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Abstract This review (with 116 refs.) addresses recent devel-
opments in nanoelectrode arrays and ensembles with particu-
lar attention to nanopore-enabled arrays and ensembles.
Nanoelectrode-based arrays exhibit unique mass transport
and ion transfer properties, which can be exploited for elec-
troanalytical measurements with enhanced figures-of-merit
with respect to microscale and larger components. Following
an introduction into the topic, we cover (a) methods for fabri-
cation of solid-state nanopore electrodes, (b) chemical and
biochemical sensors, (c) nanochannel arrays with embedded
nanoelectrodes; (d) recessed nanodisk electrode arrays; (e)
redox cycling in nanopore electrode arrays, (f) finally discuss
novel nanoarrays for electrochemistry, and then give a future
outlook. A wide variety of nanoelectrode array-based chemi-
cal and biochemical sensors properties are discussed in addi-
tion to faradaic, ion transfer and spectroelectrochemical
applications.
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Introduction

From nanopore battery arrays to diamond nanoelectrode ar-
rays, advances in nanoelectrochemistry have been both rapid

and extensive due to the beneficial properties gained from
reducing electrode size to the nanoscale. [1–4] Recent reviews
have covered the current state of nanoelectrochemistry. [3,
5–7] Nanoelectrodes are of particular interest due to properties
such as decreased charging currents and increased spatial res-
olution. In recent years, research in nanoelectrochemistry has
begun to address highly multiplexed measurements [8], elec-
trochemistry in nanoscopic volumes [9] and nanoporous elec-
trodes. [10] These interests intersect with the development of
nanoelectrode arrays, particularly nanopore-electrode based
arrays and ensembles. Interest in nanoelectrode arrays began
with the work of Martin and coworkers, who developed
nanoelectrode ensembles based on the nanoporous structure
of track-etched membranes. Collections (arrays, ensembles)
of nanoelectrodes such as these are of interest for many rea-
sons; they exhibit macroscopic electrode area, and they sup-
port large currents, while retaining the unique mass transport
features that accrue to nanoscale electrodes.

In this review, consistent with general use in the literature,
array will be used to describe spatially ordered collections of
nanoelectrodes, whereas ensemble will be used to describe
random or stochastic collections of nanoelectrodes. Arrays
and ensembles of electrodes are of particular interest due to
the way that their properties depend on geometry, size, spac-
ing, etc. [11–19] In particular, mass transport can be drastical-
ly affected by these properties. For example, the behavior of
nanoelectrode arrays varies with electrode size, interelectrode
distance, timescale, and diffusion zone overlap, the latter de-
termining whether the array behaves as one large electrode or
each nanoelectrode experiences enhanced radial diffusion.
The size and geometry of the electrode also present interesting
opportunities to control mass transport by manipulating elec-
trostatic screening and coupling to electrokinetic flow.

A subset of nanoelectrodes are those that are integrated
with solid-state nanopores, a class of structures which has
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demonstrated a versatile set of capabilities based on manipu-
latingmass transport, ion transfer, and multiplexing with spec-
troscopic measurements. This particularly active area of current
nanoelectrode array research, especially arrays and ensembles
of nanopore electrodes, will be the primary focus of this review.
In nanopore electrode arrays, electrodes are embedded in
nanochannels or nanopores oriented either vertically or hori-
zontally, depending on the intended end use. Nanopore elec-
trode arrays exhibit interesting and useful properties, especially
for applications in electroanalytical chemistry, e.g. redox cy-
cling, and electrochemical processing, e.g. cascade reactions.

Fabrication

In current practice, solid-state nanopore electrode arrays are
fabricated using either serial, e.g. direct-write electron beam
lithography (EBL), ion beam milling, [20–24] or parallel, e.g.
lithography/etching-based methods, [25–27] in contrast to
early nanoelectrode arrays that were typically developed from
adventitious substrates, such as porous alumina membranes.
[28–31]While powerful, these fabrication methods are expen-
sive and demand exacting conditions. To circumvent these
challenges, a great deal of recent research has targeted the
development of cheap, fault-tolerant routes to nanopore elec-
trode fabrication. A common method involves colloidal
(nanosphere) lithography, as depicted in Fig. 1. [32] In this
approach, organized self-assembled layers of microparticles
(typically polystyrene) are used as a mask to pattern the elec-
trode array. While simple and robust, more complex structures
typically demand advanced fabrication approaches. Figure 2
shows an example of multiple electrode layers fabricated into
nanopore electrode arrays with pore sizes <20 nm in diameter,
[33] using integrated circuit fabrication techniques. While the
challenges and approaches to fabrication could justify its own
review, the remainder of the review will focus on applications
of nanoelectrode arrays - particularly redox cycling, coupled
spectroscopy-electrochemistry, and biosensing.

