
Hypercollecting Semantics
and its Application to Static Analysis of Information Flow

Mounir Assaf
Stevens Institute of Technology,

Hoboken, US
first.last@stevens.edu

David A. Naumann
Stevens Institute of Technology,

Hoboken, US
first.last@stevens.edu

Julien Signoles
Software Reliability and Security Lab,

CEA LIST, Saclay, FR
first.last@cea.fr

Éric Totel
CIDRE, CentraleSupélec,

Rennes, FR
first.last@centralesupelec.fr

Frédéric Tronel
CIDRE, CentraleSupélec,

Rennes, FR
first.last@centralesupelec.fr

Abstract
We show how static analysis for secure information flow can be ex-
pressed and proved correct entirely within the framework of abstract
interpretation. The key idea is to define a Galois connection that
directly approximates the hyperproperty of interest. To enable use
of such Galois connections, we introduce a fixpoint characterisation
of hypercollecting semantics, i.e. a “set of sets” transformer. This
makes it possible to systematically derive static analyses for hyper-
properties entirely within the calculational framework of abstract
interpretation. We evaluate this technique by deriving example static
analyses. For qualitative information flow, we derive a dependence
analysis similar to the logic of Amtoft and Banerjee (SAS’04) and
the type system of Hunt and Sands (POPL’06). For quantitative infor-
mation flow, we derive a novel cardinality analysis that bounds the
leakage conveyed by a program instead of simply deciding whether
it exists. This encompasses problems that are hypersafety but not
k-safety. We put the framework to use and introduce variations
that achieve precision rivalling the most recent and precise static
analyses for information flow.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification–Assertion checkers; D.3 [Pro-
gramming Languages]; F.3.1 [Logics and meanings of programs]:
Semantics of Programming Language

Keywords static analysis, abstract interpretation, information flow,
hyperproperties

1. Introduction
Most static analyses tell something about all executions of a program.
This is needed, for example, to validate compiler optimizations.
Functional correctness is also formulated in terms of a predicate on
observable behaviours, i.e. more or less abstract execution traces: A

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

POPL ’17, January 18 - 20, 2017, Paris, France
Copyright c© 2017 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4660-3/17/01. . .$15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3009837.3009889

program is correct if all its traces satisfy the predicate. By contrast
with such trace properties, extensional definitions of dependences
involve more than one trace. To express that the final value of a
variable x may depend only on the initial value of a variable y, the
requirement—known as noninterference in the security literature
(Sabelfeld and Myers 2003)—is that any two traces with the same
initial value for y result in the same final value for x. Sophisticated
information flow policies allow dependences subject to quantitative
bounds—and their formalisations involve more than two traces,
sometimes unboundedly many.

For secure information flow formulated as decision problems, the
theory of hyperproperties classifies the simplest form of noninterfer-
ence as 2-safety and some quantitative flow properties as hypersafety
properties (Clarkson and Schneider 2010). A number of approaches
have been explored for analysis of dependences, including type sys-
tems, program logics, and dependence graphs. Several works have
used abstract interpretation in some way. One approach to 2-safety is
by forming a product program that encodes execution pairs (Barthe
et al. 2004; Terauchi and Aiken 2005; Darvas et al. 2005), thereby
reducing the problem to ordinary safety which can be checked by
abstract interpretation (Kovács et al. 2013) or other means. Alter-
natively, a 2-safety property can be checked by dedicated analyses
which may rely in part on ordinary abstract interpretations for trace
properties (Amtoft et al. 2006).

The theory of abstract interpretation serves to specify and
guide the design of static analyses. It is well known that effective
application of the theory requires choosing an appropriate notion
of observable behaviour for the property of interest (Cousot 2002;
Bertrane et al. 2012, 2015). Once a notion of “trace” is chosen, one
has a program semantics and “all executions” can be formalized in
terms of collecting semantics, which can be used to define a trace
property of interest, and thus to specify an abstract interpretation
(Cousot and Cousot 1977, 1979; Cousot 1999).

The foundation of abstract interpretation is quite general, based
on Galois connections between semantic domains on which collec-
ting semantics is defined. Clarkson and Schneider (2010) formalize
the notion of hyperproperty in a very general way, as a set of sets
of traces. Remarkably, prior works using abstract interpretation for
secure information flow do not directly address the set-of-sets di-
mension and instead involve various ad hoc formulations. This paper
presents a new approach of deriving information flow static analyses
within the calculational framework of abstract interpretation.

ar
X

iv
:1

60
8.

01
65

4v
2

 [c
s.P

L]
 7

 N
ov

 2
01

6

First contribution. We lift collecting semantics to sets of trace
sets, dubbed hypercollecting semantics, in a fixpoint formulation
which is not simply the lifted direct image. This can be composed
with Galois connections that specify hyperproperties beyond 2-
safety, without recourse to ad hoc additional notions. On the basis
of this foundational advance, it becomes possible to derive static
analyses entirely within the calculational framework of abstract
interpretation (Cousot and Cousot 1977, 1979; Cousot 1999).

Second contribution. We use hypercollecting semantics to
derive an analysis for ordinary dependences. This can be seen as a
rational reconstruction of both the type system of Hunt and Sands
(2006, 2011) and the logic of Amtoft and Banerjee (2004). They
determine, for each variable x, a conservative approximation of the
variables y whose initial values influence the final value of x.

Third contribution. We derive a novel analysis for quantitative
information flow. This shows the benefit of taking hyperproperties
seriously by means of abstract interpretation. For noninterference,
once the variables y on which x depends have fixed values, there
can be only one final value for x. For quantitative information flow,
one is interested in measuring the extent to which other variables
influence x: for a given range of variation for the “high inputs”,
what is the range of variation for the final values of x? We directly
address this question as a hyperproperty: given a set of traces that
agree only on the low inputs, what is the cardinality of the possible
final values for x? Using the hypercollecting semantics, we derive
a novel cardinality abstraction. We show how it can be used for
analysis of quantitative information problems including a bounding
problem which is not k-safety for any k.

The calculational approach disentangles key design decisions
and it enabled us to identify opportunities for improving precision.
We assess the precision of our analyses and provide a formal
characterisation of precision for a quantitative information flow
analysis vis a vis qualitative. Versions of our analyses rival state of
the art analyses for qualitative and quantitative information flow.

Our technical development uses the simplest programming
language and semantic model in which the ideas can be exposed.
One benefit of working entirely within the framework of abstract
interpretation is that a wide range of semantics and analyses are
already available for rich programming languages.

Outline. Following the background (Section 2), we introduce
domains and Galois connections for hyperproperties (Section 3)
and hypercollecting semantics (Section 4). Hyperproperties for
information flow are defined in Section 5. We use the framework to
derive the static analyses in Section 6 and Section 7. Section 8 uses
examples to evaluate the precision of the analyses, and shows how
existing analyses can be leveraged to improve precision. We discuss
related work (Section 9) and conclude. Appendices provide detailed
proofs for all results, as well as a table of symbols.

2. Background: Collecting Semantics, Galois
Connections

The formal development uses deterministic imperative programs
over integer variables. Let n range over literal integers Z, x over vari-
ables, and ⊕ (resp. cmp) over some arithmetic (resp. comparison)
operators.

c ::= skip | x := e | c1; c2 | if b then c1 else c2 | while b do c
e ::= n | x | e1 ⊕ e2 | b
b ::= e1 cmp e2

Different program analyses may consider different semantic
domains as needed to express a given class of program properties.
For imperative programs, the usual domains are based on states
σ ∈ States that map each variable to a value (Winskel 1993). Some

P(States∗) P(Trc) P(States)

Figure 1. Fragment of the hierarchy of semantic domains
(abstraction−−−−−→)

program properties require the use of traces that include intermediate
states; others can use more abstract domains. For information flow
properties involving intermediate outputs, or restricted to explicit
data flow (Schoepe et al. 2016), details about intermediate steps
are needed. By contrast, bounding the range of variables can be
expressed in terms of final states. As another example, consider
determining which variables are left unchanged: To express this, we
need both initial and final states.

In this paper we use the succinct term trace for elements of
Trc defined by Trc , States× States, interpreting t ∈ Trc as an
initial and final state. In the literature, these are known as relational
traces, by contrast with maximal trace semantics using the set
States∗ of finite sequences. A uniform framework describes the
relationships and correspondences between these and many other
semantic domains using Galois connections (Cousot 2002). Three
of these domains are depicted in Figure 1.

Given partially ordered sets C,A, the monotone functions
α ∈ C → A and γ ∈ A → C comprise a Galois connection,
a proposition we write (C,≤) −−→←−−α

γ
(A,v), provided they satisfy

α(c) v a iff c ≤ γ(a) for all c ∈ C, a ∈ A.
For example, to specify an analysis that determines which

variables are never changed, let A be sets of variables. Define
α ∈ P(Trc) → P(Vars) by α(T) = {x | ∀(σ, σ′) ∈ T, σ(x) =
σ′(x)} and γ(X) = {(σ, σ′) | ∀x ∈ X, σ(x) = σ′(x)}. Then
(P(Trc),⊆) −−→←−−α

γ
(P(V ar),⊇).

For the hierarchy of usual domains, depicted in Figure 1, the
connections are defined by an “element-wise abstraction”. Define
elt ∈ States∗ → Trc by elt(σ0σ1 . . . σn) , (σ0, σn). This lifts to
an abstraction P(States∗)→ P(Trc).

Lemma 1 Element-wise abstraction. Let elt ∈ C → A be a
function between sets. Let αelt(C) , {elt(c) | c ∈ C} and
γelt(A) , {c | elt(c) ∈ A}. Then (P(C),⊆) −−−−→←−−−−

αelt

γelt
(P(A),⊆).

The domain P(States), which suffices to describe the final
reachable states of a program, is an abstraction of the relational
domain P(Trc), by elt(σ, τ) , τ . In this paper we focus on the
domain Trc because it is the simplest that can express dependences.

Program semantics. We define both the denotational semantics
JcK ∈ Trc⊥ → Trc⊥ of commands and the denotational semantics
JeK ∈ Trc → Val of expressions. Here Val , Z and Trc⊥ adds
bottom element ⊥ using the flat ordering.

Standard semantics of commands JcK ∈ Trc⊥ → Trc⊥

JcK⊥ , ⊥ Jx := eK(σ, τ) , (σ, τ [x 7→ JeK(σ, τ)])

Jc1; c2Kt , Jc2K ◦ Jc1Kt JskipKt , t

Jif b then c1 else c2Kt ,

{
Jc1Kt if JbKt = 1

Jc2Kt if JbKt = 0

Jwhile b do cKt , (lfp4̇
(λt.⊥) F)(t)

where F(w)(t) ,

{
t if JbKt = 0

w ◦ JcKt otherwise

Let t be a trace (σ, τ). The denotation JeKt evaluates e in the
“current state”, τ . (In Sect. 5 we also use JeKpret which evaluates e
in the initial state, σ.) The denotation JcKt is (σ, τ ′) where execution
of c in τ leads to τ ′. The denotation is ⊥ in case c diverges
from τ . Boolean expressions evaluate to either 0 or 1. We assume
programs do not go wrong. We denote by 4̇ the point-wise lifting
to Trc⊥ → Trc⊥ of the approximation order 4 on Trc⊥.

The terminating computations of c can be written as its image
on the initial traces: {JcKt | t ∈ IniTrc and JcKt 6= ⊥} where

IniTrc , {(σ, σ) | σ ∈ States}
To specify properties that hold for all executions we use collec-

ting semantics which lifts the denotational semantics to arbitrary
sets T ∈ P(Trc) of traces. The idea is that ⦃c⦄T is the direct image
of JcK on T . To be precise, in this paper we focus on termination-
insensitive properties, and thus ⦃c⦄T is the set of non-⊥ traces t′

such that JcKt = t′ for some t ∈ T . Later we also use the collecting
semantics of expressions: ⦃e⦄T , {JeKt | t ∈ T}.

Importantly, the collecting semantics ⦃c⦄ ∈ P(Trc)→ P(Trc)
can be defined compositionally using fixpoints (Cousot 2002, Sec.
7). For conditional guard b, write ⦃ grdb ⦄ for the filter defined by
⦃ grdb ⦄T , {t ∈ T | JbKt = 1}.
Collecting semantics ⦃c⦄ ∈ P(Trc)→ P(Trc)

⦃x := e⦄T , {Jx := eKt | t ∈ T}

⦃c1; c2⦄T , ⦃c2⦄ ◦ ⦃c1⦄T ⦃skip⦄T , T

⦃if b then c1 else c2⦄T , ⦃c1⦄ ◦ ⦃ grdb ⦄T ∪⦃c2⦄ ◦ ⦃ grd¬b ⦄T

⦃while b do c⦄T , ⦃ grd¬b ⦄
(

lfp⊆T ⦃if b then c else skip⦄
)

The clause for while loops uses the denotation of a constructed
conditional command as a definitional shorthand—its denotation is
compositional.

Given a Galois connection (P(Trc),⊆) −−→←−−α
γ

(A,v), such as
the one for unmodified variables, the desired analysis is specified as
α ◦ ⦃c⦄ ◦ γ. Since it is not computable in general, we only require
an approximation f] ∈ A→ A that is sound in this sense:

α ◦ ⦃c⦄ ◦ γ v̇ f] (1)

where v̇ denotes the point-wise lifting of the partial order v.
To explain the significance of this specification, suppose one

wishes to prove program c satisfies a trace property T ∈ P(Trc),
i.e. to prove that ⦃c⦄(IniTrc) ⊆ T . Given eq. (1) it suffices to find
an abstract value a that approximates IniTrc, i.e. IniTrc ⊆ γ(a),
and show that

γ(f](a)) ⊆ T (2)

eq. (1) is equivalent to ⦃c⦄ ◦ γ ⊆̇ γ ◦ f] by a property of
Galois connections. So eq. (2) implies ⦃c⦄(γ(a)) ⊆ T which (by
monotonicity of ⦃c⦄) implies ⦃c⦄(IniTrc) ⊆ ⦃c⦄(γ(a)) ⊆ T .

The beauty of specification eq. (1) is that f] can be obtained as
an abstract interpretation ⦃c⦄], derived systematically for all c by
calculating from the left side of eq. (1) as shown by Cousot (1999).

3. Domains and Galois Connections for
Hyperproperties

To express hyperproperties, we need Galois connections for domains
that involve sets of sets of observable behaviours. This section spells
out how such powerset domains form a hierarchy as illustrated
along the top of Figure 2. We describe how dependences and

P(P(States∗)) P(P(Trc)) P(P(States))

P(States∗) P(Trc) P(States)

Figure 2. Extended hierarchy of semantic domains (abstraction−−−−−→)

cardinalities for quantitative information flow can be formulated
as Galois connections. We spell out a methodology whereby the
standard notions and techniques of abstract interpretation can be
applied to specify and derive—in the same form as Equation (1)—
static analyses for hyperproperties.

As a first example, consider the condition: the final value of x
depends only on the initial value of y. Its expression needs, at least,
two traces: If two traces, denoted by (σ, σ′) and (τ, τ ′), agree on
the initial value of y then they agree on the final value of x. That is,
σ(y) = τ(y) implies σ′(x) = τ ′(x). This must hold for any two
traces of the program. This is equivalent to the following: For all
sets T of traces, if traces in T all agree on the initial value of y then
they all agree on the final value of x. Later we extend this example
to an analysis that infers which dependences hold.

Consider the problem of quantifying information flow with min-
capacity (Smith 2009). For a program on two integer variables h, l,
the problem is to infer how much information is conveyed via l
about h: considering some traces that agree on the initial value of l,
how many final values are possible for l. For example, the program
l := (h mod 2) + l has two final values for l, for each initial l,
though there are many possible initial values for h. This cardinality
problem generalizes prior work on quantitative flow analysis, where
typically low inputs are not considered.

Whereas the simple dependence problem can be formulated in
terms of 2 traces, the cardinality problem involves trace sets of
unbounded size. In the terminology of hyperproperties, it is not a
k-safety hyperproperty for any k (Yasuoka and Terauchi 2011, Sec.
3), although it is hypersafety (Clarkson and Schneider 2010). For
a fixed k, the problem “variable l has at most k − 1 final values” is
k-safety, which means it can be formulated in terms of sets with at
most k traces.

It turns out that by using Galois connections on sets of sets, we
can develop a general theory that encompasses many hyperproperties
and which enables derivation of interesting abstract interpreters. For
our applications, we use relational traces as the notion of observable
behavior, and thusP(P(Trc)). The approach works as well for other
notions, so there is a hierarchy of domains as shown at the top of Fig-
ure 2, in parallel with the ordinary hierarchy shown along the bottom.

The abstractions of this hierarchy are obtained by lifting each
abstraction between two standard collecting semantics (Cousot
2002) to their hypercollecting versions, by element-wise abstrac-
tion (Lemma 1). For instance, Lemma 1 justifies the abstraction
between P(P(Trc)) and P(P(States)), by lifting the abstraction
between P(Trc) and P(States) (Cousot 2002, Sec. 8). Addition-
ally, the diagonal lines in Figure 2 represent abstractions between
hypercollecting semantics defined over some form of observations
and the corresponding collecting semantics defined over the same
observations.

Lemma 2 . Let C be a set. Define αhpp(C) , ∪C∈C C and
γhpp(C) , P(C). These form a Galois connection:

(P(P(C)),⊆) −−−−−→←−−−−−
αhpp

γhpp

(P(C),⊆)

It is noted by Clarkson and Schneider (2010) that any trace
property can be lifted to a unique hyperproperty; this lifting is
exactly the concretisation γhpp of Lemma 2. Although the model

of Clarkson and Schneider (2010) is quite general, it does focus on
infinite traces. But hyperproperties can be formulated in terms of
other notions of observation, as illustrated in Figure 2.

