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Abstract—This paper presents the challenges of model order
reduction of modern power grids with inverter-interfaced wind
generation. To that end, a widely used model reduction technique
called Balanced Truncation (BT) is compared with a relatively
new moment matching approach known as the Iterative Rational
Krylov Algorithm (IRKA). It is demonstrated that both BT
and IRKA can produce an acceptable accuracy during model
reduction for power grids with synchronous generators whereas
IRKA produces better accuracy when Doubly Fed Induction
Generator (DFIG)-based wind generation is considered.

NOTATIONS

PSS Power System Stabilizer
SISO Single-Input Single-Output
ROM Reduced-Order Model
BT Balanced Truncation
IRKA Iterative Rational Krylov Algorithm
n Dimension of full order system
r Dimension of reduced-order system
Im Image or rank of a matrix

I. INTRODUCTION

Power system is a very complex and high dimensional
system. Taking the example of the model of the Western
Electricity Coordinating Council (WECC) system with about
3,000 generators and 30,000 buses, the number of states
becomes about 30,000 when only generators are represented
by dynamic equations. The complexity of these models fur-
ther increases when inverter-interfaced wind farms (WFs) are
included. These models are used for designing the controllers
of the power grid for applications like damping inter-area
oscillations. Modern control design methods such as H2, H∞,
and LQG, produces a controller of the order at least equal to
that of the system or higher because of inclusion of weights.
To resolve this issue, the order of the plant is reduced prior to
the controller design.

Model reduction refers to the removal of insignificant states
from the system model. This in effect introduces errors that
must be minimized. Generally, errors (also called cost func-
tion) are expressed in the form of H2 or H∞ norm of the
difference between the models of the full order system and
the reduced-order system. A lot of research has been done

on model reduction [1]–[7]. One of the approaches of model
reduction is known as Singular Value Decomposition (SVD),
which reserves the dominant modes of the system by focusing
on the controllability and observability characteristics. This
approach includes balanced truncation, approximate balanced
reduction, and singular perturbation methods [1]. The other
approach of model reduction is moment matching, which
matches r moments of interpolation points in order to preserve
the critical modes of the original system. Arnoldi procedure,
Lanczos procedure, rational Krylov methods come under this
category of model reduction [1]. A few papers [8]–[12] in
power system literature address some of the challenges posed
by the dimensionality of power grids.

Li et-al in [8] proposed the Krylov-Schur method for
computing poorly damped oscillatory modes of large power
systems. Model order reduction by partitioning the power sys-
tem into a study area and an external area has been presented
in [9]–[11], and [13] where the dimension of the external area
system has been reduced. Freitas et-al [12] contributed towards
the efficient reduction method for the approximation of control-
lability and observability gramians of large sparse descriptor
power system models. They have considered very large power
systems, but the effect of inclusion of the renewable sources,
for example large inverter-interfaced WFs were not analyzed.

This paper presents the challenges in model order reduction
for modern power grids with inverter-interfaced WFs. Two
methods are considered in this paper: balanced trunaction (BT)
approach, and a relatively new moment matching approach
called Iterative Rational Krylov Algorithm (IRKA). To that
end, the performance of these approaches has been compared
under two different scenarios. In the first scenario conventional
power grid with only synchronous generators (SGs) was
considered while the other scenario takes into account inverter-
interfaced WF.

The paper is organized as follows: after introducing the
research problem of model reduction in modern power grid
in Section I, the main objectives of model order reduction and
two model reduction approaches− BT and IRKA are discussed
in Section II. In Section III a test system of conventional and
modern power grid is introduced. The result and analysis are
presented in Section IV, and finally the Section V highlights
the concluding remarks.



II. APPROACHES OF MODEL ORDER REDUCTION

A SISO linear system is considered in the state-space form:

G :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

or,
G(s) = C(sI −A)−1B +D

(1)

where,
A ∈ R

n×n, B,C ∈ R
n, D = 0, x(t) ∈ R

n, u(t) ∈ R, y(t) ∈ R

It is assumed that the system G is stable, i.e., the eigenvalues
of A have strictly negative real parts. The model reduction
approaches yield a reduced-order system:

Gr :

{
ẋr(t) = Arx(t) +Bru(t)
yr(t) = Crx(t) +Dru(t)

or,
Gr(s) = Cr(sI −Ar)

−1Br +Dr

(2)

having much smaller dimension r << n with
Ar ∈ R

r×r, Br, Cr ∈ R
r, Dr = 0. The main objectives

of model reduction are:

1) Accuracy: The reduced-order model (ROM) should be
able to retain the important characteristic of the original
system, which lies in preserving the slow and poorly
damped modes for damping control applications.

