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The Locality of Distributed Symmetry Breaking
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Symmetry-breaking problems are among the most well studied in the field of distributed computing and yet
the most fundamental questions about their complexity remain open. In this article we work in the LOCAL

model (where the input graph and underlying distributed network are identical) and study the randomized

complexity of four fundamental symmetry-breaking problems on graphs: computing MISs (maximal inde-
pendent sets), maximal matchings, vertex colorings, and ruling sets. A small sample of our results includes
the following:

—An MIS algorithm running in O(log2 � + 2O(
√

log log n)) time, where � is the maximum degree. This is
the first MIS algorithm to improve on the 1986 algorithms of Luby and Alon, Babai, and Itai, when

log n � � � 2
√

log n, and comes close to the �( log �

log log �
) lower bound of Kuhn, Moscibroda, and Wattenhofer.

—A maximal matching algorithm running in O(log � + log4 log n) time. This is the first significant improve-
ment to the 1986 algorithm of Israeli and Itai. Moreover, its dependence on � is nearly optimal.

—A (�+1)-coloring algorithm requiring O(log �+2O(
√

log log n)) time, improving on an O(log �+
√

log n)-time
algorithm of Schneider and Wattenhofer.

—A method for reducing symmetry-breaking problems in low arboricity/degeneracy graphs to low-degree
graphs. (Roughly speaking, the arboricity or degeneracy of a graph bounds the density of any subgraph.)
Corollaries of this reduction include an O(

√

log n)-time maximal matching algorithm for graphs with

arboricity up to 2
√

log n and an O(log2/3 n)-time MIS algorithm for graphs with arboricity up to 2(log n)1/3
.

Each of our algorithms is based on a simple but powerful technique for reducing a randomized symmetry-
breaking task to a corresponding deterministic one on a poly(log n)-size graph.

Categories and Subject Descriptors: G.2.2 [Graph Theory]: Graph Algorithms; F.2.2 [Nonnumerical Al-

gorithms and Problems]: Computations on Discrete Structures

General Terms: Algorithms, Theory
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1. INTRODUCTION

Breaking symmetry is one of the central themes in the theory of distributed computing.
At initialization the nodes of a distributed system are assumed to be in the same state,
possibly with distinct node IDs, yet to perform any computation the nodes frequently
must take different roles. That is, they must somehow break their initial symmetry.
In this article we study several of the most fundamental symmetry-breaking tasks in
the LOCAL model [Linial 1992]: computing maximal independent sets (MIS), maximal
matchings, ruling sets, and vertex colorings. These problems are defined below. In the
LOCAL model, each node of the input graph G hosts a processor, which is only aware of
its neighbors and upper bounds on various graph parameters such as n and �, which
are the number of nodes and maximum degree, respectively.1 The computation proceeds
in synchronized rounds in which each processor sends one unbounded message along
each edge. Time is measured by the number of rounds; local computation is free. At
the end of the computation, each node must report its portion of the output, that is,
whether it is in the MIS or ruling set, which incident edge is part of the matching, or its
assigned color. This model should be contrasted with CONGEST, which is identical to
LOCAL except messages consist of O(1) words, that is, O(log n) bits. Refer to Peleg [2000,
Ch. 1-2] for a discussion of distributed models. None of our algorithms seriously abuse
the power of the LOCAL model. Our message size and local computation are always
O(poly(�) log n), usually O(poly(log n)), and in several cases O(1).

Let us define the four problems formally.

MAXIMAL INDEPENDENT SET. Given G = (V, E), find any set I ⊆ V such that no two
nodes in I are adjacent and I is maximal with respect to inclusion. (That is, every
v �∈ I is adjacent to some member of I.)

(α, β)-RULING SET. Given G(V, E), find any R ⊂ V such that for every u ∈ V ,
dist(u, R) ≤ β and for every u ∈ R, dist(u, R\{u}) ≥ α. Note that (2, 1)-ruling
sets are maximal independent sets. (Here dist(u, X) is the length of a shortest
path from u to any member of X.)

MAXIMAL MATCHING. Given G = (V, E), find any matching M ⊆ E (consisting of
node-disjoint edges) that is maximal with respect to inclusion.

K-COLORING. Given G = (V, E), find a proper coloring Color : V → {1, . . . , K}, that
is, one for which (u, v) ∈ E implies Color(u) �= Color(v). We are mainly interested
in (� + 1)-colorings, whose existence is trivially guaranteed.

We study the complexities of these problems on general graphs, as well as graphs
with a specified arboricity λ. By definition λ(G) is the minimum number of edge-disjoint
forests that cover E, which is roughly the maximum density of any subgraph. We
believe arboricity is an important graph parameter as it robustly captures the notion
of sparsity without imposing any strict structural constraints, such as planarity or the
like. We always have λ ≤ �, but, in general, λ could be significantly smaller than �.
Most sparse graph classes, for example, have λ = O(1) though their maximum degree
is unbounded. These include planar graphs (λ = 3), graphs avoiding a fixed minor,

1This assumption can sometimes be removed. Korman, Sereni, and Viennot [2013] presented a method to
convert non-uniform distributed algorithms (which know n,�, and possibly other parameters) into uniform
distributed algorithms. The problems susceptible to this method must satisfy a couple properties, the most
important of which is that any partial solution may be extended to a complete solution.
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bounded genus graphs, and graphs of bounded treewidth or pathwidth. However, none
of our algorithms actually depend on having λ = O(1).

1.1. The State of the Art in Distributed Symmetry Breaking

The reader will soon notice two striking features of prior research on distributed sym-
metry breaking: the wide gulf between the efficiency of deterministic and randomized
algorithms and the paltry number of algorithms that are provably optimal. It is typical
to see randomized algorithms that are exponentially faster (in terms of n or �) than
their deterministic counterparts, and they are usually simpler to analyze and simpler
to implement. Very few problems can be solved in O(1) time, independent of � and n.
The ω(1) lower bounds of Linial [1992] and Kuhn, Moscibroda, and Wattenhofer [2004]
are known to be tight in only a few cases, typically on very special classes of graphs.

We survey lower bounds and algorithms for each of the symmetry-breaking problems
below. Tables I–IV provide an at-a-glance history of the problems. In the tables, deter-
ministic algorithms are indicated by DET. All other algorithms are randomized, which
return a correct answer with high probability.2

Lower Bounds. Linial [1992] proved that log(k) n-coloring the n-cycle takes �(k) time
and, therefore, that O(1)-coloring the n-cycle takes �(log∗ n) time. On the n-cycle, MIS,
maximal matching, and ruling sets are equivalent to O(1)-coloring, so Linial’s lower
bound applies to these problems as well. Kuhn, Moscibroda, and Wattenhofer [2004]
(henceforth, KMW) proved that O(1)-approximate minimum vertex cover (MVC) takes

�(min{
√

log n
log log n

,
log �

log log �
}) time.3 Since 2-approximate MVC is reducible to maximal

matching and maximal matching is reducible to MIS (on the line graph of the orig-

inal graph), the KMW lower bound implies �(min{
√

log n
log log n

,
log �

log log �
}) lower bounds on

these problems as well. It does not apply to coloring problems, nor the (α, β)-ruling set
problem except when (α, β) = (2, 1).

Deterministic MIS. The fastest deterministic MIS algorithms for general graphs run

in 2O(
√

log n) time [Panconesi and Srinivasan 1996] and O(� + log∗ n) time [Barenboim
et al. 2014]. The Panconesi-Srinivasan [1996] result is actually a network decom-
position algorithm, which can be used to solve many symmetry-breaking problems

in 2O(
√

log n) time. It improved on an earlier algorithm of Awerbuch et al. [1989]

running in 2O(
√

log n log log n) time. Recent work on deterministic MIS algorithms has
focused on restricted graph classes. Schneider and Wattenhofer [2010b] gave an
optimal O(log∗ n)-time MIS algorithm for growth-bounded graphs.4 Barenboim and
Elkin [2010, 2013] gave an O(λ

√

log n + log n)-time MIS algorithm, and another that

runs in O( log n
δ log log n

) when the arboricity is λ = (log n)1/2−δ. The subsequent vertex

coloring algorithms of Barenboim and Elkin [2011] give, as corollaries, MIS algorithms
running in O(λ+min{λε log n, log1+ε n}) time and O(λ1+ε + log λ log n) time, where ε > 0
influences the leading constants.

2An event occurs with high probability if its probability is at least 1 − n−c for an arbitrarily large c, where c
may influence other constants, for example, those hidden in asymptotic running times.
3The same authors later claimed a stronger lower bound of �(min{

√

log n, log �}) [Kuhn et al. 2010]. Very
recently Bar-Yehuda, Censor-Hillel, and Schwartzman [2016] pointed out an error in their proof.
4A graph class has bounded growth if for each v ∈ V and radius r, the maximum size of an independent set
in v’s r-neighborhood is a constant depending on r. For example, unit-disc graphs have bounded growth.
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Table I. Maximal Independent Set

CITATION RUNNING TIME GRAPHS

Linial [1992] �(log∗ n) n-cycle

Kuhn et al. [2004] �

(

min
{
√

log n
log log n

,
log �

log log �

})

General

Luby [1986] and Alon et al. [1986] log n General

Panconesi and Srinivasan [1996] 2O(
√

log n) DET. General

Barenboim et al. [2014] � + log∗ n DET. General

log n
δ log log n

DET. λ = log1/2−δ n

Barenboim and Elkin λ
√

log n + log n DET.

[2010, 2011] λ + min{λε log n, log1+ε n} DET.
All λ,

λ1+ε + log λ log n DET.
Fixed ε > 0

Schneider and Wattenhofer [2010b] log∗ n DET. Bounded growth

Lenzen and Wattenhofer [2011]
√

log n log log n Trees (λ = 1)

log2 � + 2O(
√

log log n) General

log2 � + log log n
δ log log log n

λ = log1/2−δ log n

log2 λ + log2/3 n All λ

log2 � + λ1+ε + log λ log log n
All λ,

This article log2 � + λ + λε log log n
Fixed ε > 0

log2 � + λ + (log log n)1+ε

√

log n log log n

log � log log � + log log n
log log log n

Trees (λ = 1)

log � log log n + 2O(
√

log log n) Girth > 6

Randomized MIS. Nearly 30 years ago Luby [1986] and Alon, Babai, and Itai [1986]
presented very simple randomized MIS algorithms running in O(log n) time. These
algorithms are faster than the best deterministic algorithms when � = ω(log n) and
remain the fastest MIS algorithms for general graphs when running time is expressed
solely as a function of n. Lenzen and Wattenhofer [2011] showed that in the special
case of trees (λ = 1), an MIS can be computed in O(

√

log n log log n) time with high
probability.5

5See footnote 9.
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Table II. Maximal Matching

CITATION RUNNING TIME GRAPHS

Linial [1992] �(log∗ n) n-cycle

Kuhn et al. [2004] �

(

min
{
√

log n
log log n

,
log �

log log �

})

General

Israeli and Itai [1986] log n General

Hanckowiak et al. [2001] log4 n DET. General

log3 n DET. Bipartite

Panconesi and Rizzi [2001] � + log∗ n DET. General

log n
δ log log n

DET. λ = log1−δ n

Barenboim and Elkin [2010]
λ + log n DET. All λ

log � + log4 log n General

log � + log3 log n Bipartite

This article log � + log log n
δ log log log n

λ = log1−δ log n

log λ +
√

log n

log � + λ + log log n
All λ

Deterministic Maximal Matching. Panconesi and Srinivasan’s [1996] network

decomposition algorithm implies a deterministic 2O(
√

log n)-time maximal matching
algorithm. This bound was dramatically improved by Hańćkowiak et al. [2001]
to O(log4 n). When � = o(log4 n), maximal matchings can be computed faster, in
O(� + log∗ n) time, using the algorithm of Panconesi and Rizzi [2001]. Barenboim
and Elkin [2010, 2013] gave improved algorithms for low arboricity graphs. Their
algorithms run in O(λ+ log n) time, for any λ, and in O( log n

δ log log n
) time when λ = log1−δ n.

Randomized Maximal Matching. Since a maximal matching in G is simply an MIS in
the line graph of G, the randomized MIS algorithms of Luby [1986] and Alon et al. [1986]
can be used to solve maximal matching in O(log n) time as well.6 Israeli and Itai [1986]
presented a direct randomized algorithm for computing maximal matchings in O(log n)
time. This algorithm is faster than the deterministic algorithms when � = ω(log n)
and remains the fastest maximal matching algorithm whose running time is expressed
solely as a function of n.

Deterministic Vertex Coloring. The vertex coloring problem allows for a tradeoff be-
tween the palette size (number of colors) and running time. Linial [1992] proved that
O(�2)-coloring can be computed deterministically in O(log∗ n) time, independent of �.
Szegedy and Vishwanathan [1993] later improved the running time of this algorithm

to 1
2 log∗ n + O(1). The best deterministic (� + 1)-coloring algorithms run in 2O(

√
log n)

6These simulations increase the local computation at each node.
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Table III. Vertex Coloring

CITATION COLORS RUNNING TIME

Linial [1992] 3 �(log∗ n)

Cole and Vishkin [1986] (on the n-cycle) log∗ n +O(1) DET.

Luby [1986]
log n

Johansson [1999]

Panconesi and Srinivasan [1996] 2O(
√

log n) DET.

