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Abstract

Under previous reconstructions of late Pliocene boundary conditions, climate models
have failed to reproduce the warm sea surface temperatures reconstructed in the North
Atlantic. Using a reconstruction of mid-Piacenzian paleogeography that has the Bering
Strait and Canadian Arctic Archipelago Straits closed, however, improves the simulation
of the proxy-indicated warm sea surface temperatures in the North Atlantic in the
Community Climate System Model. We find that the closure of these small Arctic
gateways strengthens the Atlantic Meridional Overturning Circulation, by inhibiting
freshwater transport from the Pacific to the Arctic Ocean and from the Arctic Ocean to
the Labrador Sea, leading to warmer sea surface temperatures in the North Atlantic. This
indicates that the state of the Arctic gateways may influence the sensitivity of the North
Atlantic climate in complex ways, and better understanding of the state of these Arctic
gateways for past time periods are needed.

1 Introduction

Data reconstructions and Pliocene Model Intercomparison Project Phase 1
[PlioMIP1] climate model simulations of the Pliocene sea surface temperatures (SSTs),
specifically during the mid-Piacenzian [mP, 3.264 — 3.025 Ma], are in good agreement in
most regions except at sites in the North Atlantic [Dowsett et al., 2013]. Higher levels of
ocean heat transport, based on micropaleontological evidence [Dowsett et al., 1992] and
carbon isotopic composition of marine organic matter [Raymo et al., 1996], have been
invoked to explain the origin of this Pliocene warmth, but coupled climate models have
failed to consistently reproduce the magnitude or agree even on the sign of the change in
the Atlantic Meridional Overturning Circulation (AMOC) [Haywood and Valdes, 2004;
Zhang et al., 2013]. Furthermore, an alternate explanation, which invokes the higher
reconstructed concentrations of atmospheric carbon dioxide (CO,) during the Pliocene
[Budyko et al., 1985; Crowley, 1991], is also not sufficient and calls into question
whether coupled climate models adequately simulate polar amplification.

Experiments have also explored the AMOC responses to replacing the Barents
Sea with land [Hill, 2015], a deepening of the sills along the eastern and western limbs of
the Greenland-Scotland-Iceland ridge [Robinson et al., 2011], and an extended drainage
basin of the Hudson Bay and Baltic rivers [Hil/l, 2015]. Among these changes, only
changes to the Greenland-Scotland-Iceland ridge have led to a significant strengthening
of the AMOC. A new reconstruction of mP paleogeography [Dowsett et al., 2016]
includes closure of the Bering and Canadian Arctic Archipelago Straits. The impacts of
the representation of these gateways and influences on pathways of present-day ocean
currents have been investigated with ocean-only [e.g. Wadley and Bigg, 2002] and
coupled ocean-sea ice models [e.g. Komuro and Hasumi, 2005]. Recent studies have also
investigated the climate-system response to the closure of Bering Strait [e.g. Hu et al.,
2015]. However, the climate response to both ocean gateways closed during the Pliocene
has yet to be explored.

Here we conduct a series of medium-resolution, coupled atmosphere-ocean-sea
ice-land simulations to better understand the North Atlantic climate response (particularly
the AMOC and sea-surface temperature field) to the configuration of open and closed
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ocean gateways in the Bering Strait and the Canadian Arctic Archipelago. We quantify
the changes to freshwater transport to the North Atlantic with closure of these gateways
and subsequent impacts on the AMOC. The new simulation compares favorably to proxy
reconstructions of North Atlantic temperatures. This is important, as the mP warm period
has been suggested as a geologic example for the long-term response of the future Earth
to present levels of global atmospheric CO,.