Chemical and biochemical sensors

The properties of nanoelectrode arrays have naturally been
exploited in developing new types of sensors with lower limits
of detection (LOD). Sensors to address biomolecules have
been targeted to glutamate [34], glucose [35–38], H2O2

[39–43], DNA, prostate specific antigen [44], dopamine [45]
and lipids [46] as well as to study enzyme reactivity [36, 47].
Carbon nanofiber arrays are among the most popular electrode
structures for these types of measurements due to the ease with
which the surface chemistry can be tuned. [34, 45, 48, 49] For
example, sensors capable of DNA detection have been fabri-
cated as nanoelectrode arrays with DNA-selective surface

functionalization. In these structures, the interaction of DNA
with surface molecules limits diffusion or ion migration
resulting in a decrease in electrochemical current. [50]
Alternatively, monitoring ion flux though arrays of
nanochannels has permitted DNA detection down to 0.1 nM.
[51] Progressively lower detection limits of small metabolites,
e.g. H2O2, down to 10−9 M, have also been achieved with
nanoelectrode arrays, which exhibit a linear response
over a large concentration range as well. [39–43] In
addition to using faradaic electrochemistry, other prop-
erties of nanoelectrode arrays can be exploited for bio-
molecular analysis. For example, Fig. 3 shows the
change in resistance of a carbon nanofiber array as a function
of cardiac troponin-I concentration. Label free carbon fiber
nanoelectrode arrays have demonstrated LODs (0.2 ng/mL)
lower than conventional ELISA. [52]

On the non-biological side, environmental monitoring of
water pollutants has been achieved with membrane-based
electrochemical nanoarray sensors. Differential pulse anodic
stripping is able to resolve both Pb and Cu while maintaining
excellent limits of detection (0.4 μM). Furthermore, these
sensors are able to quantify Cu and formaldehyde, common
water source pollutants, directly in environmental samples
without further clean up. [53] Similarly, carbon nanotube elec-
trode arrays have been exploited to detect heavy metals such
Cd and Pb at levels <1 ppb. [54].

Nanochannel arrays with embedded nanoelectrodes

Embedded nanoelectrodes in nanochannels are nanopore
devices that are particularly interesting for lab-on-a-chip
applications. Arrays on elongated nanopore (or nanochannel)
arrays with embedded annular nanoband electrodes (EANE)
can be fabricated with layer-by-layer deposition, followed by
FIB milling. [55] Images of a typical device are shown in
Fig. 4(a-c), while Fig. 4(d-e) shows SEM cross sections of
the array. This class of nanopore array exhibits unique behav-
ior in which mass transport is coupled to electrochemical pro-
cessing. Alternating layers of Au and polymer permit voltage
across the separate Au layers to drive electrokinetic flow,
which increases the analyte delivery to the electrode surface,
while the same small voltage can affect electron transfer at the
EANE working electrode. By separating the EANE and a
quasireference electrode, constituted by a separate metal layer
(i.e. top layer of structure in Fig. 4d), in a nanopore by ap-
proximately 10 μm, electric fields, E ~ 103 V cm−1 can be
generated from ~1 V potentials and has been shown to en-
hance the steady state current by as much as 50× compared to
redox processes in the absence of electroosmotic flow (EOF).
These array-based devices show promise for analyte process-
ing. Due to the extremely short diffusion lengths, approxi-
mately 100 % conversion efficiency can be obtained at
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suitably large dimensionless electrode width, W, and Peclet
number, Pe, defined as, [56]

W ¼ w

R
ð1Þ

and

Pe ¼ uavgR

D
ð2Þ

where w is the physical electrode width, R is the pore radius,
uavg is the linear fluid velocity averaged over the radial dimen-
sion of the pore, andD is the diffusion coefficient of the redox-
active species. When EOF is turned on in these structures, the
electrochemical processing is rapid and nearly perfectly effi-
cient, resulting in the collapse of the usual diffusion layer,
since redox active species are reacted as fast as they can be
delivered to the EANE. Clearly under these circumstances, the
reaction velocity is limited by how fast reactants can be deliv-
ered by EOF, which, in turn, is limited by the magnitude of the
driving potential. To decouple EOF from the potential driving
electron transfer and achieve the same high overall reaction
velocities, electrokinetic flow can be controlled with a second
working electrode, located external to the nanopore, leading to
current increase of ~30×. [57] Furthermore, this scheme can
be used with separate functions assigned to the different elec-
trodes. For example, the upstream electrode can be used for
reagent generation, as demonstrated by the upstream in situ
generation of H2 for downstream catalysis. [58].