Barenboim et al. [2014] � + log∗ n DET.

Schneider and Watten [2010a] � + 1 log � +
√

log n

log � + 2O(
√

log log n)

log � + λ1+ε + log λ log log n

log � + λ + λε log log n

log � + λ + (log log n)1+ε

This article

� + O(λ)
log � + λε log log n

log � + λε + (log log n)1+ε

� + λ1+ε log � + log λ log log n

2O(
√

log log n)

Kothapalli et al. [2006] O(�)
√

log n

min{�ε log n, �ε + log1+ε n} DET.

Barenboim and Elkin [2011]
O(λ) min{λε log n, λε + log1+ε n} DET.

�1+ε log � log n DET.

λ1+ε log λ log n DET.

Schneider
O(� + log n) log log n

and Wattenhofer [2010a]
� log(k) n

k (for k < log∗ n)
+ log1+1/k n

Kuhn and Wattenhofer [2006] � log n log(k) n k (for k < log∗ n)

Linial [1992]
O(�2)

log∗ n +O(1) DET.

Szegedy and Vishwanath [1993] 1
2 log∗ n +O(1) DET.

Barenboim and Elkin [2010]
λ · n1/k

�(k)

Kothapalli and Pemmaraju [2011] k (for log log n < k <
√

log n)
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Table IV. Ruling Sets

CITATION (α, β) RUNNING TIME

(2, 1) MIS time

trivial
(α, (α − 1)β)

α · (2, β)-RULING SET time

(See text, Section 1.1)

Awerbuch et al. [1989] (2, log n) log n DET.

Gfeller and Vicari [2007] (1, O(log log �)) log log � (See text, Section 1.1)

Schneider and Wattenhofer [2010a] (2, β) 2β/2 log
2

β−1 n

(2, 2) (log1/2 �)(log1/4 n)

Kothapalli and Pemmaraju [2012] (2, 3) (λ = 1) (log log n)2 log log log n

(2, 3) (λ = O(1)) (log log n)3

Schneider et al. [2013]
(2, β�1/β ) β + log∗ n DET.

(2, β) β�2/β + log∗ n DET.

Schneider et al. [2013]

+ Gfeller and Vicari [2007]
(2, O(log log n)) log log n

Barenboim and Elkin [2010]
(2, log λ +

√

log n) log λ +
√

log n DET.
+ Awerbuch et al. [1989]

Bisht et al. [2014] (2, β) β log
1

β−1 � + 2O(
√

log log n)

This article (2, β) β log
1

β−1/2 � + 2O(
√

log log n)

time [Panconesi and Srinivasan 1996] or O(� + log∗ n) time [Barenboim et al. 2014].
Even if the palette size is enlarged to O(�), the Panconesi-Srinivasan [1996] algorithm
remains the fastest, when time is expressed as a function of n. However, Barenboim
and Elkin [2011] gave an O(min{λε log n, λε +log1+ε n})-time algorithm for O(λ)-coloring
and an O(log λ log n)-time algorithm for λ1+ε-coloring. (The hidden constants are
exponential in 1/ε.) Since the arboricity λ is at most �, one can substitute � for λ

in the bounds cited above.

Randomized Vertex Coloring. As usual, significantly faster coloring algorithms can
be obtained using randomization. Luby [1986] gave a reduction from (� + 1)-coloring
to MIS, which implies an O(log n) time randomized algorithm. A direct O(log n)-time
(�+1)-coloring algorithm was analyzed by Johansson [1999]. By enlarging the palette,
vertex coloring can be solved dramatically faster. Kothapalli et al. [2006] showed that
O(
√

log n) time suffices for computing an O(�)-coloring for any �. Schneider and

Wattenhofer [2010a] gave an O(log � +
√

log n)-time (� + 1)-coloring algorithm, for
any �, and several faster O(�)-coloring algorithms when � is sufficiently large. For
example, when � = �(log n), O(�)-coloring can be computed in O(log log n) time and,

when � = �(log1+1/ log∗ n n), O(�)-coloring can be computed in O(log∗ n) time. Kuhn and

Wattenhofer [2006] showed that O(� log n log(k) n)-coloring is computable in O(k) time
and, in particular, an O(� log2 n)-coloring could be computed in a single round.
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Ruling Sets. As noted earlier, an MIS is a (2, 1)-ruling set. More generally, an (α, (α −
1)β)-ruling set can be found by computing a (2, β)-ruling set in the graph G[1,α−1], whose
edge set consists of pairs (u, v) for which distG(u, v) ∈ [1, α−1]. (See Section 2 for details
of graph notation.) A distributed algorithm in G[1,α−1] can be simulated in G with an
(α − 1)-factor slowdown. This reduction changes various graph parameters so it is not
always applicable. For example, �(G[1,α−1]) is roughly (�(G))α−1 and λ(G[1,α−1]) cannot
be bounded as a function of λ(G).

Awerbuch et al. [1989] gave a deterministic (2, log n)-ruling set algorithm running
in O(log n) time. Schneider, Elkin, and Wattenhofer [2013] recently discovered a (2, β)-
ruling set algorithm running in O(β�2/β + log∗ n) time, for any integer parameter β,
and another (2, β�1/β ) ruling set algorithm running in O(β + log∗ n) time.

These are the only deterministic ruling set algorithms. Using randomization, Gfeller
and Vicari [2007] showed that a (1, O(log log �))-ruling set could be computed such
that the maximum degree in the graph induced by the ruling set is O(log5 n). Schnei-
der and Wattenhofer [2010a] gave a randomized algorithm for computing a (2, β)-

ruling set in O(2β/2 log2/(β−1) n) time. This bound was improved by Bisht et al. [2014] to

O(β log1/(β−1)
� + 2O(

√
log log n)) time. In earlier work, Kothapalli and Pemmaraju [2012]

gave a randomized (2, 2)-ruling set algorithm running in O(log1/2
� · log1/4 n) time and

a randomized (2, 3)-ruling set algorithm running in poly(log log n) time for graphs with
arboricity λ = O(1).

1.2. The Union Bound Barrier

Our algorithms confront a fundamental barrier in randomized distributed algorithms
we call the union bound barrier, which, to our knowledge, has never been explicitly
discussed.

Consider a generic symmetry-breaking algorithm that works as follows. The nodes
execute some number of iterations of an O(1)-time randomized experiment, the purpose
of which is to commit to some fragment of the output. That is, some nodes are committed
to the MIS or ruling set, some edges are committed to the matching, some nodes commit
to a color, and so on.

The experiment fails at each node v with probability 1 − �(1). For example, failure
may be defined as the event that no edge incident to v joins the matching. The fail-
ure events are not independent in general but are independent for sufficiently distant
nodes. If the random experiment takes t time steps, then nodes at distance at least
2t + 1 are influenced by disjoint sets of nodes. Although each node succeeds after 
(1)
time in expectation, the union bound only lets us claim that a global solution is reached
with probability 1 − n−�(1) if the failure probability at each node is n−�(1), necessitating

(log n) time. Symmetry-breaking algorithms based on a random experiment with fail-
ure probability p seem intrinsically incapable of running in o(log1/p n) time.7 However,
there are several conceivable strategies one could use to escape this conclusion. Among
them,

Use no randomness. Deterministic algorithms have no probability of failure.
Redefine failure. If the experiment is kept the same but the notion of failure is

relaxed such that it only occurs with probability n−�(1), then the union bound can
be applied.

7Moreover, existing randomized algorithms [Luby 1986; Alon et al. 1986; Israeli and Itai 1986] do not even fit
in this framework. They do not guarantee each node succeeds with probability �(1), only that an �(1)-fraction
of the edges are incident to nodes that succeed with probability �(1).
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We borrow an idea used in early constructive algorithms for the Lovász Local
Lemma [Beck 1991; Alon 1991] and more recently by Rubinfeld et al. [2011], which
combines elements from both of the strategies above.

All of our algorithms consists of two discrete phases. In Phase I we execute O(log �)
or poly(log �) iterations (rather than 
(log n)) of an experiment whose local probability
of failure is 1 − �(1). Using the fact that failure events are independent for sufficiently
distant nodes, we show that every connected component in the remaining graph8 has
size s = poly(log n) or, in one case, s = poly(�) log n, with probability 1 − n−�(1). In
other words, rather than apply the union bound to n events (that each individual node
survives), we apply the union bound to a much larger set of events corresponding to
the survival of components with more than s nodes.

In Phase II we revert to the best available deterministic algorithm and apply it
to each connected component, letting it run for time sufficient to solve any instance
on s nodes. (If there is a component with more than s nodes, then this is a global

failure, which occurs with probability n−�(1).) This two-phase structure explains some
conspicuous features of our results listed in Tables I–IV. The running times are always
expressed as two (or more) terms, one that usually depends on log � and another that
exactly matches the time bound of one of the deterministic algorithms, except that it

is scaled down exponentially. In other words, 2
√

log n becomes 2
√

log log n, log n
log log n

becomes
log log n

log log log n
, and so on.

The union bound barrier refers to the limitations attendant to any analysis that
employs the union bound to upper bound the global probability of failure. A natural
question is whether the union bound barrier is truly a barrier for distributed symmetry-
breaking algorithms in the LOCAL model. To be very specific: Is it true that any optimal
randomized symmetry-breaking algorithm must take something like our two-phase
approach? Must every optimal randomized algorithm for n-node graphs contain within
it an optimal deterministic algorithm for poly(log n)-size inputs?

1.3. New Results

We introduce numerous symmetry-breaking algorithms using the two-phase strategy
outlined in Section 1.2. For Phase I we design new iterated randomized experiments
and analyze their local probability of failure. After Phase I the connected components
in the surviving subgraph have size poly(log n) or poly(�) log n with high probability.
For Phase II we invoke the best available deterministic algorithm, usually applied in a
black-box fashion. For general graphs there always happens to be one best deterministic
algorithm. However, for low arboricity graphs, we have access to several algorithms,
each of which is asymptotically superior for different values of λ,�, and n.

For graphs with a large disparity between λ and �, the method described above does
not get optimal results. We give a general randomized reduction showing that MIS
and maximal matching are reducible in O(log1−γ n) time to instances with maximum
degree λ · 2logγ n for any γ ∈ (0, 1). This reduction allows us to obtain algorithms whose
running time is sublogarithmic in n, given algorithms that run in time polylogarithmic
in �.

We shall now discuss the results claimed in Tables I–IV.

MIS and Ruling Sets. Our primary result is a new MIS algorithm running in

O(log2
� + 2O(

√
log log n)) time, which is within a log � factor of the KMW lower bound.

Moreover, this is the first improvement to the 1986 algorithms of Luby [1986] and Alon

8That is, the portion not dominated by the independent set (in the case of MIS), not adjacent to a matched
edge (in the case of maximal matching), and so on.
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et al. [1986] for such a broad range of degrees: from � = �(log n) to 2O(
√

log n). The Phase
II portion of this algorithm is rather complicated since we cannot afford to apply an
existing MIS algorithm in a black box fashion. After Phase I the surviving components
are shown to have size poly(�) log n. By invoking the Panconesi-Srinivasan [1996] al-

gorithm on each component, Phase II would run in 2O(
√

log(poly(�) log n)) time, which is
fine if � = poly(log n) but not if � is just slightly super-logarithmic. We prove that by
a certain deterministic clustering procedure, each component can be decomposed into
log n clusters with diameter O(log �). A version of the Panconesi-Srinivasan [1996]
algorithm can then be simulated on the cluster graph formed by virtually contracting
each cluster to a single node.

Using our degree-reduction routine, we can solve MIS on graphs with arboricity λ in

O(log1−γ n + log2(λ · 2logγ n) + 2O(
√

log log n)) time, which simplifies to O(log2
λ + log2/3 n)

when γ = 1/3. Other MIS algorithms that depend at least linearly on λ can be generated
by invoking one of the MIS algorithms of Barenboim and Elkin [2011].

Finally, we give an O(log � log log � + log log n
log log log n

)-time algorithm for MIS on trees

(λ = 1), which, using the degree-reduction routine with γ = 1/2 − o(1), implies a
time bound of O(

√

log n log log n), independent of �.9 With minor modifications, this
algorithm can be made to work on general graphs with girth greater than 6, not just
trees. The girth of a graph is the length of its shortest cycle.

Bisht et al. [2014] showed how to reduce the (2, β)-ruling set problem on degree-�
graphs to an MIS problem on graphs with degree much smaller than �. Using their
reduction and our new MIS algorithm, we get a (2, β)-ruling set algorithm running

in O(β log
1

β−1/2 � + 2O(
√

log log n)) time. This result is notable because it establishes a
provable gap between the complexity of computing an MIS (a (2, 1)-ruling set) and a
(2, 2)-ruling set. By the KMW bound, an MIS cannot be computed in o(log �) time,

whereas (2, 2)-ruling sets can be computed in O(log2/3
� + 2O(

√
log log n)) time.10

Maximal Matching. We give a new maximal matching algorithm running in O(log �+
log4 log n) time using O(1)-size messages, that is, it works in the CONGEST model.
In some ways this is our strongest result. Its dependence on � nearly matches the
�( log �

log log �
) KMW [2004] lower bound. Using the degree-reduction routine with γ = 1/2,

we obtain a maximal matching algorithm running in O(log λ +
√

log n) time. Since the

KMW graphs have arboricity λ = 2
(
√

log n log log n), this algorithm is nearly optimal for
that particular arboricity. Generalizing the KMW lower bound, we prove that even

on trees, maximal matching requires �(
√

log n
log log n

) time. Thus, our algorithm is nearly

optimal for all λ from 1 to 2O(
√

log n). Using the Barenboim-Elkin [2010, 2013] maximal
matching algorithm, we obtain more results that are superior when λ is small and
log � = o(

√

log n). For example, when λ = O(1), a maximal matching can also be

computed in O(log � + log log n
log log log n

) time.