2 Model and Experimental Design

To identify the sensitivity of the late Pliocene climate to uncertainties in
reconstructions of the Arctic Ocean gateways, we conducted five coupled climate
simulations with the Community Climate System Model version 4 (CCSM4) [Methods,
Text S1] [Gent et al., 2011]. The baseline Pliocene simulation uses the standard
PlioMIP1 forcing protocol: atmospheric CO; set to 405 ppmv (parts per million by
volume) and the Pliocene Research, Interpretation, and Synoptic Mapping, Version 3
(PRISM3) vegetation, ice sheets, and topography [Haywood et al., 2011; Rosenbloom et
al., 2013]. The land-sea geography is kept at its modern configuration except for the
filling of Hudson Bay. The updated PRISM4 mP paleo-environmental reconstruction,
which considers change in dynamic topography associated with mantle flow and glacial
isostatic adjustment due to Piacenzian ice loading and will be used in PlioMIP2 (centered
on an interglacial peak MIS KM5c: 3.205 Ma), closes the Bering Strait (BS) and the
straits through the Canadian Arctic Archipelago (CAA: Northwest Passage and Nares
Strait) [Haywood et al., 2016b]. We conduct three sensitivity simulations, for comparison
to our baseline PlioMIP1 simulation and a preindustrial simulation [PI with 1850
conditions]: (1) only the BS closed, (2) only the CAA closed, and (3) both the BS and
CAA closed. The first two sensitivity simulations allow us to assess the linearity of the
effects of the individual straits on the Arctic and North Atlantic.

3 Proxy Reconstructions

The model simulations are compared to the reconstructions of North Atlantic SSTs
compiled by Dowsett et al., 2012, 2013 (Table S1). The confidence level of the proxy-
data records were evaluated by these authors based on semi-quantitative measure of
confidence accounting for quality of the age control of the samples at each site, number
of samples at each site, fossil preservation and abundance, reliability of proxy method or
technique used; we retain only records with high to very high confidence level in this
study. The model-proxy comparison is conducted on the anomalies of the simulated
Pliocene and preindustrial temperatures. In order to ensure the consistency of model-
proxy data comparison, published proxy anomalies (reference to modern) are corrected
with preindustrial minus present-day anomalies (Rayner et al., 2003; Reynolds et al.,
2002).

4 Results

4.1 Impacts of closing Arctic gateways on North Atlantic Ocean

CCSM4 reasonably reproduces observed SST and sea surface salinity (SSS) in the
North Atlantic with warm and saline conditions extending across the basin south of
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~45°N and northward into the eastern Greenland-Iceland-Norwegian (GIN) Sea (Fig. S1).
Cold and fresher conditions extend from the Fram Strait southward along the eastern
Greenland coast to the Labrador Sea. The baseline PlioMIP1 simulation is warmer and
saltier in the North Atlantic than the PI simulation (Fig. 1). In the PI and PlioMIP1
simulations, deep-water formation extends from the Labrador Sea to Irminger Sea, and
the Greenland-Iceland-Norwegian Seas, similar as in observations (Figs. 1 and S1, e.g.,
Smethie et al., 2000; Danabasoglu et al., 2012). The maximum AMOC in the PlioMIP1
simulation is indistinguishable from the PI control (Fig. 2), also the case in PlioMIP1
simulations by several other models [Zhang et al., 2013]. Areal sea ice extent in the
CCSM4 PlioMIP1 simulation decreases in the Arctic as compared to PI (Fig. S2) but
persists through the summer [Rosenbloom et al., 2013].

With a closed Bering Strait at the Pliocene, saltier water in the Labrador and GIN
Seas favors increased deep-water formation in both regions (Fig. 1). The AMOC
strengthens by about 2.5 Sv and meridional heat transport (MHT) convergence in the
Atlantic between 40 — 60°N increases by 0.036 PW, or 10% as compared to the PlioMIP1
simulation with the BS open (Fig. 2). The strengthened AMOC is consistent with
modeling results for modern [Goosse et al., 1997; Wadley and Bigg, 2002] and
Quaternary [Hu et al., 2015] ocean circulations for a closed BS. Annual sea ice
concentrations are reduced by up to 15% in the waters west of Greenland (including
Baffin Bay, the Davis Strait, and Labrador Sea) and east of Greenland (including the East
Greenland Current region and in the Barents Sea) as compared to the PlioMIP1
simulation (Fig. S2).

Closure of only the CAA straits, on the other hand, results in a significant
freshening and cooling of the Labrador and GIN seas (Fig. 1) and thus a large expansion
of sea ice in these basins (Fig. S2), as compared to the PlioMIP1 simulation. Deep-water
formation is shutdown except in the eastern North Atlantic (Fig. 1), resulting in a
reduction of the AMOC by about 5 Sv or 20% (Fig. 2) and a decrease of MHT
convergence in the Atlantic between 40 — 60°N of -0.017 PW or -5% as compared to the
PlioMIP1 simulation with the CAA straits open. This contrasts with results from previous
studies using a low-resolution ocean model [ Wadley and Bigg, 2002] and an ocean model
with flux corrections [Goosse et al., 1997], but it is consistent with results from an ocean-
sea ice model [Komuro and Hasumi, 2005].