Recessed nanodisk electrode arrays

The nanopore arrays discussed above are examples of 1D
nanostructures, since there is one dimension, length, which
is not nanoscale. Another interesting class is composed of
0D nanostructures, in which all three critical dimensions are
nanoscale. An example of 0D nanostructures are recessed
nanodisk electrode arrays, which consist of arrays non-
conductive nanopores with a recessedmetal disk at the bottom
of each pore functioning as the electrode. These devices are of
particular interest due to their unique mass transport proper-
ties, namely they provide the ability to study and exploit con-
finement. [59–63] Common strategies of fabrication of these
types of structures include preparing them from tracked-etch
membranes, processing diblock copolymers and using nano-
sphere lithography (vide supra). [31, 32, 64] Recessed
nanopores with diameters down to 10 nm have been produced
from track-etched membranes. [65] Arrays of nanopores can
access a variety of diffusional regimes at different time scales,
as illustrated schematically in Fig. 5. [66] At fast scan rates,
peak shaped voltammograms are expected, as linear diffusion
within the pores occurs without any overlap of diffusion zones

between the pores. As the scan rate is decreased, sigmoidal
voltammograms are observed, characteristic of radial diffu-
sion to the pore, and as the scan rate is further decreased,
diffusion zone overlap occurs between the nanopores, creating
a linear diffusion regime, which again produces peak shaped
voltammograms.

At fast scan rates the peak current is given by, [67]

ip ¼ 0:446nF Nπa2
� �

C

ffiffiffiffiffiffiffiffiffiffi
nFDν

RT

r

ð3Þ

where N is the pore density, C is concentration, n is the num-
ber of electrons, D is the diffusion coefficient, F is Faraday’s
constant, v is scan rate, T is temperature, a is pore radius, and R
is the gas constant. Similarly, the limiting current at slow scan
rates is given by, [17, 68]

ilim ¼ 4πnFCDa 2N

4Lþ πa
ð4Þ

where L is the pore length. Recessed nanodisk electrode arrays
have numerous applications in sensing and especially in redox
cycling. Emphasizing the difference in behavior relative to
macroscopic planar electrodes, the small diameter of the pores
and recessed nature of the electrodes make it possible to use
charge screening to control mass transport to the electrode.
Figure 6 shows the effect electrolyte concentration and pH
have on electrostatic charge screening in arrays of 10 nm
recessed nanopore electrodes. When the total electrolyte con-
centration is low, the opposed double layers overlap, and elec-
trostatic interactions can either decrease or increase faradaic
current, depending on the sign of the permselective behavior.
At high pH, when the pore surface is negatively charged,
ζ < 0, an increase in current is seen from cationic analytes
and a decrease is observed with anionic analytes. The dimen-
sions of the devices are also useful in size-exclusion applica-
tions. [61] Similar types of devices, prepared from porous
anodic alumina membranes, have been used to simulate the
effects of confinement on biochemical reaction kinetics, [36,
69] allowing the activity of confined enzymes to be character-
ized using nanoporous recessed electrodes.

Redox cycling in nanopore electrode arrays

Electrode density plays an important role in the design of
electrode arrays for amperometric sensing, since it governs
the mass transport behavior and determines the ratio of faradic
to charging current. [66] In their pioneering work, Martin and
coworkers used template synthesis to fabricate nanoelectrode
ensembles, which exhibited significantly decreased charging
current and enhanced sensitivity. [28] In a typical amperomet-
ric measurement, diffusion behavior depends strongly on the
electrode density of the electrode array or ensemble, as
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illustrated in Fig. 5. In order to take advantage of the array size
to achieve maximum sensitivity, an appropriate interelectrode
distance should be chosen to achieve diffusional indepen-
dence for individual electrodes. [67, 70] Further increasing
electrode density leads to competition for analyte between
adjacent electrodes due to the overlapping of diffusion zones.
As a result, the limiting current decreases for an individual
electrode, which can be attributed to a shielding effect and
characterized by a shielding factor. [71, 72].

On the other hand, by building a structure in which it is
possible to hold two adjacent electrodes negative and positive
of the equilibrium potential, Eeq, of an electroactive species,
positive feedback and an increase in faradic current can be
achieved. [73–77] In such a platform, electroactive species
oxidized at one electrode can diffuse to, and be reduced at,
the other electrode. The cycling of redox species between the
two electrodes multiplies the electron transfer reaction,
resulting in current amplification at both electrodes. This re-
dox cycling (RC) effect, which is similar to the positive feed-
back mode in scanning electrochemical microscopy, [78] has
been observed in interdigitated electrode arrays (IDEA),
[73–77] thin-layer-cells (TLC), [79–81] and planar/ring-
recessed disk electrode (P/R-RDE) arrays. [26, 82–88] Here,
we focus on redox cycling at P/R-RDE arrays and present
some unique properties that have not been observed in other
electrode geometries.