9Lenzen and Wattenhofer [2011] claimed an MIS algorithm running in O(
√

log n log log n) time on trees, but
there is a flaw in their analysis. We repair this flaw in Section 8. By incorporating Lemma 8.3 into the proof

of Lenzen and Wattenhofer [2011, Lemma 4.8], the resulting algorithm would only run in O(
√

log n log log n)
time.
10When time bounds are expressed in terms of n (rather than �), our result only demonstrates that (2, 3)-

ruling sets are easier to compute than MISs. They can be computed in O(log2/5 �+2O(
√

log log n)) = O(log2/5 n)

time, whereas MISs need �(
√

log n
log log n

) time [Kuhn et al. 2004].
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Vertex Coloring. The vertex coloring problem, in one respect, qualitatively differs from
maximal matching and MIS. In Phase II of the MIS and matching algorithms, each
connected component forms a (small) instance of MIS or maximal matching. However,
in our vertex coloring algorithms, at the beginning of Phase II some nodes have been
permanently colored, which affects the palettes of their as-yet uncolored neighbors.
Thus, the connected components of uncolored nodes form instances of the list-coloring
problem—each vertex may hold a palette of an arbitrary set of allowable colors. This
distinction sometimes makes no difference.

Our main coloring result is a (� + 1)-coloring algorithm running in O(log � +
2O(

√
log log n)) time,11 which improves the O(log �+

√

log n) bound of Schneider and Wat-

tenhofer [2010a] and implies that O(�)-coloring can be computed in 2O(
√

log log n) time,
independent of �. The KMW lower bounds do not apply to vertex coloring. So long as
the Panconesi-Srinivasan algorithm goes unimproved, it will be difficult or impossible
to improve the dependence on n.

By invoking the Barenboim-Elkin [2010, 2011, 2013] coloring algorithms we obtain
numerous results for graphs with small arboricity. Since the Barenboim-Elkin algo-
rithms do not solve the general list-coloring problem, we have to start Phase II with a
“fresh” palette of unused colors. This fact leads to (�+�(λ))-coloring algorithms whose
running time is sublinear in λ and (� + 1)-coloring algorithms whose running time is
at least linear in λ.

1.4. Recent Developments

Our two-phase approach to randomized symmetry breaking has influenced a diverse
set of recent results.12 It has been applied to computing ruling sets [Bisht et al. 2014;
Kothapalli and Pemmaraju 2012]; see Table IV. Chung et al. [2014] gave distributed
algorithms for the constructive Lovász local lemma [Moser and Tardos 2010], which
involves the computation of certain approximate MISs. Pettie and Su [2015] gave
fast O(�/ ln �)-coloring algorithms for triangle-free graphs and other natural graph
classes. Elkin et al. [2015] gave various edge-coloring algorithms for general graphs
and vertex coloring algorithms for locally sparse graphs. One consequence of their

results is that (� + 1)-coloring can be computed in O(log λ) + 2O(
√

log log n) time for
all λ,�, n, and in O(log∗ n) time for certain ranges of the parameters. Very recently

Ghaffari [2016] exhibited a new MIS algorithm running in O(log �+ 2O(
√

log log n)) time,
which has nearly optimal dependence on �. Harris et al. [2016] discovered a (� + 1)-

coloring algorithm running in O(
√

log �+2O(
√

log log n)) time, demonstrating a separation
between the complexity of (� + 1)-coloring and MIS. In a recent breakthrough in
deterministic complexity, Barenboim [2015] discovered a (� + 1)-coloring algorithm
running in O(�3/4 log � + log∗ n) time and a (1 + o(1))�-coloring algorithm running in
Õ(

√
� + log∗ n) time.

1.5. Organization

In Section 2 we review some notation for graphs and their parameters, as well as some
useful symmetry-breaking primitives due to Awerbuch et al. [1989] and Panconesi
and Srinivasan [1996]. Sections 3–6 are devoted to algorithms for the four symmetry-
breaking problems on general graphs. In Section 7 we present a new degree-reduction
method (parameterized by the arboricity) and derive numerous results for small

11The algorithm actually solves the list-coloring problem, where a vertex v’s palette contains deg(v)+1 colors.
12Somewhere along the way this technique has become known as graph shattering [Su 2015; Ghaffari 2016],
referring to the pieces of the graph output by the Phase I part of the algorithm.
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arboricity graphs. Section 8 presents a faster algorithm for MIS on trees and graphs of
girth greater than 6. We conclude and discuss some open problems in Section 9.

In our analyses we use several standard concentration inequalities due to Chernoff,
Janson, and Azuma-Hoeffding. The statements of these theorems can be found in
Appendix A. Refer to Dubhashi and Panconesi [2009] for derivations of these and other
concentration bounds.

2. PRELIMINARIES

2.1. Graph Notation

Let G = (V, E) be the undirected input graph and underlying distributed network.
Define �H(v), �̂H(v), and degH(v) to be the neighborhood, inclusive neighborhood, and
degree of v with respect to a graph H. Typically H is an induced subgraph of G.
Formally,

�H(v)
def= {u | (v, u) ∈ E(H)},

�̂H(v)
def= {v} ∪ �H(v),

and degH(v)
def= |�H(v)|.

For succinctness we sometimes put U ⊆ V (G) or U ⊆ E(G) in the subscript to refer to
the subgraph of G induced by U . The subscript may be omitted altogether if H = G.

We assume the nodes know global graph parameters13 such as n
def= |V (G)|,

�
def= maxv∈V degG(v), and, if applicable, the arboricity λ(G). To simplify calculations

we often assume n, �, and λ are at least some sufficiently large constant. The ar-
boricity of a graph H is the minimum number of forests that cover E(H). By the
Nash-Williams [1964] theorem, λ(H) can also be defined as

λ(H)
def= max

⎧

⎨

⎩

⎡

⎢

⎢

⎢

∣

∣

∣
E(H) ∩

(

U
2

)

∣

∣

∣

|U | − 1

⎤

⎥

⎥

⎥

∣

∣

∣

∣

∣

∣

U ⊆ V (H) and |U | ≥ 2

⎫

⎬

⎭

,

that is, roughly the edge density of any subgraph of H with at least two nodes. Other
measures of graph sparsity are, for our purposes, equivalent to λ. For example, the
degeneracy of a graph H is defined to be

d(H)
def= max

U⊆V (H)
min
v∈U

degU (v).

It is known that λ(H) ≤ d(H) ≤ 2λ(H) − 1.
Our matching algorithms internally generate directed graphs. In a directed graph

H, the indegree and outdegree of v (written indegH(v) and outdegH(v)) are the number

of edges oriented towards v and away from v, respectively, and degH(v)
def= indegH(v) +

outdegH(v). A pseudoforest is a directed graph in which all nodes have outdegree at
most 1.

Let distH(u, v) be the distance (length of the shortest path) between u and v in H.
For any integers 1 ≤ a ≤ b, define

H[a,b] def=
(

V (H), {(u, v) | distH(u, v) ∈ [a, b]}
)

and Ha def= H[a,a].

In other words, we put edges between pairs whose distance is in the interval [a, b].

13This assumption can be removed for many of our algorithms. See Korman et al. [2013].
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2.2. Decompositions and Ruling Sets

A network decomposition is a powerful tool used in symmetry-breaking algorithms.
The fastest known deterministic decomposition algorithm is due to Panconesi and
Srinivasan [1996]. See Awerbuch et al. [1989] and Linial and Saks [1993] for earlier
decomposition algorithms.

Definition 2.1 (Network Decompositions). Let H be an n-vertex graph. A (d(n), c(n))-
network decomposition is a pair (D,C ) such that D is a partition of V (H) into clusters,
each with diameter at most d(n), and C : D → {1, . . . , c(n)} is a proper c(n)-coloring of
the graph derived by contracting the clusters. More formally, we have D = {Di}, where
⋃

i Di = V (H), Di ∩ Di′ = ∅ for i �= i′, and if v, v′ ∈ Di then distDi
(v, v′) ≤ d(n). If there

exists (v, v′) ∈ E(H) with v ∈ Di and v′ ∈ Di′ , then C (Di) �= C (Di′ ).

THEOREM 2.2 (PANCONESI AND SRINIVASAN [1996]). A (2O(
√

log n), 2O(
√

log n))-network de-

composition can be computed deterministically in 2O(
√

log n) time.

Definition 2.3 and Theorem 2.4 generalize, slightly, Awerbuch et al.’s [1989] original
definition of a ruling set.

Definition 2.3 (Ruling Sets). Let H be a graph and U ⊆ V (H). An (α, β)-ruling set for
U (w.r.t. H) is a node set R ⊆ U such that for each v ∈ U , distH(v, R) ≤ β and, if v ∈ R,
then distH(v, R\{v}) ≥ α. For example, maximal independent sets are (2, 1)-ruling sets
for V (H) with respect to H.

THEOREM 2.4 (AWERBUCH ET AL. [1989]). Let H be a graph and U ⊆ V (H). Given a
proper K-coloring of H[1,α−1], an (α, (α − 1) �log K�)-ruling set R for U can be computed
in (α − 1) �log K� time, together with a partition of U into a set {Cluster(u) ⊆ U | u ∈ R}
of disjoint radius-(α − 1) �log K� clusters, each of which is a connected set in H[1,α−1].

PROOF. Let χ : V → {1, . . . , K} be the coloring. Initially set Cluster(u) ← {u} for all
u ∈ U . Recursively, and in parallel, compute two (α, (α − 1)(�log K� − 1))-ruling sets R0

and R1 for, respectively,

U0 = {v ∈ U | χ (v) ∈ {1, . . . , �K/2�}}
and U1 = {v ∈ U | χ (v) ∈ {�K/2� + 1, . . . , K}}.

After these recursive calls {Cluster(u) | u ∈ Ri} is a radius-(α−1)(�log K�−1) clustering
of Ui, for i ∈ {0, 1}. We calculate the final ruling set R as follows.

R ← R0 ∪ {v ∈ R1 | distH(v, R0) ≥ α}.
For each u ∈ R, let Lu ⊂ R1\R be the set of all v “knocked out” in this round for which
(distH(v, u), ID(u)) was lexicographically minimum; that is, we assign v to the closest
R-node, breaking ties arbitrarily. The cluster for each u ∈ R is defined as follows:

Cluster(u) ← Cluster(u) ∪
⋃

v∈Lu

Cluster(v).

In other words, a v ∈ R1 that is knocked out at this stage merges Cluster(v) into
Cluster(u). Because distH(v, u) ≤ α − 1, it is guaranteed that Cluster(u) is connected
in H[1,α−1]. Once R0 and R1 are computed, in (α − 1)(�log K� − 1) time, R and the final
clustering can be computed in α − 1 additional time.

If the nodes of H are endowed with distinct β-bit IDs, then we can use them as a
proper 2β-coloring and compute an (α, (α−1)β)-ruling set in O((α−1)β) time. (This was
Awerbuch et al.’s [1989] original algorithm.) However, a better bound can be obtained
by first computing a good coloring.
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COROLLARY 2.5. Let H be a graph with maximum degree � whose nodes are assigned
distinct β-bit IDs. For any α ≥ 2 and U ⊆ V (H), an (α, 2(α − 1)2(log � + O(1)))-ruling
set for U with respect to H can be computed in O(α log∗

β + α2 log �) time, together with
a radius-2(α − 1)2(log � + O(1))-clustering of U, each cluster of which is connected in
H[1,α−1].

PROOF. The graph H[1,α−1] has maximum degree less than �̂
def= �α−1. The first

step is to O(�̂2)-color H[1,α−1] in O(α log∗
β) time. The coloring algorithms of Linial

[1992] and Szegedy and Vishwanathan [1993] take O(log∗
β) time steps in H[1,α−1],

each of which can be simulated with α − 1 time steps in H. By Theorem 2.4, an
(α, (α − 1) log(O(�̂2)))-ruling set can be computed for U in O(α log(�̂2)) time. Note that

(α − 1) log(O(�̂2)) = 2(α − 1)2(log � + O(1)).

Remark 2.6. Clearly, any (α, β)-ruling set R gives a natural radius-β clustering of
U . (Simply put each u ∈ U into the cluster of its closest R-node with respect to distH ,
breaking ties arbitrarily.) However, this clustering will have the undesirable property
that clusters may intersect multiple connected components of H[1,α−1]. The analysis of
the MIS algorithm of Section 3 uses the property that the clusters of Corollary 2.5 are
connected in H[1,α−1].

2.3. Miscellany

In each of our algorithms there is some arbitrary (constant) parameter c that controls
the failure probability, which is always of the form n−�(c). All logarithms are base 2
unless specified otherwise. We make repeated use of the inequality (1 + x) ≤ ex, which
holds for all x.