With the closure of both the Bering and Canadian Arctic Archipelago straits, there
is a freshening of and decreased deep-water formation in the Norwegian Sea (Fig. 1), and
a displacement of the region of deepwater formation southeastward into the Irminger Sea
and the subpolar North Atlantic, resulting in more saline water emanating from the
Labrador Sea even compared to the closed BS case. The model responds with an even
greater strengthening of the AMOC (~4.5 Sv or 18%), approximately doubling the
response with only the Bering Strait closed. As compared to the closed BS case, the
strengthening of the AMOC is primarily confined to between 40 and 60°N (Fig. 2). MHT
convergence in this latitudinal band increases by 0.098 PW or 30% as compared to the
PlioMIP1 simulation. Sea ice has a dipole response, with large decreases west of
Greenland and increase from the tip of Greenland to the northern North Atlantic (Fig.
S2).
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4.2 A mechanism for responses

The simulated responses can be understood by changes in the Arctic freshwater
(liquid and sea ice) transports and subsequent effects on the SST, SSS, and deep-water
formation in the North Atlantic. At present [Adagaard and Carmack, 1989] and in the
PlioMIP1 simulation, relatively fresh seawater is transported through the Bering Strait
into the Arctic, with additional freshwater being added to the Arctic Ocean through river
runoff and net precipitation (Fig. 3, Table S2). This freshwater is then exported from the
Arctic to the North Atlantic via two routes. The short route is through the Canadian
Arctic Archipelago straits (Northwest Passage and Nares Strait) into Baffin Bay and out
along the northeast coast of the Canadian Arctic. A major portion of the Pacific water
transported through the Bering Strait leaves the Arctic through the straits of the Canadian
Arctic Archipelago [Jahn et al., 2010]. The long route is through the Fram Strait, with a
large contribution from sea ice export. Previous work has shown that the CCSM4
represents the Arctic freshwater fluxes reasonably well in present-day simulations [Jahn
et al., 2012], and that changes in the Arctic freshwater export affect the simulated deep
convection in the North Atlantic in the CCSM4 more strongly than SST changes [Jahn
and Holland, 2013].

With a closed Bering Strait in the Pliocene, the total freshwater (liquid and solid,
FW) transported to the North Atlantic through the Fram Strait decreases by about 39%
and through the CAA Straits by 36%, with a total reduction of the Arctic FW export of
about 30% (Fig. 3, Table S2), resulting in a saltier Labrador and GIN Seas (Fig. 1). With
an open BS but closed CAA, the total FW export stays about the same as in the baseline
Pliocene experiment, but all freshwater must be exported through the Fram Strait (Fig. 3,
Table S2). This more-than-doubled FW export by the long route explains the significant
freshening and cooling of the Labrador and GIN seas (Fig. 1), increased sea ice cover
(Fig. S2) and sea ice melt, and a shutdown of deep-water formation except in the eastern
North Atlantic (Fig. 1).

For the mP simulation with closed BS and closed CAA straits, Arctic FW is
transported entirely through the Fram Strait and is sourced only from the local Arctic FW
budget (P-E+R), as no Pacific FW is entering the Arctic. Compared to the baseline
PlioMIP1 experiment, this leads to a 30% reduction of the total FW export from the
Arctic, similar to the closed BS case. In contrast to the closed BS case, however, this
reduction is entirely due to a 36% decrease in the total liquid FW export from the Arctic
(Table S2). The total sea ice export stays at the same level as in the PlioMIP1 simulation.
As all FW now leaves the Arctic east of Greenland, it leads to a freshening of and
decreased deep-water formation in the Norwegian Sea (Fig. 1). At the same time, the
strongly reduced total liquid FW export together with the cutoff of the short export route
through the CAA results in a more saline Labrador and south Greenland Sea with
increased deep convection, even compared to the closed BS case (Fig. 1). The stronger
AMOC in the mP simulation with closed BS and closed CAA straits is therefore due to
the phase and pathway of the Arctic FW export, rather than being a linear combination of
the AMOC response in the individual closure cases of the Bering and CAA straits (Fig.
2).
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4.3 Impact on North Atlantic and Arctic temperatures

