Algorithms for Automatic Ranking
of Participants and Tasks in an Anonymized
Contest

Yang Jiao®™), R. Ravi, and Wolfgang Gatterbauer

Tepper School of Business, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

yangjiao@andrew.cmu.edu

Abstract. We introduce a new set of problems based on the Chain
Editing problem. In our version of Chain Editing, we are given a set of
anonymous participants and a set of undisclosed tasks that every par-
ticipant attempts. For each participant-task pair, we know whether the
participant has succeeded at the task or not. We assume that participants
vary in their ability to solve tasks, and that tasks vary in their difficulty
to be solved. In an ideal world, stronger participants should succeed at
a superset of tasks that weaker participants succeed at. Similarly, easier
tasks should be completed successfully by a superset of participants who
succeed at harder tasks. In reality, it can happen that a stronger par-
ticipant fails at a task that a weaker participants succeeds at. Our goal
is to find a perfect nesting of the participant-task relations by flipping a
minimum number of participant-task relations, implying such a “nearest
perfect ordering” to be the one that is closest to the truth of participant
strengths and task difficulties. Many variants of the problem are known
to be NP-hard.

We propose six natural k-near versions of the Chain Editing prob-
lem and classify their complexity. The input to a k-near Chain Editing
problem includes an initial ordering of the participants (or tasks) that
we are required to respect by moving each participant (or task) at most
k positions from the initial ordering. We obtain surprising results on
the complexity of the six k-near problems: Five of the problems are
polynomial-time solvable using dynamic programming, but one of them
is NP-hard.

Keywords: Chain Editing - Chain Addition - Truth discovery -
Massively open online classes + Student evaluation

1 Introduction

1.1 Motivation

Consider a contest with a set S of participants who are required to complete
a set @ of tasks. Every participant either succeeds or fails at completing each

© Springer International Publishing AG 2017
S.-H. Poon et al. (Eds.): WALCOM 2017, LNCS 10167, pp. 335-346, 2017.
DOI: 10.1007/978-3-319-53925-6_26

336 Y. Jiao et al.

task. The identities of the participants and the tasks are anonymous. We aim
to obtain rankings of the participants’ strengths and the tasks’ difficulties. This
situation can be modeled by an unlabeled bipartite graph with participants on
one side, tasks on the other side, and edges defined by whether the participant
succeeded at the task. From the edges of the bipartite graph, we can infer that a
participant as is stronger than a; if the neighborhood of a4 is contained in (or is
“nested in”) that of ay. Similarly, we can infer that a task is easier than another
if its neighborhood contains that of the other. See Fig.1 for a visualization of
strengths of participants and difficulties of tasks. If all neighborhoods are nested,
then this nesting immediately implies a ranking of the participants and tasks.
However, participants and tasks are not perfect in reality, which may result in a
bipartite graph with “non-nested” neighborhoods. In more realistic scenarios, we
wish to determine a ranking of the participants and the tasks when the starting
graph is not ideal, which we define formally in Sect.1.2.

Participants Tasks

6
£ =
=]
&0 g
5 =
S kS
= =
17} he)
o0 on
g g
= g
< <
(o] (o]
= -
Q Q
= =

Fig. 1. An ideal graph is shown. Participants and tasks may be interpreted as students
and questions, or actors and claims. Participant a; succeeds at by to b2; a2 succeeds
at b1 to bs; as succeeds at b1 to bs. The nesting of neighborhoods here indicate that
participant a; is weaker than az, who is weaker than as, and task b; and b2 are easier
than b3 and b4, which in turn are easier than bs.