2) Stability: If the original model is stable then the ROM
should also be stable.

3) Scalability: The model reduction approach should be
scalable if the dimension and complexity of the system
is further increased, which is the case in modern power
system.

4) Applicability of control theory: The ROM should be
able to capture the critical modes of the system, which
is required for designing the controller or implementing
other control theories.

Next, the BT and the IRKA approaches are discussed, which
are used to achieve these objectives.

A. Balanced Truncation [12]

A linear system G in state-space form shown in equation (1)
is called balanced if the solutions to the two Lyapunov
equations:

AP + PAT +BBT = 0
ATQ+AQ+ CTC = 0

(3)

are equal and diagonal:

P
Δ
=

∞∫
0

eAtBBT eA
T tdt = Q

Δ
=

∞∫
0

eA
T tCTCeAtdt

= diag(σ1, σ2, ..., σn) =
∑ (4)

where, σ1 > σ2 > · · · > σm ≥ 0. Here, σi
Δ
=
√
λi(PQ),

i = 1...m, are ordered Hankel singular values of G(s). In
balanced system each state is just as controllable as it is
observable and the measure of a state’s joint observability
and controllability is given by its associated Hankel singular
value. This property is fundamental to the model reduction
using which the states having little effect on the system’s

input-output behavior, mainly states corresponding to lowest
Hankel singular values, are removed. If in G, the state vector
x can be partitioned into [x1 x2]

T where, x2 is the vector of
n− r states representing high frequency modes, which can be
removed, then with the appropriate partitioning the state-space
representation becomes:⎡

⎣ ẋ1

ẋ2

y

⎤
⎦ =

⎡
⎣ A11

A21

C1

A12

A22

C2

⎤
⎦
[

x1

x2

]
+

⎡
⎣ B1

B2

0

⎤
⎦u (5)

When A is in diagonalized Jordan form:

A =

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 0 λn

⎤
⎥⎥⎥⎦ ;B =

⎡
⎢⎢⎢⎣

bT1
bT2
...
bTm

⎤
⎥⎥⎥⎦ ;C =

⎡
⎢⎢⎢⎣

c1
c2
...
cn

⎤
⎥⎥⎥⎦

T

The reduced-order model is given by:[
A11 B1

C1 D

]
(6)

which is called the balanced truncation of the full model.
This computationally intensive method can be defined in the
following steps [12]:

1) Compute the dense n × n controllability and observ-
ability gramians P and Q, respectively, by solving
equation (3).

2) Factorize P and Q as P = UUT and Q = LLT , where
U and L are the Choleski factors.

3) Obtain the Hankel singular value by decomposing the
product of L and U as follows:

UTL = WΣY T = [ W1 W2 ]

[
Σ1 0
0 Σ2

] [
Y T
1

Y T
2

]

(7)
where W1 and Y1 are composed of leading r columns
of W and Y and matrix Σ = diag(σ1, σ2, ..., σn) is
obtained, which consist of Hankel singular values of the
system.

4) Construct the reduced-order model of the order r << n

Ar = TT
L ATR, Br = TT

L B,Cr = CTR, Dr = D (8)

where,
TL = LY1Σ

−1/2
1 , TR = UW1Σ

−1/2
1 (9)

5) The frequency response of the reduced-order system
satisfies global error bound:

‖G(jw)−Gr(jw)‖∞ ≤ 2

n∑
i=k+1

σi (10)

The challenge in this approach is the accuracy and scalability
when applied to a complex system like modern power grid
with inverter-interfaced wind generation, as will be evident in
the case study presented in this paper.

B. Moment Matching [6], [7]

A linear system G in state-space form mentioned in (1)
whose transfer function can be represented as:

G(s) = C(sI −A)−1B +D (11)



This can be expanded in a Laurent series around a given point
s0 ∈ C in the complex plane as:

G(s0 + σ) = η0 + η1σ + η2σ
2 + η3σ

3 + ... (12)

where, ηk is the kth moment of system G at s0, defined as:

ηk =
(−1)k
k

[
dk

dsk
(C(sI −A)−1B)

]
s=so

(13)

with integer k ≥ 1. The idea is to seek a reduced-order system
Gr, such that the Laurent expansion of the corresponding
transfer function at s0 has the form:

Gr(s0 + σ) = η̂0 + η̂1σ + η̂2σ
2 + η̂3σ

3 + ... (14)

where r moments are matched: ηj = η̂j , j = 1, 2, ...., r for
appropriate r << n.

