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Artificial neural networks are computational network models inspired by signal processing in the brain. These models have
dramatically improved performance for many machine-learning tasks, including speech and image recognition. However,
today’s computing hardware is inefficient at implementing neural networks, in large part because much of it was designed
for von Neumann computing schemes. Significant effort has been made towards developing electronic architectures tuned
to implement artificial neural networks that exhibit improved computational speed and accuracy. Here, we propose a new
architecture for a fully optical neural network that, in principle, could offer an enhancement in computational speed and
power efficiency over state-of-the-art electronics for conventional inference tasks. We experimentally demonstrate the
essential part of the concept using a programmable nanophotonic processor featuring a cascaded array of 56 programmable
Mach–Zehnder interferometers in a silicon photonic integrated circuit and show its utility for vowel recognition.

C
omputers that can learn, combine and analyse vast amounts
of information quickly, efficiently and without the need for
explicit instructions are emerging as a powerful tool for hand-

ling large data sets. ‘Deep learning’ algorithms have received an
explosion of interest in both academia and industry for their
utility in image recognition, language translation, decision-making
problems and more1–4. Traditional central processing units
(CPUs) are suboptimal for implementing these algorithms5, and a
growing effort in academia and industry has been directed
towards the development of new hardware architectures tailored
to applications in artificial neural networks (ANNs) and deep learn-
ing6. Graphical processing units (GPUs), application-specific inte-
grated circuits (ASICs) and field-programmable gate arrays
(FPGAs)2,5,7–11, including IBM TrueNorth5 and Google TPU11,
have improved both energy efficiency and speed enhancement for
learning tasks. In parallel, hybrid optical–electronic systems that
implement spike processing12–14 and reservoir computing15–18 have
been demonstrated.

Fully optical neural networks (ONNs) offer a promising alterna-
tive approach to microelectronic and hybrid optical–electronic
implementations. ANNs are a promising fully optical computing
paradigm for several reasons. (1) They rely heavily on fixed
matrix multiplications. Linear transformations (and certain non-
linear transformations) can be performed at the speed of light and
detected at rates exceeding 100 GHz (ref. 19) in photonic networks
and, in some cases, with minimal power consumption20,21. For
example, it is well known that a common lens performs a Fourier
transform without any power consumption and that certain
matrix operations can also be performed optically without consum-
ing power. (2) They have weak requirements on nonlinearities.
Indeed, many inherent optical nonlinearities can be directly used
to implement nonlinear operations in ONNs. (3) Once a neural
network is trained, the architecture can be passive, and computation
on the optical signals will be performed without additional energy
input. These features could enable ONNs that are substantially
more energy-efficient and faster than their electronic counterparts.
However, implementing such transformations with bulk optical
components (such as fibres and lenses) has been a major barrier

so far because of the need for phase stability and large neuron
counts22. Integrated photonics addresses this problem by providing
a scalable solution to large, phase-stable optical transformations23.

Here, we begin with a theoretical proposal for a fully optical
architecture for implementing general deep neural network algor-
ithms using nanophotonic circuits that process coherent light.
The speed and power efficiency of our proposed architecture is
largely enabled by coherent, fully optical matrix multiplication
(a cornerstone of neural network algorithms). Under the assump-
tion of practical, centimetre-scale silicon photonic die sizes and
low waveguide losses, we estimate that such an ONN would
enable forward propagation that is at least two orders of magnitude
faster than state-of-the-art electronic or hybrid optical–electronic
systems, and with a power consumption that is nearly proportional
(instead of quadratic, as in electronics) to the number of neurons
(for more details see the discussion about scaling in the Methods).
Next, we experimentally demonstrate the essential component of
our scheme by embedding our proposed optical interference unit
(OIU) and diagonal matrix multiplication unit within a subset of
the programmable nanophotonic processor (PNP), a photonic inte-
grated circuit developed for applications in quantum information pro-
cessing23. To test the practical performance of our theoretical
proposal, we benchmarked the PNP on a vowel recognition
problem, which achieved an accuracy comparable to a conventional
64-bit computer using a fully connected neural network algorithm.

ONN device architecture
An ANN1 consists of a set of input artificial neurons (represented
as circles in Fig. 1a) connected to at least one hidden layer and
the output layer. In each layer (depicted in Fig. 1b), information
propagates by a linear combination (for example, matrix multi-
plication) followed by the application of a nonlinear activation
function. ANNs can be trained by feeding training data into the
input layer and then computing the output by forward propa-
gation; matrix entries (weights) are subsequently optimized using
back propagation24.