1.1.1 Relation to Truth Discovery

A popular application of unbiased rankings is computational “truth discovery.”
Truth discovery is the determination of trustworthiness of conflicting pieces of
information that are observed often from a variety of sources [24] and is moti-
vated by the problem of extracting information from networks where the trust-
worthiness of the actors are uncertain [15]. The most basic model of the problem
is to consider a bipartite graph where one side is made up of actors, the other
side is made up of their claims, and edges denote associations between actors and
claims. Furthermore, claims and actors are assumed to have “trustworthiness”
and “believability” scores, respectively, with known a priori values. According
to a number of recent surveys [15,20,24], common approaches for truth discov-
ery include iterative procedures, optimization methods, and probabilistic graphic

Algorithms for Automatic Ranking 337

models. Iterative methods [9,13,22,27] update trust scores of actors to believabil-
ity scores of claims, and vice versa, until convergence. Variants of these methods
(such as Sums, Hubs and Authorities [18], AverageLog, TruthFinder, Investment,
and PooledInvestment) have been extensively studied and proven in practice [2].
Optimization methods [3,19] aim to find truths that minimize the total distance
between the provided claims and the output truths for some specified continu-
ous distance function; coordinate descent [5] is often used to obtain the solution.
Probabilistic graphical models [23] of truth discovery are solved by expectation
maximization. Other methods for truth discovery include those that leverage
trust relationships between the sources [14]. Our study is conceptually closest to
optimization approaches (we minimize the number of edge additions or edits),
however we suggest a discrete objective for minimization, for which we need to
develop new algorithms.

1.1.2 Our Context: Massively Open Online Courses

Our interest in the problem arises from trying to model the problem of auto-
matic grading of large number of students in the context of MOOCs (massively
open online courses). Our idea is to crowd-source the creation of automatically
gradable questions (like multiple choice items) to students, and have all the stu-
dents take all questions. From the performance of the students, we would like
to quickly compute a roughly accurate ordering of the difficulty of the crowd-
sourced questions. Additionally, we may also want to efficiently rank the strength
of the students based on their performance. Henceforth, we refer to participants
as students and tasks as questions in the rest of the paper.

1.1.3 Owur Model

We cast the ranking problem as a discrete optimization problem of minimizing
the number of changes to a given record of the students’ performance to obtain
nested neighborhoods. This is called the Chain Editing problem. It is often
possible that some information regarding the best ranking is already known. For
instance, if the observed rankings of students on several previous assignments
are consistent, then it is likely that the ranking on the next assignment will
be similar. We model known information by imposing an additional constraint
that the changes made to correct the errors to an ideal ranking must result
in a ranking that is near a given base ranking. By near, we mean that the
output position of each student should be within at most k positions from the
position in the base ranking, where k is a parameter. Given a nearby ranking
for students, we consider all possible variants arising from how the question
ranking is constrained. The question ranking may be constrained in one of the
following three ways: the exact question ranking is specified (which we term the
“constrained” case), it must be near a given question ranking (the “both near”
case), or the question ranking is unconstrained (the “unconstrained” case). We
provide the formal definitions of these problems next.

338 Y. Jiao et al.

1.2 Problem Formulations

Here, we define all variants of the ranking problem. The basic variants of Chain
Editing are defined first and the k-near variants are defined afterward.

1.2.1 Basic Variants of Chain Editing

First, we introduce the problem of recognizing an ideal input. Assume that we
are given a set S of students, and a set () of questions, and edges between S
and @ that indicate which questions the students answered correctly - note that
we assume that every student attempts every question. Denote the resulting
bipartite graph by G = (S U @, E). For every pair (s,q) € S x Q, we are given
an edge between s and ¢ if and only if student s answered question g correctly.
For a graph (V, E), denote the neighborhood of a vertex z by N(z) :={y € V :
xy € E}.

Definition 1. We say that student s1 is stronger than so if N(s1) D N(s2).
We say that question q; is harder than gs if N(q1) C N(q2). Given an ordering
a on the students and B on the questions, a(s1) > «(s2) shall indicate that s1
is stronger than sa, and 5(q1) > B(qz2) shall indicate that q; is harder than qs.

Definition 2. An ordering of the questions satisfies the interval property if
for every s, its neighborhood N (s) consists of a block of consecutive questions
(starting with the easiest question) with respect to our ordering of the questions.
An ordering o of the students is nested if a(s1) > a(s2) = N(s1) 2 N(s2).

Definition 3. The objective of the Ideal Mutual Orderings (IMO) problem is to
order the students and the questions so that they satisfy the nested and interval
properties respectively, or output NO if no such orderings exist.