Figure 7 gives an example of the fabrication of these elec-
trode arrays. [26, 87] In a typical electrode geometry, two thin-
film gold electrodes are separated by an insulating layer, such
as a polymer, SiNx, or SiO2 film which determines the inter-
electrode distance. Reliable insulation can be achieved with
polymer films, but only at μm thicknesses, [89] whereas SiNx

and SiO2 films as thin as 100 nm can provide sufficient insu-
lation to ensure independent electrode operation. [26, 88, 90]
In order to provide solution access to the bottom electrode,
different lithography methods have been employed for the
mask to etch the top electrode and the insulating layer.
Well-defined μm-scale pores can be generated photolith-
ographically, [89] while e-beam and nanosphere lithography

can produce pores down to ~100 nm. [26, 88, 90] Multistep
reactive ion etching processes can then be performed using the
lithographically defined mask to access various electrode
areas. [26, 87, 88].

Current amplification in RC devices The most obvious ad-
vantage of using RC is the enhancement of faradic current
(Fig. 8), which can be evaluated by an amplification factor,
AF. [74, 87] In a dual electrode system consisting of two
working electrodes (WE1 and WE2), AF is typically calculat-
ed by eqn. (5),

AF ¼ icyc
ioff

ð5Þ

where icyc and ioff are the faradic currents obtained at the first
working electrode, WE1, in RC mode with WE2 held at a
potential supporting the opposite reaction, and non-RC mode
(WE2 is floating), respectively. This equation can be used to
evaluate the performance of P/R-RDE arrays as well as other
electrode geometries.

The AF, a direct result of the number of redox events per
unit time, depends largely on the diffusion of the redox mol-
ecules from one electrode to the other. For example, in a TLC
electrode AF can be estimated by, [80, 91, 92]

AF ¼ πr
4h

ð6Þ

where r and h are the radius and interelectrode distance of the
TLC electrode, respectively. Thus, decreasing the interelec-
trode distance, h, for a TLC electrode of a given size, r, pro-
duces higher AF. Similarly, decreasing the thickness of the
insulating layer in a P/R-RDE array can also produce higher
current amplification. [26, 89, 93] The dependence of AF on
the interelectrode distance has been demonstrated from previ-
ous studies, which reported an increase of AF ranging from
several-fold for ~μm scale h, [89, 93] to ~30-fold as h de-
creases to ~100 nm. [90, 94] As indicated from eqn. 6, increas-
ing the electrode size can also produce larger current

Fig. 1 Schematic illustration of the fabrication of a nanotemplate by
nanosphere or colloidal lithography. a A monolayer of polystyrene (PS)
microbeads formed at the substrate surface is subjected to an O2 plasma
etch to reduce the size of the microbeads without changing their position;
b A masking layer is applied, here by plasma-enhanced chemical vapor

deposition of SiOx; c The microbeads are removed by mechanical or
chemical lift-off, after which the remaining SiOx layer may be used as a
process mask for further steps. Reprinted with permission from Anal.
Chem. 2006, 78, 7588. Copyright (2006) American Chemical Society
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Fig. 2 a Schematic illustration of pore-first fabrication of 3-metal layers
embedded in a nanopore membrane by reactive ion etching (RIE); top -
substrate with nitride layers on top and bottom sides; 2nd patterned
electrodes; 3rd - nanopore formation by RIE; 4th - protection layers
encapsulating the nanopore; 5th - formation of the membrane by
removal of the Si substrate. b Plan view SEM image of the region
consisting of three metal layers - M3, M2, and M1, top to bottom. c
Cross-sectional TEM image along the black line in (b) showing the

uniformity of the layers over 400 nm. d Zoom-in of the red rectangular
region in (c) shows the precise (±5 nm) control of layer thickness. e TEM
image of a single nanopore formed by RIE. f SEM image showing an
array of nanopores fabricated by RIE; average nanopore
diameter ~ 18 ± 2 nm. g Integration of functional nanopores on an 8 in.
wafer. Reproduced from Nanoscale 2014, 6, 8900. with permission of
The Royal Society of Chemistry