The ONN architecture is depicted in Fig. 1b,c. As shown in
Fig. 1c, the task (an image, a vowel or a sentence to be recognized)
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is first preprocessed to a high-dimensional vector on a computer
with a standard algorithm (this step is computationally inexpensive
compared with inference). The preprocessed signals are then
encoded in the amplitude of optical pulses propagating in the
photonic integrated circuit, which implements a many-layer
ONN. Each layer of the ONN is composed of an OIU that
implements optical matrix multiplication and an optical nonlinear-
ity unit (ONU) that implements the nonlinear activation. In prin-
ciple, the ONN can implement an ANN of arbitrary depth and
dimensions fully in the optical domain.

To realize an OIU that can implement any real-valued matrix, we
first note that a general, real-valued matrix (M) may be decomposed
asM=UΣV† through singular value decomposition (SVD)25, where
U is an m ×m unitary matrix, Σ is an m × n rectangular diagonal
matrix with non-negative real numbers on the diagonal and V† is
the complex conjugate of the n × n unitary matrix V. It has been
shown theoretically that any unitary transformations U,V† can be
implemented with optical beamsplitters and phase shifters26,27.
Finally, Σ can be implemented using optical attenuators—optical
amplification materials such as semiconductors or dyes could also
be used28. Matrix multiplication with unitary matrices implemented
in the manner above consumes, in principle, no power. The fact that
a major proportion of ANN calculations involve matrix products
enables the extreme energy efficiency of the ONN architecture
presented here.

The ONU can be implemented using common optical non-
linearities such as saturable absorption29–31 and bistability32–36,
which have all been demonstrated previously in photonic circuits.
For an input intensity Iin , the optical output intensity is given by
a nonlinear function Iout = f(Iin)

37. In this Article, we will consider
an f that models the mathematical function associated with a
realistic saturable absorber (such as a dye, semiconductor or
graphene saturable absorber or saturable amplifier) that could, in
future implementations, be directly integrated into waveguides
after each OIU stage of the circuit. For example, graphene layers
integrated on nanophotonic waveguides have already been

demonstrated as saturable absorbers38. Saturable absorption is mod-
elled as29 (Supplementary Section 2)

στsI0 =
1

2

ln (Tm /T0)

1 − Tm

(1)

where σ is the absorption cross-section, τs is the radiative lifetime of
the absorber material, T0 is the initial transmittance (a constant that
only depends on the design of the saturable absorbers), I0 is the inci-
dent intensity and Tm is the transmittance of the absorber. Given an
input intensity I0 , one can solve for Tm(I0) from equation (1) and
the output intensity can be calculated as Iout = I0·Tm(I0). A plot of
the saturable absorber’s response function Iout(Iin) is shown in
Supplementary Section 2.

A schematic diagram of the proposed fully optical neural
network is shown in Fig. 1d.

Experiment
We evaluated the practicality of our proposal by experimentally
implementing a two-layer neural network trained for vowel recog-
nition. To prepare the training and testing data sets, we used 360
data points, each consisting of four log area ratio coefficients39 of
one phoneme. The log area ratio coefficients, or feature vectors, rep-
resent the power contained in different logarithmically spaced fre-
quency bands and are derived by computing the Fourier
transform of the voice signal multiplied by a Hamming window
function. The 360 data points were generated by 90 different
people speaking four different vowel phonemes40. We used half of
these data points for training and the remaining half to test the per-
formance of the trained ONN. We trained the matrix parameters
used in the ONN with the standard back-propagation algorithm
using a stochastic gradient descent method41 on a conventional
computer. Further details on the data set and back-propagation pro-
cedure are included in Supplementary Section 3.

The OIU was implemented using a PNP23—a silicon photonic
integrated circuit fabricated in the OPSIS foundry42. This was
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Figure 1 | General architecture of the ONN. a, General artificial neural network architecture composed of an input layer, a number of hidden layers and an

output layer. b, Decomposition of the general neural network into individual layers. c, Optical interference and nonlinearity units that compose each layer of

the artificial neural network. d, Proposal for an all-optical, fully integrated neural network.
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composed of 56 programmable Mach–Zehnder interferometers
(MZIs), each of which comprised a thermo-optic phase shifter43

(θ) between two 50% evanescent directional couplers, followed by
another phase shifter (ϕ). The MZI splitting ratio was controlled
with an internal phase shifter (Fig. 2d) and the differential output
phase was controlled with the external phase shifter.