Observe that IMO can be solved efficiently by comparing containment rela-
tion among the neighborhoods of the students and ordering the questions and
students according to the containment order.

Proposition 1. There is a polynomial time algorithm to solve IMO.

All missing proofs are in the full version of the paper [16]. Next, observe that
the nested property on one side is satisfiable if and only if the interval property
on the other side is satisfiable. Hence, we will require only the nested property
in subsequent variants of the problem.

Proposition 2. A bipartite graph has an ordering of all vertices so that the
questions satisfy the interval property if and only if it has an ordering with the
students satisfying the nested property.

Next, we define several variants of IMO.

Definition 4. In the Chain Editing (CE) problem, we are given a bipartite
graph representing student-question relations and asked to find a minimum set of
edge edits that admits an ordering of the students satisfying the nested property.

Algorithms for Automatic Ranking 339

A more restrictive problem than Chain Editing is Chain Addition. Chain
Addition is variant of Chain Editing that allows only edge additions and no
deletions. Chain Addition models situations where students sometimes acciden-
tally give wrong answers on questions they know how to solve but never answer
a hard problem correctly by luck, e.g. in numerical entry questions.

Definition 5. In the Chain Addition (CA) problem, we are given a bipartite
graph representing student-question relations and asked to find a minimum set
of edge additions that admits an ordering of the students satisfying the nested
property.

Analogous to needing only to satisfy one of the two properties, it suffices to
find an optimal ordering for only one side. Once one side is fixed, it is easy to
find an optimal ordering of the other side respecting the fixed ordering.

Proposition 3. In Chain Editing, if the best ordering (that minimizes the num-
ber of edge edits) for either students or questions is known, then the edge edits
and ordering of the other side can be found in polynomial time.

1.2.2 k-near Variants of Chain Editing

We introduce and study the nearby versions of Chain Editing or Chain Addition.
Our problem formulations are inspired by Balas and Simonetti’s [4] work on
k-near versions of the TSP.

Definition 6. In the k-near problem, we are given an initial ordering o : S —
[|S]] and a positive integer k. A feasible solution exhibits a set of edge edits (addi-
tions) attaining the nested property so that the associated ordering 7, induced by
the neighborhood nestings, of the students satisfies m(s) € [a(s) — k, a(s) + k.

Next, we define three types of k-near problems. In the subsequent problem
formulations, we bring back the interval property to our constraints since we
will consider problems where the question side is not allowed to be arbitrarily
ordered.

Definition 7. In Unconstrained k-near Chain Editing (Addition), the student
ordering must be k-near but the question side may be ordered any way. The
objective is to minimize the number of edge edits (additions) so that there is a
k-near ordering of the students that satisfies the nested property.

Definition 8. In Constrained k-near Chain Editing (Addition), the student
ordering must be k-near while the questions have a fixed initial ordering that
must be kept. The objective is to minimize the number of edge edits (additions)
so that there is k-near ordering of the students that satisfies the nested property
and respects the interval property according to the given question ordering.

Definition 9. In Both k-near Chain Editing (Addition), both sides must be
k-near with respect to two given initial orderings on their respective sides. The
objective is to minimize the number of edge edits (additions) so that there is a
k-near ordering of the students that satisfies the nested property and a k-near
ordering of the questions that satisfies the interval property.

340 Y. Jiao et al.

1.3 Main Results

In this paper, we introduce k-near models to the Chain Editing problem and
present surprising complexity results. Our k-near model captures realistic sce-
narios of MOOCs, where information from past tests is usually known and can
be used to arrive at a reliable initial nearby ordering.

We find that five of the k-near Editing and Addition problems have poly-
nomial time algorithms while the Unconstrained k-near Editing problem is NP-
hard. Our intuition is that the Constrained k-near and Both k-near problems
are considerably restrictive on the ordering of the questions, which make it easy
to derive the best k-near student ordering. The Unconstrained k-near Addition
problem is easier than the corresponding Editing problem because the correct
neighborhood of the students can be inferred from the neighborhoods of all
weaker students in the Addition problem, but not for the Editing version.