If s0 is infinity, numerically efficient solution is given by
means of the rational Lanczos/Arnoldi procedures. The
rational Krylov method is a generalized version of the Arnoldi
and Lanczos methods. Given a dynamical system G, a set of
interpolation points and an integer r, the rational Krylov algo-
rithm produces a reduced-order system Gr that matches r mo-
ments of the interpolation points. One such approach is called
the Iterative Rational Krylov Algorithm (IRKA) [6],
which addresses the optimal H2 approximation of the stable,
SISO large-scale dynamical system G. This system is con-
verged to a stable rth reduced-order system with r < n, such
that Gr(s) minimizes the H2 error norm (also called cost
function), i.e.,

Gr(s) = arg min
deg(Gr)=r

‖G(s)−Gr(s)‖H2
(15)

This technique uses Krylov projection matrices V ∈ R
n×r

and Z ∈ R
n×r that span certain Krylov subspaces with the

property that ZTV = Ir that leads to the ROM as:

Ar = ZTAV,Br = ZTB,Cr = CV (16)

Theorem 1 [6]: Let Gr(s) solves the optimal H2 problem and
let λ̂i denotes eigenvalues of Ar (i.e., λ̂i are the Ritz values),
then the first-order necessary conditions for H2 optimality are:

dk

dsk
G(s)

∣∣∣∣
s=−λ̂i

=
dk

dsk
Gr(s)

∣∣∣∣
s=−λ̂i

, k = 0, 1. (17)

Theorem 1 states that the reduced-order model interpolates
G(s) and its first derivative at the mirrored Ritz values, which
is analyzed in Grimme’s [7] work on Krylov-based model
reduction.
Theorem 2: Given G(s) = C(sI − A)−1B + D and r
interpolation points {σi}ri=1, let V ∈ R

n×r and Z ∈ R
n×r are

obtained as follows:

Im(V ) = Span{(σ1I −A)−1B, ..., (σrI −A)−1B}
Im(Z) = Span{(σ1I −A)−TCT , ..., (σrI −A)−TCT }

(18)
with ZTV = Ir. Then the reduced-order model Gr(s) can be
obtained as in (8), that interpolates G(s) and its derivative
at {σi}ri=1. This approach exploits the connection between

Krylov-based reduction and interpolation [6].
Since the interpolation points in (17) depend on the final

reduced-order model, which is not known a priori, the ini-
tial interpolation points are chosen as r mirrored images of
eigenvalues of the original system. The reduced-order model
is iteratively corrected using Krylov steps, such that in the
next iteration the reduced-order model interpolates the full-
order model at the mirrored Ritz values −λi(Ar) from the
previous reduced-order model. The process terminates when
the Ritz values from the consecutive iterations stagnate.

The steps of the IRKA algorithm are shown below [6]:
1) Make an initial shift selection σi = for i = 1, ...., r
2) Z = [(σ1I −AT )−1CT , ..., (σrI −AT )−1CT ]
3) V = [(σ1I −A)−1B, ..., (σrI −A)−1B]
4) Z = Z(ZTV )T To make (ZTV = Ir)
5) while (not converged)

a) Ar = ZTAV ,
b) σi ← − λi(Ar) for i = for i = 1, ...., r
c) Z = [(σ1I −A)−TCT , ..., (σrI −A)−TCT ]
d) V = [(σ1I −A)−1B, ..., (σrI −A)−1B]
e) Z = Z(ZTV )T To make (ZTV = Ir)

6) Ar = ZTAV, Br = ZTB, Cr = CV

There are several methods to find the updated Ritz values
or interpolation points to correct the reduced-order model
in each iteration by minimizing the cost function. Some of
these techniques are line search [3] and trust region [14]. In
the above algorithm the simplest way of getting the updated
interpolation points is considered. There is no guarantee that
in each iteration the reduced-order system will be stable.
Therefore at times the H2 error norm might go to infinity.
However, the strength of this approach is its applicability for
very large and complicated systems since it doesn’t have to
solve large Lyapnuov equations. It uses the Krylov projection
matrices for finding the reduced-order model.