Fig. 3 Change in electron transfer resistance, ΔRet, for different
concentrations of human cardiac troponin-I (Δ), a specific target protein
analyte, and human myoglobin (□), an unrelated nonspecific analyte for
the immunosensor electrode. Reprinted with permission from Anal.
Chem. 2013, 85, 3858. Copyright (2013) American Chemical Society

Fig. 4 Embedded annular nanoband electrode arrays. a Reflected light
micrograph of nine pore arrays; b SEM image of a single 11 × 11 pore
array; c same array at increased magnification; d SEM image of a
sacrificial sample at 15° tilt, cross-sectioned by FIB milling; e
magnified view of the EANE at 52° tilt. Reprinted with permission
from J. Am. Chem. Soc. 2012, 134, 8617. Copyright (2012) American
Chemical Society
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amplification. This size dependence of the AF was demon-
strated on the P/R-RDE array, where increasing electrode den-
sity results in higher collection efficiency and larger faradic
current. Using smaller pores with higher density maximized
the collection efficiency, resulting in current amplification up
to ~50-fold. [90].

Steady-state response with small charging currentAnother
important characteristic of the RC device is the steady-state
response, Fig. 8(b), of the CVs, which is independent of the
scan rate as well as the array size. [74, 89] This property is
attributed to the fast mass transport occurring locally between

closely-spaced electrodes. Accordingly, the number of mole-
cules reaching the electrode surface is not limited by a diffu-
sional boundary layer. A 2 mm × 2 mm P-RDE array has been
reported to exhibit steady-state response operating in RCmode,
whereas a macroscopic electrode of comparable size would
exhibit diffusion limited currents. [89, 95] Furthermore, in a
well-designed RC device with high collection efficiency,
WE2 produces almost the same faradic current as WE1, but
withmuch smaller charging current. For example, in an R-RDE
array, charging current at the ring electrodes (WE2) held at
constant potential is ~10-fold smaller than that of the disk elec-
trode. [26] This property is especially important for high scan
rate CV measurements.

Potential modulation and selectivity Since the reaction at
WE1 in an RC device relies strongly on the species diffusing
from WE2, it is possible to control the redox form of the
species diffusing to WE1 by controlling the potential at
WE2, [26, 91] as shown in Fig. 9. When the ring electrode
(WE2) is held at a potential positive of Eeq for Fe(CN)6

3/4-,
e.g. 0.5 V vs. Ag/AgCl, oxidation of Fe(CN)6

4− to Fe(CN)6
3−

occurs at WE2, whereas reduction Fe(CN)6
3− to Fe(CN)6

4− is
observed on the disk electrodes (WE1). In contrast, holding
WE2 at a potential negative of Eeq, e.g. -0.1 V, reverses redox
reactions occurring at both the ring and disk electrodes.
Finally, intermediate behavior with both anodic and cathodic

Fig. 5 Schematic illustration showing the diffusion patterns at nanopore
electrodes: a linear diffusion to planar electrode, b overlapping radial
diffusion to porous nanoelectrodes, c radial diffusion to porous
nanoelectrodes, and d linear-active diffusion to porous nanoelectrodes.
Reprinted with permission from Langmuir 2001, 17, 6396. Copyright
(2001) American Chemical Society

Fig. 6 pH dependence of the ratio ilim/C, comparing charged redox
species, X = Fe(CN)6

3− (triangles) or trimethylaminoferrocene
(TMAFc+, circles) to unchargedferrocenedimethanol, FcDM. ilim values
were measured at 0.01 V s−1 on recessed nanopore electrodes (10 nm in
pore diameter) in solutions containing 0.1 M (filled symbols) or 0.01 M
(open symbols) KNO3 in addition to 0.01 M KH2PO4/K2HPO4. The
ratios of the diffusion coefficients in 0.1 M KNO3 + 0.01 M KH2PO4/
K2HPO4 (pH 6.3) are shown as dashed lines. Reproduced from Analyst
2010, 135, 172. with permission of The Royal Society of Chemistry
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current collected at the rings and disk electrodes is gen-
erated if WE2 is set at an intermediate potential, e.g. +0.25 V
vs. Ag/AgCl.