Our PlioMIP1 simulation, with open BS and CAA straits, has a 1.9°C increase in
global mean annual temperature compared to the PI control, with a polar amplification of
~3 times the global warming [Rosenbloom et al., 2013]. Compared to proxy data, the
PlioMIP1 simulation underestimates the reconstructed warm mid-latitudes (40 — 60°N) of
the North Atlantic (Fig. 4). The model simulates on average 1.4°C warming (range 0.7 to
1.8°C) at mid-latitude proxy sites characterized as high and very high confidence
[Dowsett et al., 2012] relative to the PI simulation (Fig. 4, Table S1), while the warming
is 5.1°C (range -0.2 to 8.8°C) derived from proxy reconstructions. This data model
mismatch is worsened in the closed CAA experiment with an average cooling of 0.8°C
(range -3.0 to 0.8°C), but is improved by closing the BS and further by closing both the
BS and the CAA straits, featuring a 2.4°C (range 1.8 to 4.0°C) and 3.2°C (range 1.9 to
5.5°C) warming, respectively (Table S1).

With the new mP PRISM4 reconstruction of Arctic gateways, the model still
underestimates pan-Arctic (greater than 60°N) warming. None of the simulations capture
the strong warming reconstructed for ODP 907 near Iceland, a site assessed to be high
confidence (Table S1). Other pan-Arctic sites provide less confident temperature
estimates due to dating and calibration uncertainties. In particular, the large age range of
many terrestrial records mean that the proxy mean annual temperatures may represent
periods in the Pliocene with higher CO; than prescribed in the CCSM4 Pliocene
simulations and/or could represent periods within the Pliocene with high summer
insolation anomalies in the Arctic [Haywood et al., 2016a; Prescott et al., 2014; R. Feng,
pers. comm.]. Similarly, other differences in the paleogeography [Hill, 2015] or
bathymetry in the North Atlantic [Robinson et al., 2011] from modern could be
important. Previous modeling has shown that an ice-free Arctic in the summer provides a
better match to the proxy temperature data [Ballantyne et al., 2013; Howell et al., 2016].
Whether this speaks to models such as CCSM4 underestimating the sensitivity of Arctic
sea ice to warming, or the need to include the chemistry-climate feedbacks [Unger and
Yue, 2014] associated with the changed vegetation not commonly included in
paleoclimate simulations, remains an open question.

4.4 Implications for Pliocene Greenland Ice Sheet

Ice-rafted detritus records suggest a significant expansion of the Greenland ice
sheet (GrIS) during the M2 glacial event (~3.3 Ma) [Flesche Kleiven et al., 2002;
Bierman et al., 2016] that temporarily punctuated the relatively stable warm climate of
the late Pliocene. The driver of this glaciation is not well understood, though insolation
and CO; variations are thought to have played important roles for the ice sheet formation
[Contoux et al., 2015; Dolan et al., 2015; Koenig et al., 2015]. The results presented here
suggest that the cold SST feedback (when only closing the CAA straits but leaving BS
open) may have been important for this transition as well, and possibly also for
subsequent glaciations in the Pleistocene. These results highlight the importance of
further studies with coupled climate-ice-sheet models for understanding GrIS responses
to the Arctic gateway configurations.



243

244

245
246
247
248
249
250
251
252

253
254
255
256
257
258
259
260

261

262
263
264
265
266
267
268
269
270
271
272
273
274
275

276
277
278
279
280
281
282

Final version of manuscript submitted to Geophysical Research Letters
Edited and typeset version is published in GRL, doi: 10.1002/2016GL071805

5 Conclusions

Our simulations show that closure of the relatively small Arctic gateways
critically influences the AMOC, by inhibiting freshwater transport from the Pacific to the
Arctic Ocean and from the Arctic Ocean to the Labrador and Greenland-Iceland-
Norwegian (GIN) Seas. The net result is a stronger AMOC and an improved simulation
of the proxy-indicated warm SSTs across the North Atlantic from south of Greenland to
the British Isles with closure of both the Bering Strait and straits in the Canadian Arctic
Archipelago. These results indicate the need to have better assess the climate impact of
these Arctic gateways when using models in comparison to data for past time periods.

