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I. INTRODUCTION

Recent work has shown that lightweight
virtualization like Docker containers can be used in
HPC to package applications with their runtime
environments [1]. In many respects, applications in
containers perform similarly to native applications [2,
3]. Other work has shown that containers can have
adverse effects on the latency variation of
communications with the enclosed application [4].
This latency variation may have an impact on the
performance of some HPC workloads, especially

those dependent on synchronization between
processes [5].

In this work, we measure the latency
characteristics of messages between Docker

containers, and then compare those measurements to
the performance of real-world applications. Our
specific goals are to:

e Measure the changes in mean and variation of
latency with Docker containers

e Study how this affects the synchronization time
of MPI processes

e Measure the impact of these factors on real-
world applications such as the NAS Parallel
Benchmark (NPB).

1II. METHODOLOGY

Typical Docker applications use the Linux bridge
or Open vSwitch to direct traffic between network
interfaces and applications in containers. To
understand how applications are affected by both the
software bridge and the container itself, we
established four environments to conduct each
benchmark:
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e native — native application with normal access
to the network

e bridged — native application using a veth
interface attached to a Linux bridge

e direct — Docker application with physical
interface directly assigned to the container

e docker — Docker application using a veth
interface attached to a Linux bridge

1II. MICROBENCHMARKS

We measured the mean latency imposed by the
test environments by conducting a ping-pong test
between two MPI processes on separate nodes. We
placed the receive side of the test in the test
environment, while the sender ran natively to avoid
doubling the effect. As shown in Fig. 1, native had
the highest mean latency, while tests using extra
software layers of the Linux bridge and veth interface
(bridge and docker) had lower means than direct
interface access.
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Fig. 1. Mean round trip time of MPI pingpong test.
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Fig.2. 1%,25" 50", 75" 99" percentiles of send-side gap variation.
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Fig. 4. Mean time to synchronize 8 nodes.

To measure the latency variation, we send a
constant rate stream of messages between MPI
processes on separate nodes. To help determine
where variation occurs, we further divide the tests
into send-side and receive-side variation. We then

calculate and report this inter-message spacing in
Figs. 2 and 3.

On the sending side, using the Linux bridge
seemed to decrease latency variance. On the
receiving side, however, the opposite seems to be
true; the Linux bridge increased the latency variance.
However, a Docker container had the effect of
decreased variance in both network configurations.

IV. SYNCHRONIZATION

For these tests, we measured the time required for
8 MPI processes on separate nodes to synchronize to
an MPI Barrier() call. Unlike the microbenchmarks,
all nodes were under the testing environment. We
report the mean and distribution of times in Figs. 4
and 5.
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Fig. 3. 1%,25™ 50™, 75", 99™ percentiles of receiver-side gap variation.
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Fig.5. 1%, 25™ 50™ 75M 99t percentiles of synchronization time variation.

As opposed to the microbenchmarks, native and
direct had lower means and variation, while
measurements in environments using the Linux
bridge were more variable.

We also observe that the environments using
containers have a higher mean synchronization time,
despite the lower receive-side latency variation and
equivalent mean and send-side latency variation of
the microbenchmarks.
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Fig. 6. Normalized comparison of data transfer characteristics.
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Fig. 8. Percent difference from native for NPB benchmarks.

V. APPLICATION BENCHMARKS

We ran the NAS Parallel Benchmark with seven
of the nine benchmarks compiled with problem sizes
appropriate for a 160 core cluster. First, we measured
the total number of packets that were transmitted
between nodes for each program, then ran 30
iterations of each benchmark with processes
distributed evenly across eight nodes.

To estimate how dependent each benchmark is on
communications, we compare each benchmark’s
mean packet size and transmission rate as compared
to native run times in Fig. 6. To estimate the impact
of each environment on runtime, we compare each
test’s min, max, mean, and difference from native
mean in Figs. 7 and 8.

As with the synchronization tests, bridge and
docker added a significant amount to the mean and
variation on BT, CG, LU, and SP. We observe that
tests with lower packet transmission rates are less
affected by the bridge and veth interface.
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Fig. 7. Minimum, mean, and maximum runtimes of NPB benchmarks.
300% Hbridge direct docker
250%
200%
150%
100%
50% I
0% - .
BT CG EP FT IS LU SP

V1. DISCUSSION

Although we observed in the microbenchmarks
that the Linux bridge and veth interface lowered the
mean and sender-side variation of message latency
between MPI applications, we saw that
synchronization time increased for the same test
environments. Furthermore, we see that application
benchmarks that send many packets per second are
more affected by the extra software switch than those
with direct access to the network interface.

We hypothesize that a buffer in the bridge or veth
software layers may be small enough to cause packets
to be dropped, causing TCP resends to occur and
lower the overall performance of applications that
send bursts of packets. This would explain the
performance drops for MPI Barrier and the NPB
benchmarks BT, CG, LU, and SP when the Linux
bridge is used.
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