3. A MAXIMAL INDEPENDENT SET ALGORITHM

In Section 3.1 we give an O(log2
�)-time randomized algorithm called IndependentSet

that computes a large, but not necessary maximal, independent set. A new two-phase
MIS algorithm is presented in Section 3.2. In Phase I it invokes IndependentSet to find
a set I with two properties, (i) all surviving vertices in V (G)\�̂(I) form components
with size poly(�) log n14 and (ii) all (5, O(log �))-ruling sets in each component have
size less than log n. As a consequence of property (i) we can bound the message size by
poly(�) log n. (In the worst case, a message encodes the topology of the entire compo-
nent.) Using property (ii) we can extend I to an MIS in O(log �·exp(O(

√

log log n))) time,

deterministically. Phase I succeeds with probability 1 − n−�(1) and if it does succeed,
Phase II succeeds with probability 1.

Refer to Figures 1 and 3 for the pseudocode of IndependentSet and MIS.

3.1. Computing an Almost Maximal Independent Set

The IndependentSet algorithm uses a generalization of Luby’s [1986] randomized ex-
periment. It consists of log � scales, each composed of O(log �) Luby steps. The purpose
of the kth scale is to reduce the maximum degree in the surviving graph to �/2k. At
some nodes this invariant will fail to hold with some non-negligible probability. We call
such nodes bad and remove them from consideration. The components induced by bad
nodes are reconsidered in Phase II of the MIS algorithm.

LEMMA 3.1. Consider a single iteration of Step 2a (a “Luby step”) in IndependentSet.
If v ∈ VIB and degIB(v) > �/2k before the iteration, then the probability that v ∈ �̂(I)
after the iteration is at least (1 − e−1/2)e−1.

14Recall that �̂(I)
def= I ∪ �(I) contains all vertices in or adjacent to I.
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Fig. 1. An algorithm for computing an almost maximal independent set.

PROOF. Let �̂IB(v) = {v = v0, v1, v2, . . . , vdegIB(v)} be the inclusive neighborhood of v.
By assumption degIB(v) > �/2k and since v1, . . . , vdegIB(v) were not marked bad (placed

in B) in the last execution of Step 2b, degIB(vi) ≤ �/2k−1 for each i ≤ degIB(v). Let
i� ∈ {0, . . . , degIB(v)} be the first index for which b(vi� ) = 1. The probability that i�

exists is

1 −
degIB(v)
∏

i=0

(

1 −
1

degIB(vi) + 1

)

≥ 1 −
(

1 −
1

�/2k−1 + 1

)

�/2k+1 > 1 − e−1/2.

If i� does exist, then vi� is included in the independent set I if all its neighbors set their
b-values to zero. This occurs with probability

∏

u∈�IB(vi� )\{v0,...,vi�−1}

(

1 −
1

deg(u) + 1

)

≥
(

1 −
1

�/2k−1 + 1

)

�/2k−1

> e−1.

Nodes v0, . . . , vi�−1 are excluded from consideration since, by definition of i�, they have
already set their b-values to zero. Thus, after one iteration of Step 2a, v is in �̂(I) with
probability (1 − e−1/2)e−1 ≈ 0.145. See Figure 2 for an illustration.

LEMMA 3.2. Let U ⊂ V (G) be a node set such that distG(u,U\{u}) ≥ 5 for each u ∈ U.
The probability that U ⊆ B after a call to IndependentSet(G) is less than �−c|U |/5.

PROOF. The event that a node v ∈ VIB appears in �̂(I) after one iteration of Step 2a
depends only on the random bits chosen by v’s neighbors and neighbors’ neighbors.
Since all nodes in U are mutually at distance at least five, in each iteration the events
that they appear in �̂(I) are independent. Call a node v ∈ VIB vulnerable in a particular
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Fig. 2. The node v0 is eliminated if some node in its inclusive neighborhood joins the independent set. This
occurs if some vi� chooses b(vi� ) = 1 and 1 �∈ b(�(vi� )).

iteration of Step 2a if degIB(v) > �/2k. We cannot say for certain when a node will be
vulnerable, but eventually each must, for some k, be vulnerable throughout scale k, until
it appears in �̂(I) or is placed in B at the end of the scale. By Lemma 3.1 the probability
that an individual node ends up in B is at most pc log �, where p = 1 − (1 − e−1/2)e−1 ≈
0.855. Since log p < −0.22, pc log � = �c log p < �−c/5. Since outcomes for U -nodes are
independent in any iteration of Step 2a, the probability that all nodes in U end up in
B is at most �−c|U |/5.

LEMMA 3.3. Let (I, B) be the pair returned by IndependentSet(G). For t = log� n, (I, B)
satisfies the following properties with probability 1 − n−c/5+14.

(1) There does not exist any U ⊂ VIB with |U | = t such that for every U ′ ⊂ U,

distG(U ′,U\U ′) ∈ [5, 12]. (Here distG(A, B)
def= mina∈A,b∈B distG(a, b).)

(2) All components in the graph induced by VIB have fewer than t�4 nodes.

PROOF. A set U ⊂ V satisfying the criteria of Part (1) forms a t-node tree in the
graph G[5,12]. (This tree is not necessarily unique.) The number of rooted unlabeled
t-node trees is less than 4t since the Euler tour of such a tree can be encoded as a
bit-vector with length 2t. The number of ways to embed such a tree in G[5,12] is less
than n · �12(t−1) : There are n choices for the root and less than �12 choices for each
subsequent node. By Lemma 3.2 the probability that U ⊆ B is less than �−ct/5. By a
union bound, the probability that any such U is contained in B is less than

4t · n · �12(t−1) · �−ct/5 < nlog� 4+13−c/5 < n−c/5+14.

Turning to Part (2), suppose there is such a connected component C with t�4 nodes.
We can find a subset U of the nodes satisfying the criteria of Part (1) by the following
greedy procedure. Choose an arbitrary initial node v1 ∈ C and set U ← {v1}. Iteratively
select a vi ∈ C\U for which distG(vi,U ) = 5, set U ← U ∪ {vi}, and then remove from
consideration all nodes within distance 4 of vi. The number removed is less than �4,
and hence U has size at least (t�4)/�4 = t.

3.2. The MIS Algorithm

The pseudocode for MIS appears in Figure 3. We walk through each step of the algorithm
below. Recall that IndependentSet(G) returns an independent set I and set of “bad”
nodes B.

Step 1. After Step 1 we have an independent set I and a set of bad nodes B =
VIB = V (G)\�̂(I). By Lemma 3.3(2), with high probability each connected component
in GIB has at most t · �4 nodes and therefore at most t · �5/2 edges, where t = log� n.
Step 1 (and Step 2) require only one-bit messages since each node only has to notify its
neighbors about its status (whether in I or not, whether in VIB or not) and the b-values
it selects in each round. The purpose of Step 1 is merely to break G into components of
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Fig. 3. A maximal independent set algorithm.

size t · �4. Since the remaining steps operate on each component in GIB independently,
the message size required for Steps 2–8 is O(�5 log� n).

Step 2. At this point, we could simply run Panconesi and Srinivasan’s [1996] deter-

ministic MIS algorithm on each component. This would take time 2O(
√

log(t�4)), which is
not the desired bound, unless � happens to be polylogarithmic in n. In order to make
this approach work for all �, we need to reduce the “effective” size of each component
C to at most log n, independent of �. After Step 2 we have partitioned V (C) ⊆ VIB into
�̂(IC) and BC . As we argue below, Lemma 3.3(1) implies that each connected component

of B[1,4]
C (the distance interval [1, 4] being with respect to distC) is partitioned into log n

low-radius clusters. This is the property of (IC, RC) that we use in subsequent steps.

Steps 3 and 4. Recall that nodes are assigned distinct O(log n)-bit IDs. Using Corol-
lary 2.5 with α = 5, we can compute a (5, 32 log � + O(1))-ruling set RC for BC in
O(log �+ log∗ n) time, together with an O(log �)-radius clustering {Cluster(u) | u ∈ RC}
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Fig. 4. The edges in B
[1,4]
C

between nodes in {u0, . . . , u4, u′} represent paths in C with length at most 4. If u2

did not join the ruling set R′
C

, then it must have been within distance 4 of some u′ ∈ R′
C

.

such that each cluster Cluster(u) is connected in B[1,4]
C . Without loss of generality, as-

sume henceforth that B[1,4]
C has one connected component. If not, then we apply these

arguments to each connected component separately. Unfortunately, Lemma 3.3(1) can-
not be applied directly to upper bound |RC | since for some U ′ ⊂ RC , distC(U ′, RC\U ′) is
only guaranteed to be in the interval [5, O(log �)], not [5, 12]. The solution is to consider
a superset of RC that does satisfy the criteria of Lemma 3.3(1).

LEMMA 3.4. There exists an R′
C ⊃ RC such that for every U ′ ⊂ R′

C , distC(U ′, R′
C\U ′) ∈

[5, 12].

PROOF. Initialize R′
C ← RC and consider each v ∈ BC\RC in turn, setting R′

C ←
R′

C ∪ {v} if distC(v, R′
C) ≥ 5. Suppose, for the sake of obtaining a contradiction, that

after this process completes there is a set U ′ ⊂ R′
C such that distC(U ′,U ′) ≥ 13, where

U ′ = R′
C\U ′. Consider the paths between U ′-nodes and U ′-nodes in B[1,4]

C . Since each

edge in these paths reflects at most four edges in C, the shortest path in B[1,4]
C from a

U ′-node to a U ′-node must have length at least 4 = �13/4�. For the sake of specificity,
suppose the path is (u0, u1, u2, u3, u4) and has length exactly 4, where u0 ∈ R′

C ∩ U ′,

u4 ∈ R′
C ∩ U ′, and u1, u2, u3 �∈ R′

C . See Figure 4. Clearly u1, u3 were excluded from R′
C

because distC(u1, u0) ≤ 4 and distC(u3, u4) ≤ 4. However, u2 must have been excluded
because distC(u2, u′) ≤ 4 for some other u′ ∈ R′

C . Observe that both (u′, u2, u1, u0) and
(u′, u2, u3, u4) are both strictly shorter than (u0, . . . , u4). Thus, regardless of whether

u′ ∈ U ′ or u′ ∈ U ′, the path (u0, . . . , u4) is not the shortest path from U ′ to U ′ in B[1,4]
C , a

contradiction.

Lemma 3.4 states that RC is contained within a set R′
C ⊆ BC to which Lemma 3.3(1)

can be applied, proving that |RC | ≤ |R′
C | ≤ t. Thus, the cluster graph C� obtained by

contracting each cluster Cluster(x) to a single node consists of connected components
having at most t nodes.

Steps 5 and 6. We run Panconesi and Srinivasan’s [1996] decomposition algorithm on
each connected component of C�. (See Remark 3.6 for a discussion of the subtle difficul-
ties in implementing this algorithm.) Since |RC | ≤ t = log� n < log n, we can compute

a (2O(
√

log log n), 2O(
√

log log n))-network decomposition (D,C ) in 2O(
√

log log n) time. Since the
underlying network is C, not C�, each step of this algorithm requires 64 log � + O(1)

steps to simulate in C. The total time is therefore log � · 2O(
√

log log n). Since Cluster�(D)
is the union of disjoint clusters in {Cluster(x) | x ∈ D}, the diameter of Cluster�(D) with

respect to distC is at most (64 log � + O(1)) · 2O(
√

log log n).

Step 7. We extend IC to an MIS on C using the network decomposition. For each color
class, for each cluster D, supplement IC with an MIS JD on Cluster�(D)/�̂(IC). These
MISs are computed by the trivial algorithm and in parallel: A representative node in
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D retrieves the status of all nodes in Cluster�(D), in O(log � · 2O(
√

log log n)) time, and
then computes an MIS JD and announces it to all nodes in Cluster�(D). At the end of
this process IC is a maximal independent set on C.

Step 8 and Correctness. The set returned in Step 8, I ∪
⋃

C IC , is usually an MIS of G.
However, poor random choices in Steps 1 and 2 can cause the algorithm to fail during

Step 5. With high probability, the ruling sets
⋃

C RC form connected components in B[1,4]
C

of size at most t. If any is larger than t, then Steps 3 and 4 will be executed without

error, but Step 5 may fail to produce a (2O(
√

log log n), 2O(
√

log log n))-network decomposition
in the time allotted. If this occurs, then Steps 6 and 7 cannot be executed.

Running Time. The time for Steps 1 and 2 is O(log2
�) and the time for Steps 3 and 4

is O(log � + log∗ n). Steps 5–7 take O(log �) · exp(O(
√

log log n)) time. In total, the time

is O(log2
� + log � · exp(O(

√

log log n))), which is O(log2
� + exp(O(

√

log log n))).

THEOREM 3.5. In a graph with maximum degree �, an MIS can be computed in

O(log2
� + exp(O(

√

log log n))) time, with high probability, using messages with size

O(�5 log� n).