Aside from restricting the students to be k-near, we may consider all possi-
ble combinations of whether the students and questions are each k-near, fixed,
or unconstrained. The remaining (non-symmetric) combinations not covered by
the above k-near problems are both fixed, one side fixed and the other side
unconstrained, and both unconstrained. The both fixed problem is easy as both
orderings are given in the input and one only needs to check whether the order-
ings are consistent with the nesting of the neighborhoods. When one side is fixed
and the other is unconstrained, we have already shown that the ordering of the
unconstrained side is easily derivable from the ordering of the fixed side via
Proposition 3. If both sides are unconstrained, this is exactly the Chain Edit-
ing (or Addition) problem, which are both known to be NP-hard (see below).
Figure2 summarizes the complexity of each problem, including our results for
the k-near variants, which are starred. Note that the role of the students and
questions are symmetric up to flipping the orderings.

Students . k-near .
Questions Unconstrained Editing Addition Constrained
Unconstrained NP-hard [26,10] | NP-hard O(n’k*FF2) O(n?)
- noar Editing NP-hard O(n3k*+1) O(n’k*FT2)
Addition O(n2K*F+2) O3k [Om3k2F+2)
Constrained O(n?) OM2K* T2 | O(n’k**+?) O(n®)

Fig.2. All variants of the problems are shown with their respective complexities.
The complexity of Unconstrained/Unconstrained Addition [26] and Editing [10] were
derived before. All other results are given in this paper. Most of the problems have
the same complexity for both Addition and Editing versions. The only exception is the
Unconstrained k-near version where Editing is NP-hard while Addition has a polyno-
mial time algorithm.

To avoid any potential confusion, we emphasize that our algorithms are not
fixed-parameter tractable algorithms, as our parameter k is not a property of

Algorithms for Automatic Ranking 341

problem instances, but rather is part of the constraints that are specified for the
outputs to satisfy.

The remaining sections are organized as follows. Section 2 discusses existing
work on variants of Chain Editing that have been studied before. Section 3 shows
the exact algorithms for five of the k-near problems and includes the NP-hardness
proof for the last k-near problem. Section 4 summarizes our main contributions.

2 Related Work

The earliest known results on hardness and algorithms tackled Chain Addi-
tion. Before stating the results, we define a couple of problems closely related
to Chain Addition. The Minimum Linear Arrangement problem considers as
input a graph G = (V, E) and asks for an ordering = : V' — [|V|] minimizing
> vwep |T(v) =m(w)|. The Chordal Completion problem, also known as the Min-
imum Fill-In problem, considers as input a graph G = (V, E) and asks for the
minimum size set of edges F' to add to G so that (V, E U F) has no chordless
cycles. A chordless cycle is a cycle (v1,...,v,,v1) such that for every i,j with
li — 7] > 1 and {4,j} # {1,7}, we have v;v; ¢ E. Yannakakis [26] proved that
Chain Addition is NP-hard by a reduction from Linear Arrangement. He also
showed that Chain Addition is a special case of Chordal Completion on graphs
of the form (G = U UV, E) where U and V are cliques. Recently, Chain Editing
was shown to be NP-hard by Drange et al. [10].

Another problem called Total Chain Addition is essentially identical to Chain
Addition, except that the objective function counts the number of total edges in
the output graph rather than the number of edges added. For Total Chain Addi-
tion, Feder et al. [11] give a 2-approximation. The total edge addition version of
Chordal Completion has an O(v/Alog*(n))-approximation algorithm [1] where
A is the maximum degree of the input graph. For Chain Addition, Feder et
al. [11] claim an 8d + 2-approximation, where d is the smallest number such that
every vertex-induced subgraph of the original graph has some vertex of degree
at most d. Natanzon et al. [21] give an 80 PT-approximation for Chain Addition
by approximating Chordal Completion. However, no approximation algorithms
are known for Chain Editing.