Cardinality abstraction. To lay the groundwork for our quanti-
tative information flow analysis, we consider abstracting a set of
values by its cardinality. Cardinality is one ingredient in many quan-
titative information flow analyses estimating the amount of sensitive
information a program may leak (Smith 2009; Backes et al. 2009;
Braun et al. 2009; Köpf and Rybalchenko 2013; Mardziel et al.
2013; Doychev et al. 2013). The lattice of abstract representations
we consider is the set

[0,∞] , N ∪ {∞}
where ∞ denotes an infinite cardinal number. We use the natu-
ral order ≤, and max as a join. Consider the abstraction ope-
rator crdval ∈ P(Val) → [0,∞] computing cardinality and
given by crdval(V) , |V |. This operator crdval is not addi-
tive, i.e. it does not preserve joins; e.g. crdval({1, 2} ∪ {2, 3}) 6=
max(crdval({1, 2}), crdval({2, 3})). Thus, there exists no asso-
ciated concretisation f for which crdval is the lower adjoint in a
Galois connection. Yet, we can lift the abstraction operator crdval
to a Galois connection over P(P(Val)) through what is called a
supremus abstraction (Cousot 2002, p.52).

Lemma 3 Supremus abstraction. Let elt ∈ C → A be a function
from a set C, with codomain forming a complete lattice (A,v). Let
αelt(C) , tc∈C elt(c) and γelt(a) , {c ∈ C | elt(c) v a}. Then

(P(C),⊆) −−−−→←−−−−
αelt

γelt
(A,v)

For example, define αcrdval(V) , maxV ∈V crdval(V) and
γcrdval(n) , {V | crdval(V) ≤ n}. Thus we obtain a Galois
connection (P(P(Val)),⊆) −−−−−−→←−−−−−−

αcrdval

γcrdval
([0,∞] ,≤).

As another example let us consider, in simplified form, an
ingredient in dependency or noninterference analysis. For program
variable x, agreex ∈ P(States) → {tt,ff} determines whether a
set of states contains only states that all agree on x’s value:

agreex(Σ) , (∀σ, σ′ ∈ Σ, JxKσ = JxKσ′)

Function agreex is not additive, so it is not part of a Galois
connection from P(States) to {tt,ff}. The same problem arises
with agreements on multiple variables, and with more concrete
domains like the finite maximal trace semantics P(States∗).

We lift the operator agreex to a Galois connection over
P(P(States)). A supremus abstraction yields

αagreex(S) , (∀Σ ∈ S, agreex(Σ))

γagreex(bv) , {Σ | agreex(Σ)⇐= bv}

so that (P(P(States)),⊆) −−−−−−→←−−−−−−
αagreex

γagreex
({tt,ff},⇐=).

These examples are consistent with the many formulations of
noninterference (e.g. (Goguen and Meseguer 1982; Volpano and
Smith 1997; Giacobazzi and Mastroeni 2004; Amtoft and Banerjee
2004; Hunt and Sands 2006)) that motivated the characterisation of
information-flow security requirements as hyperproperties (Clark-
son and Schneider 2010). Concretising an abstract value a can
be seen as defining the denotation of a type expression (as in, for
instance, Benton (2004, Sec. 3.3.1) and Hunt and Sands (1991)),
i.e. defining the set of objects that satisfy the description a. Thus,
concretising tt, when tt is interpreted as “satisfies a property re-
quirement”, naturally yields a set of traces. Concretising tt, where
tt is interpreted as “satisfies a security requirement”, yields a set of
sets of traces.

Intuitively, the most abstract denotation/concretisation of a pro-
perty requirement is defined in terms of a set of traces. The most

abstract concretisation/denotation of a security requirement yields a
set of sets of traces, namely a hyperproperty. Hints of this intuition
appear in the literature (McLean 1994; Volpano 1999; Rushby 2001;
Zakinthinos and Lerner 1997); e.g. security policies “are predicates
on sets of traces (i.e. they are higher order)” (Rushby 2001, p.2).
However, only recently has a comprehensive framework proposed a
sharp characterisation of security policies as hyperproperties (Clark-
son and Schneider 2008, 2010).

Abstract interpretation of hyperproperties. The basic methodo-
logy for the verification of a hyperproperty HP, may be described
as follows:

Step 1. Design approximate representations forming a complete
lattice A, choose a collecting semantics C among the extended
hierarchy (set of sets domains, e.g. P(P(Trc))), and define α, γ
for a Galois connection (C,≤) −−→←−−α

γ
(A,v).

Step 2. Compute an approximation a ∈ A of the semanticsC ∈ C
of the program P of interest.

Step 3. Prove that the inferred approximation a implies that P
satisfies HP. The concretisation γ(a) is a set of trace sets,
of which the program’s trace set is a member—by contrast to
approximations of trace properties, which infer a single trace set
of which the program trace set is a subset. Then, it suffices to
prove γ(a) ⊆ HP.

Step 1 is guided by the need to have γ(a) ⊆ HP, i.e. a describes
a hyperproperty that implies HP. The calculational design (Cousot
1999) of abstract domains greatly systematises Step 2, by relying on
the Galois connection defined in Step 1. Collecting semantics can be
adapted to the additional structure of sets, as we show in Section 4.

4. Hypercollecting Semantics
In the following, we introduce a hypercollecting semantics defined
over sets T ∈ P(P(Trc)) of sets of traces. This is used in
subsequent sections to derive static analyses.

Here is Step 2 of the methodology, spelled out in detail. Given
a Galois connection (P(P(Trc)),⊆) −−→←−−α

γ
(A,v]) built by the

supremus abstraction, and an approximation a of the initial traces
(i.e. IniTrc is in γ(a)), find an approximation a′ ∈ A of the
analysed program c, i.e. ⦃c⦄ IniTrc is in γ(a′). Then prove that the
program satisfies the hyperproperty HP of interest, i.e. γ(a′) ⊆ HP.
In order to compute a′, we define a hypercollecting semantics
LcM ∈ P(P(Trc)) → P(P(Trc)). That will serve to derive—in
the manner of Equation (1)—a static analysis that is correct by
construction.

Hypercollecting semantics L c M ∈ P(P(Trc))→ P(P(Trc))

Lx := eMT , {⦃x := e⦄T | T ∈ T}

Lc1; c2MT , Lc2M ◦ Lc1MT LskipMT , T

Lif b then c1 else c2MT ,
{⦃c1⦄ ◦ ⦃ grdb ⦄T ∪ ⦃c2⦄ ◦ ⦃ grd¬b ⦄T | T ∈ T}

Lwhile b do c MT , Lgrd¬bM
(

lfp⊆T Lif b then c else skipM
)

LgrdbMT , {⦃ grdb ⦄T | T ∈ T}

Recall from Section 2 that standard collecting semantics is a
fixpoint-based formulation that captures the direct image on sets
of the underlying program semantics – this is proved, for example,

by Cachera and Pichardie (2010); Assaf and Naumann (2016). The
fixpoint formulation at the level of sets-of-sets we use is not simply
the direct image of the standard collecting semantics. The direct
image of the standard collecting semantics would yield a set of
(inner) fixpoints over sets of traces, whereas an outer fixpoint over
sets of sets of traces enables straightforward application of the
fixpoint transfer theorem.

Theorem 1 . For all c and all T ∈ P(Trc), ⦃c⦄T is in L c M{T}.
For a singleton {T}, the set LcM{T} ∈ P(P(Trc)) is not

necessarily a singleton set containing only the element ⦃c⦄T . If
c is a loop, LcM{T} yields a set of sets R of traces, where each set
R of traces contains only traces that exit the loop after less than
k iterations, for k ∈ N. We prove this theorem as corollary of the
following:

∀T ∈ P(P(Trc)), {⦃c⦄T | T ∈ T} ⊆ LcMT
This is proved by structural induction on commands. For loops, there
is a secondary induction on iterations of the loop body.

In summary, suppose one wishes to prove program c satisfies
hyperproperty HP ∈ P(P(Trc)), i.e. one wishes to prove that
⦃c⦄(IniTrc) ∈ HP. Suppose we have an approximation f] of the
hypercollecting semantics, similarly to eq. (1), i.e.

α ◦ LcM ◦ γ v̇] f] (3)

Given eq. (3) it suffices to find an abstract value a that approximates
IniTrc, i.e. IniTrc ∈ γ(a), and show that:

γ(f](a)) ⊆ HP (4)

Why? Equation (3) is equivalent to LcM ◦ γ ⊆̇ γ ◦ f] by a property
of Galois connections. So we have ⦃c⦄(IniTrc) ∈ LcM(γ(a)) ⊆
γ(f](a)) ⊆ HP using IniTrc ∈ γ(a), the Theorem, and eq. (4).

5. Information Flow
This section gives a number of technical definitions which build
up to the definition of Galois connections with which we specify
information flow policies explicitly as hyperproperties.

When a fixed main program is considered, we refer to it as P
and its variables as VarP. Our analyses are parametrised by the
program P to analyse, and an initial typing context Γ ∈ VarP → L
mapping each variable to a security level l ∈ L for its initial value.
We assume (L,v,t,u) is a finite lattice. In the most concrete case,
L may be defined as the universal flow lattice, i.e. the powerset of
variables P(VarP), from which all other information flow types can
be inferred through a suitable abstraction (Hunt and Sands 2006,
Sec. 6.2); the initial typing context is then defined as λx.{x}.
Initial l-equivalence and variety. A key notion in information
flow is l-equivalence. Two states are l-equivalent iff they agree on
the values of variables having security level at most l. We introduce
the same notion over a set of traces, requiring that the initial states
are l-equivalent. Let us first denote by JeKpre ∈ Trc → Val
the evaluation of expression e in the initial state σ of a trace
(σ, τ) ∈ Trc—unlike JeK ∈ Trc→ Val which evaluates expression
e in the final state τ . Then, we denote by T |=Γ l the judgement
that all traces in a set T ⊆ Trc are initially l-equivalent, i.e. they all
initially agree on the value of variables up to a security level l ∈ L.

For example, in the case thatL is the universal flow lattice, T |=Γ

{x, y} means ∀t1, t2 ∈ T, JxKpret1 = JxKpret2 ∧ JyKpret1 =
JyKpret2.

Initial l-equivalence T |=Γ l

T |=Γ l iff. ∀t1, t2 ∈ T,∀x ∈ VarP,
Γ(x) v l =⇒ JxKpret1 = JxKpret2

The notion of variety (Cohen 1977) underlies most definitions of
qualitative and quantitative information flow security. Information is
transmitted from a to b over execution of program P if by “varying
the initial value of a (exploring the variety in a), the resulting
value in b after P’s execution will also vary (showing that variety is
conveyed to b)” (Cohen 1977). We define the l-variety of expression
e, as the set of sets of values e may take, when considering only
initially l-equivalent traces. The variety is defined first as a function
Ol⦃e⦄ ∈ P(Trc) → P(P(Val)) on trace sets, from which we
obtain a function OlLeM ∈ P(P(Trc)) → P(P(Val)), on sets of
trace sets. Intuitively, l-variety of expression e is the variety that is
conveyed to e by varying only the input values of variables having a
security level l′ such that ¬(l′ v l).

l-variety Ol⦃e⦄ OlLeM

Ol⦃e⦄ ∈ P(Trc)→ P(P(Val))
Ol⦃e⦄T , {⦃e⦄R | R ⊆ T and R |=Γ l}
OlLeM ∈ P(P(Trc))→ P(P(Val))
OlLeMT , ∪T∈T Ol⦃e⦄T

Each set V ∈ Ol⦃e⦄T of values results from initially l-
equivalent traces (R |=Γ l for R ⊆ T). Thus, expression e does not
leak sensitive information to attackers having a security clearance
l ∈ L if Ol⦃e⦄T is a set of singleton sets. Indeed, sensitive data
for attackers with security clearance l ∈ L is all data having
a security level l′ for which attackers do not have access (i.e.
¬(l′ v l) (Denning and Denning 1977)). Thus, ifOl⦃e⦄T is a set of
singleton sets, this means that no matter how sensitive information
varies, this variety is not conveyed to expression e.

Besides a pedagogical purpose, we define l-variety Ol⦃e⦄ (resp.
OlLeM) instead of simply lifting the denotational semantics JeK of
expressions to sets of traces (resp. sets of sets of traces) since we
want to build modular abstractions of traces by relying on underlying
abstractions of values. Thus, l-variety enables us to pass information
about initially l-equivalent traces to the underlying domain of values
by keeping disjoint values that originate from traces that are not
initially l-equivalent.

Specifying information flow. We now have the ingredients needed
to describe information flow for command c, with respect to ty-
ping context Γ ∈ VarP → L. A quantitative security metric, in-
troduced by Smith (2009, 2011), relies on min-entropy and min-
capacity (Rényi 1961) in order to estimate the leakage of a pro-
gram. Let us assume a program P that is characterized by a set
TP ∈ P(Trc) of traces, i.e. TP , ⦃ P ⦄ IniTrc. For simplicity, as-
sume attackers only observe the value of a single variable x ∈ VarP.
(The generalization to multiple variables is straightforward.) The
leakage of P, as measured by min-capacity, to attackers having
security clearance l ∈ L is defined by

MLl , log2
◦ αcrdval ◦ Ol⦃x⦄TP

(The definition of αcrdval follows Lemma 3.) For our purposes,
it suffices to know that this quantity aims to measure, in bits, the
remaining uncertainty about sensitive data for attackers with security
clearance l. Refer to the original work (Smith 2009) for more details.

Leaving aside the logarithm in the definition ofMLl, a quan-
titative security requirement may enforce a limit on the amount of
information leaked to attackers with security clearance l ∈ L, by
requiring that the l-cardinality of variable x is less than or equal to
some non-negative integer k. We denote by SR(l, k, x) the hyper-
property that characterises this security requirement, i.e. the set of
program denotations satisfying it:

SR(l, k, x) , {T ∈ P(Trc) | αcrdval ◦ Ol⦃x⦄T ≤ k}

Note that SR implicitly depends on the choice of initial typing Γ, as
does Ol⦃x⦄T .

The termination-insensitive noninterference policy “the final
value of x depends only on the initial values of variables labelled
at most l” corresponds to the hyperproperty SR(l, 1, x). Therefore,
the program P satisfies SR(l, 1, x) if αcrdval ◦ Ol⦃x⦄TP ≤ 1. Let
T = LPM{IniTrc}. Since TP is in T (Theorem 1), then P satisfies
SR(l, 1, x) if αcrdval ◦ OlLxMT ≤ 1, by monotony of αcrdval and
by Ol⦃x⦄TP ⊆ OlLxMT from the definition of OlL−M.

6. Dependences
We rely on abstract interpretation to derive a static analysis similar
to existing ones inferring dependences (Amtoft and Banerjee 2004;
Hunt and Sands 2006; Amtoft et al. 2006; Hunt and Sands 2011).

Recall that our analyses are parametrised on a security lattice
L and program P. We denote by l ; x an atomic dependence
constraint, with l ∈ L and x ∈ VarP, read as “agreement up to
security level l leads to agreement on x”. It is an atomic pre-post
contract expressing that the final value of x must only depend on
initial values having at most security level l. Said otherwise, l ; x
states the noninterference of variable x from data that is sensitive
for attackers with security clearance l, i.e. all inputs having security
level l′ such that ¬(l′ v l).

Dependences are similar to information flow types (Hunt and
Sands 2006) and are the dual of independences assertions (Amtoft
and Banerjee 2004). Both interpretations are equivalent (Hunt and
Sands 2006, Sec. 5).

Lattice of dependence constraints Dep D ∈ Dep

Given a lattice L and program P, define

Dep , P({l ; x | l ∈ L, x ∈ VarP})
D1 v\ D2 , D1 ⊇ D2 D1 t\ D2 , D1 ∩D2

In the rest of this section, L and P are fixed, together with a
typing context Γ ∈ VarP → L.

The semantic characterisation of dependences is tightly linked
to variety. An atomic constraint l ; x holds if no variety is
conveyed to x when the inputs up to security level l are fixed.
We use this intuition to define the Galois connections linking the
hypercollecting semantics and the lattice Dep, by instantiating the
supremus abstraction in Lemma 3.

The agreement abstraction approximates a set V ∈ P(P(Val))
by determining whether it contains variety.

Agreements abstraction agree αagree γagree

agree ∈ P(Val)→ {tt,ff}
agree(V) , (∀v1, v2 ∈ V, v1 = v2)

αagree ∈ P(P(Val))→ {tt,ff}
αagree(V) , ∧V ∈V agree(V)

γagree ∈ {tt,ff} → P(P(Val))
γagree(bv) , {V ∈ P(Val) | agree(V)⇐= bv}

(P(P(Val)),⊆) −−−−−→←−−−−−
αagree

γagree

({tt,ff},⇐=)

Note that γagree(tt) is {V ∈ P(Val) | agree(V)} and γagree(ff) is
P(Val). Also, agree(V) iff |V | ≤ 1.

The dependence abstraction approximates a set T ∈ P(P(Trc))
by a dependence constraint D ∈ Dep. Recall that Ol⦃x⦄T is the
set of final values for variable x in traces t ∈ T that agree on inputs

of level at most l. So αagree(Ol⦃x⦄T) holds just if there is at most
one final value.