III. TEST SYSTEM

To study the challenges of model reduction on power grid,
a 68-bus, 16-machine, 5-area system, shown in Fig. 1, is con-
sidered with two scenarios [15]: conventional power system
with only synchronous generators (PS-SG), and modern power
system with inverter-interfaced DFIG-based WF (PS-DFIG).

PS-SG model: All SGs were represented by subtransient
models and eight of them (G1-G8) were equipped with IEEE
DC1A excitation systems. A static excitation system with a
PSS was installed at G9, the rest of the SGs were under manual
excitation control. In this case we consider the input as the
voltage reference to the PSS while the tie-line power between
bus 54−53 was consider as the output. The dimension of this
model is 133.

PS-DFIG model: In this model the SG, G9 was replaced
by a DFIG-based WF as described in [15] to represent the
modern power grid, which includes the complexities of the
renewable sources. In this case also the output is the same
as in PS-SG model and the input is the modulating signal of
the DFIG rotor current Idr [15]. The total number of states in
PS-DFIG model is 148.
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Fig. 1. Single line diagram of the 68-bus, 16-machine, 5-area, New England
and New York Inter-connected power system.

TABLE I
COMPARISON OF RELATIVE H2 ERROR NORM IN POWER SYSTEM WITH

TWO MODEL REDUCTION APPROACHES ( r = 32)

Type of Model reduction approach
PS BT IRKA

PS-SG 1.7737× 10−4 4.1345× 10−5

PS-DFIG ∞ 5.9× 10−3

The objective is to reduce these models to a suitable order
r such that it is able to correctly capture the poorly damped
modes of the full order PS-SG and PS-DFIG models, which
are listed in Table II and Table III, respectively.

IV. RESULTS AND ANALYSIS

In this section the model reduction techniques mentioned
in Section II are applied on the PS-SG and PS-DFIG models.

� Conventional power grid with SGs (PS-SG): Both
BT and IRKA were used to reduce the system dimension
from 133 to 32. As shown in Table I the IRKA was able to
converge to a lower value of relative H2 error norm, defined
as: ||G−Gr||H2

/||G||H2
compared to BT. Table II compares

the inter-area modes captured by the reduced order models
obtained from BT and IRKA. The eigenvalue plot of full
system and reduced systems are shown in Fig. 2(a) and
the inter-area modes are zoomed in Fig. 2(b). Comparison
from Table II and Fig. 2(b) shows acceptable accuracy in
estimating all inter-area modes. Singular value plots of the
full order and the reduced-order systems are compared in
Fig. 3, which shows good match between the full order and
the reduced order models. Fig. 4 shows the zoomed view
of Fig. 3 highlighting the inter-area modes, which shows
both the ROMs are able to capture the modes accurately.
This analysis shows that IRKA also performs satisfactorily
compared to widely used BT approach in the conventional
power grids.

TABLE II
COMPARISON OF INTER-AREA MODES CAPTURED BY REDUCED-ORDER

MODEL (r = 32) IN CONVENTIONAL POWER GRID WITH SGS

Full order Reduced-order model
model BT IRKA

ξ,% f,Hz ξ,% f,Hz ξ,% f,Hz
6.50 0.382 6.50 0.382 6.50 0.382
4.40 0.502 4.30 0.502 4.40 0.502
5.70 0.618 5.70 0.618 5.70 0.618
5.00 0.791 5.20 0.791 4.80 0.791
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Fig. 2. a): Eigenvalue plot for full system and reduced-order systems (r =
32) in conventional power grid with SGs. b): Zoomed inter-area modes.
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Fig. 3. Singular value plot of full order system and reduced-order systems
in the PS-SG case.
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Fig. 4. Zoomed view of Fig. 3 highlighting the inter-area modes in PS-SG
case.



TABLE III
COMPARISON OF INTER-AREA MODES CAPTURED BY REDUCED-ORDER MODEL (r = 32)IN MODERN POWER GRID WITH WIND GENERATION

Full order Reduced-order model
model BT IRKA IRKA(LI)

ξ,% f,Hz ξ,% f,Hz ξ,% f,Hz ξ,% f,Hz
1.40 0.400 1.40 0.400 1.40 0.400 1.40 0.400
4.30 0.502 3.30 0.502 4.30 0.502 4.30 0.502
4.50 0.622 4.50 0.622 4.50 0.622 4.50 0.622
5.00 0.791 −12.30 0.824 4.70 0.790 4.70 0.790
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Fig. 5. a): Eigenvalue plot for full system and reduced-order system (r=32) in
modern power grid with inverter-interfaced WF. b): Zoomed inter-area modes.