Unitary matrices with rank N (including U,V considered here)
can be decomposed into sets of SU(2) rotations implemented by
cascaded programmable MZIs27 (Supplementary Section 2). The
highlighted region of the circuit in Fig. 2c, in particular, implements
an arbitrary SU(4) transformation.

Diagonal matrices of dimension N, such as Σ, can be
implemented as shown by the blue-highlighted region of the PNP
in Fig. 2c. Each of the four output ports of the SU(4) core is
coupled to an MZI, which can be programmed to rotate light to
an untracked mode. Each entry of Σ is programmed by solving for
θ, which gives Σii = sin(θi/2).

We used four instances of the OIU to realize the following matrix
transformations in the spatial-mode basis: (1) U(1)Σ(1), (2) V(1),
(3) U(2)Σ(2) and (4) V(2). Transformations (1) and (2) realize the
first matrix M(1), and (3) and (4) implement M

(2). Given the
number of MZI columns we have currently, we could only
implement U and Σ on a single pass through the chip. With a
larger or specially purposed chip, one could straightforwardly
include the full matrix decomposition. The measured fidelity
(defined in equation (2) in the Methods) for the 720 OIU instances

used in the experiment was 99.8 ± 0.003, corresponding to ∼2.24%
measurement uncertainty for each output port (see Methods for
further details).

As shown in Fig. 2a,b, we reprogrammed the PNP to realize all of
the required OIUs and simulated the nonlinear transfer function of
a saturable absorber (equation (1)) on a computer. This proof-
of-concept demonstration required photodetection and re-injection
of light into the PNP modes between the layers of the neural
network. However, given the compactness of the required section
of the PNP, all five layers of the PNP could be integrated on a
chip less than a centimetre in length.

After programming the nanophotonic processor to implement
our ONN architecture, which consisted of four layers of OIUs
with four neurons in each layer (requiring training of a total of
4 × 6 × 2 = 48 phase shifter settings), we evaluated it on the vowel
recognition test set. Our ONN correctly identified 138/180 cases
(76.7%, see Methods for more details on the repeatability of measure-
ment), compared to the correctness of 165/180 (91.7%) computed
with a conventional 64-bit digital computer. The difference between
the ONN and the digital computed results is mainly caused by the
difference in their computational resolution. As can be seen from
Fig. 3a,b, both systems are good at classifying vowels A and B, but
even the 64-bit computer had some difficulty classifying C and D,
showing that these two vowels are relatively close in the parameter
space we used (Fig. 3d). As a result, our ONN has even more
misclassification on these two vowels due to its limited resolution.
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Figure 2 | Illustration of OIU. a, Schematic representation of our two-layer ONN experiment. The programmable nanophotonic processor is used four times

to implement the deep neural network protocol. After the first matrix is implemented, a nonlinearity associated with a saturable absorber is simulated in

response to the output of layer 1. b, Experimental feedback and control loop used in the experiment. Laser light is coupled to the OIU, transformed,

measured on a photodiode array, and then read on a computer. c, Optical micrograph illustration of the experimentally demonstrated OIU, which realizes

both matrix multiplication (highlighted in red) and attenuation (highlighted in blue) fully optically. The spatial layout of MZIs follows the Reck proposal27,

enabling arbitrary SU(4) rotations by programming the internal and external phase shifters of each MZI (θi, ϕi). d, Schematic illustration of a single phase

shifter in the MZI and the transmission curve for tuning the internal phase shifter. DMMC, diagonal matrix multiplication core.
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Discussion
Resolution analysis. As with digital floating-point computations,
values are represented to a number of bits of precision. The finite
dynamic range and noise in the optical intensities result in effective
truncation errors in our ONN. The computational resolution of
ONNs is limited by practical non-idealities, including (1) thermal
crosstalk between phase shifters in interferometers, (2) optical
coupling drift, (3) the finite precision with which an optical phase can
be set (16 bits in our case), (4) photodetection noise and (5) finite
photodetection dynamic range (30 dB in our case). Photodetection
and phase encoding are the dominant sources of error in our
experimental set-up. A detailed analysis of finite precision and
low-flux photon shot noise is provided in Supplementary Section 1.

