data attribution
in apps, it will be necessary to ensure that sourcing information is contained in every API response
and, ideally, automatically included in every science app and workspace page, to ensure that data
providers receive proper attribution.

"https://apps.araport.org/thalemine/dataCategories.do.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412-4422
DOLI: 10.1002/cpe

ARAPORT: AN APPLICATION PLATFORM FOR DATA DISCOVERY 4421

ACKNOWLEDGEMENTS

Araport is funded by a grant from the National Science Foundation (DBI-1262414) and co-funded by a
grant from the Biotechnology and Biological Sciences Research Council (BB/L027151/1). The Araport team
would also like to acknowledge the iPlant Collaborative for the use of the Agave Platform and the iPlant
Data Store.

REFERENCES

. The International A I C. Taking the next step: building an Arabidopsis information portal. The Plant Cell Online

2012; 24(6):2248-2256.

2. Goft SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, Matasci N, Wang L, Hanlon M, Lenards A, Muir
A, Merchant N, Lowry S, Mock S, Helmke M, Kubach A, Narro M, Hopkins N, Micklos D, Hilgert U, Gonzales M,
Jordan C, Skidmore E, Dooley R, Cazes J, McLay R, Lu Z, Pasternak S, Koesterke L, Piel WH, Grene R, Noutsos
C, Gendler K, Feng X, Tang C, Lent M, Kim Seung-jin, Kvilekval K, Manjunath BS, Tannen V, Stamatakis A,
Sanderson M, Welch SM, Cranston K, Soltis P, Soltis D, O’Meara B, Ane C, Brutnell T, Kleibenstein DJ, White JW,
Leebens-Mack J, Donoghue MJ, Spalding EP, Vision TJ, Myers CR, Lowenthal D, Enquist BJ, Boyle B, Akoglu A,
Andrews G, Ram S, Ware D, Stein L, Stanzione D. The iPlant collaborative: cyberinfrastructure for plant biology.
Frontiers in Plant Science 2011; 2(34):1-16.

3. The Java Community Process(SM) Program - JSRs | Java specification requests - detail JSR#168.html. (Available
from: https://www.jcp.org/en/jsr/detail 2id=168) [Accessed on August 26, 2014].

4. The Java Community Process(SM) Program - JSRs | Java specification requests - detail JSR#286.html. (Available
from: https://www.jcp.org/en/jsr/detail 2id=286) [Accessed on August 26, 2014].

5. Shindig - welcome to apache Shindig.

6. Goecks J, Nekrutenko A, Taylor J, Team The Galaxy. Galaxy: a comprehensive approach for supporting accessible,
reproducible, and transparent computational research in the life sciences. Genome Biology 2010; 11(8):1-13.

7. Galaxy. (Available from: https://usegalaxy.org/) [Accessed on March 23, 2015].

8. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, Soiland-Reyes S, Dunlop I, Nenadic A,
Fisher P, Bhagat J, Belhajjame K, Bacall F, Hardisty A, Nieva de la Hidalga A, Balcazar Vargas MP, Sufi S, Goble
C. The taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the
cloud. Nucleic Acids Research 2013; 41(W1):W557-W561.

9. Taverna - open source and domain independent Workflow Management System. (Available from: http://www.taverna.
org.uk) [Accessed on March 23 2015].

10. iPlant collaborative discovery environment. (Available from: https://de.iplantcollaborative.org/de/) [Accessed on 23
March 2015].

11. OAuth 2 specification. (Available from: http://oauth.net/2) [Accessed on 29 March 2013].

12. Drupal - open source CMS | Drupal.org. (Available from: https://www.drupal.org) [Accessed on August 26 2014].

13. Smith R N S, Aleksic J, Butano D, Carr A, Contrino S, Hu F, Lyne M, Lyne R, Kalderimis A, Rutherford K, Stepan
R, Sullivan J, Wakeling M, Watkins X, Micklem G. Intermine: a flexible data warehouse system for the integration
and analysis of heterogeneous biological data. Bioinformatics 2012; 28:3163-3165.

14. JBrowse | A fast, embeddable genome browser built with HTMLS and JavaScript. (Available from: http://jbrowse.
org/) [Accessed August 26 2014].

15. GBrowse - GMOD. (Available from: http://gmod.org/wiki/GBrowse) [Accessed on August 26 2014].

16. Dooley R, Vaughn M, Stanzione D, Terry S, Skidmore E. Software-as-a-service: the iPlant foundation API. 5th IEEE
Workshop on Many-Ttask Computing on grids and Supercomputers, Salt Lake City, UT, 2012.

17. Dooley R, Hanlon M R. Recipes 2.0: building for today and tomorrow. Concurrency and Computation: Practice and
Experience 2014. DOI: 10.1002/cpe.3285.

18. deardooley / agave/gateway-dna — Bitbucket. (Available from: https://bitbucket.org/deardooley/agave-gateway-dna)
[Accessed on August 26 2014].

19. mrhanlon / gateway-dna-drupal — Bitbucket. (Available from: https://bitbucket.org/mrhanlon/gateway-dna-drupal)
[Accessed on 26 August 2014].

20. The BAR Webservices. (Available from: http://bar.utoronto.ca/webservices/) [Accessed on 26 August 2014].

21. www.ebi.ac.ul/intact/. (Available from: http://www.ebi.ac.uk/intact/) [Accessed on 26 August 2014].

22. The web’s scaffolding tool for modern webapps | Yeoman. (Available from: http://yeoman.io/) [Accessed on 26
August 2014].

23. Lineman | Build awesome web apps, easily. (Available from: http://linemanjs.com/) [Accessed on 26 August 2014].

24. Brunch | ultra-fast HTML5 build tool. (Available from: http://brunch.io/) [Accessed on 62 August 2014].

25. Grunt: the JavaScript task runner. (Available from: http://gruntjs.com/) [Accessed on 26 August 2014].

26. Bower. (Available from: http://bower.io/) [Accessed on 26 August 2014].

27. node.js. (Available from: http://www.nodejs.org/) [Accessed on 26 August 2014].

28. AIP science app generator. (Available from: https://www.npmjs.org/package/generator-aip-science-app) [Accessed
on 26 August 2014].

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412-4422

DOI: 10.1002/cpe

4422 M. R. HANLON ET AL.

29. jQuery. (Available from: http://jquery.com/) [Accessed on 18 January 2015].

30. Bootstrap - the world’s most popular mobile-first and responsive front-end framework. (Available from: http://
getbootstrap.com/) [Accessed on 18 January 2015].

31. JSHint, a JavaScript Code Quality Tool. (Available from: http://jshint.com/) [Accessed on 18 January 2015].

32. Homebox | Drupal.org. (Available from: https://www.drupal.org/project/homebox) [Accessed on 26 August 2014].

33. Processing.js. (Available from: http://processingjs.org/) [Accessed on 18 January 2015].

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:4412-4422
DOLI: 10.1002/cpe

	Araport: an application platform for data discovery*-6pt
	Summary
	Introduction
	Background
	Architecture and Technology
	Science Applications
	The workspace
	Araport science app lifecycle
	Application security
	Data APIs in Araport: Araport data mediator API

	Adoption and Usage
	Future work
	Science apps manifest
	Attribution in apps and services

	REFERENCES