Modification to chordless graphs and to chain graphs have also been stud-
ied from a fixed-parameter point of view. A fized-parameter tractable (FPT)
algorithm for a problem of input size n and parameter p bounding the value of
the optimal solution, is an algorithm that outputs an optimal solution in time
O(f(p)n°®) for some constant ¢ and some function f dependent on p. For Chordal
Completion, Kaplan et al. [17] give an FPT in time O(2°©FT) 1 OPT?nm).
Fomin and Villanger [12] show the first subexponential FPT for Chordal Com-
pletion, in time O(20(VOPTI08OPT) 1 OPT2?nm). Cao and Marx [7] study a
generalization of Chordal Completion, where three operations are allowed: ver-
tex deletion, edge addition, and edge deletion. There, they give an FPT in time
20(0OPT1log OPT)nO() "where OPT is now the minimum total number of the three

342 Y. Jiao et al.

operations needed to obtain a chordless graph. For the special case of Chain Edit-
ing, Drange et al. [10] show an FPT in time 20(VOPT108OPT) 4 1oly(n). They
also show the same result holds for a related problem called Threshold Editing.

On the other side, Drange et al. [10] show that Chain Editing and Threshold
Editing do not admit 20(VOP T)poly(n) time algorithms assuming the Exponen-
tial Time Hypothesis (ETH). For Chain Completion and Chordal Completion,

Bliznets et al. [6] exclude the possibility of 20(v7/1°87) and 90(OPT /105" k), 0(1)
time algorithms assuming ETH, where ¢ is a constant. For Chordal Completion,
Cao and Sandeep [8] showed that no algorithms in time 20(VOPT=0)p01) exist
for any positive 9, assuming ETH. They also exclude the possibility of a PTAS
for Chordal Completion assuming P # NP. Wu et al. [25] show that no con-
stant approximation is possible for Chordal Completion assuming the Small Set
Expansion Conjecture. Table 1 summarizes the known results for the aforemen-

tioned graph modification problems.

Table 1. Known results

Chordal Chain
Editing Unknown approximation, | Unknown approximation,
FPT [9] FPT [9]
Addition 80O PT-approx [21], 80O PT-approx [21],
FPT [9] 8d + 2-approx [11], FPT [9]
Total addition | O(v/Alog®*(n))-approx [1], | 2-approx [11], FPT [9]
FPT [9]

For the k-near problems, we show that the Unconstrained k-near Editing
problem is NP-hard by adapting the NP-hardness proof for Threshold Editing
from Drange et al. [9]. The remaining k-near problems have not been studied.

3 Polynomial Time Algorithms for k-near Orderings

We present our polynomial time algorithm for the Constrained k-near Addi-
tion problem and state similar results for the Constrained k-near Editing prob-
lem, the Both k-near Addition and Editing problems, and the Unconstrained
k-near Addition problem. The algorithms and analyses for the other polyno-
mial time results use similar ideas as the one for Constrained k-near Addition.
They are provided in detail in the full paper [16]. We also state the NP-hardness
of the Unconstrained k-near Editing problem and provide the proof in the full
paper [16].

We assume correct orderings label the students from weakest (smallest label)
to strongest (largest label) and label the questions from easiest (smallest label)
to hardest (largest label). We associate each student with its initial label given
by the k-near ordering. For ease of reading, we boldface the definitions essential
to the analysis of our algorithm.

Algorithms for Automatic Ranking 343

Theorem 1 (Constrained k-near Editing). Constrained k-near Editing can

be solved in time O(n3k?k+2).
Proof. Assume that the students are given in k-near order 1,...,|S| and that
the questions are given in exact order 1 < --- < |Q|. We construct a dynamic

program for Constrained k-near Editing. First, we introduce the subproblems
that we will consider. Define C(%,u;,U;,v;,) to be the smallest number of
edges incident to the weakest ¢ positions that must be edited such that u; is in
position ¢, U; is the set of students in the weakest ¢ — 1 positions, and v;, is the
hardest question correctly answered by the i weakest students. Before deriving
the recurrence, we will define several sets that bound our search space within
polynomial size of n = |S| + |Q|.