To understand the role of phase-encoding noise and photodetec-
tion noise in our ONN hardware architecture, we numerically simu-
lated the performance of our trained matrices with varying degrees
of phase-encoding noise (σΦ) and normalized photodetection noise
(σD) (for detailed simulation steps see Methods). In this experiment,
σD ≃ 0.1%. The simulated distribution of correctness percentage
versus σΦ and σD , plotted in Fig. 3c, indicates the tradeoff
between encoding and photodetector noise that currently limits
our experimental correctness to 76.7%. In experiments on individ-
ual MZIs, we obtained far lower noise values, σΦ→ 5 × 10–3

(Supplementary Sections 1 and 7), which would result in a correct-
ness of 90% (comparable to a digital computer at 91.7%). We attri-
bute the additional excess noise in the full ONN to thermal
crosstalk, which can be compensated in future experiments through
additional calibration steps, or reduced altogether by adding
thermal isolation trenches. Moreover, in a static ONN fabricated
only for inference, thermal crosstalk would be eliminated. Even
after these steps, any finite encoding error may still limit the effec-
tiveness of the training step, that is, the optimality of the ONN par-
ameters obtained by conventional back propagation. In these cases,
generally slower, but more error-tolerant simulated annealing algor-
ithms44 could be used to train a more error-tolerant parameter set.

Computation speed and energy efficiency. Processing big data at
high speeds and with low power is a central challenge in the field
of computer science. Slow forward propagation and large power
consumption limits the applications of ANNs in many fields,
including self-driving cars, which require high speed and parallel
image recognition.

Our ONN architecture takes advantage of high-detection-rate,
high-sensitivity photon detectors to enable high-speed, energy-
efficient neural networks compared to state-of-the-art electronic
computer architectures. Once all parameters have been trained
and programmed on the nanophotonic processor, forward-
propagation computing is performed optically on a passive system. In
our implementation,maintaining the phasemodulator settings requires
some (small) power of ∼10 mW per modulator, on average. However,
in future implementations, the phases could be set with nonvolatile
phase-change materials45, which would require no power to maintain.
With this change, the total power consumption would be limited only
by the physical size, the spectral bandwidth of dispersive components
(THz) and the photodetection rate (100 GHz). In principle, such a
system can be at least two orders of magnitude faster than electronic
neural networks (which are restricted to a GHz clock rate). In addition,
the ONN could have significantly lower latency (the time it takes from
receiving input signals to computing an inference result) than electronic
digital computers; this could be very useful for applications that require
fast response times (such as autonomous driving or missile tracking).
Assuming our ONN has N nodes, implementing m layers of N ×N
matrix multiplication and operating at a typical 100 GHz photodetec-
tion rate, these transformations correspond to 1011 N-dimensional
matrix-vector multiplications in one second. Because the number of
operations required to execute N-dimensional matrix-vector multipli-
cations on a conventional digital computer scales as O(N2), the
number of operations (floating point operations, or FLOPs) per
second to match the optical network would be given by

R = 2m × N2 × 1011FLOPs
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ONN power consumption during computation is dominated by the
optical power necessary to trigger an optical nonlinearity and
achieve a sufficiently high signal-to-noise ratio (SNR) at the photo-
detectors (assuming shot-noise-limited detection on n photons per
pulse, SNR ≃

����

1/n
√

). We assume a saturable absorber threshold of
p ≃ 1 MW cm–2, which is valid for many dyes, semiconductors
and graphene29,30. Because the cross-section for the waveguide is
A = 0.2 × 0.5 μm2, the total power needed for forward propagation is
estimated to be P ≈NmW. Therefore, the energy per FLOP of the
ONN will scale as R/P = 2m×N× 1014 FLOPs J−1 (or P/R = 5/mN fJ
per FLOP). Almost the same energy performance and speed can
be obtained if optical bistability32,35,46 is used instead of saturable
absorption as the enabling nonlinear phenomenon. Even for small
ONNs, this power efficiency is already at least five orders of magni-
tude better than conventional GPUs, where P/R ≈ 100 pJ per FLOP
(shown in fig. 1.1.8 of ref. 47), or at least three orders of magnitude
better than an ‘ideal’ (see Method for a detailed definition of ‘ideal’)
electronic computer, where P/R≈ 1 pJ per FLOP assuming low-energy
operations (by doing a 16 bit FLOP instead of the conventional
64 bit FLOP) and locality (no energy is used on data movement).
Note that conventional image recognition tasks require tens of millions
of training parameters and thousands of neurons (mN ≈ 105)
(ref. 4). These considerations suggest that the ONN approach may
be far more efficient than conventional computers for standard
problem sizes. In fact, the larger the neural network, the bigger
the advantage of using optics: this arises largely from the fact
that evaluating an N ×N matrix in electronics requires O(N2)
energy, whereas in optics it requires in principle no energy.
Further details on power efficiency calculations are provided in
Supplementary Section 3.