� Modern power grid with DFIG (PS-DFIG): In this
system the complexity of the power grid is increased by
replacing G9 in Fig. 1 with the WF while the rest of the
system remained same as in PS-SG case. In this case the
model is reduce to the same order r = 32 using both the
approaches. As shown in Table I the IRKA was able to
converge to a low valued relative H2 error norm while BT
produced an unstable ROM. Table III compares the inter-area
modes captured by the ROMs obtained from BT and IRKA
where BT captured the 0.791 Hz mode incorrectly with a
negative damping. IRKA captures all the modes correctly. The
eigenvalue plot of the full system and the reduced systems are
shown in Fig. 5(a) and the inter-area modes are zoomed in
Fig. 5(b). Comparison from Table III and Fig. 5(b) shows
the inaccuracy of BT in capturing the original eigenvalue
corresponding to the 0.791 Hz mode, i.e., −0.2476 ± 4.968i
eigenvalue in the original model is mapped 0.6405 ± 5.179i
that makes the ROM unstable. Considering the singular value
plots of the full order and the reduced-order systems shown in
Fig. 6, it appears that both the ROMs have similar response.
The zoomed version of Fig. 6 is shown in Fig. 7, which clearly
shows the deviation of the BT-based ROM from the full order
model. On the other hand, the singular value plot of the IRKA-
based ROM overlaps with that of the full order model.
� Validation through time-domain analysis: Figure 8 shows
the response of the full order PS-SG and PS-DFIG model
and both of its ROMs when pulse disturbance is applied
to the input. Figure 8(a) shows the ROMs from both the
approaches are able to imitate the behavior of the original
model by retaining its critical modes in PS-SG case. When
the complexity of the power grid is increased in PS-DFIG
case, the BT-based ROM produces unstable response, see
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Fig. 6. Singular value plot of full order system and reduced-order systems
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Fig. 7. Zoomed view of Fig. 6 highlighting the inter-area modes in PS-DFIG
case.
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Fig. 8(b). On the other hand the IRKA base ROM produces
response overlapping that of the full order model. These results
are in line with the frequency-domain analysis and confirms
the accuracy of IRKA when the complexity of the system
increases due to the inclusion of DFIG-based WF.
� Discussion: As discussed in Section II, BT, after balanced
realization, retains only r = 32 states which have the highest
Hankel singular values. To further analyze the performance of
the BT approach, participation factor analysis was performed
on both the study systems. To ensure the controllability and
observability gramians matrices are equal balanced realization
was performed prior to participation factor analysis [16]. From
the analysis it was observed that in PS-DFIG case the relative
participation of the state in 0.791 Hz mode w.r.t. the maximum
participation of the same state in the other inter-area modes
was very low while in PS-SG case it was significant. The
low relative participation of the state in 0.791 Hz could be
the reason behind the failure of BT to capture this mode in
PS-DFIG case. Our research is focused on developing further
insight into this subject matter.
� Applicability for the larger systems: IRKA uses r
mirrored images of eigenvalues of the original system as the
initial interpolation points. When the dimension of the system
is very large it becomes computationally expensive to find
all the eigenvalues [8], which can be handled using partial
eigenvalue decomposition. To demonstrate the applicability
of this approach, a partial eigenvalue decomposition was
performed to obtain r eigenvalues from the original system
with the largest imaginary part (indicated by ‘LI’), which was
used to generate the interpolation points. As shown in Fig. 9
IRKA converges to the same ROM (see Table III) with the
same relative H2 error norm when these interpolation points
were used.

V. CONCLUSION

This paper highlights the challenges of model reduction
in modern power grids with inverter-interfaced WFs. To that
end, the performance of the two model reduction techniques:

BT and IRKA has been compared under two different sce-
narios of power systems − conventional power grid with
only synchronous generators and modern power grid with
inverter-interfaced WF. It is shown that both BT and IRKA
can produces comparable accuracy during model reduction for
conventional power grids. For modern power grid BT results in
an unstable reduced ROM whereas IRKA produces an accurate
reduced model. We are working on the applicability of IRKA
on larger grid models with multiple DFIG based WFs.
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