The Pliocene has been used as a geologic analogue to assess the long-term climate
response to modern CO; levels. Pliocene proxy reconstructions consistently show greater
high latitude warmth, and possibly more sensitive climate [Pagani et al., 2010] than
simulated by state-of-the-art Earth system models [Haywood et al., 2013]. Our results
indicate that the state of the Arctic gateways may influence the sensitivity of the North
Atlantic climate in complex ways, making the Pliocene a better process than geologic
analogue to study the ability of models to realize the full sensitivity to processes and
feedbacks that may affect the Earth system sensitivity in the future.
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286  Figure 1. Comparison of SST (left), SSS (middle) and mixed layer depth (MLD,

287  right). Panel a, annual-mean SST (°C), annual-mean SSS (psu), winter (December to

288  February) MLD in the PlioMIP1 simulation. Panel b, PlioMIP1 minus PI changes in SST,
289 SSS, and MLD. Panels c, d, e, changes in SST, SSS and MLD with respect to the

290  PlioMIP1 simulation for the Closed BS, Closed CAA, and Closed BS+CAA experiments,
291  respectively.
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Figure 2. Comparison of AMOC in Pliocene simulations. a, Annual-mean AMOC
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the PlioMIP1 simulation for the Closed BS, Closed CAA, and Closed BS+CAA
experiments, respectively. Top numbers in colorbar are used by panel a, and bottom
numbers are used by panels b,c,d.
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represent ocean surface circulation in the PlioMIP1 simulation. Net freshwater (solid plus
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303  Pliocene simulations. Shaded blue area shows the region where winter ocean mixed layer
304  depths are greater than 120m in the PlioMIP1 simulation. Other regions are labeled as
305  BAS, Barents Sea; BS, Bering Strait; CAA, Canadian Arctic Archipelago; EGC, East

306  Greenland Current; FS, Fram Strait; GIN, Greenland-Iceland-Norwegian Sea; LS,

307  Labrador Sea; NAC, North Atlantic Current; TD, Transport Drift. 1 Sv equals 10° m’/s
308 and 3.1536 x 10 km’/yr.
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310  Figure 4. Annual surface temperature change (°C) in Pliocene simulations

311  (contours) and proxy-data reconstructions (filled circles). Panels a-d, Change as

312 compared to CCSM4 preindustrial simulation. Information about data points is presented
313  in Table S1. Panels e-g, changes with respect to the PlioMIP1 simulation. Areas with

314  differences significant above 99% (from Student’s t-test) are dotted.
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Introduction

Details of the CCSM4 model are included in the Methods (Text S1) and a comparison of the SST,
SSS, and mixed-layer depths simulated by CCSM4 to observations (Figure S1). Also included in
the Sl is a supplementary figure showing the annual Arctic sea ice distributions simulated in the
Pl and Pliocene experiments (Figure S2). Tables S1 and S2 provide supporting information for
results described in the main text.

Text S1. Methods

The simulations for this study used the CCSM4 (Gent et al., 2011), which has active
atmosphere, land, ocean, and sea ice component models that are linked through a coupler that
exchanges state information and fluxes between the components. The atmosphere component
model is the Community Atmosphere Model, version 4 (CAM4) and the land component is the
Community Land Model, version 4 (CLM4). Both adopt the FV1 version, which has a horizontal
resolution of 0.9° in latitude and 1.25° in longitude, respectively. The ocean and sea ice
components are the Parallel Ocean Program, version 2 (POP2), and the Community Sea Ice
Model, version 4 (CICE4), with common grid of 320 x 384 points, a displaced-pole grid with poles
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in Greenland and Antarctica, and a nominal 1° resolution with finer resolution near the equator
and North Atlantic. We adopt the alternate boundary conditions in our PlioMIP1 simulation. The
Pl simulation has been run for 1300 years; the PlioMIP1 simulation for 650 years, branching
from the Pl simulation at year 801 and with the ocean temperatures modified using the PRISM3
reconstructed SST and deep ocean temperature anomalies. The Pliocene gateways sensitivity
experiments were started from year 451 of the PlioMIP1 simulation and run to year 650, except
for CAA which was extended an additional 100 years to allow the AMOC to equilibrate. All
results are shown for 50-year averages at the end of each simulation.