On-chip training. ONNs can also enable new ways to train ANN
parameters. On a conventional computer, parameters are trained
with back propagation and gradient descent. However, for certain
ANNs where the effective number of parameters substantially
exceeds the number of distinct parameters (including recurrent
neural networks (RNNs) and convolutional neural networks
(CNNs)), training using back propagation is notoriously
inefficient. Specifically, the recurrent nature of RNNs makes them
effectively an extremely deep ANN (depth = sequence length),
while in CNNs the same weight parameters are used repeatedly in
different parts of an image for extracting features. Here, we
propose an alternative approach to directly obtain the gradient of
each distinct parameter without back propagation, using forward
propagation on an ONN and the finite difference method. It is
well known that the gradient for a particular distinct weight
parameter ΔWij in an ANN can be obtained with two forward-
propagation steps that compute J(Wij) and J(Wij + δij), followed
by the evaluation of ΔWij = (J(Wij + δij) – J(Wij))/δij (this step
only takes two operations). On a conventional computer, this
scheme is not favoured because forward propagation (evaluating
J(W)) is computationally expensive. In an ONN, each forward-
propagation step is computed in a constant time (limited by the
photodetection rate, which can exceed 100 GHz)19, with a power
consumption that is only proportional to the number of neurons,
making the above scheme tractable and capable of being executed
at rates similar to or faster than conventional back propagation in
some cases of interest (for example, very deep RNNs).
Furthermore, with this on-chip training scheme, one can readily
parameterize and train unitary matrices, an approach known to be
particularly useful for deep neural networks48. As a proof of
concept, we carried out the unitary-matrix-on-chip training scheme
for our vowel recognition problem (Supplementary Section 4).

Scaling up the ONN. Regarding the physical size of the proposed
ONN, current technologies should be capable of realizing ONNs

exceeding the 1,000-neuron regime. Photonic circuits with up to
4,096 optical devices have been demonstrated49. Three-
dimensional photonic integration could enable even larger ONNs
by adding another (vertical) spatial degree of freedom50.
Furthermore, by feeding in input signals (for example, an image)
via multiple patches over time (instead of all at once)—an
algorithm that has been increasingly adopted by the deep learning
community51—the ONN should be able to realize much bigger
effective neural networks with a relatively small number of
physical neurons.

Conclusion
The proposed architecture could be applied to other ANN algor-
ithms where matrix multiplications and nonlinear activations are
heavily used, including CNNs and RNNs. Furthermore, the superior
forward-propagation speed and power efficiency of our ONN can
potentially allow the neural network to be trained directly on the
photonics chip, using only forward propagation. Finally, it needs
to be emphasized that another major portion of power dissipation
in current neural network architectures is associated with data
movement—an outstanding challenge that remains to be addressed.
However, recent dramatic improvements in optical interconnects
using integrated photonics technology has the potential to signifi-
cantly reduce this energy cost52. Further integration of optical inter-
connects and optical computing units needs to be explored to realize
the full advantage of all-optical neural networks.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Fidelity analysis. We evaluated the performance of the SU(4) core with the fidelity
metric

f =
∑

i

����

piqi
√

(2)

where pi, qi are experimental and simulated (on a 64-bit electronic computer)
normalized (Σixi = 1 where x ∈ {p, q}) optical intensity distributions across the
waveguide modes, respectively. Assuming pi = qi + εi, where εi = qi is the error (note
Σiεi = 0), we have f =

∑

i qi
�������������

(1 + (εi /qi))
√

≈

∑

i qi(1 + (εi /2qi) − (ε2i /4q
2
i )) = 1

+ (1/2)
∑

i εi − (1/4)
∑

i (ε
2
i /q

2
i ) = 1 − (1/4)