Remark 3.6. One must be careful in applying deterministic algorithms in Phase II
in a black box fashion. In the proof of Theorem 3.5 we reduced the number of clusters
per component to t and deduced that the Panconesi-Srinivasan [1996] algorithm runs

in log � · 2O(
√

log t) time on each component. This is not a correct inference. The stated
running time of the Panconesi-Srinivasan algorithm depends on nodes being endowed
with O(log t)-bit IDs (if the number of nodes is t), whereas in Step 5 nodes still have
their original O(log n)-bit IDs. There is a simple generic fix for this problem. Suppose
a deterministic Phase II algorithm A runs in time T = T (t) on any instance C with
size t whose nodes are assigned distinct O(log t)-bit labels. Let k be minimal such that

t ≥ log(k) n. Just before executing A, first compute an O(t2 log(k) n) = O(t3)-coloring in
the graph C[1,2T ] with Linial’s [1992] algorithm and use these colors as (3 log t + O(1))-

bit node IDs. This takes O(T k) time, that is, O(T ) time whenever t = log(O(1)) n. As far
as A can tell, all nodes have distinct IDs since no node can “see” two nodes with the
same ID.

4. AN ALGORITHM FOR MAXIMAL MATCHING

The Match procedure given in Figure 5 is a generalized version of one iteration of the
Israeli-Itai [1986] matching algorithm. It is given not-necessarily-disjoint node sets
U1,U2 and a matching M and returns a matching on U1 × U2 that is node-disjoint
from M. It works as follows. Each unmatched node in U1 proposes to an unmatched
neighbor in U2, selected uniformly at random. Each node in U2 receiving a proposal
accepts one, breaking ties by node ID. The accepted proposals form a set of directed
paths and cycles. At this point each node v generates a bit b(v): 0 if v is at the beginning
of a path, 1 if at the end of a path, and uniformly at random otherwise. A directed edge
(u, v) enters the matching if and only if b(u) = 0 and b(v) = 1. Refer to Figure 6 for an
execution of Match on a small graph.

The procedure MaximalMatching has a two-phase structure. Phase I consists of
O(log �) stages in which the matching, M, is supplemented using two calls to Match.
After Phase I all components of unmatched vertices have fewer than s = (c ln n)9 nodes,
with probability 1 − n−�(c). We apply the deterministic O(log4 s) = O(log4 log n) time
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Fig. 5. An algorithm for computing a matching on U1 × U2 disjoint from M.

Fig. 6. One possible execution of Match(V, V, ∅). Left: The undirected input graph G = (V, E). Middle: The
directed pseudoforest (V, {(u, prop(u))}) induced by the proposals. Right: F consists of directed paths and
cycles. The beginning and end of each path are labeled 0 and 1, respectively. Grayed, isolated nodes receive
no label. All other nodes are assigned random labels in {0, 1}.

maximal matching algorithm of Hańćkowiak et al. [2001] on each component, in par-
allel. In total the running time is O(log � + log4 log n).

Let Vi
def= V (G)\V (M) be the set of unmatched nodes just before stage i. For brevity,

we let degi and �i be the degree and neighborhood functions for the graph induced by
Vi. The parameters for stage i are given below. Roughly speaking, δi is the maximum
degree at stage i, τi = 2δi/(c ln n) is a certain “low-degree” threshold, and νi = δiτi/2 is
a bound on the sum of degrees of nodes in �i(v), for any v. Define

δi
def=

�
√

c ln n

ρi
,

τi
def=

2�

ρi
√

c ln n
,

and νi
def=

�2

ρ2i
=

δiτi

2
, where ρ

def=
√

16/15 < 1.033.
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Fig. 7. A maximal matching algorithm.

Define the low-degree and high-degree nodes before stage i to be

V lo
i

def= {v ∈ Vi | degi(v) ≤ τi+1}

and V hi
i

def= {v ∈ Vi | degi(v) > δi+1}.

Note that nodes with degree between τi+1 and δi+1 are in neither set. In stage i we
supplement the current matching, first, with a matching on V lo

i × V hi
i , and then with

a matching on Vi. As we soon show, certain invariants will hold after stage i with
probability 1 − exp(−�(τi)). Thus, in order to obtain high probability bounds, we must
switch to a different analysis when τi = 
(log n), that is, when the maximum degree is
δi = 
(log2 n).

The algorithm always returns a matching. According to Phase II of Figure 7, C

is the set of all connected components leftover after Phase I that have size at most
(c ln n)9. Thus, if C does not exclude any connected components, then the matching
returned after Phase II will be maximal.15 Our goal is therefore to show that, with
high probability, after Phase I there is no connected component of unmatched nodes
with size greater than (c ln n)9. In the lemma below deg(S) is short for

∑

u∈S deg(u),
where S ⊂ V .

LEMMA 4.1. Define i� to be the last stage for which τi� ≥ 2c ln n. With probability
1 − 2n−c/660+1, the following bounds hold for all v ∈ V (G) after each stage i < i�:

degi+1(v) ≤ δi+1

and deg(2)
i+1(v) ≤ νi+1,

where deg(2)
i+1(v)

def= degi+1(�i+1(v)).

15Note that individual nodes generally do not know whether they are in a component of C. In Phase II they
will execute a deterministic maximal matching algorithm for enough steps to complete on any graph with
(c ln n)9 nodes. It is only if a node fails to terminate in time that it deduces that it was not in C after all and
that this execution of MaximalMatching has failed.
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PROOF. The inequalities hold trivially when i = 0. We analyze the probability
that they hold after stage i, assuming they hold just before stage i. For the sake
of minimizing notation we use degi, �i, and so on, to refer to the degree and neigh-
borhood functions just before each call to Match in stage i. This should not cause
confusion.

Consider a node v ∈ Vi at the beginning of stage i. By assumption degi(v) ≤ δi and

deg(2)
i (v) ≤ νi. Since, by definition, nodes in V lo

i have degree at most τi+1, v has less

than νi/τi+1 = δi+1 · (ρ2/2) neighbors that are not in V lo
i . We argue that if v ∈ V hi

i
(that is, degi(v) > δi+1), then v will be matched in the first call to Match in stage i with
probability 1 − exp((1 − ρ2/2)c ln n/2). Note that the forest induced by the proposals
consists solely of stars (all edges being directed from V lo

i to V hi
i ) which implies that F,

the graph consisting of accepted proposals, consists solely of single-edge paths. Single-
edge paths in F are always committed to the matching since their endpoints’ b-values
are chosen deterministically in Step 4 of Match to satisfy the criterion of Step 5. Thus,
v ∈ V hi

i will be matched if any neighbor u ∈ V lo
i chooses (u, v) in Step 2. The probability

that this does not occur is at most

(

1 −
1

τi

)

|�i (v)∩V lo
i | ≤

(

1 −
1

τi

)
(

1− ρ2

2

)

δi+1

≤ exp

(

−
(

1 −
ρ2

2

)

δi+1

τi

)

= exp

(

−
(

1 −
ρ2

2

)

c ln n

2ρ

)

< n−0.22c {ρ < 1.033}

By a union bound, every v ∈ V hi
i will be matched with probability more than 1−n−c/5+1.

Therefore, we proceed under the assumption that after the first call to Match in stage
i, all unmatched nodes have degree less than δi+1. It remains to show that after the

second call to Match, deg(2)
i+1(v) ≤ νi+1 for all v ∈ V (G).

A node v will be guaranteed to have positive degree in F under two circumstances:
(i) Some node offers v a proposal or (ii) among those nodes proposing to prop(v), v has
the highest ID. Once v is in a path or cycle in F it becomes matched with probability at
least 1/2. (It is actually exactly 1/2, except if v is in a single-edge path, in which case it
is 1.)

In the following analysis, we first expose the proposals made by all nodes in Vi\�̂i(v)
then expose the proposals of �̂i(v) in descending order of node ID. Consider the moment
just before a neighbor u ∈ �i(v) makes a proposal. If at least degi(u)/2 neighbors of
u have yet to receive a proposal (by nodes already evaluated) then place u in set A,
otherwise place u in set B. If u is put in set A and u does offer prop(u) its first proposal
thus far—implying that u will have positive degree in F—then also place u in set A′.
See Figure 8 for an illustration.

We split the rest of the analysis into two cases depending on whether A-nodes or
B-nodes account for the larger share of edges in v’s 2-neighborhood. In both cases we

show that deg(2)
i+1(v) ≤ νi+1 with high probability.

4.1. Case I: The A-Nodes

We first analyze the case that degi(A) ≥ deg(2)
i (v)/2 ≥ νi+1/2. (If deg(2)

i (v) is already less
than νi+1, then there is nothing to prove.) Observe that each node u, once in A, is moved
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Fig. 8. The neighborhood of v is partitioned into A and B, and A is partitioned into A′ and A\A′. Proposals
are indicated by directed edges. A node is in A if a majority of its neighbors do not already have a proposal
and in B otherwise. An A-node is in A′ if it makes the first proposal to a node. A node is in C if it is adjacent
to B and has a proposal. Note: Nodes with a proposal that are adjacent to A but not B are not in C. Contrary
to the depiction, A-nodes and B-nodes may be adjacent and C may intersect both A and B.

to A′ with probability at least 1/2, and, if so, contributes degi(u) ≤ δi+1 to degi(A′).16

The probability that, after evaluating each u ∈ �i(v), degi(A′) is less than a 1√
2
-fraction

of its expectation is

Pr(degi(A′) < 1√
2

· E[degi(A′)])

≤ exp

⎛

⎝−

(

(1 − 1√
2
) E[degi(A′)]

)

2

2
∑

u∈A(degi(u))2

⎞

⎠ {Corollary A.5}

≤ exp

⎛

⎝−

(

(1 − 1√
2
) 1

2 degi(A)
)

2

2(degi(A)/δi+1)δ2
i+1

⎞

⎠ {linearity of expectation}

≤ exp

(

−
(

(1 − 1√
2
)2

8

)

(

degi(A)

δi+1

)

)

≤ exp

(

−
(

(1 − 1√
2
)2

32

)

τi+1

)

{

degi(A) ≥
νi+1

2
=

δi+1τi+1

4

}

< n−c/187 {τi+1 ≥ τi� ≥ 2c ln n}.

We proceed under the assumption that this unlikely event does not hold, so degi(A′) ≥
1√
2

· E[degi(A′)] ≥ 1

2
√

2
· degi(A) ≥ 1

4
√

2
· νi+1. Since each node with positive degree in

F is matched with probability at least 1/2, by linearity of expectation E[degi(A′) −
degi+1(A′)] ≥ 1

2 degi(A′). Moreover, whether v ∈ A′ is matched depends only on the b-
values of neighboring nodes in F. The dependency graph of these events has chromatic
number χ = 5 since the nodes of a cycle can be 5-colored such that any two nodes
within distance 2 receive different colors. The probability that degi(A′) − degi+1(A′) is

16Note that this process fits in the martingale framework of Corollary A.5. Here Xj is the state of the system
after evaluating the jth neighbor u of v and Zj is degi(u) if u joins A′ and 0 otherwise, which is a function of
Xj . Thus, each Zj has a range of at most δi+1.
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less than a 1√
2
-fraction of its expectation is therefore

Pr
(

degi(A′) − degi+1(A′) < 1√
2

· E[degi(A′) − degi+1(A′)]
)

≤ exp

⎛

⎝−
2
((

1 − 1√
2

)

E[degi(A′) − degi+1(A′)]
)

2

χ ·
∑

u∈A′(degi(u))2

⎞

⎠ {Theorem A.3, χ = 5}

≤ exp

⎛

⎝−
2
((

1 − 1√
2

)

1
2 degi(A′)

)

2

χ · (degi(A′)/δi+1)δ2
i+1

⎞

⎠

≤ exp

(

−
(

(1 − 1√
2
)2

10

)

(

degi(A′)

δi+1

)

)

≤ exp

(

−
(

(1 − 1√
2
)2

80
√

2

)

τi+1

)

{

degi(A′) ≥
νi+1

4
√

2
=

δi+1τi+1

8
√

2

}

< n−c/660 {τi+1 ≥ τi� ≥ 2c ln n}.

To sum up, if this unlikely event does not occur,

deg(2)
i (v) − deg(2)

i+1(v) ≥ degi(A′) − degi+1(A′) {because A′ ⊆ �i(v)}

≥
1

√
2

· E[degi(A′) − degi+1(A′)]

≥
1

2
√

2
· degi(A′) ≥

(

1

2
√

2

)

2 · degi(A) ≥
1

16
deg(2)

i (v).

Thus, with high probability, deg(2)
i+1(v) ≤ 15

16 · deg(2)
i (v).

4.2. Case II: The B-Nodes

We now turn to the case when degi(B) ≥ 1
2 · deg(2)

i (v) ≥ 1
2 · νi+1. By definition, just before

any u ∈ B makes its proposal, at least 1
2 · degi(u) of its neighbors have already received

a proposal. We do not care who u proposes to. Let C ⊆ �i(B) be the set of nodes in B’s
neighborhood that receive at least one proposal. For x ∈ C, let degB(x) ≤ δi+1 be the

number of its neighbors in B. Thus, if x is matched, then deg(2)(v) is reduced by at least
degB(x). It follows that

degB(C) =
∑

x∈C

degB(x) =
∑

u∈B

degC(u) ≥
∑

u∈B

1

2
· degi(u) {by defn. of u ∈ B}

=
1

2
· degi(B) ≥

1

4
· deg(2)

i (v) >
1

4
· νi+1.