Dependence abstraction deptr αdeptr γdeptr

deptr ∈ P(Trc)→ Dep

deptr(T) , {l ; x | l ∈ L, x ∈ VarP, αagree(Ol⦃x⦄T)}
αdeptr ∈ P(P(Trc))→ Dep

αdeptr(T) , t\T∈T deptr(T)

γdeptr ∈ Dep→ P(P(Trc))

γdeptr(D) , {T | deptr(T)v\ D}

(P(P(Trc)),⊆) −−−−−−→←−−−−−−
αdeptr

γdeptr

(Dep,v\)

Note that deptr(T) is the set of dependences l ; x for which
αagree(Ol⦃x⦄T) holds. For instance, the initial typing context
Γ ∈ VarP → L determines the initial dependences of a program:

αdeptr({IniTrc})
= {l ; x | l ∈ L, x ∈ VarP and αagree(Ol⦃x⦄ IniTrc)}
= {l ; x | l ∈ L, x ∈ VarP and Γ(x) v l}

We derive an approximation OlDLeM\ of l-variety OlLeM. This
approximation OlDLeM\ ∈ Dep → {tt,ff}, called l-agreement of
expression e, determines whether a set D of dependence constraints
guarantees that no variety is conveyed to expression e when the
inputs up to security level l are fixed. Notice that we use symbol \
and subscript D here, for contrast with similar notation using] and
subscript C in later sections.

l-agreement of expressions OlDLeM\ ∈ Dep→ {tt,ff}

OlDLnM\D , tt OlDLxM\D , (l ; x ∈ D)

OlDLe1 ⊕ e2M\D , OlDLe1M\D ∧ OlDLe2M\D

OlDLe1 cmp e2M\D , OlDLe1M\D ∧ OlDLe2M\D

Deriving the clauses definingOlDL−M\ amounts to a constructive
proof of the following.

Lemma 4 . OlDLeM\ is sound:

∀e, ∀l,∀D , αagree ◦ OlLeM ◦ γdeptr(D)⇐=OlDLeM\D .

Dependence abstract semantics. We derive a dependence abstract
semantics LcM\ by approximating the hypercollecting semantics LcM.
This abstract semantics LcM\ ∈ Dep→ Dep over-approximates the
dependence constraints that hold after execution of a command c,
on inputs satisfying initial dependence constraints.

We assume a static analysis approximating the variables that a
command modifies.

Modifiable variables Mod ∈ Com→ P(V ar)

For all c, x, if there exists t, t′ ∈ Trc such that JcKt = t′ and
JxKpret

′ 6= JxKt′, then x ∈ Mod(c).

The abstract semantics of assignments x := e discards all atomic
constraints related to variable x in the input set D of constraints,
and adds atomic constraints l ; x if D guarantees l-agreement
for expression e. For conditionals, for each security level l, if
the input set D guarantees l-agreement of the conditional guard,

the abstract semantics computes the join over the dependences of
both conditional branches, after projecting to only those atomic
constraints related to l (notation πl(−)). If D does not guarantee
l-agreement of the conditional guard, atomic constraints related to
both l and variables possibly modified are discarded. Intuitively, if D
guarantees l-agreement of the conditional guard, then l-agreement
over some variable x in both branches guarantees l-agreement over
x after the conditional command. Otherwise, the only l-agreements
that are guaranteed after the conditional are those that hold before
the conditional for variables that are not modified.

Dependence abstract semantics LcM\ ∈ Dep→ Dep

LskipM\D , D Lc1; c2M\D , Lc2M\ ◦ Lc1M\D

Lx := eM\D ,
{l ; y ∈ D | y 6= x} ∪ {l ; x | l ∈ L, OlDLeM\D}

Lif b then c1 else c2M\D ,
let D1 = Lc1M\D in
let D2 = Lc2M\D in
let W = Mod(if b then c1 else c2) in⋃
l∈L

{
πl(D1) t\ πl(D2) if OlDLbM\D
{l ; x ∈ πl(D) | x /∈W} otherwise

Lwhile b do cM\D , lfpv
]

D Lif b then c1 else c2M\

πl(D) , {l ; x ∈ D | x ∈ VarP}

Theorem 2 . The dependence semantics is sound:

αdeptr ◦ LcM ◦ γdeptr v̇\ LcM\ .

We denote by v̇\ the point-wise lifting of the partial order v\.
We can derive this abstract semantics by directly approximating the
relational hypercollecting semantics LcM through the dependence
Galois connection (αdeptr, γdeptr). The derivation is by structural
induction on commands. It leverages mathematical properties of
Galois connections. We start with the specification of the best
abstract transformer αdeptr ◦ LcM ◦ γdeptr ∈ Dep → Dep, and
successively approximate it to finally obtain the definition of the
dependence abstract semantics for each form of command. The
derivation is the proof, and the obtained definition of the abstract
semantics is correct by construction.

Let us showcase the simplest derivation for a sequence of
commands in order to illustrate this process:

αdeptr ◦ Lc1; c2M ◦ γdeptr

= HBy definition of the hypercollecting semanticsI
αdeptr ◦ Lc2M ◦ Lc1M ◦ γdeptr

v̇\ HBy γdeptr ◦ αdeptr is extensive I
αdeptr ◦ Lc2M ◦ γdeptr ◦ αdeptr ◦ Lc1M ◦ γdeptr

v̇\ HBy induction hypothesis αdeptr ◦ LcM ◦ γdeptr v̇\ LcM\I

Lc2M\ ◦ Lc1M\

, HTake this last approximation as the definition.I

Lc1; c2M\

Alternatively, we can leverage Galois connections to give the
analysis as an approximation of the cardinality analysis. We work
this out by Lemmas 6 and 7, introduced in Section 7.

Comparison with previous analyses. Our dependence analysis is
similar to the logic of Amtoft and Banerjee (2004) as well as the flow-
sensitive type system of Hunt and Sands (2006). The relationship
between our sets D ∈ Dep of dependence constraints and the type
environments ∆ ∈ VarP → L of Hunt and Sands can be formalised
by the abstraction:

αhs ∈ Dep→ VarP → L
αhs(D) , λx. u {l | l ; x ∈ D}
γhs ∈ (VarP → L)→ Dep

γhs(∆) , {l ; x | x ∈ VarP, l ∈ L, ∆(x) v l}

This is in fact an isomorphism because of the way we interpret
dependences. Indeed, if l ; x holds, then also l′ ; x for all l′ ∈ L
such that l v l′ (cf. Corollary 4 in Appendix G.2). This observation
suggests reformulating the sets D ∈ Dep of dependence constraints
to contain only elements with minimal level, but we refrain from
doing so for simplicity of presentation.

Our dependence analysis is at least as precise as the type system
of Hunt and Sands. To state this result, we denote by ⊥L the bottom
element of the lattice L. We also assume that the modified variables
is precise enough to simulate the same effect as the program counter
used in the type system: Mod(c) is a subset of the variables that are
targets of assignments in c.

Theorem 3 . For all c, D0,D ∈ Dep, ∆0,∆ ∈ VarP → L, where
⊥L ` ∆0{c}∆, and D = LcM\D0, it holds that:

αhs(D0) v̇∆0 =⇒ αhs(D) v̇∆ .

7. Cardinality Abstraction
Dependence analysis is only concerned with whether variety is con-
veyed. We refine this analysis by deriving a cardinality abstraction
that enumerates variety.

We denote by l ; x#n an atomic cardinality constraint where
l ∈ L, x ∈ VarP and n ∈ [0,∞], read as “agreement up to security
level l leads to a variety of at most n values in variable x”.

Lattice of cardinality constraints Card C ∈ Card

For a program P and lattice L, we say C is a valid set of constraints
iff ∀x ∈ VarP, ∀l ∈ L, ∃!n ∈ [0,∞] , l ; x#n ∈ C .

Let Card be the set of valid sets of constraints.
It is a complete lattice:
C1 v] C2 iff ∀l ; x#n1 ∈ C1, ∃n2,

l ; x#n2 ∈ C2 ∧ n1 ≤ n2

C1 t] C2 , {l ; x# max(n1, n2) |
l ; x#n1 ∈ C1, l ; x#n2 ∈ C2}

In the rest of this section, L and P are fixed, together with a
typing context Γ ∈ VarP → L.

A valid constraint set is essentially a function from l and x to n.
So v] is essentially a pointwise order on functions, and we ensure
that v] is antisymmetric.

The cardinality abstraction relies on the abstraction αcrdval,
introduced in Section 3, in order to approximate l-variety of a
variable into a cardinality n ∈ [0,∞].

Cardinality abstraction crdtr αcrdtr γcrdtr

crdtr ∈ P(Trc)→ Card

crdtr(T) , {l ; x#n | l ∈ L, x ∈ VarP,
n = αcrdval(Ol⦃x⦄T) }

αcrdtr ∈ P(P(Trc))→ Card

αcrdtr(T) , t]T∈T crdtr(T)

γcrdtr ∈ Card→ P(P(Trc))

γcrdtr(C) , {T | crdtr(T)v] C }

(P(P(Trc)),⊆) −−−−−→←−−−−−
αcrdtr

γcrdtr
(Card,v])

The cardinality abstraction enables us to derive an approximation
OlCLeM] of l-varietyOlLeM. This approximationOlCLeM] ∈ Card→
[0,∞], called l-cardinality of expression e, enumerates the l-variety
conveyed to expression e assuming a set C ∈ Card of cardinality
constraints holds. Note that the infinite cardinal∞ is absorbing, i.e.
∀n,∞× n ,∞.

l-cardinality of expressions OlCLeM] ∈ Card→ [0,∞]

OlCLnM]C , 1 OlCLxM]C , n where l ; x#n ∈ C

OlCLe1 ⊕ e2M]C , OlCLe1M]C ×OlCLe2M]C

OlCLe1 cmp e2M]C , min
(

2,OlCLe1M]C ×OlCLe2M]C
)

Lemma 5 . OlCLeM] is sound:

∀e, ∀l, αcrdval ◦ OlLeM ◦ γcrdtr ≤̇ OlCLeM] .

We now derive a cardinality abstract semantics by approxima-
ting the relational hypercollecting semantics of Section 4. It uses
definitions to follow.

Cardinality abstract semantics LcM] ∈ Card→ Card

LskipM]C , C Lc1; c2M]C , Lc2M] ◦ Lc1M]C

Lx := eM]C ,
{l ; y#n ∈ C | y 6= x}
∪{l ; x#n | l ∈ L, x ∈ VarP, n = OlCLeM]C }

Lif b then c1 else c2M]C ,
let C1 = Lc1M]C in
let C2 = Lc2M]C in
let W = Mod(if b then c1 else c2) in⋃
l∈L

{
πl(C1) t] πl(C2) if OlCLbM]C = 1

πl(C1) t]add(W,πl(C)) π
l(C2) otherwise

Lwhile b do cM]C , lfpv
]

C Lif b then c1 else c2M]

πl(C) , {l ; x#n ∈ C | x ∈ VarP, n ∈ [0,∞]}
C1 t]add(W,C0) C2 ,

⋃
x∈VarP \W {l ; x#n ∈ C0}
∪⋃x∈W {l ; x#(n1+n2) |

l ; x#nj ∈ Cj , j = 1, 2}

The abstract semantics of assignments x := e is similar in spirit
to the one for dependences: discard atomic constraints related to x,
and add new ones by computing l-cardinality of expression e. The

abstract semantics of conditionals is also similar to dependences:
if the conditional guard does not convey l-variety, then all initially
l-equivalent traces follow the same execution path and the join
operator (defined as max over cardinality) over both conditional
branches over-approximates the l-cardinality after the conditional.
Otherwise, the l-cardinality over both conditional branches have
to be summed—for the variables that may be modified in the
conditional branches—to soundly approximate the l-cardinality after
the conditional.

Theorem 4 . The cardinality abstract semantics is sound:

αcrdtr ◦ LcM ◦ γcrdtr v̇] LcM] .

The lattice Card is complete, although not finite. We may
define a widening operator∇ ∈ Card×Card→ Card to ensure
convergence of the analysis (Cousot and Cousot 1992)(Nielson et al.
1999)(Cortesi and Zanioli 2011, Sec. 4).

C1∇C2 , {l ; x#n | l ; x#n1 ∈ C1, l ; x#n2 ∈ C2,
n = n1∇n2}

n1∇n2 , if (n2 ≤ n1) then n1 else∞
The occurrence of widening depends on the iteration strategy

employed by the static analyser. Widening accelerates or forces
the convergence of fixpoint computations. In the simplest setting,
the analyser passes as arguments to the widening operator the old
set C1 of cardinality as well as the new set C2 that is computed.
For each atomic cardinality constraint, the widening operator then
compares the old cardinality n1 to the new cardinality n2. If the
cardinality is still strictly increasing (n2 > n1), the widening forces
the convergence by setting it to∞. If the cardinality is decreasing,
the widening operator sets it to the maximum cardinality n1 in
order to force convergence and ensure the sequence of computed
cardinalities is stationary.

Min-capacity leakage. So far, we showed how one can derive
static analyses of hyperproperties—the abstract representations
themselves are interpreted as hyperproperties—by approximating
hypercollecting semantics. Let us now recall the security require-
ment SR(l, k, x) introduced in Section 4 in order to illustrate how
these analyses may prove that a program satisfies a hyperproperty,
i.e. Step 3 of the methodology in Section 3 (see also Equation (4)).

Consider a program P characterised by a set TP ∈ P(Trc) of
traces, i.e. TP is ⦃ P ⦄ IniTrc. How do we prove that P satisfies the
hyperproperty SR(l, k, x)? We can use the cardinality analysis to
prove that variable x has a l-cardinality that is at most k. Indeed,
if C approximates TP (i.e. αcrdtr({TP}) v] C) then αcrdval ◦
Ol⦃x⦄TP ≤ OlCLxM]C . Thus, if the inferred l-cardinality of C is
at most k then program P is guaranteed to satisfy the hyperproperty
SR(l, k, x). We have {TP} ⊆ γcrdtr(C) since C approximates TP

(i.e. αcrdtr({TP}) v] C). And we have γcrdtr(C) ⊆ SR(l, k, x)
by assumption OlCLxM]C ≤ k. Hence TP ∈ SR(l, k, x).

The hyperproperty SR(l, k, x) is a (k + 1)-safety hyperpro-
perty (Clarkson and Schneider 2010), i.e. it requires exhibiting
at most k + 1 traces in order to prove that a program does not
satisfy SR(l, k, x). For example, termination-insensitive noninter-
ference for security level l, which corresponds to the hyperproperty
SR(l, 1, x), is 2-safety. A k-safety hyperproperty of a program can
be reduced to a safety property of a k-fold product program (Barthe
et al. 2004; Terauchi and Aiken 2005; Darvas et al. 2005; Clarkson
and Schneider 2010).

Various quantitative information flow properties are not k-safety.
For example, the bounding problem that the cardinality analysis
targets, namely min-capacity leakage is not a k-safety hyperproperty
for any k (Yasuoka and Terauchi 2011, Sec. 3). Instead, this
bounding problem is hypersafety (Clarkson and Schneider 2010).

Cardinalities vs. dependences. Just as quantitative security met-
rics are the natural generalisations of qualitative metrics such as non-
interference, the cardinality abstraction is a natural generalisation of
dependence analysis. Instead of deciding if variety is conveyed, the
cardinality analysis enumerates this variety. In other words, depen-
dences are abstractions of cardinalities. We can factor the Galois con-
nections, e.g. (αagree, γagree) is (αlqone ◦ αcrdval, γcrdval ◦ γlqone)
for suitable (αlqone, γlqone).

Lemma 6 . (αagree, γagree) is the composition of two Galois con-
nections (αcrdval, γcrdval) and (αlqone, γlqone) :

(P(P(Val)),⊆) −−−−−−→←−−−−−−
αcrdval

γcrdval
([0,∞] ,≤) −−−−−→←−−−−−

αlqone

γlqone

({tt,ff},⇐=)

with:

αlqone(n) �
{
tt if n ≤ 1

ff otherwise.
, and

γlqone(bv) �
{
1 if bv = tt

∞ otherwise.

Lemma 7 . (αdeptr, γdeptr) is the composition of two Galois con-
nections (αcrdtr, γcrdtr) and (αlqonecc, γlqonecc) :

(P(P(Trc)),⊆) −−−−−→←−−−−−
αcrdtr

γcrdtr
(Card,��) −−−−−−−→←−−−−−−−

αlqonecc

γlqonecc

(Dep,��)

with:

αlqonecc(C) � {l � x | l � x#n ∈ C and αlqone(n)}
γlqonecc(D) �

⋃
l∈L,x∈VarP

{l � x#n | n = γlqone(l � x ∈ D)}

We use Lemmas 6 and 7 to abstract further the cardinality
abstract semantics and derive the correct by construction dependence
analysis of Section 6. This derivation, which can be found in
Appendix G, proves Lemma 4 and Theorem 2 stated earlier.

As a corollary and by Theorem 3, this also proves the preci-
sion of the cardinality analysis relative to Amtoft and Banerjee’s
logic (Amtoft and Banerjee 2004) as well as Hunt and Sands’ type
system (Hunt and Sands 2006, 2011).

Corollary 1 No leakage for well-typed programs. For all c,
C0,C ∈ Card, Δ0,Δ ∈ VarP → L, where ⊥L � Δ0{c}Δ,

and C = �c��C0, it holds that:

αhs ◦ αlqonecc(C0) �̇Δ0 =⇒(
∀x ∈ VarP, l ∈ L, Δ(x) � l =⇒ Ol

C�x�� ≤ 1
)

The cardinality analysis determines that there is no leakage for
programs that are “well-typed” by the flow-sensitive type system
of Hunt and Sands. By “well-typed”, we mean that the final typing
environment that is computed by the type system allows attackers
with security clearance l ∈ L to observe a variable x ∈ VarP.

To the best of our knowledge, the cardinality abstraction is
the first approximation-based analysis for quantitative information
flow that provides a formal precision guarantee wrt. traditional
analyses for qualitative information flow. This advantage makes
the cardinality analysis appealing even when interested in proving
a qualitative security policy such as non-interference, since the
cardinality abstraction provides quantitative information that may
assist in making better informed decisions if declassification is
necessary. Nonetheless, we need further experimentation to compare
to other quantitative analyses —see Section 9.