∑

i (ε
2
i /q

2
i ). Given that f = 0.998, we

have |
∑

i (ε
2
i /q

2
i )| = 0.008. Assuming qi ≈ 0.25 (uniform output power distribution),

then
∑

i ε
2
i ≈ 0.0005. Finally, because our system performs the calculation in the

amplitude of signal (
��

pi
√

and
��

qi
√

), our experimental error for each output port of
the SU(4) core is on the order of

δ = |
��

pi
√

−

��

qi
√ | ≈

����

ε2i
4qi

√

≈ 0.0112

and the percentage error for each output port is approximately (δ/
��

qi
√

) = 2.24%.

Simulation method for noise in ONN. We carried out the following steps to
numerically simulate the performance of our trained matrices with varying degrees
of phase encoding (σΦ) and detection (σD) noise:

(1) For each of the four trained 4 × 4 unitary matrices Uk, we calculate a set {θki ,f
k
i }

that encodes the matrix.
(2) We add a set of random phase-encoding errors, {δθki ,δf

k
i } to the old calculated

phases {θki ,f
k
i }, where we assume each δθki and δf

k
i is a random variable sampled

from a Gaussian distribution G(μ,σ) with μ = 0 and σ = σΦ. We obtain a new set
of perturbed phases {θk′i ,f

k′
i } = {θki + δθki ,f

k
i + δfk

i }.
(3) We encode the four perturbed 4 × 4 unitary matrices Uk′ based on the new

perturbed phases {θk′i ,f
k′
i }.

(4) We carry out the forward-propagation algorithm based on the perturbed
matrices Uk′ with our test data set. During forward propagation, every time a
matrix multiplication is performed (let us say when we compute v� = Uk′ · u�),
we add a set of random photodetection errors δv

�
to the resulting v�, where we

assume each entry of δv
�

is a random variable sampled from a Gaussian
distribution G(μ,σ) with μ = 0 and σ = σD·|v|. We obtain the perturbed
output vector v�′

= v� + δv
�

.

(5) With the modified forward propagation scheme above, we calculate the
correctness percentage for the perturbed ONN.

(6) Steps (2) to (5) are repeated 50 times to obtain the distribution of correctness
percentage for each phase-encoding noise (σΦ) and photodetection noise (σD).

Scaling of power consumption. A shallow exponential scaling caused by
propagation loss is applied to the power consumption estimation. Propagation
through the chip is dominated by waveguide scattering losses, which have been
shown experimentally to be as low as 0.3 dB cm–1 (ref. 20). Given this propagation
loss, a single MZI would have a transmission of (10–0.3/10)1/100 = 0.9993, assuming
that there are 100 MZIs per cm (that is, a conservative MZI length of 100 μm). In
other words, if our neural network had 1,000 neurons (a useful size for commonly
used neural networks), then the loss through the entire chip would be ∼50%. This
loss is negligible when the energy efficiency improvement for the ONN is orders of
magnitude better than that of electronic neural networks. Furthermore, 0.3 dB cm–1

is not the fundamental limit of optical losses, and it can be improved by better
fabrication. In summary, for mid-sized ONNs, the exponential loss due to optical
scattering is negligible, so the linear approximation of energy consumption in the
matrix multiplication applies.

Repeatability of measurement. To assess the repeatability of the experiment we
carried out the entire testing run three times. The reported result (76.7% correctness
percentage) is associated with the best calibrated run (highest measured fidelity).
The other two less calibrated runs exceeded 70% correctness. For further discussion
on enhancing the correctness percentage see Supplementary Section 6).

‘Ideal’ benchmark of electronic computing. To further illustrate this ‘ideal’
benchmark (1 pJ per FLOP), it is the minimum power needed for 45 nm
technology-based electronic transistors to perform FLOPs (such as additions and
multiplications). Note, here, that we do not count the power used for memory access
and interconnects. Achieving this 1 pJ per FLOP performance requires a very
specific combination of very low energy operations and extreme locality. Current
machines (even GPUs) cannot yet do this, because they are designed to maximize
performance and do not yet leverage locality as much as they could. For example, the
best GPU now (NVIDIA TITAN X) has a power efficiency of 100 pJ per FLOP,
which is still two orders of magnitude away from the efficiency limit we consider
(1 pJ per FLOP).

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding authors upon
reasonable request.
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