Search Space for U;. Given position ¢ and student u;, define P; ,,; to be the set
of permutations on the elements in [max{1,i—k}, min{|S|,i+k—1}]\ {u;}. Let

Fiu, = {{flu), 7Y (k)} im€ Py, m(a) € [a—k, a+K]Va € [max{1,i—k},

min{[S|,i 4+ k — 1}] \ {uz}} The set P; ,,, includes all possible permutations of
the 2k students centered at position 7, and the set F; ,,, enforces that no student
moves more than k positions from its label. We claim that every element of
F; ., is a candidate for U; \ [1,max{1,i — k — 1}] given that u; is assigned to
position ¢. To understand the search space for U; given i and wu;, observe that
for all ¢ > 2, U; already must include all of [l,max{l,i — k- 1}} since any
student initially at position < ¢ — k — 1 cannot move beyond position ¢ — 1 in
a feasible solution. If ¢ = 1, we have U; = (. From now on, we assume i > 2
and treat the base case i = 1 at the end. So the set U; \ [1,max{1,i — k — 1}]
will uniquely determine U;. We know that U; cannot include any students with
initial label [k + 4,|S]] since students of labels > k + ¢ must be assigned to
positions i or later. So the only uncertainty remaining is which elements in
[max{1,i—k}, min{|S|,i+k—1}]\{u;} make up the set U;\ [1, max{1,i—k—1}].
We may determine all possible candidates for U; \ [17 max{1,i—k— 1}} by trying
all permutations of [max{1,i — k},min{|S|,i + k — 1}] \ {u;} that move each
student no more than k positions from its input label, which is exactly the set
Fin,.

Feasible and Compatible Subproblems. Next, we define S; = {(ul, Ui, vj,)
u; € [max{1,i—k}, min{|S|,i+k}],U; \ [1, max{1,i—k —1}] € F} ,,vj, € QU
{O}} The set S; represents the search space for all possible vectors (u;, Us, vj,)

given that u; is assigned to position i. Note that u; is required to be within k
positions of i by the k-near constraint. So we encoded this constraint into S;.
To account for the possibility that the i weakest students answer no questions
correctly, we allow v;, to be in position 0, which we take to mean that U; U {u;}
gave wrong answers to all questions.

Now, we define Ri—l,ui,Uiﬂ’ji = {(Uiflv Uifl,’l)ji_l) € S;i_1 : Vj;_y <
vj,, Ui = {u;—1} UU;_1}. The set Ri_1,u;,U;,0;, represents the search space for
smaller subproblems that are compatible with the subproblem (,u;,U;,v;,).
More precisely, given that u; is assigned to position i, U; is the set of students

344 Y. Jiao et al.

assigned to the weakest ¢ — 1 positions, and v;, is the hardest question
correctly answered by U; U u;, the set of subproblems of the form (i — 1,
u;—1,U;—1,v5,_,) which do not contradict the aforementioned assumptions
encoded by (¢, u;, U;,vj,) are exactly those whose (w;—1,U;—1,v;, ,) belongs to
Rifl,ui,Ui,vji- We illustrate compatibility in Fig. 3.

Weakest 1 ® 1 Easiest Weakest 1 @ 1 Easiest
: € Ui—l :
i—-k -2 Ui-1 @
: tabl ® Vjia i—-k -1 . Vjia
Ug > i—1 ermutable :
' excepti—1° m u - i @4
]) ® v : Vi
i+k—1 . : Ptk :
. & Ui—l ¢ Ui
Strongest |S| @ @ |Q| Hardest Strongest |S| @ |Q| Hardest

Fig.3. Subproblem (i — 1,u;—1,Ui—1,v5_,) is compatible with subproblem
(2, us, Us, vj;) if and only if vj, , is no harder than v;, and U; = {u;—1}UU;_1. The cost
of (i,us, Ui, vj;;) is the sum of the minimum cost among feasible compatible subprob-
lems of the form (¢ — 1,u;—1,Ui—1,v;,_,) and the minimum number of edits incident
to u; to make its neighborhood exactly {1,...,v;,}.

The Dynamic Program. Finally, we define Cu;,v;, to be the smallest number
of edge edits incident to wu; so that the neighborhood of w; becomes exactly
{1, v} dee ey, = [Na(ui) A{1, ..., v), }|. We know that ¢y, ,; is part of
the cost within C(4, u;, U;, v;,) since vj, is the hardest question that U; U {u;} is
assumed to answer correctly and u; is a stronger student than those in U; who
are in the positions before i. We obtain the following recurrence.