8. Towards More Precision
This section introduces examples to evaluate the precision of the
analyses, and shows how existing analyses can be leveraged to

improve precision. For simplicity, we consider a two point lattice
{L,H} and an initial typing context where variables yi are the
only low variables (Γ(yi) = L). As is usual, low may flow to high
(L � H).

Consider the following program.

1 if (y1 ≥ secret) then
2 x := y2
3 else
4 x := y3

Listing 1. Leaking 1 bit of secret

The cardinality abstraction determines that x has at most 2 val-
ues after the execution of the program in Listing 1, for initially
L-equivalent traces. For fixed low inputs, x has one value in the then
branch and one value in the else branch, and these cardinalities get
summed after the conditional since the conditional guard may eval-
uate to 2 different values. Thus, the cardinality abstraction proves
that this example program satisfies the hyperproperty SR(L, 2, x).

Stronger trace properties. Another way of proving a hyperpro-
perty is by proving a stronger trace property. If a program is proven
to satisfy a trace property T ∈ P(Trc), then proving that T is
stronger than hyperproperty H ∈ P(P(Trc))—in the sense that
γhpp(T) ⊆ H—guarantees the program satisfies the hyperpro-
perty H . For instance, by proving for some program that an output
variable x ranges over an interval of integer values whose size is k,
we can prove that program satisfies SR(L, k, x).

However, approximating a hyperproperty by a trace property
may be too coarse for some programs, as we can illustrate with an
interval analysis (Cousot and Cousot 1977) on the example program
in Listing 1. Such an interval analysis loses too much precision in
the initial state of this program, since it maps all low input variables
y1, y2 and y3 to [−∞,+∞]. After the conditional, it determines
that x belongs to the interval [−∞,+∞], which is a coarse over-
approximation. Also, a polyhedron (Cousot and Halbwachs 1978)
does not capture the disjunction that is needed for this example
program (x = y2 or x = y3). Both abstract domains and many more
existing ones are not suitable for the task of inferring cardinalities
or dependences because they are convex. Using them as a basis to
extract counting information delivers an over-approximation of the
leakage, but a coarse one, especially in the presence of low inputs.

A disjunction of two polyhedra —through powerset domains,
disjunctive postconditions, or partitioning (Bourdoncle 1992)— is
as precise as the cardinality analysis for this example. However,
disjunctions are not tractable in general. As soon as one fixes a
maximum number of disjunctive elements (as in the quantitative
information flow analysis of Mardziel et al. (2011, 2013)) or defines
a widening operator to guarantee convergence, one loses the relative
precision wrt. classical dependence analyses (Amtoft and Banerjee
2004; Hunt and Sands 2006) that the cardinality analysis guarantees
(Cf. Corollary 1). Future work will investigate relying on cardi-
nality analysis as a strategy guiding trace partitioning (Rival and
Mauborgne 2007). Combining our analyses with existing domains
will also deliver better precision.

Consider the following program.

1 if (y1 ≥ secret) then x := y2 else x := y3;
2 o := x * y4

Listing 2. Leaking x

The cardinal abstraction determines that variable o leaks the two
possible values of x: for fixed low inputs, x has two possible val-
ues whereas y4 has one possible value. Relational abstract domains
such as polyhedra (Cousot and Halbwachs 1978) or octogons (Miné

2006a) do not support non-linear expressions, and therefore are
unable to compute a precise bound of the leakage for variable o.
Consider an analysis with a disjunction {x = y2 ∨ x = y3} of poly-
hedra and linearisation over intervals (Miné 2006b). Linearisation of
expressions y2∗y4 and y3∗y4 will compute the following constraints
for variable o: {(o = y2 ∗ [−∞,+∞])∨ (o = y3 ∗ [−∞,+∞])} if
linearisation happens for the right side of expressions, or constraint
{(o = [−∞,+∞] ∗ y4) ∨ (o = [−∞,+∞] ∗ y4)} if linearisa-
tion happens for the left side expressions. Two more combinations
of constraints are possible, but none will deduce that variable o
has at most 2 values, because the underlying domain of intervals
lacks the required precision. Linearisation over both intervals and
cardinalities delivers better precision.

Scaling to richer languages. We can rely on existing abstract
domains to support richer language constructs, e.g. pointers and
aliasing. Consider the following variation of Listing 1.

if (y1 ≥ secret) then
p := &y2

else
p := &y3

o := *p

Listing 3. Leaking 1 bit of secret

The cardinality abstraction determines that initially L-equivalent
memories lead to a variety of at most 2 in the pointer p after the
conditional, whereas both y2 and y3 have a variety of 1. Assuming
an aliasing analysis determines that p may point to y2 or y3, the
cardinality analysis determines that variable o has a variety of at
most 2, for initially L-equivalent memories.

Improving precision. To improve precision of the cardinality
abstraction, we can augment it with existing abstract domains. One
shortcoming of the cardinality analysis is the fact that it is not
relational. Assuming attackers with security clearance L observe
both variables x and o after execution of the program in Listing 2,
the cardinality abstraction leads us to compute a leakage of two bits:
four different possible values, instead of only 2 possible values for
initially L-equivalent memories. Relying on a relational domain with
linearisation (Miné 2006b) over cardinalities captures the required
constraints {L � x#2, L � o#1 ∗ x} to compute a leakage of
only one bit; these constraints are to be interpreted as “initially
L-equivalent memories result in o being equal to one fixed integer
times x, and x having at most 2 values”.

We leave these extensions of cardinality analysis —and its ab-
straction as dependence analysis— for future work. In the following,
we focus on one particular improvement to both previous analyses in
order to gain more precision. We uncovered this case while deriving
the analyses, by relying on the calculational framework of abstract
interpretation. Indeed, notice that the following holds:

αcrdval ◦ Ol�x1� ◦ �grdx1==x2� ◦ γcrdtr(C) ≤ Ol
C�x2�

�C

αcrdval ◦ Ol�x2� ◦ �grdx1==x2� ◦ γcrdtr(C) ≤ Ol
C�x1�

�C

Therefore, we can deduce that:

αcrdtr ◦ �grdx1==x2� ◦ γcrdtr(C)

�� {l � x#n ∈ C | x
= x1, x
= x2}
∪ {l � x1#min(n1, n2), l � x2#min(n1, n2) |

l � x1#n1 ∈ C , l � x2#n2 ∈ C }
� �grdx1==x2��C

For other comparison operators, we use as before �grdb��C � C .

We can now also improve the dependence abstraction:

αlqonecc ◦ �grdx1==x2�� ◦ γlqonecc(D)

�� αlqonecc ({l � x#n ∈ γlqonecc(D) | x
= x1, x
= x2})
∪ αlqonecc({l � x1#min(n1, n2), l � x2#min(n1, n2) |

l � x1#n1 ∈ γlqonecc(D), l � x2#n2 ∈ γlqonecc(D)})
�� {l � x ∈ D | x
= x1, x
= x2}

∪ {l � x1, l � x2 | l � x1 ∈ D or l � x2 ∈ D}
� �grdx1==x2��D

For other comparison operators, we also use �grdb��D � D .
With these new definitions, we can update the abstract semantics

of conditionals and loops, for both dependences and cardinalities, to
leverage the transfer functions �grd−�� and �grd−��.

Improved dependences abstract semantics �c�� ∈ Dep → Dep

�if b then c1 else c2��D �
let D1 = �grdb�� ◦ �c1�

�D in

let D2 = �grd¬b�� ◦ �c2�
�D in

let W = Mod(if b then c1 else c2) in⋃
l∈L

{
πl(D1) �� πl(D2) if Ol

D�b��D

{l � x ∈ πl(D) | x /∈ W} otherwise

�while b do c��D � �grd¬b�� ◦ lfp��

D �if b then c1 else c2�
�

Improved cardinality abs. semantics �c�� ∈ Card → Card

�if b then c1 else c2��C �
let C1 = �grdb�� ◦ �c1�

�C in

let C2 = �grd¬b�� ◦ �c2�
�C in

let W = Mod(if b then c1 else c2) in⋃
l∈L

{
πl(C1) �� πl(C2) if Ol

C�b��C = 1

πl(C1) ��
add(W,πl(C)) π

l(C2) otherwise

�while b do c��C � �grd¬b�� ◦ lfp��

C �if b then c1 else c2�
�

To illustrate the benefits of this improvement, consider the
following example.

1 while (secret != y3) do {
2 x := x+1;
3 secret := secret - 1;
4 }
5 o := secret;

Listing 4. Improved precision

The cardinality analysis determines that initially L-equivalent
memories result in x having an infinity of values: the L-cardinality
of x grows until it is widened to ∞. In contrast, cardinalities also
determine that variables o and secret have only 1 value, assuming L-
equivalent memories. This is because of the reduction that concerns
variable secret after the while loop, specifically �grdsecret==y3��.
Similarly, the improved dependence analysis also determines that
both variables secret and o are low. These are sound precision gains
for termination-insensitive noninterference; Askarov et al. (2008)
discusses the guarantees provided by this security requirement.

Remarkably, this has been overlooked by many previous analyses.
In fact, this simple improvement makes our dependence analysis

strictly more precise than Amtoft and Banerjee (2004)’s and Hunt
and Sands (2006, 2011)’s analyses and incomparable to the more
recent dependence analysis of Müller et al. (2015).

Combination with intervals. Consider now the following
example inspired from Müller et al. (2015).

1 if (secret == 0) then {
2 x := 0;
3 y := y + 1;
4 }
5 else {
6 x := 0;
7 }

Listing 5. Example program from Müller et al. (2015)

The analysis of Müller et al. (2015) determines that x is low,
whereas the cardinality abstraction determines that L-equivalent
memories result in at most 2 values for variable x, because it does
not track the actual values of variables. We can combine cardinality
with an interval analysis to be more precise in such cases, through a
reduced product (Cousot and Cousot 1979; Granger 1992; Cortesi
et al. 2013).

Assume a set StInt of interval environments provided with

the usual partial order that we denote by ≤̇�,Int
. Assume also

a Galois connection (αInt, γInt) enabling the derivation of an
interval analysis as an approximation of a standard collecting
semantics defined over P(Trc). We can lift this Galois connection
to P(P(Trc)) to obtain a Galois connection by compositing with

(αhpp, γhpp), to obtain (α′, γ′) � (αInt ◦ αhpp, γ
Int ◦ γhpp) with:

(P(P(Trc)),⊆) −−−−−→←−−−−−
αhpp

γhpp

(P(Trc),⊆) −−−−→←−−−−
αInt

γInt

(StInt, ≤̇�,Int
)

A Granger’s reduced product Granger (1992) for the cardinality
abstraction and an interval analysis may be defined as a pair
of functions toint ∈ Card× StInt → StInt and tocard ∈
Card× StInt → Card verifying the following conditions:

1. soundness:

γ′(toint(C , ı)) ∩ γcrdtr(C) = γ′(ı) ∩ γcrdtr(C)

γ′(ı) ∩ γcrdtr(tocard(C , ı)) = γ′(ı) ∩ γcrdtr(C)

2. reduction:

toint(C , ı) ≤̇�,Int
ı

tocard(C , ı) �� C

Let us denote by size the function that returns the size of an
interval. One such Granger’s reduced product can be defined as:

tocard ∈ Card× StInt → Card

tocard(C , ı) � {l � x#n′ | l � x#n ∈ C and
n′ = min (n, size ı(x))}

toint ∈ Card× StInt → Card

toint(C , ı) � ı

Once enhanced with this reduced product, the cardinality analy-
sis determines for the program in Listing 5, that L-equivalent me-
mories result in at most one possible value for variable x.

The dependence analysis can be improved similarly, with a
reduction function defined as follows:

todep ∈ Dep× StInt → Dep

todep(D , ı) � D ∪ {l � x | l ∈ L and size ı(x) = 1}
Once extended with a reduced product with intervals, the depen-
dence analysis is also able to determine that variable x is low for
the program in Listing 5.

0 //L � h#∞, L � y1#1, L � y2#1, L � y3#1
1 y1 := 1;//L � y1#1
2 if (h == y1) then {
3 skip; //L � h#1, L � y1#1, L � y2#1
4 }
5 else {
6 y2 := 5; //L � y1#1, L � y2#1
7 while (y2 != 1) do {
8 y2 := y2 -1;//L � y2#1
9 y1 := y2;//L � y1#1

10 }//L � y1#1, L � y2#1
11 }
12 //L � h#∞, L � y1#2, L � y2#2, L � y3#1
13 o := y1 * y3;//L � o#2

Listing 6. No leakage for variable o

More reduced products. As a final example, let us consider
Listing 6, inspired by Besson et al. (2016, program 7), that we
annotate with the result of the improved cardinality abstraction. To
the best of our knowledge, no existing automated static analysis
determines that variable o is low at the end of this program. Also,
no prior monitor but the one recently presented by Besson et al.
(2016) accepts all executions of this program, assuming attackers
with clearance L can observe variable o.

For initially L-equivalent memories, the cardinality abstraction
determines that variables y1, y2 and o have at most two values. This
result is precise for y2, but not precise for y1 and o. As a challenge,
let us see what is required to gain more precision to determine that
both variables y1 and o have at most 1 possible value – they are low.

To tackle this challenge, we need to consider cardinality com-
bined with an interval analysis and a simple relational domain track-
ing equalities. With the equality y1 = y2 at the exit of the loop, both
y1 and y2 will be reduced to the singleton interval [1, 1]. After the
conditional, we still deduce that y2 has at most 2 different values
thanks to the cardinality abstraction. Using intervals, we deduce that
variable y1 has only one value (singleton interval [1, 1]). And finally,
at the last assignment the cardinalities abstraction determines that
variable o has only one possible value. Similarly, this same combi-
nation of analyses can be put to use to let the dependence analysis
reach the desired precision.

9. Related Work
Although noninterference has important applications, for many secu-
rity requirements it is too strong. That is one motivation for research
in quantitative information flow analysis. In addition, a number of
works investigate weakenings of noninterference and downgrading
policies that are conditioned on events or data values (Askarov and
Sabelfeld 2007; Banerjee et al. 2008; Sabelfeld and Sands 2009;
Mastroeni and Banerjee 2011). Assaf (2015, Chapter 4) proposes
to take the guarantees provided by termination-insensitive noninter-
ference (Askarov et al. 2008) as an explicit definition for security;
this Relative Secrecy requirement is inspired by Volpano and Smith
(2000) who propose a type-system preventing batch-job programs
from leaking secrets in polynomial time. Giacobazzi and Mastroeni
(2004) introduce abstract noninterference, which generalizes non-
interference by means of abstract interpretations that specify, for
example, limits on the attacker’s power and the extent of partial
releases (declassification). The survey by Mastroeni (2013) further
generalizes the notion and highlights, among other things, its appli-
cability to a range of underlying semantics. The Galois connections
in this work are at the level of trace sets, not sets of sets. Abstract
noninterference retains the explicit 2-run formulation (Volpano et al.

1996; Sabelfeld and Myers 2003): from two related initial states, two
executions lead to related final states. The relations are defined in
terms of abstract interpretations of the individual states/executions.
Mastroeni and Banerjee (2011) show how to infer indistinguishabil-
ity relations—modelling attackers’ observations—to find the best
abstract noninterference policy that holds. The inference algorithm
iteratively refines the relation by using counter-examples and ab-
stract domain completion (Cousot and Cousot 1979).

Set-of-sets structures occur in work on abstraction for nonde-
terministic programs, but in those works one level of sets are pow-
erdomains for nondeterminacy; the properties considered are trace
properties (Schmidt 2009, 2012). Hunt and Sands (1991) develop a
binding time analysis and a strictness analysis (Hunt 1990) based on
partial equivalence relations: Their concretisations are sets of equiv-
alence classes. Cousot and Cousot (1994) point out that this analysis
could be achieved by a collecting semantics over sets-of-sets, de-
fined simply as a direct image. To the best of our knowledge this
has not been explored further in the literature, except in unpublished
work on which this paper builds (Assaf 2015; Assaf et al. 2016b).

Clarkson et al. (2014); Finkbeiner et al. (2015) extend temporal
logic with means to quantify over multiple traces in order to express
hyperproperties, and provide model checking algorithms for finite
space systems. Agrawal and Bonakdarpour (2016) introduce a
technique for runtime verification of k-safety properties.

The dependences analysis we derive is similar to the informa-
tion flow logic of Amtoft and Banerjee (2004) and the equivalent
flow-sensitive type system of Hunt and Sands (2006). Amtoft and
Banerjee use the domain P(Trc) and on the basis of a relational
logic they validate a forward analysis. In effect their interpretation
of “independences” is a Galois connection with sets of sets, but
the analysis is not formulated or proved correct as an abstract in-
terpretation. To deal with dynamically allocated state, Amtoft et al.
(2006) augment the relational assertions of information flow logic
with region assertions, which can be computed by abstract interpre-
tation. This is used both to express agreement relations between the
two executions and to approximate modifiable locations. This ap-
proach is generalized in Banerjee et al. (2016) to a relational Hoare
logic for object-based programs that encompasses information flow
properties with conditional downgrading (Banerjee et al. 2008).

Müller et al. (2015) give a backwards analysis that infers depen-
dencies and is proved strictly more precise than (Hunt and Sands
2006; Amtoft and Banerjee 2004). This is achieved by product
construction that facilitates inferring relations between variables in
executions that follow different control paths. Correctness of the
analysis is proved by way of a relational Hoare logic. The variations
of our proposed analyses, in Section 8, rivals theirs in terms of
precision—they are incomparable.