Since C-nodes are matched with probability 1/2, by linearity of expectation,
E[degi+1(B)] ≤ degi(B)− 1

2 ·degB(C) ≤ 3
4 degi(B). We bound the probability that degi+1(B)

deviates from its expectation using Janson’s inequality in exactly the same way as we
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bounded degi+1(A′). It follows that

Pr

(

degi+1(B) ≥ degi(B) −
1

4
· degB(C)

)

≤ exp

(

−
2( 1

4 degB(C))2

χ ·
∑

x∈C(degB(x))2

)

{Theorem A.3}

≤ exp

(

−
1

40
·

(degB(C))2

(degB(C)/δi+1)δ2
i+1

)

{χ = 5, degB(x) ≤ δi+1}

≤ exp

(

−
1

320
τi+1

)

{degB(C) ≥ νi+1/4 = δi+1τi+1/8}

≤ n−c/160 {τi+1 ≥ τi� ≥ 2c ln n}.

Thus, with high probability

deg(2)
i+1(v) ≤ deg(2)

i (v) −
1

4
· degB(C) ≤

15

16
· deg(2)

i (v),

since degB(C) ≥ 1
4 · deg(2)

i (v). Whether we are in Case I or Case II, deg(2)
i+1(v) ≤ 15

16 ·
deg(2)

i (v) ≤ 15
16 · νi with high probability. Since νi+1 = νi/ρ

2, we set ρ =
√

16/15.

By a union bound, the probability of error at any node is at most 2n−c/660+1. This
covers the probability that the first call to Match fails to match all V hi

i -nodes or the

second call fails to make deg(2)
i+1(v) ≤ νi+1 for all v ∈ Vi.

4.3. The Emergence of Small Components

Lemma 4.1 implies that before stage i� < logρ �, the maximum degree is at most

δi� = τi� (c/2) ln n ≤ (c ln n)2. In Lemmas 4.2 and 4.3, we prove that after another
O(log log n) iterations of the Match procedure, all components of unmatched vertices
have size at most (c ln n)9, with high probability. Thus, Phase II of MaximalMatching
correctly extends the matching after Phase I to a maximal matching.

LEMMA 4.2. For any node v and any stage i, Pr(degi+1(v) ≤ 3
4 · degi(v)) ≥ 1

4 .

PROOF. We analyze the expected drop in v’s degree during the second call to Match
(the one in which all nodes participate) and then apply Markov’s inequality. Expose
the proposals in descending order of node ID and consider the moment just before v

makes its proposal. Let P ⊆ �i(v) be those neighbors already holding a proposal and
Q ⊆ �i(v) be the neighbors with no proposal. All nodes in P will be matched with 1/2
probability and v will be matched with 1/2 probability if it proposes to a member of Q.
The probability v is matched is at least ε

2 , where ε = |Q|/ degi(v). The probability that

u ∈ P is still a neighbor of v after this call to Match is therefore at most 1
2 (1 − ε

2 ). The
probability that u ∈ Q is still a neighbor is at most 1 − ε

2 . By linearity of expectation,

E[degi+1(v)] ≤
(

ε
(

1 − ε
2

)

+ 1
2 (1 − ε)

(

1 − ε
2

))

· degi(v)

= (1 − ε
2 )( 1

2 + ε
2 ) · degi(v)

≤
(

3
4

)2 · degi(v) {maximized at ε = 1/2}.

That is, we lose at least a 7
16 -fraction of v’s neighbors in expectation. By Markov’s

inequality, Pr(degi+1(v) ≤ 3
4 · degi(v)) ≥ 1

4 .
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LEMMA 4.3. Let Ĝ be the subgraph induced by unmatched nodes at some point in
Phase I, whose maximum degree is at most �̂. After 12 log4/3 �̂ more stages in Phase

I, all components of unmatched nodes have size at most t�̂4 with probability 1 − n−c,

where t
def= c ln n.

PROOF. The proof follows the same lines at that of Lemmas 3.2 and 3.3 but has some
added complications. We say v is successful in stage i if degi+1(v) ≤ 3

4 · degi(v). If v

experiences log4/3 �̂ successes, then either v has been matched or all neighbors of v are
matched.

The events that u and v are successful in a particular stage i are independent if
distĜ(u, v) ≥ 5 since the success of u and v only depend on the random choices of nodes

within distance 2. Any subgraph of size t�̂4 must contain a subset T of t nodes such
that (i) each pair of nodes in T is at distance at least 5 and (ii) T forms a t-node tree
in Ĝ5. Call T a distance-5 set if |T | = t and it satisfies (i) and (ii). There are less than
4t · n · �̂5(t−1) distance-5 sets in Ĝ. (There are less than 4t topologically distinct trees
with t nodes and less than n�̂5(t−1) ways to embed one such tree in Ĝ5.)

Consider any distance-5 set T . Over 12 log4/3 �̂ consecutive stages, v ∈ T expe-
riences some number of successful stages. Call this random variable Xv and define

X
def=
∑

v∈T Xv. By Lemma 4.2 and linearity of expectation,

E[X] =
∑

v∈T

E[Xv] ≥ t · 1
4 (12 log4/3 �̂) = 3t log4/3 �̂.

If X ≥ t log4/3 �̂, then some Xv ≥ log4/3 �̂, implying that v becomes isolated and there-
fore that no component contains all T -nodes. We will call T successful if any member
of T becomes isolated. By a Chernoff bound (Theorem A.2), the probability that T is
unsuccessful is at most

Pr
(

X < t log4/3 �̂
)

≤ Pr

(

X <
1

3
· E[X]

)

≤ exp

(

−
2
(

2
3 E[X]

)

2

4t log4/3 �̂

)

≤ exp
(

−2t log4/3 �̂
)

{E[X] ≥ 3t log4/3 �̂}.

= �̂−(2 log4/3 e)t

After 12 log4/3 �̂ stages, if there exists a component with size t�̂4, then it must contain
an unsuccessful subset T . By the union bound, this occurs with probability less than

4t · n · �̂5(t−1) · �̂−(2 log4/3 e)t

< 4c ln n · n · �̂(5−2 log4/3 e)·c ln n

< n−c {for �̂ sufficiently large. Note: 5 − 2 log4/3 e < 0}.

THEOREM 4.4. In a graph with maximum degree �, a maximal matching can be

computed in O(log � + log4 log n) time with high probability using O(1)-size messages.

When the graph is bipartite and 2-colored, the time bound becomes O(log �+ log3 log n).

PROOF. After i� = logρ(�/(c ln n)3/2) stages in Phase I the maximum degree is �̂ =
(c ln n)2, with high probability. After another 4 log4/3 �̂ stages in Phase I all connected
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components have at most s
def= �̂4 · c ln n = (c ln n)9 nodes, with high probability. We

execute the deterministic maximal matching algorithm of Hańćkowiak et al. [2001]
for time sufficient to solve any instance on s nodes: O(log4 s) time for general graphs
and O(log3 s) time for bipartite, 2-colored graphs. Both Phase I and Phase II can be
implemented with O(1)-size messages; that is, this algorithm works in the CONGEST
model.

5. VERTEX COLORING

We consider a slightly more stringent version of (�+1)-coloring called (deg +1)-coloring,
where each node v must adopt a color from the palette {1, . . . , deg(v) + 1}, or, more
generally, an arbitrary set with size deg(v) + 1.17 Although the palette of a node does
not depend on �, our algorithm still requires that nodes know � and n.18

In Section 5.1, we define and analyze a natural O(1)-time algorithm called
OneShotColoring that colors a subset of the nodes. Johannson [1999] showed that
O(log n) applications of a variant of OneShotColoring suffice to (�+1)-color a graph, with
high probability. Our goal is to show something stronger. We show that after O(log �)
applications of OneShotColoring, all nodes have at most O(log n) uncolored neighbors
that each have �(log n) uncolored neighbors. This property allows us to reduce the re-
sulting (deg +1)-coloring problem to two (deg +1)-coloring problems on subgraphs with
maximum degree O(log n). It is shown that, on these instances, O(log log n) further
applications of OneShotColoring suffice to reduce the size of all uncolored components
to poly(log n). In Phase II we apply the deterministic (deg +1)-coloring algorithm of
Panconesi and Srinivasan [1996] to the poly(log n)-size uncolored components. The
remainder of this section constitutes a proof of Theorem 5.1.

THEOREM 5.1. In a graph with maximum degree �, a (deg +1)-coloring can be com-

puted in O(log � + exp(O(
√

log log n))) time using poly(log n)-length messages.

5.1. Analysis of OneShotColoring

The algorithm maintains a proper partial coloring Color : V (G) → {⊥, 1, . . . , � + 1},
where ⊥ denotes no color and Color(v) ∈ {⊥, 1, . . . , deg(v)+1}. Initially Color(v) ←⊥ for
all v ∈ V (G). Before a call to OneShotColoring some nodes have already committed to
their final colors. Each remaining uncolored node v chooses Color�(v), a color selected
uniformly at random from its remaining palette. It may be that neighbors of v also
choose Color�(v). If v holds the highest ID among all such nodes contending for Color�(v),
then it permanently commits to that color. The pseudocode for OneShotColoring appears
in Figure 9.

We analyze the properties of OneShotColoring from the point of view of some arbitrary
uncolored node v ∈ U . Note that whether v is colored depends only on its behavior and

the behavior of neighbors with larger IDs, denoted �>
U (v)

def= {u ∈ �U (v) | ID(u) > ID(v)}.
Define �−1(q)

def= {u ∈ �>
U (v) | q ∈ �(u)} to be the set of v’s uncolored neighbors that are

contending for color q and have higher IDs. Define w(q) =
∑

u∈�−1(q) 1/|�(u)| to be the

weight of color q. In other words, each neighbor u distributes 1/|�(u)| units of weight
to each color in its palette. Note that 1/|�(u)| ≤ 1/(degU (u) + 1) ≤ 1/2. The probability

17Some applications [Amir et al. 2014] demand (deg +1)-colorings, not (� + 1)-colorings.
18Again, this assumption is for convenience. It can be removed using the method of Korman et al. [2013].
However, the Korman et al. technique does not apply to any “black box” (� + 1)-coloring algorithm since the
problem of completing a partial (� + 1)-coloring is not itself an instance of (� + 1)-coloring.
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Fig. 9. An O(1)-round algorithm for extending a partial coloring.

that q ∈ �(v) is available to v after exposing Color�(�>
U (v)) is

Pr(q �∈ Color�(�>
U (v))) =

∏

u∈�−1(q)

(

1 − 1
|�(u)|

)

≥
∏

u∈�−1(q)

(

1
4

)

1/|�(u)| (1)

=
(

1
4

)

w(q).

Inequality (1) follows from the fact that (1−x) ≥ (1/4)x when x ∈ [0, 1/2]. Let Xq ∈ {0, 1}
be the indicator variable for the event that q is available and X =

∑

q Xq. By linearity

of expectation, E[X] ≥
∑

q∈�(v)

(

1
4

)

w(q). By the convexity of the exponential function, this
quantity is minimized when all color weights are equal. Hence,

E[X] ≥
∑

q∈�(v)

(

1
4

)

w(q) ≥ |�(v)| ·
(

1
4

)

∑

q w(q)/|�(v)|

≥ |�(v)| ·
(

1
4

)

degU (v)/|�(v)| (2)

|�(v)|/4. (3)

Inequalities (2) and (3) follow from the fact that each neighbor in �>
U (v) can contribute

at most one unit of weight and that |�(v)| ≥ degU (v) + 1 ≥ deg>
U (v) + 1. We will call

v happy if X ≥ |�(v)|/8, that is, if the number of available colors is at least half its
expectation. Let Hv be the event that v is happy. The variables {Xq} are not independent.
However, Dubhashi and Ranjan [1998] showed that {Xq} are negatively correlated and,
more generally, that all balls and bins experiments of this form give rise to negatively
correlated variables.19 By Theorem A.2,

Pr(Hv)
def= Pr

(

X <
|�(v)|

8

)

< exp

(

−
2 · (|�(v)|/8)2

|�(v)|

)

= exp

(

−
|�(v)|

32

)

.

Lemma 5.2 summarizes the relevant properties of OneShotColoring used in the next
section.

19In this situation the colors are bins and the neighbors’ choices are balls.
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Fig. 10. A (� + 1)-coloring algorithm.

LEMMA 5.2. Let U be the uncolored nodes before a call to OneShotColoring and v ∈ U
be arbitrary.

(1) (Johansson [1999]) Pr(v is colored) > 1/4.

(2) Pr(Hv) > 1 − exp(−degU (v)+1
32 ).

5.2. A (deg +1)-Coloring Algorithm

It goes without saying that our (deg +1)-Coloring algorithm (Figure 10) has a two-phase
structure. The ultimate goal of Phase I is to reduce the global problem to some number of
independent (deg +1)-coloring subproblems, each on poly(log n)-size components, which
can be colored deterministically in Phase II. We first prove that this is possible with
O(log log n) applications of OneShotColoring, if the uncolored subgraph already has
maximum degree poly(log n).

LEMMA 5.3. Apply an arbitrary proper partial coloring to G, and let �̂ be the maxi-
mum degree in the subgraph induced by uncolored nodes. After 5 log4/3 �̂ iterations of

OneShotColoring, all uncolored components have less than t�̂2 nodes with probability

1 − n−c, where t
def= c log�̂ n.