One application of this potential modulation is to improve
measurement selectivity, which is especially important in ap-
plications that are not coupled to a separation technique. Use of
the RC effect to improve selectivity depends on the reversibil-
ity of the redox reaction. Since irreversible species are not
regenerated, they produce smaller faradic currents compared
to reversible species under the same conditions. [80, 87, 89] In
addition, an irreversible interfering species can be further de-
pleted at theWE2 by holding it at a constant potential, enabling
determination of reversible analytes at the WE1 with little in-
terference. On the basis of this principle, selective measure-
ment of redox reversible dopamine in the presence of irrevers-
ible ascorbic acid has been demonstrated on RC devices of
different geometries. Nanoscale P/R-RDE arrays are better
suited for this purpose than microscale arrays, because
nanopore electrodes deplete the irreversible species more effi-
ciently before they diffuse to and react on the disk electrode.
Selectivity can be further enhanced by integrating the electrode
array with micro/nanofluidic channels, which limit the amount
of redox species capable of diffusing to the electrode surface,
[80, 87] thereby further reducing the irreversible species in RC
but not the reversible species. [26, 80, 87] Using these strate-
gies, the measured selectivity for dopamine against ascorbic
acid in an R-RDE array coupled with nanochannels was im-
proved by 103x, allowing interference-free detection of dopa-
mine in the presence of 100-fold excess of ascorbic acid. [87].

Modulation of the redox reaction can also be used to address
the more challenging situation in which two reversible species
with similar redox potentials must be differentiated. Although
the RC effect cannot be applied directly in this situation, the
potential of WE2 can be adjusted such that one species exhibits
a cathodic response, while the other gives an anodic response at
WE1. This principle was successfully applied to differentiate

Fig. 7 a Schematic cross section showing the fabrication procedure for
an R-RDE array, including (i) layer-by-layer deposition, (ii) nanosphere
lithography, and (iii) multistep reactive ion etching. The colors represent
different layers: gray (glass slide), yellow (Au), red (SiNx), pink (SiO2),
purple (polystyrene spheres), and green (Cr). b Schematic diagram of the
ring–disk geometry of the array. cAnSEM image of the array at 50° tilt. d

An optical image of the array integrated with SiNx channels. e Schematic
diagram of the macroscopic layout of the R-RDE array (dark blue)
integrated with channels (black) and covered by a piece of PDMS (light
blue) with two circular wells. Reprinted with permission from Anal.
Chem. 2013, 85, 9882. Copyright (2013) American Chemical Society

Fig. 8 Comparison of generator-collector (GC) and non-GCmode cyclic
voltammograms of 1 mM Fe(CN)6

3−on a high density array with a
200 nm insulator separating the ring and disk electrodes. (a) Non-GC
mode: ring electrodes are floating, and disk electrodes are swept at
100 mV/s (black) and 5 mV/s (red). (b) GC mode: disk (solid) and ring
(dashed) current for ring electrodes held 0.5 V and disk electrodes swept
at 100 mV/s. Reprinted with permission from ACS Nano 2013, 7, 5483.
Copyright (2013) American Chemical Society
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reversible species with overlapping redox potentials, such as
dopamine/Fe(CN)6

3− and ferrocenemethanol/Fe(CN)6
4−. [87,

96] Again, nanoscale R-RDE arrays outperform their micro-
scale counterparts due to higher conversion ratios.

Ion accumulation and permselectivity in nanopores In RC
devices, larger current amplification can be achieved by de-
creasing interelectrode distance or increasing electrode densi-
ty. On the other hand, the pore size of P/R-RDE array has a
great impact on redox cycling performance. As the diameter
of the pores is reduced to a size commensurate with that of the
electrical double layer, unique behaviors such as ion
permselectivity and ion concentration polarization are ob-
served. [97–100] Indeed, as a result of high surface-to-
volume ratio, these effects can increase ion concentrations
by several orders of magnitude. [97, 99] The ion enrichment
observed in charged nanopores at low ionic strength requires
very low analyte concentration and the absence of supporting
electrolyte (SE) - novel conditions for electrochemical mea-
surements. For this reason, the accumulation effect has not
been employed to improve sensitivity in previous nanopore
array measurements without the RC effect. Even more chal-
lenging, non-RC measurements performed in nanopores
would deplete the accumulated ions before reaching steady-
state current, since the number of ions, in the nanopores even
at accumulated concentrations, is comparable small to those
diffusing from bulk solution.

However, because the RC effect relies on redox species
cycling locally between two electrodes, the localized analyte
concentration, which determines the number of redox events,
can benefit from ion accumulation to further improve mea-
surement sensitivity. This concept has been demonstrated on
an R-RDE array [88] using Ru(NH3)6

3+, which is expected to
accumulate in nanopores with negative-ζ SiO2 surfaces.
Figure 10 illustrates this ion accumulation/ion permselectivity
effect in increasing faradic current at low analyte concentra-
tion in the absence of SE. In contrast to the canonical electro-
chemical protocol which uses SE, three distinct regimes are
observed in the absence of SE, revealing strong ionic strength
dependence. At low analyte concentration, current enhance-
ments as large as 100-fold arise from a combination of ion
enrichment and ion migration effects. Combining these with
the ~20-fold enhancement due to redox cycling yields a total
current amplification ~2000-fold on the R-RDE array, making
it interesting for electrochemical analysis.