Our dependence analysis relies on an approximation of the mod-
ifiable variables, to soundly track implicit flows due to control flow,
instead of labelling a program counter variable pc to account for im-
plicit flows (Sabelfeld and Myers 2003). Zanioli and Cortesi (2011)
also derive a similar analysis through a syntactic Galois connection—
a syntactic assignment z := x ∗ y is abstracted into a propositional
formula x→ z∧y → z denoting an information flow from variables
x and y to variable z. The soundness of this analysis wrt. a semantic
property such as noninterference requires more justification, though
it is remarkable that the concretisation of propositional formula
yields, roughly speaking, a set of program texts. Zanotti (2002) also
provides an abstract interpretation account of a flow-insensitive type
system (Volpano et al. 1996) enforcing noninterference by guaran-
teeing a stronger safety property, namely that sensitive locations
should not influence public locations (Boudol 2008).

Kovács et al. (2013) explicitly formulate termination-insensitive
noninterference as an abstract interpretation, namely the “merge
over all twin computations” that makes explicit both the 2-safety

aspect and the need for an analysis to relate some aligned intermedi-
ate states. Their analysis, like many others, is based on reducing the
problem to a safety property of product programs. Sousa and Dillig
(2016) implement an algorithm that automates reasoning in a Hoare
logic for k-safety, implicitly constructing product programs; the
performance compares favorably with explicit construction of prod-
uct programs. Program dependency graphs are another approach to
dependency, shown to be correct for noninterference by Wasserrab
et al. (2009) using slicing and a simulation argument.

Denning (1982, Chap. 5) proposes the first quantitative measure
of a program’s leakage in terms of Shannon entropy (Shannon
1948). Other quantitative metrics emerge in the literature (Braun
et al. 2009; Clarkson et al. 2009; Smith 2009; Dwork 2011; Smith
2011; Alvim et al. 2012). These quantitative security metrics model
different scenarios suitable for different policies. Most existing static
analyses for quantitative information flow leverage existing model
checking tools and abstract domains for safety; they prove that a
program satisfies a quantitative security requirement by proving a
stronger safety property. In contrast, the cardinal abstraction proves a
hyperproperty by inferring a stronger hyperproperty satisfied by the
analysed program. This is key to target quantitative information flow
in mutlilevel security lattices, beyond the 2-point lattice {L,H}.

Backes et al. (2009) synthesize equivalence classes induced by
outputs over low equivalent memories by relying on software model
checkers, in order to bound various quantitative metrics. Heusser and
Malacaria (2009) also rely on a similar technique to quantify infor-
mation flow for database queries. Köpf and Rybalchenko (2010) note
that the exact computation of information-theoretic characteristics
is prohibitively hard, and propose to rely on approximation-based
analyses, among which are randomisation techniques and abstract
interpretation ones. They also propose to rely on a self-composed
product program to model a scenario where attackers may refine
their knowledge by influencing the low inputs. Klebanov (2014)
relies on similar techniques to handle programs with low inputs, and
uses polyhedra to synthesize linear constraints (Cousot and Halb-
wachs 1978) over variables. Mardziel et al. (2013) decide whether
answering a query on sensitive data augments attackers’ knowledge
beyond a certain threshold, by using probabilistic polyhedra.

10. Conclusion
Galois connection-based semantic characterisations of program
analyses provide new perspectives and insights that lead to improved
techniques. We have extended the framework to fully encompass
hyperproperties, through a remarkable form of hypercollecting
semantics that enables calculational derivation of analyses. This
new foundation raises questions too numerous to list here.

One promising direction is to combine dependence and cardinal-
ity analysis with existing abstract domains, e.g. through advanced
symbolic methods (Miné 2006b), and partitioning (Handjieva and
Tzolovski 1998; Rival and Mauborgne 2007).

Static analysis of secure information flow has yet to catch up with
recent advances in dynamic information flow monitoring (Besson
et al. 2013; Bello et al. 2015; Hedin et al. 2015; Assaf and Naumann
2016; Besson et al. 2016). We discussed, in Section 8, how existing
static analyses may be of use to statically secure information flow.
It seems likely that hypercollecting semantics will also be of use for
dynamic analyses.

Acknowledgments
Thanks to Anindya Banerjee and the anonymous reviewers for
thoughtful comments and helpful feedback. This work was partially
supported by NSF awards CNS-1228930 and CCF-1649884, ANR
project AnaStaSec ANR-14-CE28-0014 and a CFR CEA Phd
Fellowship.

References
S. Agrawal and B. Bonakdarpour. Runtime verification of k-safety hy-

perproperties in HyperLTL. In IEEE Computer Security Foundations
Symposium, pages 239–252, 2016.

M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith. Measuring
information leakage using generalized gain functions. In IEEE Computer
Security Foundations Symposium, pages 265–279, 2012.

T. Amtoft and A. Banerjee. Information flow analysis in logical form. In
Static Analysis Symposium, pages 100–115, 2004.

T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information
flow in object-oriented programs. In ACM Symposium on Principles
of Programming Languages, pages 91–102, 2006.

A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification,
encryption and key release policies. In IEEE Symposium on Security and
Privacy, 2007.

A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive
noninterference leaks more than just a bit. In European Symposium on
Research in Computer Security, volume 5283 of LNCS, 2008.

M. Assaf. From Qualitative to Quantitative Program Analysis : Permissive
Enforcement of Secure Information Flow. PhD thesis, Université de
Rennes 1, May 2015. https://hal.inria.fr/tel-01184857.

M. Assaf and D. Naumann. Calculational design of information flow
monitors. In IEEE Computer Security Foundations Symposium, pages
210–224, 2016.

M. Assaf, D. Naumann, J. Signoles, É. Totel, and F. Tronel. Hypercollecting
semantics and its application to static analysis of information flow.
Technical report, Apr. 2016a. URL https://arxiv.org/abs/1608.
01654.

M. Assaf, J. Signoles, É. Totel, and F. Tronel. The cardinal abstraction
for quantitative information flow. In Workshop on Foundations of
Computer Security (FCS), June 2016b. https://hal.inria.fr/hal-
01334604.

M. Backes, B. Köpf, and A. Rybalchenko. Automatic discovery and
quantification of information leaks. In IEEE Symposium on Security
and Privacy, pages 141–153. IEEE, 2009.

A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive declassification
policies and modular static enforcement. In IEEE Symposium on Security
and Privacy, pages 339–353, 2008.

A. Banerjee, D. A. Naumann, and M. Nikouei. Relational logic with framing
and hypotheses. In 36th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, 2016. To appear.

G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In IEEE Computer Security Foundations Workshop, pages
100–114, 2004.

L. Bello, D. Hedin, and A. Sabelfeld. Value sensitivity and observable
abstract values for information flow control. In Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR), pages 63–78, 2015.

N. Benton. Simple relational correctness proofs for static analyses and pro-
gram transformations. In ACM Symposium on Principles of Programming
Languages, pages 14–25, 2004.

J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and
X. Rival. Static analysis and verification of aerospace software by abstract
interpretation. In AIAA Infotech@Aerospace 2010, 2012.

J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and
X. Rival. Static analysis and verification of aerospace software by abstract
interpretation. Foundations and Trends in Programming Languages, 2
(2-3):71–190, 2015.

F. Besson, N. Bielova, and T. Jensen. Hybrid information flow monitoring
against web tracking. In IEEE Computer Security Foundations Sympo-
sium, pages 240–254. IEEE, 2013.

F. Besson, N. Bielova, and T. Jensen. Hybrid monitoring of attacker
knowledge. In IEEE Computer Security Foundations Symposium, pages
225–238, 2016.

G. Boudol. Secure information flow as a safety property. In Formal Aspects
in Security and Trust, pages 20–34, 2008.

F. Bourdoncle. Abstract interpretation by dynamic partitioning. Journal of
Functional Programming, 2(04):407–435, 1992.

C. Braun, K. Chatzikokolakis, and C. Palamidessi. Quantitative notions of
leakage for one-try attacks. In Mathematical Foundations of Program-
ming Semantics (MFPS), volume 249, pages 75–91, 2009.

D. Cachera and D. Pichardie. A certified denotational abstract interpreter. In
Interactive Theorem Proving (ITP), pages 9–24, 2010.

M. R. Clarkson and F. B. Schneider. Hyperproperties. In IEEE Computer
Security Foundations Symposium, pages 51–65, 2008.

M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, 2010.

M. R. Clarkson, A. C. Myers, and F. B. Schneider. Quantifying information
flow with beliefs. Journal of Computer Security, 17:655–701, 2009.

M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. Sánchez. Temporal logics for hyperproperties. In Principles of
Security and Trust, volume 8414 of LNCS, pages 265–284, 2014.

E. Cohen. Information transmission in computational systems. In Proceed-
ings of the sixth ACM Symposium on Operating Systems Principles, pages
133–139, 1977.

A. Cortesi and M. Zanioli. Widening and narrowing operators for abstract
interpretation. Computer Languages, Systems & Structures, pages 24–42,
2011.

A. Cortesi, G. Costantini, and P. Ferrara. A survey on product operators
in abstract interpretation. In Semantics, Abstract Interpretation, and
Reasoning about Programs: Essays Dedicated to David A. Schmidt on the
Occasion of his Sixtieth Birthday, volume 129 of EPTCS, pages 325–336,
2013.

P. Cousot. The calculational design of a generic abstract interpreter. In
M. Broy and R. Steinbrüggen, editors, Calculational System Design,
volume 173, pages 421–506. NATO ASI Series F. IOS Press, Amsterdam,
1999.

P. Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. Theoretical Computer Science, 277
(1-2):47–103, 2002.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In ACM Symposium on Principles of Programming Languages, pages
238–252, 1977.

P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In ACM Symposium on Principles of Programming Languages, pages
269–282, 1979.

P. Cousot and R. Cousot. Comparing the galois connection and widening/nar-
rowing approaches to abstract interpretation. In Programming Language
Implementation and Logic Programming (PLILP), pages 269–295, 1992.

P. Cousot and R. Cousot. Higher-order abstract interpretation (and ap-
plication to comportment analysis generalizing strictness, termination,
projection and per analysis of functional languages). In International
Conference on Computer Languages (ICCL), pages 95–112, 1994.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In ACM Symposium on Principles of
Programming Languages, pages 84–96, 1978.

Á. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis
of secure information flow. In Security in Pervasive Computing, pages
193–209, 2005.

D. E. R. Denning. Cryptography and Data Security. Addison-Wesley
Longman Publishing Co., Inc., 1982.

D. E. R. Denning and P. J. Denning. Certification of programs for secure
information flow. Communications of ACM, 20(7):504–513, 1977.

G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and J. Reineke. Cacheaudit:
A tool for the static analysis of cache side channels. In USENIX Security
Symposium, pages 431–446, 2013.

C. Dwork. A firm foundation for private data analysis. Communications of
ACM, pages 86–95, 2011.

B. Finkbeiner, M. N. Rabe, and C. Sánchez. Algorithms for model checking
HyperLTL and HyperCTL ˆ*. In Computer Aided Verification, volume
9206 of LNCS, pages 30–48, 2015.

https://hal.inria.fr/tel-01184857
https://arxiv.org/abs/1608.01654
https://arxiv.org/abs/1608.01654
https://hal.inria.fr/hal-01334604
https://hal.inria.fr/hal-01334604

R. Giacobazzi and I. Mastroeni. Abstract non-interference: parameterizing
non-interference by abstract interpretation. In ACM Symposium on
Principles of Programming Languages, pages 186–197, 2004.

J. A. Goguen and J. Meseguer. Security policies and security models. In
IEEE Symposium on Security and Privacy, pages 11–20, 1982.

P. Granger. Improving the results of static analyses programs by local de-
creasing iteration. In Foundations of Software Technology and Theoretical
Computer Science, volume 652, pages 68–79, 1992.

M. Handjieva and S. Tzolovski. Refining dtatic analyses by trace-based par-
titioning using control flow. In International Static Analysis Symposium,
1998.

D. Hedin, L. Bello, and A. Sabelfeld. Value-sensitive hybrid information
flow control for a JavaScript-Like language. In IEEE Computer Security
Foundations Symposium, pages 351–365, 2015.

J. Heusser and P. Malacaria. Applied quantitative information flow and
statistical databases. In Formal Aspects in Security and Trust, pages
96–110, 2009.

S. Hunt. PERs generalize projections for strictness analysis (extended
abstract). In Proceedings of the Third Annual Glasgow Workshop on
Functional Programming, 1990.

S. Hunt and D. Sands. Binding time analysis: A new PERspective. In
Proceedings of the Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, PEPM’91, Yale University, New Haven,
Connecticut, USA, June 17-19, 1991, pages 154–165, 1991.

S. Hunt and D. Sands. On flow-sensitive security types. In ACM Symposium
on Principles of Programming Languages, pages 79–90, 2006.

S. Hunt and D. Sands. From exponential to polynomial-time security typing
via principal types. In ACM Workshop on Programming Languages and
Analysis for Security, pages 297–316, 2011.

V. Klebanov. Precise quantitative information flow analysis - a symbolic
approach. Theoretical Computer Science, 538:124–139, 2014.

B. Köpf and A. Rybalchenko. Approximation and randomization for
quantitative information-flow analysis. In IEEE Computer Security
Foundations Symposium, pages 3–14, 2010.

B. Köpf and A. Rybalchenko. Automation of quantitative information-flow
analysis. In Formal Methods for Dynamical Systems - 13th International
School on Formal Methods for the Design of Computer, Communication,
and Software Systems, volume 7938 of LNCS, pages 1–28, 2013.

M. Kovács, H. Seidl, and B. Finkbeiner. Relational abstract interpretation for
the verification of 2-hypersafety properties. In ACM SIGSAC conference
on Computer and Communications Security, pages 211–222, 2013.

P. Mardziel, S. Magill, M. Hicks, and M. Srivatsa. Dynamic enforcement
of knowledge-based security policies. In IEEE Computer Security
Foundations Symposium, pages 114–128. IEEE, 2011.

P. Mardziel, S. Magill, M. Hicks, and M. Srivatsa. Dynamic enforcement of
knowledge-based security policies using probabilistic abstract interpreta-
tion. Journal of Computer Security, 21(4):463–532, 2013.

I. Mastroeni. Abstract interpretation-based approaches to security - A
survey on abstract non-interference and its challenging applications.
In Semantics, Abstract Interpretation, and Reasoning about Programs:
Essays Dedicated to David A. Schmidt on the Occasion of his Sixtieth
Birthday, volume 129 of EPTCS, pages 41–65, 2013.

I. Mastroeni and A. Banerjee. Modelling declassification policies using
abstract domain completeness. Mathematical Structures in Computer
Science, 21(06):1253–1299, 2011.

J. McLean. A general theory of composition for trace sets closed under
selective interleaving functions. In IEEE Symposium on Security and
Privacy, pages 79–93, 1994.

A. Miné. The octagon abstract domain. Higher-order and symbolic
computation, 19(1):31–100, 2006a.

A. Miné. Symbolic methods to enhance the precision of numerical abstract
domains. In Verification, Model Checking, and Abstract Interpretation,
pages 348–363, 2006b.

C. Müller, M. Kovács, and H. Seidl. An analysis of universal information
flow based on self-composition. In IEEE Computer Security Foundations
Symposium, pages 380–393, 2015.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

A. Rényi. On measures of entropy and information. In the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, 1961.

X. Rival and L. Mauborgne. The trace partitioning abstract domain. ACM
Transactions on Programming Languages and Systems, 29(5):26, 2007.

J. Rushby. Security requirements specifications: How and what. In Sym-
posium on Requirements Engineering for Information Security (SREIS),
2001.

A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

A. Sabelfeld and D. Sands. Declassification: Dimensions and principles.
Journal of Computer Security, 17(5), 2009.

D. A. Schmidt. Abstract interpretation from a topological perspective. In
Static Analysis, 16th International Symposium, volume 5673 of LNCS,
pages 293–308, 2009.

D. A. Schmidt. Inverse-limit and topological aspects of abstract interpreta-
tion. Theoretical Computer Science, 430:23–42, 2012.

D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld. Explicit secrecy: A
policy for taint tracking. In IEEE European Symposium on Security and
Privacy, pages 15–30, 2016.

C. E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423, 1948.

G. Smith. On the foundations of quantitative information flow. In Interna-
tional Conference on Foundations of Software Science and Computational
Structures, pages 288–302, 2009.

G. Smith. Quantifying information flow using min-entropy. In Quantitative
Evaluation of Systems (QEST), 2011 Eighth International Conference on,
pages 159–167. IEEE, 2011.

M. Sousa and I. Dillig. Cartesian Hoare logic for verifying k-safety
properties. In ACM Conference on Programming Language Design
and Implementation, pages 57–69, 2016.

T. Terauchi and A. Aiken. Secure information flow as a safety problem. In
Static Analysis Symposium, pages 352–367, 2005.

D. Volpano and G. Smith. Eliminating covert flows with minimum typings.
In IEEE Computer Security Foundations Workshop, pages 156–168, 1997.

D. Volpano and G. Smith. Verifying secrets and relative secrecy. In ACM
Symposium on Principles of Programming Languages, pages 268–276,
2000.

D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2-3):167–187, 1996.

D. M. Volpano. Safety versus secrecy. In Static Analysis Symposium, pages
303–311, 1999.

D. Wasserrab, D. Lohner, and G. Snelting. On PDG-based noninterference
and its modular proof. In ACM Workshop on Programming Languages
and Analysis for Security, pages 31–44, 2009.

G. Winskel. The Formal Semantics of Programming Languages: an
Introduction. Cambridge, 1993.

H. Yasuoka and T. Terauchi. On bounding problems of quantitative
information flow. Journal of Computer Security, 19(6):1029–1082, 2011.

A. Zakinthinos and S. Lerner. A general theory of security properties. In
IEEE Symposium on Security and Privacy, pages 94–102, 1997.

M. Zanioli and A. Cortesi. Information leakage analysis by abstract
interpretation. In SOFSEM 2011: Theory and Practice of Computer
Science, pages 545–557, 2011.