PROOF. The proof is similar to that of Lemmas 3.3 and 4.3. Whether a node is colored
depends only on the color choices of nodes in its inclusive neighborhood. Thus, if two
nodes are at distance at least 3, then their coloring events are independent. Let T ⊂ U
be a distance-3 set, that is, one for which (i) |T | = t = c log�̂ n, (ii) the distance between
each pair of nodes is at least 3, and (iii) T forms a tree in the uncolored part of G3.
There are less than 4t · n · �̂3(t−1) < n4c distance-3 sets and the probability that one is
entirely uncolored after 5 log4/3 �̂ iterations of OneShotColoring is, by Lemma 5.2, less
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than
(

3
4

)

5t log4/3 �̂ =
(

3
4

)

5(c log�̂ n) log4/3 �̂ = n−5c.

By a union bound, no distance-3 set exists with probability n4c−5c = n−c. Moreover,
if there were an uncolored component with size t�̂2 after 5 log4/3 �̂ iterations of
OneShotColoring, it would have to contain such a distance-3 set.

Lemma 5.3 implies a (deg +1)-coloring algorithm running in O(log � +
exp(O(

√

log(�2 log n)))) time. Once the component size is less than �2 log n we can ap-
ply the deterministic (deg +1)-coloring algorithm of Panconesi and Srinivasan [1996]
to each uncolored component. The exponential dependence on

√

log � is undesirable.
Using Lemma 5.2 we show that, roughly speaking, degrees decay geometrically with
each call to OneShotColoring, with high probability. This will allow us to reduce the
dependence on n to exp(O(

√

log log n)).

LEMMA 5.4. Define U hi = {u ∈ U | degU (u) > �̂} to be those high-degree uncolored

nodes where �̂
def= c ln n. Let U0 and U1 be the uncolored nodes before and after a

particular call to OneShotColoring. Let H
def=
⋂

v∈U hi
0

Hv be the event that all U hi
0 nodes

are happy.

(1) Pr(H ) < n−c/32+1.
(2) Pr(degU hi

1
(v) ≤ 15

16 · degU hi
0

(v)) > 1 − n−c/512 − n−c/32+1.

PROOF. By Lemma 5.2(2), the definition of �̂ = c ln n, and the union bound,

Pr(H ) < |U hi
0 | · exp

(

−
�̂ + 1

32

)

< n−c/32+1.

In other words, with high probability, every vertex in U hi
0 has a 1/8 fraction of its palette

available to it.
Turning to Part 2, fix any vertex v ∈ U hi

0 . There are two ways a neighbor of v in

U hi
0 can fail to be a neighbor in U hi

1 after this call to OneShotColoring. It can either be
colored (in which case it is not in U1) or a sufficient number of its neighbors can be
colored so that it is no longer in U hi

1 . We ignore the second possibility and analyze the

number of neighbors of v in U hi
0 that are colored. List the nodes of �U hi

0
(v) in decreasing

order of ID as u1, . . . , udeg
Uhi

0
(v). At step 0 we expose Color�(u) for all u �∈ �U hi

0
(v) and at

step i we expose Color�(ui). Let Yi be the information exposed after step i. Whether ui

is successfully colored is a function of Yi. Moreover, the probability that ui is colored,
given Yi−1, is precisely the fraction of its palette that is still available, according to Yi−1.
Let Xi ∈ {0, 1} be the indicator variable for the event that ui is colored and X =

∑

i Xi.

Unless the unlikely event H occurs,

Pr(Xi = 1 | Yi−1) = Pr(ui is colored | Yi−1) ≥ 1/8,

and by Corollary A.5,

Pr(X < 1
16 degU hi

0
(v) | H ) < exp

(

−
( 1

16 degU hi
0

(v))2

2 degU hi
0

(v)

)

= exp

(

−
1

512
degU hi

0
(v)

)

≤ n−c/512.

Thus, by a union bound, degU hi
1

(v) ≤ 15
16 degU hi

0
(v) holds for all v ∈ U hi

0 , with probability

1 − n−c/512+1 − n−c/32+1.
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Lemma 5.4 implies that after log16/15 � iterations of OneShotColoring, with high prob-

ability no node has �̂ = c ln n uncolored neighbors, each having �̂ uncolored neighbors.
At this point we break the remaining (deg +1)-coloring problem into two subproblems
with maximum degree �̂. The first subproblem is on the graph induced by U hi, the
second is on U\U hi. The maximum degree in U hi is �̂, by the observation above,
and the maximum degree in U\U hi is �̂ by definition. According to Lemma 5.3, after
O(log �̂) = O(log log n) more iterations of OneShotColoring, the size of all uncolored
components is less than s = �̂2 · c log�̂ n < �̂3. Each can be (deg +1)-colored determin-

istically in exp(O(
√

log s)) = exp(O(
√

log log n)) time using the algorithm of Panconesi
and Srinivasan [1996]. The failure probability of the (deg +1)-Coloring algorithm (see
Figure 10 for pseudocode) is therefore O(n−c/515+2).

6. RULING SETS

The (2, β) ruling set algorithm of Bisht et al. [2014] works as follows. Given a graph
G = (V, E) with maximum degree �, the algorithm generates a series of node sets
V (G) = R0 ⊇ R1 ⊇ · · · ⊇ Rβ−1 ⊇ Rβ with three properties, namely

(i) Ri dominates Ri−1, that is, �̂(Ri) ⊇ Ri−1,

(ii) the maximum degree in the graph induced by Ri is �i ≈ 2(log �)1−iε

, and
(iii) Rβ is an MIS in the graph induced by Rβ−1.

Property (i) implies that for all v ∈ V (G), dist(v, Rβ ) ≤ β. Together with Property (iii),
this implies that Rβ is a (2, β)-ruling set.

Using our MIS algorithm, the time to compute Rβ from Rβ−1 is O(log2
�β−1 +

exp(O(
√

log log n))) = O(log2(1−(β−1)ε)
� + exp(O(

√

log log n)), so we want to make ε

as large as possible. On the other hand, the time to compute Ri from Ri−1 is

O(log�i
�i−1) = O(logε

�). Balancing these costs we get a time bound of O(β log
1

β−1/2 �+
exp(O(

√

log log n))) using messages with length poly(�β−1) log n. The improvement over

Bisht et al.’s [2014] time bound (namely, O(log
1

β−1 � + exp(O(
√

log log n)))) comes solely
from a better MIS algorithm.

The algorithm for computing Ri from Ri−1 (which satisfies Properties (i) and (ii))
was first described by Kothapalli and Pemmaraju [2012]. For the sake of completeness,
we reproduce this sparsification algorithm and its analysis. Refer to Figure 11 for the
pseudocode of Sparsify and (2, β)-RulingSet.

LEMMA 6.1 (KOTHAPALLI AND PEMMARAJU [2012]). Given G = (V, E) and a threshold
f , a subset U ⊆ V can be computed in O(log f �) time such that for every v ∈ V (G),

distG(v,U ) ≤ 1, and for every v ∈ U, degU (v) ≤ 2c f ln n, with probability n−c+2.

PROOF. Consider an execution of Sparsify(G, f ). Let Ui be U after the ith iteration

of the loop and Vi
def= V \�̂(Ui). Assume, inductively, that just before the ith iteration

the maximum degrees in the graphs induced by Vi−1 and Ui−1 are at most �/ f i−1

and f · 2c ln n. These bounds hold trivially when i = 1. Each v ∈ Vi−1 is included in
Ui independently with probability c ln nf i/�, so the probability that a v ∈ Vi−1 with
degVi−1

(v) > �/ f i is not in �̂(Ui) is less than (1 − c ln nf i/�)�/ f i

< n−c. Furthermore, if
v ∈ Ui, then

E[degUi
(v)] = degVi−1

(v) · c ln nf i/� ≤ c f ln n.

By Theorem A.1, the probability that degUi
(v) ≥ 2c f ln n is at most exp(− f c ln n/3) <

n−c. Note that since v and its neighborhood are permanently removed from
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Fig. 11. Kothapalli and Pemmaraju’s [2012] sparsification and ruling set algorithm.

consideration, it never acquires new neighbors in U , so degUi
(v) = degU (v). Thus,

with high probability, the induction hypothesis holds for the next iteration.

THEOREM 6.2. A (2, β)-ruling set can be computed in O(β log
1

β−1/2 �+exp(O(
√

log log n)))
time with high probability.

PROOF. The algorithm simply consists of β − 1 calls to Sparsify followed by a call
to MIS. Every node in Ri−1 is in or adjacent to Ri, for 1 ≤ i < β, which implies that
dist(v, Rβ ) ≤ β for all v ∈ V . Since Rβ is an independent set it is also a (2, β)-ruling set.
The time to compute Rβ is on the order of

log �

log f1
+

log( f1 log n)

log f2
+ · · · +

log( fβ−2 log n)

log fβ−1
+ log2( fβ−1 log n) + exp(O(

√

log log n)).

Setting log fi = (log �)1−i( 2
2β−1 ), the time for each call to Sparsify is O((log �)

2
2β−1 ) and the

time for the final MIS is exp(O(
√

log log n)) plus

log2 fβ−1 = (log �)
2
(

1−(β−1) 2
2β−1

)

= (log �)
2

2β−1 .

Theorem 6.2 highlights an intriguing open problem. Together with the KMW lower
bound, it shows that (2, 2)-ruling sets are provably easier to compute than (2, 1)-ruling
sets, the upper bound for the former being O(log2/3

� + exp(O(
√

log log n))) and the

lower bound on the latter being �( log �

log log �
). Is it possible to obtain any non-trivial lower

bound on the complexity of computing (2, β)-ruling sets for some β > 1? In order to
apply [Kuhn et al. 2004] one would need to invent a reduction from O(1)-approximate
minimum vertex cover to (2, β)-ruling sets.

7. BOUNDED ARBORICITY GRAPHS

Recall that a graph has arboricity λ if its edge set is the union of λ forests. In the proofs
of Lemma 7.1 and Theorem 7.2, degE′(u) is the number of edges incident to u in E′ ⊆ E
and degV ′ (u) is the number of neighbors of u in V ′ ⊆ V .

LEMMA 7.1. Let G be a graph of m edges, n nodes, and arboricity λ.
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Fig. 12. Good S-nodes have fewer than β neighbors in H′ and fewer than β2 neighbors in S. Good H′-nodes
have at least tλ/4 good neighbors in S.

(1) m < λn.
(2) The number of nodes with degree at least t ≥ λ + 1 is less than λn/(t − λ).
(3) The number of edges whose endpoints both have degree at least t ≥ λ+1 is less than

λm/(t − λ).

PROOF. Part 1 follows from the definition of arboricity. For Parts 2 and 3, let U =
{v | degG(v) ≥ t} be the set of high-degree nodes. We have that

λn > m ≥ |{(u, v) ∈ E(G) | u ∈ U or v ∈ U or both}|

≥
∑

u∈U

(t − degU (u)) +
1

2

∑

u∈U

degU (u)

≥ t · |U | − |E(U )| > (t − λ) · |U |.

Thus |U | < λn/(t − λ), proving Part 2. Part 3 follows since the number of such edges is
less than λ|U | ≤ λm/(t − λ).

THEOREM 7.2. Let G be a graph of arboricity λ and maximum degree �, and let t ≥
max{(5λ)8, (4(c+1) ln n)7} be a parameter. In O(logt �) time, we can find an independent
set I ⊆ V (G) (or a matching M ⊆ E(G)) such that with probability at least 1 − n−c, the
maximum degree in the graph induced by V \�̂(I) (or the graph induced by V \V (M)) is
at most tλ.

PROOF. In O(logt �) rounds we commit nodes to I (or edges to M) and remove
all incident nodes (or incident edges). Let G be the graph still under consideration
before some round and let H = {v ∈ V | degG(v) ≥ tλ} be the remaining high-degree
nodes. Our goal is to reduce the size of H by roughly a t1/7 factor in O(1) rounds.

Let J = {v ∈ H | degH(v) ≥ tλ/2}. It follows that any node v ∈ H′ def= H\J has
degV \H(v) ≥ tλ/2 since at most tλ/2 of its neighbors can be inH. Let Ẽ be any set of edges
crossing the cut (H, V \H) such that for v ∈ H′, degẼ(v) = tλ/2. In other words, discard
all but tλ/2 edges incident to each H′ node arbitrarily. Let S = {u | v ∈ H′ and (v, u) ∈ Ẽ}
be the neighborhood of H′ with respect to Ẽ. Note that |S| ≤ tλ|H′|/2. See Figure 12.