C psu [T T T T m
1 5 8 13 17 21 32 34 36 38 100 180 260 340 420

Figure S1. Comparison of SST (left), SSS (middle), and Mixed-layer Depths (right). (a) annual-
mean SST (°C), SSS (psu) and winter (December to February) mixed layer depth [m] in
observations (Monterey and Levitus, 1997; Locarnini et al., 2009; Antonov et al., 2010) and (b)
the CCSM4 preindustrial (Pl) simulation.
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a Pl control b PlioMIP1

¢ PlioMIP1 - PI control

d Closed BS - PlioMIP1

Figure S2. Comparison of Arctic sea ice concentrations (%) in CCSM4 simulations. a,
Preindustrial simulation b, PlioMIP1 simulation. ¢, Change, PlioMIP1 minus preindustrial. d, e, f,
Change as compared to the PlioMIP1 simulation for the Closed BS (d), Closed CAA (e), and
Closed BS+CAA (f) experiments.
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. . Closed | Closed Closed

Sites Lat Lon Conf | PRISM3 | PlioMIP1 BS CAA BS+CAA
DSDP_607 | 41.00 | -32.96 4 -0.19 1.32 1.81 0.54 1.96
DSDP_608 | 42.84 | -23.09 4 4.60 1.58 2.04 -0.30 1.96
DSDP_410 | 45.51 | -29.48 3 4.30 0.67 2.15 -0.16 3.22
DSDP_609 | 49.88 | -24.24 4 5.58 1.16 2.32 0.83 4.00
DSDP_111 50.43 | -46.37 4 5.56 1.76 4.01 -1.86 5.49
DSDP_610 | 53.22 | -18.89 4 6.61 1.41 2.28 -1.29 2.66
DSDP_552 56.04 | -23.23 4 5.85 1.69 2.55 -3.00 2.84
DSDP_548 | 48.85 | -12.00 4 8.79 1.31 1.96 -0.91 1.87
ODP_907 69.25 | -12.70 3 9.44 1.25 5.04 -8.98 -0.98

Table S1. Mid- and high-latitude SST anomalies (°C) in North Atlantic region in PRISM3
reconstruction and Pliocene simulations. Sites are those with high (3) or very high (4)
confidence levels from Dowsett et al., 2012, 2013. Confidence levels (Conf, increasing
confidence from level 1 to 4) are provided by Dowsett et al., 2012 based on semi-quantitative
assessments of proxy age control, number of samples, abundance and preservation of fossils,
and reliability of reconstruction methods,. Model anomalies are Pliocene simulations minus
preindustrial. Preindustrial (Rayner et al., 2003) minus present-day SST (Reynolds et al., 2002)
corrections are added to the PRISM3 SST anomalies to ensure the consistency of data-model
comparison.

PlioMIP1 Closed BS Closed CAA Closed BS+CAA

Total net Arctic 11013 7748 10608 7733
FW inputs
Bering Strait

Liquid 3149 0 2957 0

Solid (ice) 151 0 200 0
River runoff 4981 5077 4649 5058
P-E 2732 2671 2802 2675
Total net Arctic -10377 -7241 -9712 -7387
FW exports
CAA

Liquid -5123 -3148 0 0

Solid (ice) -650 -528 0 0
Fram Strait

Liquid -2011 -938 -5413 -4192

Solid (ice) -1718 -1323 -3072 -2252
Barents Sea
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Liquid -841 -1298 -661 -883
Solid (ice) -34 -6 -566 -60
Total net Solid -2402 -1857 -3638 -2312
FW export
Total net Liquid -7975 -5384 -6074 -5075
FW export

Table S2. Annual means of the net Arctic Ocean freshwater (FW) fluxes from Pliocene

simulations. All oceanic fluxes (km?/yr) are net fluxes over the full depth of the water column at
the boundaries. FW fluxes are calculated using monthly means relative to a reference salinity of
34.8 psu, with negative numbers indicating net FW exports from the Arctic Ocean, and positive
numbers indicating net FW inputs. Small imbalances between total net Arctic FW inputs and
outputs are associated with several factors including only calculating over a 50-year period for

each experiment and using monthly means of velocity and salinity in the calculations.