M. Zanotti. Security typings by abstract interpretation. In Static Analysis
Symposium, volume 2477, pages 360–375, 2002.

Appendix A. Symbols
Val a set of integers
∞ an infinite cardinal number
v ∈ Val an integer
V ∈ P(Val) a set of values
V ∈ P(P(Val)) a set of sets of values
Trc the set of (relational) traces
t ∈ Trc a trace
T ∈ P(Trc) a set of traces
T ∈ P(P(Trc)) a set of sets of traces
States the set of states
σ ∈ States a state
Σ ∈ P(States) a set of states
S ∈ P(P(States)) a set of sets of states
States∗ , ∪n∈N Statesn the set of finite sequence of states

VarP the set of variables of a program P
L a multilevel security lattice
l ∈ L a security level
Γ ∈ VarP → L an initial typing context

C −−→←−−α
γ

A a Galois connection

JcK ∈ Trc→ Trc denotational semantics of commands
JeK ∈ Trc→ Val value of e in final state
JeKpre ∈ Trc→ Val value of e in initial state
⦃c⦄ ∈ P(Trc)→ P(Trc) collecting semantics
LcM ∈ P(P(Trc))→ P(P(Trc)) hypercollecting semantics

l ; x atomic dependence: “agreement up to security
level l leads to agreement on x”

D ∈ Dep A set of atomic dependency constraints
l ; x#n atomic cardinality: “agreement up to security

level l leads to an l-cardinality of n values for x”
C ∈ Card A valid set of atomic cardinality constraints

Appendix B. Background: Collecting Semantics, Galois Connections
Lemma 1 Element-wise abstraction. Let elt ∈ C → A be a function between sets. Let αelt(C) , {elt(c) | c ∈ C} and
γelt(A) , {c | elt(c) ∈ A}. Then (P(C),⊆) −−−−→←−−−−

αelt

γelt
(P(A),⊆).

Proof.
Let C ∈ P(C) and A ∈ P(A).

αelt(C) ⊆ A ⇐⇒ {elt(c) | c ∈ C} ⊆ A
⇐⇒ ∀c ∈ C, elt(c) ∈ A
⇐⇒ C ⊆ {c | elt(c) ∈ A}
⇐⇒ C ⊆ γelt(A)

Appendix C. Domains and Galois Connections for Hyperproperties
Lemma 2 . Let C be a set. Define αhpp(C) , ∪C∈C C and γhpp(C) , P(C). These form a Galois connection:

(P(P(C)),⊆) −−−−−→←−−−−−
αhpp

γhpp

(P(C),⊆)

Proof.
This is a special case of the supremus abstraction (Cousot 2002, p.52), that is defined in Lemma 3. Indeed, we can instantiate a supremus

abstraction by taking hpp , id (∈ P(C)→ P(C)). We thus obtain a Galois connection P(P(C)) −−−−−→←−−−−−
αhpp

γhpp P(C), with αhpp(C) = ∪C∈C C
and γhpp(C) = {C′ ∈ P(C) | C′ ⊆ C} (= P(C)). Notice here that the powerset of a set C, provided with set inclusion as a partial order, is
a complete lattice as required by the supremus abstraction.

Lemma 3 Supremus abstraction. Let elt ∈ C → A be a function from a set C, with codomain forming a complete lattice (A,v). Let
αelt(C) , tc∈C elt(c) and γelt(a) , {c ∈ C | elt(c) v a}. Then

(P(C),⊆) −−−−→←−−−−
αelt

γelt
(A,v)

Proof.
Notice that the assumption that the lattice (A,v,t) is complete guarantees that αelt(C) is well-defined: the set {elt(c) | c ∈ C} does

have a supremum.
Let C ∈ P(C) and a ∈ A. The proof goes by definitions.

αelt(C) v a ⇐⇒ tc∈C elt(c) v a
⇐⇒ ∀c ∈ C, elt(c) v a
⇐⇒ C ⊆ {c ∈ C | elt(c) v a}
⇐⇒ C ⊆ γelt(a)

Appendix D. Hypercollecting Semantics
Before proving the main result of this section in Theorem 1, we will first prove Lemma 8.

Both proofs of Lemma 8 and Theorem 1 are by structural induction. Most cases follow from definitions. The important cases are for while
loops and the proof technique is a classical one when using a denotational semantics. E.g., in order to prove equality of two denotations
characterised as a fixpoint, it suffices to introduce two sequences that converge towards the fixpoint characterisations and prove equality of
these sequences. This ensures that their limits – the denotations characterised as a fixpoint – are equal.

Let us now prove Lemma 8 – this lemma is used later in the proof case of while loops for Theorem 1.

Lemma 8 . For all commands c, for all sets of traces T ∈ P(Trc), the standard collecting semantics (Section 2) can be expressed as the direct
image of the denotational semantics :

⦃c⦄T = {JcKt ∈ Trc | t ∈ T}
Proof.
The proof proceeds by structural induction on commands. The most important case is the case of while loops.
1 – Case skip:

⦃skip⦄T = T = {JskipKt | t ∈ T}
2 – Case x := e:

⦃x := e⦄T = {Jx := eKt | t ∈ T}
3 – Case c1; c2:

⦃c1; c2⦄T = ⦃c2⦄ ◦ ⦃c1⦄T
= HBy induction on c1 I

⦃c2⦄({Jc1Kt ∈ Trc | t ∈ T})
= HBy induction on c2I
{Jc2K ◦ Jc1Kt ∈ Trc | t ∈ T}

= {Jc1; c2Kt ∈ Trc | t ∈ T}
4 – Case if (b) then c1 else c2:

⦃if (b) then c1 else c2⦄T = ⦃c1⦄ ◦ ⦃ grdb ⦄T ∪ ⦃c2⦄ ◦ ⦃ grd¬b ⦄T
= HBy induction hypothesis on both c1 and c2I

{Jc1Kt ∈ Trc | t ∈ ⦃ grdb ⦄T} ∪ {Jc2Kt ∈ Trc | t ∈ ⦃ grd¬b ⦄T}
= {Jif (b) then c1 else c2Kt ∈ Trc | t ∈ T}

5 – Case while (b) do c:
5.1 – Let us first prove the following intermediate result:

∀T ∈ P(Trc), {Jwhile (b) do cKt ∈ Trc | t ∈ T} = ⦃ grd¬b ⦄
(

lfp⊆∅ λX.T ∪ ⦃c⦄ ◦ ⦃ grdb ⦄X
)
.

Indeed, let the sequence (xTn)n≥0 be defined as:

xTn , {F (n)(⊥)(t) ∈ Trc | t ∈ T}
with F defined as

F(w)(t) ,

{
t if JbKt = 0

w ◦ JcKt otherwise

Notice that for all t ∈ T , the sequence (F (n)(⊥)(t))n≥0 converges and is equal to the evaluation of the while loop in the state
t (i.e. Jwhile b do cKt = F (∞)(⊥)(t)), by definition of the denotational semantics of loops; thus, the sequence xTn converges to
{Jwhile b do cKt ∈ Trc | t ∈ T}.

Let also the sequences (yTn)n≥0 and (gTn)n≥0 be defined as:

yTn , ⦃ grd¬b ⦄gTn
gTn+1 , T ∪ ⦃c⦄ ◦ ⦃ grdb ⦄gTn
gT0 , ∅

Notice that for all T ∈ P(Trc), the sequence gTn converges to lfp⊆∅ λX.T ∪ ⦃c⦄ ◦ ⦃ grdb ⦄X (or written otherwise: lfp⊆TλX. ⦃c⦄ ◦ ⦃ grdb ⦄X).
This also means that the sequence yTn converges to ⦃ grd¬b ⦄(lfp⊆∅ λX.T ∪ ⦃c⦄ ◦ ⦃ grdb ⦄X).

Thus, it suffices to prove that:
∀T ∈ P(Trc), ∀n ∈ N, xTn = yTn .

The proof proceeds by induction on n.
- xT0 = ∅ = yT0
- Let n ∈ N such that: ∀T ∈ P(Trc), xTn = yTn . Then:

xTn+1 = {F (n+1)(⊥)(t) ∈ Trc | t ∈ T}
= ⦃ grd¬b ⦄T ∪ {F (n)(⊥)(JcKt) ∈ Trc | σ ∈ ⦃ grdb ⦄T}
= ⦃ grd¬b ⦄T ∪ {F (n)(⊥)(t) ∈ Trc | t ∈ ⦃c⦄ ◦ ⦃ grdb ⦄T}
= ⦃ grd¬b ⦄T ∪ x⦃c⦄◦⦃ grdb ⦄T

n

= HBy induction hypothesisI

⦃ grd¬b ⦄T ∪ y⦃c⦄◦⦃ grdb ⦄T
n

= HBy definition of y⦃c⦄◦⦃ grdb ⦄T
n I

⦃ grd¬b ⦄T ∪ ⦃ grd¬b ⦄g⦃c⦄◦⦃ grdb ⦄T
n

= ⦃ grd¬b ⦄
(
T ∪ g⦃c⦄◦⦃ grdb ⦄T

n

)
= HBecause for all T , gTn =

⋃
0≤k≤n−1

(⦃c⦄ ◦ ⦃ grdb ⦄)(k)(T) I

⦃ grd¬b ⦄gTn+1

= yTn+1

5.2 – Let us now prove that :

lfp⊆∅ λX.T ∪ ⦃c⦄ ◦ ⦃ grdb ⦄X = lfp⊆∅ λX.T ∪ ⦃if b then c else skip⦄X

Indeed, let the sequence (fTn)n≥0 be defined as:

fT0 , ∅
fTn+1 , T ∪ ⦃if b then c else skip⦄fTn

Therefore, by induction on n ∈ N, it holds that fn = gn:
- fT0 = gT0 = ∅.
- let n ∈ N, such that fTn = gTn . Then:

gTn+1 = Σ ∪ ⦃c⦄ ◦ ⦃ grdb ⦄gTn
= HSince ⦃ grd¬b ⦄gTn ⊆ gTn ⊆ gTn+1I

T ∪ ⦃c⦄ ◦ ⦃ grdb ⦄gTn ∪ ⦃ grd¬b ⦄gTn
= T ∪ ⦃if b then c else skip⦄gTn
= HBy induction hypothesisI

T ∪ ⦃if b then c else skip⦄fTn
= fTn+1

This concludes our induction on n.
Thus, by passing to the limit of both sequences, we obtain the desired result.
5.3 – Finally, we can conclude:

⦃while b do c⦄T =⦃ grd¬b ⦄
(

lfp⊆T ⦃if b then c else skip⦄
)

= H by intermediate result 5.2 I

⦃ grd¬b ⦄
(

lfp⊆T ⦃c⦄⦃ grdb ⦄
)

= H by intermediate result 5.1I
{⦃while (b) do c⦄t ∈ Trc | t ∈ T}

We conclude this proof by structural induction, and Cases 1 to 5.

Theorem 1 . For all c and all T ∈ P(Trc), ⦃c⦄T is in L c M{T}.
Proof.
We prove the theorem as a corollary of this more general result:

∀T ∈ P(P(Trc)), {⦃c⦄T | T ∈ T} ⊆ LcMT
This proof proceeds by structural induction on commands. The most important case is the one for while loops; the other ones follow from

definition.
1 – Case skip :

LskipMT = {⦃skip⦄T | T ∈ T} ⊇ {⦃skip⦄T | T ∈ T}
2 – Case x := e:

Lx := eMT = {⦃x := e⦄T | T ∈ T} ⊇ {⦃x := e⦄T | T ∈ T}
3 – Case c1; c2:

Lc1; c2MT = Lc2M ◦ Lc1MT
⊇ Hby structural induction on c1, and monotonicity of the hypercollecting semantics LcMI

Lc2M({⦃c1⦄T | T ∈ T})
⊇ Hby structural induction on c2I

{⦃c2⦄T ′ | T ′ ∈ {⦃c1⦄T | T ∈ T}}
= {⦃c2⦄ ◦ ⦃c1⦄T | T ∈ T}
= {⦃c1; c2⦄T | T ∈ T}

4 – Case if (b) then c1 else c2:

Lif (b) then c1 else c2MT = {⦃if (b) then c1 else c2⦄T | T ∈ T}
⊇ {⦃if (b) then c1 else c2⦄T | T ∈ T}

5 – Case while (b) do c:
Let (XT

n)n∈N be the sequence defined as

XT
n ,

{
{F (n)(⊥)(t) ∈ Trc | t ∈ T} | T ∈ T

}
for n ≥ 1, XT

0 = ∅
where:

F(w)(t) ,

{
t if JbKt = 0

w ◦ JcKt otherwise

Notice that the limit of the sequence xTn , {F (n)(⊥)(t) ∈ Trc | t ∈ T} is the ordinary collecting semantics ⦃while (b) do c⦄T of the while
loop, as proved in Lemma 8. Thus, the sequence XT

n converges to {⦃while (b) do c⦄T | T ∈ T}.
Let also (YT

n)n∈N and (GT
n)n∈N be the sequences defined as

GT
n+1 , T ∪ Lif (b) then c else skipMGT

n for n ≥ 0, GT
0 , ∅

YT
n , Lgrd¬bMGT

n

Notice that the limit of YT
n is the hypercollecting semantics of the while loop (Lwhile (b) do cMT).

Thus, it suffices to prove that the sequences XT
n and YT

n verify the following result ∀T ∈ P(P(Trc)), ∀n ∈ N,XT
n+1 ⊆ YT

n+1; passing to
the limit in this inequality leads to the required result ∀T ∈ P(P(Trc)), {⦃while (b) do c⦄T | T ∈ T} ⊆ Lwhile (b) do cMT.

We prove the following more precise characterisation of the sequences XT
n and YT

n (this implies XT
n+1 ⊆ YT

n+1):

∀n ∈ N, ∀T ∈ P(P(Trc)),YT
n+1 = YT

n ∪ XT
n+1

The remaining of this proof proceeds by induction on n ∈ N.
- case n = 0:

YT
1 = Lgrd¬bMGT

1

= Lgrd¬bMT
= {⦃ grd¬b ⦄T | T ∈ T}
= {{F (1)(⊥)(t) ∈ Trc | t ∈ T} | T ∈ T}
= Hsince YT

0 = ∅ and by definition of XT
1I

YT
0 ∪ XT

1

- Let n ∈ N such that YT
n+1 = YT

n ∪ XT
n+1. Then:

YT
n+2 = Lgrd¬bMGT

n+2

= Lgrd¬bM
(
T ∪ Lif (b) then c1 else skipMGT

n+1

)
= Lgrd¬bMT ∪ Lgrd¬bM ◦ Lif (b) then c1 else skipMGT

n+1

= H ∀n ∈ N,GT
n+1 = ∪0≤k≤nLif (b) then c1 else c2M(k)TI

Lgrd¬bMT ∪ Lgrd¬bM
(
∪1≤k≤n+1Lif (b) then c else skipM(k)T

)
= ∪0≤k≤n+1Lgrd¬bM ◦ Lif (b) then c else skipM(k)T

=
(
∪0≤k≤nLgrd¬bM ◦ Lif (b) then c else skipM(k)T

)
∪ Lgrd¬bM ◦ Lif (b) then c else skipM(n+1)T

= Lgrd¬bM ◦
(
∪0≤k≤nLif (b) then c else skipM(k)T

)
∪ Lgrd¬bM ◦ Lif (b) then c else skipM(n+1)T

= Lgrd¬bMGT
n+1 ∪ Lgrd¬bM ◦ Lif (b) then c else skipM(n+1)T

= YT
n+1 ∪ Lgrd¬bM ◦ Lif (b) then c else skipM(n+1)T

= YT
n+1 ∪ {⦃ grd¬b ⦄ ◦ ⦃if (b) then c1 else skip⦄(n+1)T | T ∈ T}

= Hthe set ⦃ grd¬b ⦄ ◦ ⦃if (b) then c1 else c2⦄(n+1)T is the set of traces exiting the loop body after n+1 or less iterations:I

H it is equal to {F (n+2)(⊥)(t) | t ∈ T} by definition of FI

YT
n+1 ∪

{
{F (n+2)(⊥)(t) | t ∈ T} | T ∈ T

}
= YT

n+1 ∪ XT
n+2

This concludes our induction on n.
We conclude this proof by structural induction, and Cases 1 to 5.

Appendix E. Dependences
Lemma 9 . (αdeptr, γdeptr) yields a Galois connection: P(P(Trc)) −−−−−−→←−−−−−−

αdeptr

γdeptr

Dep.

Proof.
The lattice Dep is finite, therefore complete. Thus, this is a Galois connection since it is an instance of the supremus abstraction presented

in Lemma 3.
The same reasoning applies for P(P(Val)) −−−−−→←−−−−−

αagree

γagree {tt,ff}.

The proofs of of both Lemma 4 and Theorem 2 are deferred to Appendix G: as we explain after Lemmas 6 and 7, we derive the dependence
abstract semantics as an approximation of the cardinality semantics.

Appendix F. Cardinality Abstraction
Lemma 10 . (αcrdtr, γcrdtr) yields a Galois connection: P(P(Trc)) −−−−−→←−−−−−

αcrdtr

γcrdtr
Card.

Proof. The lattice Card is complete, since all subsets of Card have an infimum and a supremum wrt. partial order v], notably because the
closed interval [0,∞] is complete wrt. partial order ≤. Thus, this is an instance of the supremus abstraction Lemma 3.

Lemma 5 . OlCLeM] is sound:

∀e, ∀l, αcrdval ◦ OlLeM ◦ γcrdtr ≤̇ OlCLeM] .

Proof.
The derivation proof is by structural induction on expressions. In each case we start from the left side and derive the definition on the right

side. The interesting case is for binary arithmetic operations.
1 – Case : integer literal n
Let l ∈ L, and C ∈ Card.