Self-induced redox cycling In typical RCmeasurements, two
electrodes are held at potentials positive and negative of Eeq to
initiate and sustain electrochemical cycling. However, redox
cycling can also occur when a powered electrode is placed
adjacent to an unbiased electrode. [89, 95, 101–106] This
so-called self-induced redox cycling (SIRC) relies on the bi-
polar behavior of the floating electrode that is coupled to the
biased WE. Under these conditions, depletion of the redox

Fig. 9 a Ring potential dependence of the voltammetric response of
1 mM Fe(CN)6

3−on a high density array with 200 nm ring-disk
separation. Disk electrodes are swept at 100 mV/s, and ring electrodes
are held at 0.5 V (black), 0.25 V (red), and −0.1 V (blue); disk current
(solid) and ring current (dashed). b Finite element simulated CVresponse
of an array of 10 electrodes in 1 mMFe(CN)6

3− solution on a high density

array with the ring electrode held at 0.5 V (black), 0.25 V (red), and
−0.1 V (blue). (c–e) Concentration profiles of Fe(CN)6

3− in adjacent
pores with a radius of 250 nm taken from simulations of an array of 10
electrodes. The height of the insulator layers (gray) and the ring electrode
(yellow) is 200 nm. Reprinted with permission from ACS Nano 2013, 7,
5483. Copyright (2013) American Chemical Society
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species by the biasedWE produces a spatially-dependent con-
centration polarization relative to the adjacent floating elec-
trode, [95, 101] which is sufficient to drive the oxidation and
reduction reactions occurring respectively at opposite poles of
the unbiased bipolar electrode.

Electrons flow within the bipolar electrode to balance the
charge induced by the localized redox reactions, as confirmed
by voltage measurements and optically observed by
electrogenerated chemiluminescence. [71, 72] This electron
flow can be used to couple two independent redox reactions,
for example using one reaction to monitor the other. Indeed,

significant sensitivity improvement was demonstrated by
Yasukawa et al., who coupled the oxidation of 4-aminophenol
with the reductive deposition of Ag+, the accumulation of which
was then determined by anodic stripping voltammetry. [102,
104] Recently, we explored this technique to couple RC reac-
tions of target analytes on the P-RDE array with the electro-
chemical reaction of fluorigenic redox reporter systems, e.g.
dihydroresorufin/resorufin. [94] The change in fluorescence in-
tensity in the reporter system is determined by the redox reaction
of the target analyte, Fig. 11. Electrochemical reduction of 1 nM
Ru(NH3)6

3+ on the nanoelectrode array was detected by moni-
toring fluorescence at the remote reporter site, demonstrating the
possibilities for high sensitivity electroanalytical measurements
by coupling fluorigenic reporter redox reactions to self-induced
redox cycling in open bipolar electrode topologies.

Novel nanoarrays for electrochemistry

Nanoscale spectroelectrochemistry Multi-modal measure-
ments are particularly powerful since they allow information
from two different sources to be correlated in a single measure-
ment. Notably, coupling fluorescence to electrochemistry has
led to a number of new measurement modalities (vide supra)
with attendant improvements in sensitivity. In this regard,
zeptoliter-volume metal-clad 0D nanopores are of special inter-
est, because they can exhibit both nanoelectrochemical and
nanophotonic properties simultaneously. Nanopores in an
opaque metal film below a certain size cutoff exhibit zero-
mode waveguide (ZMW) behavior, which produces strongly-
confined, exponentially decaying evanescent fields within the

Fig. 11 a Schematic diagram
showing a top view of the
macroscopic layout of the bipolar
RDE (BRDE) array and remote
electrode separated by mm-
distances; b schematic side view
of the BRDE array and illustration
of the mechanism of self-induced
redox cycling for Ru(NH3)6

2/3+

(abbreviated as Ru2/3+). SIRC in
the BRDE at OA is monitored by
a reporter redox couple
(Repox/red) at a remote location
(OP); c SEM image of the array at
45° tilt. Reproduced from from
Chem. Sci. 2015, 6, 3173. with
permission of The Royal Society
of Chemistry

Fig. 10 Limiting ring current from voltammograms of Ru(NH3)6
3+ as a

function of concentration both with (0.1 M KCl, blue) and without (red)
supporting electrolyte. Black curve: value of 1/κh calculated at the
corresponding Ru(NH3)6

3+ concentration in the absence of supporting
electrolyte. Reprinted with permission from J. Am. Chem. Soc. 2014,
136, 7225. Copyright (2014) American Chemical Society
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pore. Simultaneously, if the ZMW is fabricated from a metal
with a large ideally polarizable region, it can be used as a
working electrode. Under the proper conditions, single mole-
cule spectroelectrochemistry can be performed by coupling the
electron transfer events from fluorigenic reactions to the optical
behavior of the ZMW.