C(i,us, Ui, vj,) = min {Ci—1,uim1, Uimr, 05,) HCuy o,
(wi—1,Ui—1,v5,_1)€ERi—1,u;,U

Y5,

The base cases are C(1,u1,Us,v;,) = |[Ng(ui)A{1,...,v;, }| if v;, >0, and
C(1,u1,U1,v5,) = |Ng(u1)| if vj, =0 for all ug € [1,1+ k], v;, € QU {0}.

By definition of our subproblems, the final solution we seek is
min(u\8|7U|S\7'Uj‘S|)ES\S\ O(|S"U\S|’Ulsl’vj|5\)'
Running Time. Now, we bound the run time of the dynamic program. Note
that before running the dynamic program, we build the sets P ., Fiu,, S:
Rifl,ui,Ui,vji to ensure that our solution obeys the k-near constraint and that
the smaller subproblem per recurrence is compatible with the bigger subproblem
it came from. Generating the set P;,, takes (2k)! = O(k*) time per (i,u;).
Checking the k-near condition to obtain the set F;,, while building F; ,,, takes
k% time per (i,u;). So generating S; takes O(k - k*k? - |Q|) time per i. Knowing
Si—1, generating R;_1,u,,U,,v,, takes O(|S]) time. Hence, generating all of the sets
is dominated by the time to build U;<|s)S;, which is O(|S|k*k*|Q|) = O(n?k*T3).

Algorithms for Automatic Ranking 345

After generating the necessary sets, we solve the dynamic program. Each sub-
problem (¢, u;, U;, vj,) takes O(|Ri_17u“Ui,1,ji)| time. So the total time to solve the
dynamic program is O(Zies,(u“m,%)e& |Ri—l,ui,U7;,’L)_ji) = O(S|Sil[Si-1]) =
O(n(k - k¥ - n)?) = O(n3k2F+2). 0

Theorem 2 (Constrained k-near Addition). Constrained k-near Addition
can be solved in time O(n3k?*+2).

Theorem 3 (Unconstrained k-near Addition). Unconstrained k-near
Addition can be solved in time O(n3k?k*2).

Theorem 4 (Unconstrained k-near Editing). Unconstrained k-near Edit-
g s NP-hard.

Theorem 5 (Both k-near Editing). Both k-near Editing can be solved in
time O(n3k4*+4),

Theorem 6 (Both k-near Addition). Both k-near Addition can be solved in
time O(n3k4*+4).

We present the proofs of the above theorems in the full paper [16].

4 Conclusion

We proposed a new set of problems that arise naturally from ranking partic-
ipants and tasks in competitive settings and classified the complexity of each
problem. First, we introduced six k-near variants of the Chain Editing problem,
which capture the common scenario of having partial information about the final
orderings from past rankings. Second, we provided polynomial time algorithms
for five of the problems and showed NP-hardness for the remaining one.

Acknowledgments. This work was supported in part by the US National Science
Foundation under award numbers CCF-1527032, CCF-1655442, and IIS-1553547.

References

1. Agrawal, A., Klein, P., Ravi, R.: Cutting down on fill using nested dissection: prov-
ably good elimination orderings. In: George, A., Gilbert, J.R., Liu, J.W.H. (eds.)
Graph Theory and Sparse Matrix Computation, pp. 31-55. Springer, Heidelberg
(1993)

2. Andersen, R., Borgs, C., Chayes, J., Feige, U., Flaxman, A., Kalai, A., Mirrokni, V.,
Tennenholtz, M.: Trust-based recommendation systems: an axiomatic approach. In:
WWW, pp. 199-208. ACM (2008)

3. Aydin, B., Yilmaz, Y., Li, Y., Li, Q., Gao, J., Demirbas, M.: Crowdsourcing for
multiple-choice question answering. In: TAAI pp. 2946-2953 (2014)

4. Balas, E., Simonetti, N.: Linear time dynamic-programming algorithms for new
classes of restricted TSPs: a computational study. INFORMS J. Comput. 13(1),
56-75 (2000)

346

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Y. Jiao et al.