αcrdval ◦ OlLnM ◦ γcrdtr(C)

= αcrdval ◦ OlLnM
(
{T | crdtr(T)v] C }

)
= αcrdval

(
∪T∈γcrdtr(C) {⦃n⦄R | R ⊆ T and R |=Γ l}

)
= αcrdval ({⦃n⦄R | R ⊆ T,R |=Γ l and T ∈ γcrdtr(C)})
≤ HNB: precision loss for simplicity of presentation, when C is bottomI
αcrdval ({{n}})

= max
V ∈{{n}}

crdval(V)

= 1

, OlCLnM]C

Here we use , to indicate that OlCLnM]C is being defined.
2 – Case : variable id
Let l ∈ L, and C ∈ Card.

αcrdval ◦ OlLidM ◦ γcrdtr(C)

= αcrdval

(
∪T∈γcrdtr(C) Ol⦃id⦄T

)
= Hαcrdval preserves joinsI

max
T∈γcrdtr(C)

αcrdval

(
Ol⦃id⦄T

)
= n H where id; l#n ∈ αcrdtr ◦ γcrdtr(C)I

≤ Hαcrdtr ◦ γcrdtr is reductive : αcrdtr ◦ γcrdtr(C)v] C I
n H where id; l#n ∈ C I

, OlCLidM]C

3 – Case : e1 ⊕ e2

Let l ∈ L, and C ∈ Card.

αcrdval ◦ OlLe1 ⊕ e2M ◦ γcrdtr(C)

= αcrdval ({⦃e1 ⊕ e2⦄R | R ⊆ T,R |=Γ l and T ∈ γcrdtr(C)})
≤ αcrdval ({⦃e1⦄R | R ⊆ T,R |=Γ l and T ∈ γcrdtr(C)})×

αcrdval ({⦃e2⦄R | R ⊆ T,R |=Γ l and T ∈ γcrdtr(C)})
= αcrdval ◦ OlLe1M ◦ γcrdtr(C)× αcrdval ◦ OlLe2M ◦ γcrdtr(C)

≤ HBy induction hypothesisI

OlCLe1M]C ×OlCLe2M]C

, OlCLe1 ⊕ e2M]C

4 – Case : e1 cmp e2

This derivation is similar to case e1 ⊕ e2, with the difference that booleans evaluate to at most 2 different values, 1 or 0.

αcrdval ◦ OlLe1 cmp e2M ◦ γcrdtr(C)

≤ min
(

2,OlCLe1M]C ×OlCLe2M]C
)

, OlCLe1 cmp e2M]C

5 – Case : conclusion
We conclude by structural induction on expressions, and cases 1 to 4.

Theorem 4 . The cardinality abstract semantics is sound:

αcrdtr ◦ LcM ◦ γcrdtr v̇] LcM] .

Proof.
The derivation proof is by structural induction on commands. The interesting case is for conditionals.
1 – Case : skip
Let C ∈ Card.

αcrdtr ◦ LskipM ◦ γcrdtr(C)

= αcrdtr ◦ γcrdtr(C)

v] Hαcrdtr ◦ γcrdtr is reductive: αcrdtr ◦ γcrdtr(C)v] C I
C

, LskipM]C

2 – Case : c1; c2

αcrdtr ◦ Lc1; c2M ◦ γcrdtr(C)

= αcrdtr ◦ Lc2M ◦ Lc1M ◦ γcrdtr(C)

v] Hγcrdtr ◦ αcrdtr is extensive, Lc2M and αcrdtr are monotoneI
αcrdtr ◦ Lc2M ◦ γcrdtr ◦ αcrdtr ◦ Lc1M ◦ γcrdtr(C)

v] HBy induction hypothesisI

Lc2M] ◦ Lc1M]C

, Lc1; c2M]C

3 – Case : id := e
3.1 – We first proceed towards an intermediate derivation:

αcrdtr ◦ Lid := eM ◦ γcrdtr(C)

=
⊔]

T∈Lid:=eM◦γcrdtr(C)

crdtr(T)

=
⊔]

T∈Lid:=eM◦γcrdtr(C)

 ⋃
l∈L,x∈VarP

{l ; x#n | n = αcrdval(Ol⦃x⦄T) }


=

⋃
l∈L,x∈VarP

 ⊔]

T∈Lid:=eM◦γcrdtr(C)

{l ; x#n | n = αcrdval(Ol⦃x⦄T) }


=

⋃
l∈L,x∈VarP

({
l ; x#n | n = max

T∈Lid:=eM◦γcrdtr(C)
αcrdval(Ol⦃x⦄T)

})
We now consider two cases: variables that are not modified by the assignment, and variable that are.
3.2 – Case x 6= id:

Notice that ∀l ∈ L, ∀x ∈ VarP, such that x 6= id, ∀T ∈ γcrdtr(C):

Ol⦃x⦄T = Ol⦃x⦄
(
⦃id := e⦄T

)
Thus:

max
T∈Lid:=eM◦γcrdtr(C)

αcrdval(Ol⦃x⦄T)

= max
T∈γcrdtr(C)

αcrdval(Ol⦃x⦄T)

= Hαcrdval preserves joinsI

αcrdval

 ⋃
T∈γcrdtr(C)

Ol⦃x⦄T


= HBy definition of OlLxMI
αcrdval

(
OlLxM (γcrdtr(C))

)
= αcrdval ◦ OlLxM ◦ γcrdtr(C)

≤ HBy soundness of OlCLxM]C , Lemma 5I

OlCLxM]C
= n where l ; x#n ∈ C

3.3 – Case x is id :
∀l ∈ L, we have :

max
T∈Lid:=eM◦γcrdtr(C)

αcrdval(Ol⦃id⦄T)

= max
T∈γcrdtr(C)

αcrdval(Ol⦃e⦄T)

= αcrdval ◦ OlLeM ◦ γcrdtr(C)

≤ HBy soundness of OlCLxM]C , Lemma 5I

OlCLeM]C

3.4 – Final derivation:

αcrdtr ◦ Lid := eM ◦ γcrdtr(C)

= HRecall the intermediate derivation in Case 3.1I⋃
l∈L,x∈VarP

({
l ; x#n | n = max

T∈Lid:=eM◦γcrdtr(C)
αcrdval(Ol⦃x⦄T)

})
v] HBy Cases 3.2 and 3.3I⋃
l∈L

(⋃
x∈VarP \{id}

{
l ; x#n ∈ C }

)
∪ {l ; id#OlCLeM]C

}
HNB: this set of constraints remains valid, owing to exclusion of id on the leftI

=
{
l ; x#n ∈ C | x 6= id} ∪ {l ; id#OlCLeM]C | l ∈ L

}
, Lid := eM]C

4 – Case if b then c1 else c0:
4.1 – Intermediate derivation:

αcrdtr ◦ Lif b then c1 else c0M ◦ γcrdtr(C)

=
⊔]

T∈Lif b c1 else c0M◦γcrdtr(C)

crdtr(T)

=
⊔]

T∈Lif b c1 else c0M◦γcrdtr(C)

 ⋃
l∈L,x∈VarP

{
l ; x#αcrdval(Ol⦃x⦄T)

}

=
⋃

l∈L,x∈VarP

 ⊔]

T∈Lif b c1 else c0M◦γcrdtr(C)

{
l ; x#αcrdval(Ol⦃x⦄T)

}
=

⋃
l∈L,x∈VarP

{
l ; x# max

T∈Lif b c1 else c0M◦γcrdtr(C)
αcrdval(Ol⦃x⦄T)

}
4.2 – Case OlCLbM]C = 1 :
Let l ∈ L, and assume OlCLbM]C = 1. Let x ∈ VarP.
∀T ′ ∈ Lif b c1 else c0M ◦ γcrdtr(C), exists T ∈ γcrdtr(C) such that T ′ = ⦃if b c1 else c0⦄T .
(Since LcM is not just the lifting of ⦃c⦄ to a set of sets (semantics of loops is not), in general if T ′ ∈ LcMT, we only have the existence of

T ∈ T such that T ′ ⊆ ⦃c⦄T . Here, we also rely on the fact that γcrdtr(C) is a subset-closed. This is merely a convenient shortcut to avoid
lengthy details; it should be possible to use only the fact that T ′ ⊆ ⦃c⦄T to perform the same derivation.)

Let T ′ ∈ Lif b c1 else c0M ◦ γcrdtr(C), and T ∈ γcrdtr(C) such that T ′ = ⦃if b c1 else c0⦄T .
Since αcrdval ◦ OlLbM ◦ γcrdtr(C) ≤̇ OlCLbM]C (= 1), ∀R ⊆ T such that R |=Γ l, the traces r ∈ R all evaluate b to 1 or (exclusively) to

0; i.e. the sets R ⊆ T such that R |=Γ l are partitioned into the sets evaluating b to 1, and those evaluating b to 0.
Therefore, ∀R′ ⊆ T ′ such that R′ |=Γ l, exists R ∈ T and j ∈ {0, 1} such that ⦃b⦄R = {j} and ⦃cj ⦄R = R′.
Thus,

αcrdval(Ol⦃x⦄T ′)
= αcrdval({⦃x⦄R′ | R′ ⊆ T ′ and R′ |=Γ l})

= αcrdval

 ⋃
R⊆T andR|=Γl

{⦃x⦄(⦃if b c1 else c0⦄R)}


= αcrdval

 ⋃
j∈{0,1}

⋃
R⊆T andR|=Γl and ⦃b⦄R={j}

{⦃x⦄(⦃cj ⦄R)}


= max
j∈{0,1}

αcrdval

 ⋃
R⊆T andR|=Γl and ⦃b⦄R={j}

{⦃x⦄(⦃cj ⦄R)}


≤ Hαcrdval is monotoneI

max
j∈{0,1}

(
αcrdval ◦ OlLxM ◦ LcjM ◦ γcrdtr(C)

)
≤ Hαcrdval ◦ OlLxM is monotone, γcrdtr ◦ αcrdtr extensive I

max
j∈{0,1}

(
αcrdval ◦ OlLxM ◦ γcrdtr ◦ αcrdtrLcjM ◦ γcrdtr(C)

)
≤ HBy induction hypothesisI

max
j∈{0,1}

(
αcrdval ◦ OlLxM ◦ γcrdtr ◦ LcjM]C

)
≤ HBy soundness of abstract variety, Lemma 5I

max
j∈{0,1}

(
OlCLxM] ◦ LcjM]C

)
= max
j∈{0,1}

(
nj where l ; x#nj ∈ LcjM]C

)

4.3 – Case OlCLbM]C > 1, x /∈ Mod(if b c1 else c0) :
Let l ∈ L, and assume OlCLbM]C > 1. Let x ∈ VarP.
Let T ′ ∈ Lif b c1 else c0M ◦ γcrdtr(C), and T ∈ γcrdtr(C) such that T ′ = ⦃if b c1 else c0⦄T .
Notice first that if x /∈ Mod(if b c1 else c0), then:

αcrdval(Ol⦃x⦄T ′) = αcrdval(Ol⦃x⦄T)

≤ Hαcrdval is monotoneI

αcrdval ◦ OlLxM ◦ γcrdtr(C)

≤ OlCLxM]C
= n s.t l ; x#n ∈ C

4.4 – Case OlCLbM]C > 1, x ∈ Mod(if b c1 else c0) :
Let l ∈ L, and assume OlCLbM]C > 1. Let x ∈ VarP.

Let T ′ ∈ Lif b c1 else c0M ◦ γcrdtr(C), and T ∈ γcrdtr(C) such that T ′ = ⦃if b c1 else c0⦄T .

αcrdval(Ol⦃x⦄T ′)
= αcrdval(Ol⦃x⦄ ◦ ⦃if b c1 else c0⦄T)

≤ αcrdval(Ol⦃x⦄
(

⦃c1⦄ ◦ ⦃ grdb ⦄T ∪ ⦃c0⦄ ◦ ⦃ grd¬b ⦄T
)

≤ αcrdval

(
Ol⦃x⦄ ◦ ⦃c1⦄ ◦ ⦃ grdb ⦄T

)
+ αcrdval

(
Ol⦃x⦄ ◦ ⦃c0⦄ ◦ ⦃ grd¬b ⦄T

)
≤ HBy monotonicity, T ∈ γcrdtr(C) and Theorem 1I

αcrdval ◦ OlLxM ◦ Lc1M ◦ Lgrd¬bM ◦ γcrdtr(C) + αcrdval ◦ OlLxM ◦ Lc0M ◦ Lgrd¬bM ◦ γcrdtr(C)

≤ OlCLxM] ◦ Lc1M] ◦ Lgrd¬bM]C +OlCLxM] ◦ Lc0M] ◦ Lgrd¬bM]C

≤ HAs a first approximation, we simply use LgrdbM]C v] C . We refine this in Section 8I

OlCLxM] ◦ Lc1M]C +OlCLxM] ◦ Lc2M]C

= n1 + n2 s.t l ; x#n1 ∈ Lc1M]C and l ; x#n2 ∈ Lc2M]C

4.4 – Final derivation:

αcrdtr ◦ Lif b then c1 else c0M ◦ γcrdtr(C)

= HBy the intermediate derivation in case 4.1I⋃
l∈L,x∈VarP

{
l ; x# max

T∈Lif b c1 else c0M◦γcrdtr(C)
αcrdval(Ol⦃x⦄T)

}

≤
⋃
l∈L

{
πl(Lc1M]C) t] πl(Lc2M]C) if OlCLbM] = 1

πl(Lc1M]C) t]add(if b c1 else c0,π
l(C)) π

l(Lc1M]C) otherwise

with
πl(C) , {l ; x#n ∈ C | x ∈ VarP, n ∈ [0,∞]}

and

C1 t]add(com,C0) C2 , ⋃
x∈Mod(com)

{l ; x#n | n , n1 + n2 s.t l ; x#nj ∈ Cj , j = 1, 2}

⋃
x∈VarP \Mod(com)

{l ; x#n ∈ C0}

5 – Case while b do c:

αcrdtr ◦ Lwhile b do cM] ◦ γcrdtr(C)

= αcrdtr ◦ Lgrd¬bM
(

lfp⊆γcrdtr(C)Lif b then c else skipM
)

v] Hαcrdtr,Lgrd¬bM are monotone, γcrdtr ◦ αcrdtr is extensiveI

αcrdtr ◦ Lgrd¬bM ◦ γcrdtr ◦ αcrdtr

(
lfp⊆γcrdtr(C)Lif b then c else skipM

)
v] HBy assuming LgrdbM] is soundI

Lgrd¬bM] ◦ αcrdtr

(
lfp⊆γcrdtr(C)Lif b then c else skipM

)
v] HBy the fixpoint transfer theoremI

Lgrd¬bM] ◦ lfpv
]

C Lif b then c1 else c2M]

v] Hprecision loss for simplicity as a first approximation, Lgrd¬bM] v̇] idI

lfpv
]

C Lif b then c1 else c2M]

, Lwhile b do cM]C

6 – Case : conclusion
We conclude by structural induction on commands and cases 1 to 5.

Appendix G. Dependencies reloaded
Appendix G.1 Soundness proof for dependences semantics
As noted in the text, we can derive the dependency analysis by calculation from its specification. The derivation looks similar to the one in
Appendix F for the cardinality abstraction. So here we choose a different way of proving soundness for dependency analysis. We formulate it
as an abstraction of the cardinality abstraction. This is another illustration of the benefit gained from working with hyperproperties entirely
within the framework of abstract interpretation.

This proof of soundness also implies that the cardinality abstraction is at least as precise as the type system of Hunt and Sands (Hunt and
Sands 2006) and the logic of Amtoft and Banerjee (Amtoft and Banerjee 2004), as a corollary of Theorem 3.

Lemma 6 . (αagree, γagree) is the composition of two Galois connections (αcrdval, γcrdval) and (αlqone, γlqone) :

(P(P(Val)),⊆) −−−−−−→←−−−−−−
αcrdval

γcrdval
([0,∞] ,≤) −−−−−→←−−−−−

αlqone

γlqone

({tt,ff},⇐=)

with:

αlqone(n) ,

{
tt if n ≤ 1

ff otherwise.
, and

γlqone(bv) ,

{
1 if bv = tt

∞ otherwise.

Proof.
Notice that:

agree(V) , (∀v1, v2 ∈ V, v1 = v2) = (crdval(V) ≤ 1)

Also,

αagree(V) , ∧V ∈V agree(V)

= ∧V ∈V(crdval(V) ≤ 1)

=

(
max
V ∈V

crdval(V)

)
≤ 1

= αcrdval(V) ≤ 1

= αlqone ◦ αcrdval(V) where αlqone(n) ,

{
tt if n ≤ 1

ff otherwise

And,

γagree(bv) , {V ∈ P(Val) | agree(V)⇐= bv}
= {V ∈ P(Val) | crdval(V) ≤ γlqone(bv)} where

γlqone(bv) ,

{
1 if bv = tt

∞ otherwise

= γcrdval ◦ γlqone(bv)

Notice that [0,∞] −−−−−→←−−−−−
αlqone

γlqone {tt,ff}:

∀n ∈ [0,∞] ,∀ bv ∈ {tt,ff}, αlqone(n)⇐= bv iff. n ≤ γlqone(bv)

Thus, we obtain αagree = αlqone ◦ αcrdval, as well as γagree = γcrdval ◦ γlqone:

(P(P(Val)),⊆) −−−−−−→←−−−−−−
αcrdval

γcrdval
([0,∞] ,≤) −−−−−→←−−−−−

αlqone

γlqone

({tt,ff},⇐=)

Lemma 7 . (αdeptr, γdeptr) is the composition of two Galois connections (αcrdtr, γcrdtr) and (αlqonecc, γlqonecc) :

(P(P(Trc)),⊆) −−−−−→←−−−−−
αcrdtr

γcrdtr
(Card,v]) −−−−−−−→←−−−−−−−

αlqonecc

γlqonecc

(Dep,v\)

with:

αlqonecc(C) , {l ; x | l ; x#n ∈ C and αlqone(n)}
γlqonecc(D) ,

⋃
l∈L,x∈VarP

{l ; x#n | n = γlqone(l ; x ∈ D)}

Proof.