In an initial demonstration of the electrochemical possibili-
ties of ZMWs, single molecules of flavin adenine dinucleotide
(FAD) were functionalized in individual Au ZMW nanopores
and investigated as a function of potential with wide field epi-
illumination microscopy. [107] By controlling the potential,
single immobilized FAD molecules were modulated between
emitting (oxidized) and non-emitting (reduced) states.
Examining the statistical distribution of emitting/non-emitting
states over many single molecules gives insight into the single
molecule dispersion in electrochemical behavior, e.g. Eeq vari-
ation among individual molecules. This work was extended in
similar ZMWs but with freely diffusing FAD and flavin mono-
nucleotide (FMN) by moving to confocal fluorescence geom-
etry. Because single molecule fluorescence bursts could be
measured down to the μs-timescale, the problem posed by μs
residence times of freely diffusing molecules in single ZMW
nanopores was circumvented, and single molecule fluorescence
analogs of scanned potential experiments, in particular
chronofluorometry and cyclic potential sweep fluorescence,
were realized, showing the power single molecule spectroscopy
applied to electrochemical experiments. [73].

Nanoscale ion transfer at immiscible interfaces The elec-
trochemical behavior of immiscible liquid-liquid interfaces,
especially the ability to study ion transfer across the interface,
has been of interest for some time. Arrigan and coworkers
have pioneered the translation of this experiment to nanoscale
interfaces between two immiscible electrolyte solutions, i.e.
nanoITIES arrays. [108–111] Produced primarily with FIB
milling, ion transfer can be electrochemically monitored
across the nanoarray. Figure 12 illustrates the tight relation-
ship between nanopore geometry and electrochemical perfor-
mance by showing the ion transfer current density for various
arrays and the relationship between sensitivity and pore size.
The sensitivity of ion transfer across the phase boundary in-
creases as the size of the nanopores decreases, providing am-
ple motivation for moving to nanoscale interfaces. [112, 113]
Similar to other nanoelectrode array devices, maintaining dif-
fusional independence between electrodes is an important
consideration in order to maximize signal. [114] The expected
limiting current for nanoITIES arrays is given by,

I ¼ 4zFDcrN ð7Þ

where z is the charge, D is the diffusion coefficient, c is the
bulk concentration, r is the radius of the nanopore, and N is
total number of pores in the array. [114–116] Recently,

independent radial diffusion for nanoITIES array devices
was shown to occur when the interpore distance to pore diam-
eter ratio is greater than ~50. These devices show promise as
new types of electrochemical sensors.

Future outlook

Nanopore- and nanochannel-based electrode arrays are partic-
ularly promising for electrochemical applications with

Fig. 12 a Forward scan ion transfer current density (J, μA cm−2) vs.
TEA+ concentration (μM) for each nanointerface array, based on
nanopore design: 1 (■), 2(▲), 3(×), 4(♦) and 5 (+). b Sensitivity of the
nanointerface array (μA cm−2 μM−1) as a function of the nanopore radius
ra (nm) used to form the nanointerface. c Sensitivity (μA cm−2μM−1) as a
function of ra

−1, compared to theory (dashed line). The error bars in (b)
and c were calculated from the standard deviations of the slopes of the
calibration curves in (a). Reproduced from Analyst 2011, 136, 4674. with
permission of The Royal Society of Chemistry
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enhanced performance, e.g. lower limits of detection and im-
proved selectivity, by taking advantage of novel modes of
operation, such as coupled single molecule spectroscopy and
redox cycling that are uniquely enabled in nanoscale struc-
tures. The ultimate level of sensitivity, allowing the electro-
chemical behavior of single redox-active molecules to be stud-
ied, is attainable in these types of nanopore-based devices.
Thus, the enhanced analytical performance metrics of these
nanoelectrode arrays presage great advances for the future.
The greatest remaining challenge in the development of
nanoelectrode arrays is fabrication. In particular, the transla-
tion of small batch fabrication to large-scale, cost-effective
production remains a barrier to widespread adaption of
nanopore- and nanochannel-based electrode arrays for sensing
and testing applications, but this too should yield to ever more
clever and intricate experimental approaches.
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