Bertsekas, D.P.: Non-linear Programming. Athena Scientific, Belmont (1999)
Bliznets, 1., Cygan, M., Komosa, P., Mach, L., Pilipczuk, M.: Lower bounds for
the parameterized complexity of minimum fill-in and other completion problems.
In: SODA, pp. 1132-1151 (2016)

Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. Algorithmica
75(1), 118-137 (2016)

Cao, Y., Sandeep, R.B.: Minimum fill-in: inapproximability and almost tight lower
bounds. CoRR abs/1606.08141 (2016). http://arxiv.org/abs/1606.08141

Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating conflicting data: the role
of source dependence. PVLDB 2(1), 550-561 (2009)

Drange, P.G., Dregi, M.S., Lokshtanov, D., Sullivan, B.D.: On the threshold of
intractability. In: ESA, pp. 411-423 (2015)

Feder, T., Mannila, H., Terzi, E.: Approximating the minimum chain completion
problem. Inf. Process. Lett. 109(17), 980-985 (2009)

Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum
fill-in. In: SODA, pp. 1737-1746 (2012)

Galland, A., Abiteboul, S., Marian, A., Senellart, P.: Corroborating information
from disagreeing views. In: WSDM, pp. 131-140. ACM (2010)

Gatterbauer, W., Suciu, D.: Data conflict resolution using trust mappings. In:
SIGMOD, pp. 219-230 (2010)

Gupta, M., Han, J.: Heterogeneous network-based trust analysis: a survey. ACM
SIGKDD Explor. Newsl. 13(1), 54-71 (2011)

Jiao, Y., Ravi, R., Gatterbauer, W.: Algorithms for automatic ranking of partici-
pants and tasks in an anonymized contest. CoRR abs/1612.04794 (2016). http://
arxiv.org/abs/1612.04794

Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion
problems on chordal, strongly chordal, and proper interval graphs. STAM J. Com-
put. 28(5), 1906-1922 (1999)

Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. JACM 46(5),
604-632 (1999)

Li, Q., Li, Y., Gao, J., Zhao, B., Fan, W., Han, J.: Resolving conflicts in heteroge-
neous data by truth discovery and source reliability estimation. In: SIGMOD, pp.
1187-1198 (2014)

Li, Y., Gao, J., Meng, C., Li, Q., Su, L., Zhao, B., Fan, W., Han, J.: A survey on
truth discovery. ACM SIGKDD Explor. Newsl. 17(2), 1-16 (2015)

Natanzon, A., Shamir, R., Sharan, R.: A polynomial approximation algorithm for
the minimum fill-in problem. STAM J. Comput. 30(4), 1067-1079 (2000)
Pasternack, J., Roth, D.: Knowing what to believe (when you already know some-
thing). In: COLING, pp. 877-885 (2010)

Pasternack, J., Roth, D.: Latent credibility analysis. In: WWW, pp. 1009-1021
(2013)

Pasternack, J., Roth, D., Vydiswaran, V.V.: Information trustworthiness. AAAI
Tutorial (2013)

Wu, Y.L., Austrin, P., Pitassi, T., Liu, D.: Inapproximability of treewidth, one-shot
pebbling, and related layout problems. J. Artif. Int. Res. 49(1), 569-600 (2014)
Yannakakis, M.: Computing the minimum fill-in is NP-complete. STAM J. Algebr.
Discret. Methods 2(1), 77-79 (1981)

Yin, X., Han, J., Yu, P.S.: Truth discovery with multiple conflicting information
providers on the web. TKDE 20(6), 796-808 (2008)

http://arxiv.org/abs/1606.08141
http://arxiv.org/abs/1612.04794
http://arxiv.org/abs/1612.04794

	Algorithms for Automatic Ranking of Participants and Tasks in an Anonymized Contest
	1 Introduction
	1.1 Motivation
	1.2 Problem Formulations
	1.3 Main Results

	2 Related Work
	3 Polynomial Time Algorithms for k-near Orderings
	4 Conclusion
	References