First,

αdeptr(T) =
⊔\

T∈T
deptr(T)

=
⊔\

T∈T

⋃
l∈L,x∈VarP

{l ; x | αagree(Ol⦃x⦄T)}

= HBy the decomposition in Case 1I⊔\

T∈T

⋃
l∈L,x∈VarP

{l ; x | αlqone ◦ αcrdval(Ol⦃x⦄T)}

=
⊔\

T∈T
αlqonecc

 ⋃
l∈L,x∈VarP

{l ; x#n | n = αcrdval(Ol⦃x⦄T)}


Hwith αlqonecc(C) , {l ; x | l ; x#n ∈ C and αlqone(n)}I

=
⊔\

T∈T
αlqonecc ◦ crdtr(T)

= Hαlqonecc preserves unionsI

αlqonecc

(⊔]

T∈T
crdtr(T)

)
= αlqonecc ◦ αcrdtr(T)

Also,

γdeptr(D) = {T | deptr(T)v\ D}
= {T | αlqonecc ◦ crdtr(T)v\ D}
= {T | αlqonecc ◦ crdtr(T) ⊇ D}
= {T | ∀l ; x ∈ D , l ; x ∈ αlqonecc ◦ crdtr(T)}

=

{
T | ∀l ; x ∈ D ,

l ; x ∈ αlqonecc

(
∪l∈L,x∈VarP{l ; x#n | n = αcrdval(Ol⦃x⦄T) }

)}
= {T | ∀l ; x ∈ D , αlqone(αcrdval(Ol⦃x⦄T))}
= {T | ∀l ; x ∈ D , αcrdval(Ol⦃x⦄T) ≤ 1}
= γcrdtr ◦ γlqonecc(D)

Hγlqonecc(D) ,
⋃

l∈L,x∈VarP

{l ; x#n | n = γlqone(l ; x ∈ D)}I

Therefore, we have αdeptr = αlqonecc ◦ αcrdtr, and γdeptr = γcrdtr ◦ γlqonecc, with:

(P(P(Trc)),⊆) −−−−−→←−−−−−
αcrdtr

γcrdtr
(Card,v]) −−−−−−−→←−−−−−−−

αlqonecc

γlqonecc

(Dep,v\)

Lemma 4 . OlDLeM\ is sound:
∀e, ∀l,∀D , αagree ◦ OlLeM ◦ γdeptr(D)⇐=OlDLeM\D .

Proof.
1 – Derivation of Agreements OlDLeM\ up to l as an abstraction of cardinalities up to security level l.

αagree ◦ OlLnM ◦ γdeptr(D)

= αlqone ◦ αcrdval ◦ OlLnM ◦ γdeptr ◦ γlqonecc(D)

⇐= αlqone ◦ OlCLeM] ◦ γlqonecc(D)

Henceforth, we will derive OlDLeM\ as an abstraction of cardinalities OlCLeM]. This derivation goes by structural induction on expressions.
1.1 – Case : n
Let l ∈ L, D ∈ Dep.

αlqone ◦ OlCLnM] ◦ γlqonecc(D) = αlqone(1)

= tt H, OlDLnM\I

1.2 – Case : id Let l ∈ L, D ∈ Dep.

αlqone ◦ OlCLidM] ◦ γlqonecc(D) = αlqone(n) where l ; id#n ∈ γlqonecc(D)

= (l ; id ∈ D) H, OlDLidM\I

1.3 – Case : e1 ⊕ e2 Let l ∈ L, D ∈ Dep.

αlqone ◦ OlCLe1 ⊕ e2M] ◦ γlqonecc(D)

= αlqone

(
(OlCLe1M] ◦ γlqonecc(D))× (OlCLe2M] ◦ γlqonecc(D))

)
⇐= αlqone ◦ OlCLe1M] ◦ γlqonecc(D) ∧ αlqone ◦ OlCLe2M] ◦ γlqonecc(D)

= OlDLe1M\D ∧ OlDLe2M\D H, OlDLe1 ⊕ e2M\DI

1.4 – Case : e1 cmp e2

This case is similar to case 1.3.
1.5 – Case: conclusion
We conclude by structural induction on expressions.

Theorem 2 . The dependence semantics is sound:

αdeptr ◦ LcM ◦ γdeptr v̇\ LcM\ .

Proof.
Recall that we have αdeptr = αlqonecc ◦ αcrdtr, and γdeptr = γcrdtr ◦ γlqonecc, with:

P(P(Trc)) −−−−−→←−−−−−
αcrdtr

γcrdtr
Card −−−−−−−→←−−−−−−−

αlqonecc

γlqonecc

Dep

Since,

αdeptr ◦ LcM ◦ γdeptr(D)

= αlqonecc ◦ αcrdtr ◦ LcM ◦ γcrdtr ◦ γlqonecc(D)

v\ αlqonecc ◦ LcM] ◦ γlqonecc(D)

We will continue the derivation of dependences abstract semantics LcM\ as an abstraction of LcM].
We make explicit 2 derivations, for assignments and conditionals. The other cases are similar to the derivation of the cardinalities abstract

semantics.
1 – Case : id := e

αlqonecc ◦ Lid := eM] ◦ γlqonecc(D)

= αlqonecc

(
{l ; x#n ∈ γlqonecc(D) | x 6= id} ∪ {l ; id#n | n , OlCLeM] ◦ γlqonecc(D), l ∈ L}

)
= {l ; x ∈ D | x 6= id} ∪ {l ; id | OlDLeM\}

2 – Case if b then c1 else c2:

αlqonecc ◦ Lif b then c1 else c2M] ◦ γlqonecc(D)

= let C1 = Lc1M] ◦ γlqonecc(D) in
let C2 = Lc2M] ◦ γlqonecc(D) in
let W = Mod(if b c1 else c0) in

αlqonecc

 ⋃l∈L

πl(C1) t] πl(C2) if OlCLbM] ◦ γlqonecc(D) = 1

πl(C1)

t]add(W,πl(C))

πl(C2) otherwise


⇐= let D1 = Lc1M\D in

let D2 = Lc2M\D in
let W = Mod(if b c1 else c0) in⋃
l∈L

{
πl(D1) t\ πl(D2) if OlDLbM\D
πl(D) \ {l ; x | x ∈W} otherwise

We conclude by structural induction on commands .

Appendix G.2 Precision proof
Lemma 11 . For all l, l′ ∈ L, for all T ∈ P(Trc):

l v l′ =⇒ Ol′⦃e⦄T ⊆ Ol⦃e⦄T
Proof.
Assume l v l′. Then, for all R ⊆ T ,

R |=Γ l
′ =⇒ R |=Γ l

Thus,
{R | R ⊆ T and R |=Γ l

′} ⊆ {R | R ⊆ T and R |=Γ l}
Therefore, it holds that:

Ol′⦃e⦄T ⊆ Ol⦃e⦄T

Corollary 2 . For all l, l′ ∈ L, for all T ∈ P(P(Trc)):

l v l′ =⇒ Ol′LeMT ⊆ OlLeMT
Proof. This is a direct result from Lemma 11 and definition of OlLeM.

Corollary 3 . For all l, l′ ∈ L, for all id, for all T ∈ P(P(Trc)):

l v l′ =⇒
(
l ; id ∈ αdeptr(T) =⇒ l′ ; id ∈ αdeptr(T)

)
Proof.
Let us assume l v l′. By Corollary 2, we have Ol′LidMT ⊆ OlLidMT.
And by monotonicity of αagree, we have αagree(Ol′LidMT)⇐= αagree(OlLidMT).
Thus, if l ; id ∈ αdeptr(T), then αagree(OlLidMT) = tt and also
αagree(Ol′LidMT) = tt, thus l′ ; D ∈ αdeptr(T).

Corollary 4 . For all l, l′ ∈ L, for all id, for all D ∈ Dep:

l v l′ =⇒ γdeptr(D ∪ {l ; id}) = γdeptr(D ∪ {l ; id, l′ ; id})
Proof.
1 – Note that D ∪ {l ; id, l′ ; id} ⊇ D ∪ {l ; id}, thus

D ∪ {l ; id, l′ ; id} v\ D ∪ {l ; id}
Therefore, by monotony of γdeptr:

γdeptr(D ∪ {l ; id, l′ ; id}) ⊆ γdeptr(D ∪ {l ; id})
2 – Also, let T ∈ γdeptr(D ∪ {l ; id}).
We have deptr(T)v\ D ∪ {l ; id} by definition of γdeptr.
Thus, l ; id ∈ αdeptr(T) and also l′ ; id ∈ αdeptr(T) by Corollary 3. This also means that deptr(T) v\ D ∪ {l ; id, l′ ; id}.

Finally, T ∈ γdeptr(D ∪ {l ; id, l′ ; id}) and

γdeptr(D ∪ {l ; id, l′ ; id}) ⊇ γdeptr(D ∪ {l ; id})
This concludes our proof by Case 1 and 2.

Henceforth, we will assume that all D ∈ Dep are well formed, meaning that ∀l, l′ ∈ Dep, l ; id ∈ D =⇒ l′ ; id ∈ D .
We conjecture that this can be proven for the dependence analysis we have derived: given a well formed initial set of dependence constraints,

the analysis always yields a well formed set of dependence constraints. For simplicity, we will use Corollary 4 to argue that we can still
augment any set of dependence constraints to ensure it is well formed by adding the appropriate atomic constraints. An alternative approach
would reduce the set of dependence constraints, and change slightly the abstract semantics in order to leverage Corollary 4 and guarantee the
same precision, but we refrain from doing so for simplicity.

We consider the constructive version of Hunt and Sands’ flow sensitive type system, proposed in (Hunt and Sands 2011).

Lemma 12 . For all e, D ∈ Dep, ∆ ∈ VarP → L, l ∈ L such that ∆ ` e : l, it holds that:

αhs(D) v̇∆ =⇒ OlDLeM\D = tt

Proof.
The proof proceeds by structural induction on expressions.
1 – Case n:
By definition of OlDLnM\, we have:

∀D , ∀l ∈ L,OlDLnM\D = tt

2 – Case id:
By definition of the type system, we have ∆(id) = l. Thus:

αhs(D) v̇∆ =⇒ u{l′ | l′ ; id ∈ D} v l
=⇒ Hsince D is assumed well-formedI

l ; id ∈ D

=⇒ OlDLidM\D = tt

3 – Case e1 ⊕ e2:
By definition of the type system, there is l1, l2 such that ∆ ` e1 : l1 and ∆ ` e2 : l2, with l1 t l2 = l.
Thus, by induction on e1 and e2, and assuming αhs(D) v̇∆, we have:

Ol1D Le1M\D = tt ∧ Ol2D Le2M\D = tt

Thus, since D is well formed and l1 v l and l2 v l, it holds that:

OlDLe1M\D = tt ∧ OlDLe2M\D = tt

Therefore, also:
OlDLe1 ⊕ e2M\D = tt

4 – Case e1 cmp e2:
This case is similar to Case 3.
5 – We conclude by structural induction and Cases 1 to 4.

Let us denote by ⊥L ∈ L the bottom element of the lattice L.

Theorem 3 . For all c, D0,D ∈ Dep, ∆0,∆ ∈ VarP → L, where ⊥L ` ∆0{c}∆, and D = LcM\D0, it holds that:

αhs(D0) v̇∆0 =⇒ αhs(D) v̇∆ .

Proof.
The proof goes by structural induction on commands. The conditional case explicitly assumes that the modified variables analysis is precise

enough, to enable the simulation of the program counter. This can be achieved by collecting variable names in a while language.
1 – Case skip : this case stems from the premice.
2 – Case id := e :
Assume αhs(D0) v̇∆0.
2.1 – Case : x 6= id
Then, for all x 6= id, ∆(x) = ∆0(x).
Also, αhs(D)(x) = αhs(D0)(x) v ∆0(x) = ∆(x).
2.2 – Case : x = id
Otherwise, ∆ = ∆0[id 7→ l], where ∆0 ` e : l.
By Lemma 12, since αhs(D0) v̇∆0, we have OlDLeM\D0 = tt.
Thus, l ; id ∈ D and :

αhs(D)(id) v ∆(id)

2.3 – Finally, by Cases 2.2 and 2.3, we have :
αhs(D) v̇∆

3 – Case c1; c2 :
This case proceeds by induction on both c1 and c2 by remarking that the type system types both command c1 and c2 in ⊥L.

4 – Case if (b) then c1 else c2:
Assume αhs(D0) v̇∆0. Let lb,∆1,∆2 such that: lb ` ∆0{c1}∆1 and lb ` ∆0{c2}∆2, with ∆ = ∆1 ṫ∆2.
Also, let ∆′1 and ∆′2 such that: ⊥L ` ∆0{c1}∆′1 and ⊥L ` ∆0{c2}∆′2, with:
∆1 = ∆′1[id 7→ ∆′1(id) t lb, ∀id ∈ Mod(c1)], ∆2 = ∆′2[id 7→ ∆′2(id) t lb, ∀id ∈ Mod(c2)].
Intuitively, the program counter pc can be simulated by a modified variables analysis that is precise enough. For a while language, this can

be achieved simply by collecting variable names.
Let D1,D2 ∈ Dep such that: Lc1M\D0 = D1 and Lc2M\D0 = D2.
Then, assuming W = Mod(if (b) then c1 else c2), we have:

D =
⋃
l∈L


πl(D1) t\ πl(D2) if OlDLbM\D
{l ; x ∈ πl(D) |

x /∈W} otherwise
4.1 – By induction on c1, we have αhs(D1) v̇∆′1.
4.2 – By induction on c2, we have αhs(D2) v̇∆′2.
4.3 – Assume x 6∈W , and prove αhs(D)(x) v ∆(x).
Since x 6∈W , we have ∆(x) = ∆0(x).
Therefore, αhs(D0) v̇∆0 implies ∆(x) ; x ∈ D0.
Thus, since x 6∈W , we have ∆(x) ; x ∈ D1, and ∆(x) ; x ∈ D2 (atomic constraints related to variables not explicitly written in c1 are

not discarded from D0, and likewise for those that are not explicitly written in c2). Thus, ∆(x) ; x ∈ D , meaning that αhs(D)(x) v ∆(x).
4.4 – Assume x ∈W amd prove αhs(D)(x) v ∆(x):
We have lb v ∆(x) since x is explicitly written in one of the branches at least.
Also, by 4.1 and 4.2, we have αhs(D1)(x) v ∆′1(x), and αhs(D2)(x) v ∆′2(x). Meaning that

αhs(D1 t\ D2)(x) = αhs(D1)(x) t αhs(D2)(x) v ∆′1(x) t∆′2(x) v ∆(x)

Notice that ∆′1 and ∆′2 are well formed. Thus, exists lx such that lb v lx, such that lx ; x ∈ D1 t\ D2, and lx v ∆(x).
And since ∀l ∈ L, such that lb v l, we also have OlDLbM\D0 = tt by using Lemma 12 and D0 is well formed.
Thus, ∀l ∈ L, such that lb v l, πl(D) = πl(D1) t\ πl(D2) = πl(D1 t\ D2), i.e. lx ; x ∈ D
Thus, αhs(D)(x) v ∆(x).
5 – Case : while (b) then c
Assume αhs(D0) v̇∆0.
The output type environment ∆ is defined by:

∆ = lfpλ∆v.let ∆′ s.t. ⊥L t∆v(a) ` ∆v{c}∆′ in ∆′ ṫ∆0

Or written differently, ∆ is given by:

∆ = lfpλ∆v.let ∆′ s.t. ⊥L ` ∆v{if (b) then c else skip}∆′ in ∆′ ṫ∆0

Let (∆n) be the sequence defined as

∆n+1 = let ∆′ s.t. ⊥L ` ∆n{if (b) then c else skip}∆′ in ∆′ ṫ∆0

Also, let (Dn) be the sequence defined as Dn+1 = D0 t\ Lif (b) then c else skipM\Dn

Then, we prove by induction on n that αhs(Dn) v ∆n.
5.1 – Case n = 0.
This case holds by assumption αhs(D0) v̇∆0.
5.2 – Case: Assume αhs(Dn) v ∆n, and prove αhs(Dn+1) v ∆n+1.
Let ∆′ such that ⊥L ` ∆n{if (b) then c else skip}∆′
By assumption, we have αhs(Dn) v ∆n. Thus, by using the same proof in Case 4, we have

αhs(Lif (b) then c else skipM\Dn) v̇∆′

Therefore, (
αhs(Lif (b) then c else skipM\Dn) ṫ αhs(D0)

)
v̇ (∆′ ṫ∆0)

Therefore, αhs(Dn+1) v ∆n+1. which proves that both least fixpoints are equal.
6 – Finally, we conclude by Cases 1–5, and structural induction on commands.

	1 Introduction
	2 Background: Collecting Semantics, Galois Connections
	3 Domains and Galois Connections for Hyperproperties
	4 Hypercollecting Semantics
	5 Information Flow
	6 Dependences
	7 Cardinality Abstraction
	8 Towards More Precision
	9 Related Work
	10 Conclusion
	Appendix A Symbols
	Appendix B Background: Collecting Semantics, Galois Connections
	Appendix C Domains and Galois Connections for Hyperproperties
	Appendix D Hypercollecting Semantics
	Appendix E Dependences
	Appendix F Cardinality Abstraction
	Appendix G Dependencies reloaded