We define bad S-nodes, bad Ẽ-edges, and bad H′-nodes as follows, where β = t1/7:

BS =
{

u ∈ S | degẼ(u) ≥ β or degS (u) ≥ β2 or both
}

,

BẼ =
{

(u, v) ∈ Ẽ
∣

∣ u ∈ BS

}

,

and BH′ =
{

v ∈ H′ ∣
∣ degBẼ

(v) > λt/4
}

.
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Note that nodes can determine in O(1) time whether they are in BS or BH′ and
which incident edges are in BẼ. By Lemma 7.1(3) the number of edges (u, v) ∈ BẼ

designated bad because degẼ(u) ≥ β is less than λ|Ẽ|/(β − λ). By Lemma 7.1(2) the
number of additional edges (u, v) ∈ BẼ designated bad because degS (u) ≥ β2 is at
most (β − 1)λ|S|/(β2 − λ) since there are less than λ|S|/(β2 − λ) such nodes and each
contributes fewer than β edges to Ẽ. In total we have

|BẼ| <
λ|Ẽ|
β − λ

+
(β − 1)λ|S|

β2 − λ

≤
λ(tλ|H′|/2)

β − λ
+

(β − 1)λ(tλ|H′|/2)

β2 − λ
{|S| ≤ |Ẽ| = tλ|H′|/2}

= λ2t|H′|
(

1

2(β − λ)
+

β − 1

2(β2 − λ)

)

<
λ2t|H′|
β − λ

.

A bad v ∈ H′ is incident to more than tλ/4 edges in BẼ, so

|BH′ | <
|BẼ|
tλ/4

<
4λ|H′|
β − λ

. (4)

Our goal now is to select some nodes for the MIS (or edges for the maximal matching)
that eliminate all good H′ nodes, with high probability. Each node u ∈ S\BS selects a
random real in (0, 1) and joins the MIS if it holds a local maximum. The probability
that u joins the MIS is 1/(degS\BS

(u) + 1) ≥ 1/β2, and this event is clearly independent
of all u′ ∈ S\BS at distance (in S\BS ) at least 3. Note that since the maximum degree
in the graph induced by S\BS is less than β2, the neighborhood of any good v ∈ H′\BH′

contains a subset of at least (tλ/4)/β4 nodes, each pair of which is at distance at least 3
with respect to S\BS . (Such a set could be selected greedily.) Thus, the probability that
no neighbor of v ∈ H′\BH′ joins the MIS is at most

(

1 −
1

β2

)

tλ/(4β4) < e−tλ/(4β6) = e−t1/7λ/4 ≤ 1/nc+1.

Thus, with high probability, all good nodes H′\BH′ are eliminated. Any remaining high-
degree nodes must be in either J or BH′ . By Lemma 7.1 and (4),

|J | + |BH′ | <
λ|H|

t/2 − λ
+

4λ|H′|
β − λ

<
5λ|H|
β − λ

.

Since β = t1/7 ≥ (5λ)8/7, the number of high-degree nodes is reduced by a t�(1) factor.
Thus, after O(logt �) time all high-degree nodes have been eliminated with probability
1 − 1/nc.

In the case of maximal matching, we want to select a matching that matches all H′

nodes. Each u ∈ S\BS chooses an edge (u, v) ∈ Ẽ\BẼ uniformly at random and proposes
to v that (u, v) be included in the matching. Any v ∈ H′\BH′ receiving a proposal accepts
one arbitrarily and becomes matched. A good v ∈ H′\BH′ has at least degẼ\BẼ

(v) ≥ tλ/4

neighbors u ∈ S\BS with degẼ\BẼ
(u) < β, so the probability that v receives no proposal

(and remains unmatched) is less than (1−1/β)tλ/4 < e−t6/7λ/4 < o(1/nc+1). As in the case
of MIS, the number of high-degree nodes is reduced by a t�(1) factor in O(1) time. (For
the maximal matching problem our proof could be simplified somewhat since edges
inside S play no part in the algorithm and need not be classified as good or bad.)
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7.1. Consequences of Theorem 7.2

Theorems 7.3, 7.4, 7.5, and 7.6 give new bounds on the complexity of maximal matching,
MIS, vertex coloring, and ruling sets in terms of λ. Some results are a consequence of
Theorem 7.2. Others are obtained by combining the Phase I portion of our algorithms
from Sections 3–5 with one of the Barenboim-Elkin [2010, 2011, 2013] algorithms for
Phase II.

THEOREM 7.3. In a graph with maximum degree � and arboricity λ, a maximal
matching can be computed in time on the order of

min
{

log λ +
√

log n, log � + λ + log log n
}

for all λ, and in time O(log � + log log n
δ log log log n

) when λ = (log log n)1−δ.

PROOF. The first maximal matching bound is a consequence of Theorem 7.2 and

Theorem 4.4. We reduce the maximum degree to λt
def= λ · max{2

√
log n, (5λ)8} in

O(logt n) = O(
√

log n) time and find a maximal matching of the resulting graph in

O(log(λt) + log4 log n) = O(log λ +
√

log n) time. To obtain the second and third bounds
we use the same algorithm from Theorem 4.4, but rather than invoke [Hańćkowiak
et al. 2001] on each component of s ≤ (c ln n)9 nodes, we use the deterministic maximal
matching algorithms of Barenboim and Elkin [2010, 2013]. Their algorithms run in
O( log s

δ log log s
) time on graphs with size s and arboricity λ = log1−δ s and in time O(λ+ log s)

in general.

THEOREM 7.4. In a graph with maximum degree � and arboricity λ, a maximal
independent set (MIS) can be computed in time on the order of

min

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

log2
λ + log2/3 n,

log2
� + λ + λε log log n,

log2
� + λ + (log log n)1+ε,

log2
� + λ1+ε + log λ log log n

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

for all λ and any constant ε > 0. When λ = (log log n)1/2−δ, an MIS can be computed in

O(log2
� + log log n

δ log log log n
) time.

PROOF. The first bound is a consequence of Theorem 7.2 and Theorem 3.5. We can

reduce the maximum degree to λt
def= λ · max{2(log n)1/3

, (5λ)8} in O(logt n) = O(log2/3 n)

time, then find an MIS in the resulting graph in O(log2(λt) + exp(O(
√

log log n))) =
O(log2

λ + log2/3 n) time.
To obtain the remaining bounds we execute IndependentSet on the input graph,

which, with high probability, returns an independent set I such that the components

induced by B
def= V (G)\�̂(I) have size at most s = �4 log� n. On each component we

invoke one of the deterministic coloring algorithms of Barenboim and Elkin [2010, 2011,
2013] for small arboricity graphs, then construct an MIS in time linear in the number
of color classes. For any fixed ε > 0, a λ1+ε-coloring can be computed in O(log λ log s)
time, which gives an MIS algorithm running in time

O
(

log2
� + λ1+ε + log λ log(�4 log n)

)

= O
(

log2
� + λ1+ε + log λ log log n

)

,
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since λ ≤ �. Alternatively, we could use a slower O(λ)-coloring algorithm running in
time O(min{λε log s, λε + (log s)1+ε}),20 leading to an MIS algorithm running in time

O
(

log2
� + λ + min{λε log(�4 log n), (log(�4 log n))1+ε}

)

= O
(

log2
� + λ + min{λε log log n, (log log n)1+ε}

)

.

THEOREM 7.5. Fix a constant ε > 0. A graph of maximum degree � and arboricity
λ can, with high probability, be (� + λ1+ε)-colored in O(log � + log λ log log n) time or
(� + O(λ))-colored in O(log � + min{λε log log n, λε + (log log n)1+ε}) time. Furthermore,
a (deg +1)-coloring can, with high probability, be computed in time on the order of

min

⎧

⎪

⎪

⎨

⎪

⎪

⎩

log � + λ + λε log log n,

log � + λ + (log log n)1+ε,

log � + λ1+ε + log λ log log n

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

PROOF. Following the algorithm from Section 5, we first execute O(log �) iter-
ations of OneShotColoring then decompose the problem into two subproblems on

a graph with maximum degree �̂
def= 
(log n). On each subproblem we perform

another O(log �̂) iterations of OneShotColoring, after which the subgraph induced
by uncolored nodes consists, with high probability, of components with size at
most s = �̂2 log�̂ n = o(log3 n). At this point we apply one of the deterministic
Barenboim and Elkin [2011] coloring algorithms to each such component using
a fresh palette of p previously unused colors, say {−1, . . . ,−p}. We can find a
p-coloring with p = λ1+ε in O(log λ log s) = O(log λ log log n) time or with p = O(λ)
in O(min{λε log s, λε + (log s)1+ε}) = O(min{λε log log n, λε + (log log n)1+ε}) time. Every
v ∈ V (G) has been assigned a color Color(v) ∈ {1, . . . , deg(v)+1}∪{−1, . . . ,−p}. To obtain
a (deg +1)-coloring we examine each color κ ∈ {−1, . . . ,−p} in turn, letting every node
v with Color(v) = κ recolor itself using an available color from {1, . . . , deg(v) + 1}.

THEOREM 7.6 ([BARENBOIM AND ELKIN 2010] + [AWERBUCH ET AL. 1989]). A (2, O(log λ +
√

log n))-ruling set can be computed deterministically in O(log λ +
√

log n) time.

PROOF. Begin by computing a decomposition of the edge set into λ · 2
√

log n oriented
forests, in O(

√

log n) time [Barenboim and Elkin 2010, Section 3]. Given this decom-

position, compute an O(λ2 · 22
√

log n)-coloring, in O(log∗ n) time [Barenboim and Elkin
2010, Section 5.1.2]. Finally, using this coloring, compute a (2, O(log λ+

√

log n))-ruling

set in O(log λ +
√

log n) time [Awerbuch et al. 1989].

7.2. Maximal Matching in Trees

Our maximal matching algorithm from Theorem 7.3 runs in O(
√

log n) time for every

arboricity λ from 1 (trees) to 2O(
√

log n). We argue that this bound is nearly optimal even
for λ = 1 by appealing to the KMW lower bound [Kuhn et al. 2004]. In Kuhn et al.
[2004] it is shown that there exist constants c′ > c such that any (possibly randomized)
algorithm for computing an approximate minimum vertex cover (MVC) in graphs with

girth at least c′ ·
√

log n
log log n

either (i) runs in c
√

log n
log log n

time, or (ii) has approximation ratio

ω(1). We review below a well known reduction from 2-approximate MVC to maximal

20The leading constant in the palette size is exponential in 1/ε.
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matching, which implies an �(
√

log n
log log n

) lower bound for maximal matching algorithms

that succeed with high probability. The graphs used in the KMW bound have arboricity

2O(
√

log n log log n), so it does not directly imply an �(
√

log n
log log n

) lower bound on trees.

THEOREM 7.7. For some absolute constant c > 0, no algorithm can, with probability

1 − n−2, compute a maximal matching on a tree in c
√

log n
log log n

time, nor in c log �

log log �
+

o(
√

log n
log log n

) time for every �.

PROOF. We first recount the lower bound for maximal matching on general
graphs. Suppose, for the purpose of obtaining a contradiction, that there exists a

maximal matching algorithm running in time c
√

log n
log log n

on the KWM graph that

fails with probability at most 1/n. To obtain an approximate MVC algorithm, run

the maximal matching algorithm for c
√

log n
log log n

time. Any matched node joins the

approximate MVC, as well as any node that detects a local violation, namely a
node incident to another unmatched node. As the MVC is at least the size of any
maximal matching, the expected approximation ratio of this algorithm is at most
2 · Pr(no failure occurs) + n · Pr(some failure occurs) ≤ 2 + n · 1

n
= 3, a contradiction.

Hence there is no algorithm that runs for c ·
√

log n
log log n

time in graphs with girth at least

c′ ·
√

log n
log log n

that computes a maximal matching with probability at least 1 − 1/n.

We use an indistinguishability argument to show that the �(
√

log n
log log n

) lower bound

also holds for trees, and therefore any class of graphs that includes trees. Observe that
to show a lower bound for a randomized algorithm, it is enough to prove the same
lower bound under the assumption that the identities of graph nodes were selected
independently and uniformly at random, from, say, [1, n10]. Suppose there is, in fact, an
algorithm that given a tree with a random (in the above sense) assignment of identities,

constructs a maximal matching within c ·
√

log n
log log n

time with success probability at least

1 − n−2. Run this algorithm for c ·
√

log n
log log n

time on the KMW graph G with girth

c′ ·
√

log n
log log n

, assuming random assignment of identities in G. Due to the girth bound,

the view of every node in G is identical to its view in a tree, and thus from its perspective
a correct maximal matching must be computed with probability at least 1 − n−2. By a
union bound, a correct maximal matching for the entire graph G will be computed with
probability at least 1 − n−1, a contradiction.

The KMW graph has maximum degree � = 2
(
√

log n log log n) and girth 
( log �

log log �
). All

the KMW-based �(
√

log n
log log n

) lower bounds can be scaled down to �( log �

log log �
) lower bounds

(for any � < 2O(
√

log n log log n)) simply by applying the lower bound argument to the union
of numerous identical KMW graphs.

Remark 7.8. Theorem 7.7 posited the existence of a maximal matching algorithm
for trees whose global probability of failure is n−2. When we run this algorithm on the
KMW graph we can no longer use n−2 as the global failure probability. It may be that,

when run in an actual tree, nodes within distance c
√

log n
log log n

of a leaf node fail with

probability zero: all the failure probability is concentrated at the small set of nodes
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Fig. 13. An algorithm for computing an almost maximal independent set in a tree.

that cannot “see” the leaves. In the KMW graph all nodes think they are in this small
set. We must assume, pessimistically, that failure occurs at every node in the KMW
graph with probability n−2.

Remark 7.9. Theorem 7.7, strangely, does not imply any lower bound for the MIS
problem on trees, even though MIS appears to be just as hard as maximal matching on

any class of graphs. The �(
√

log n
log log n

) lower bound for MIS [Kuhn et al. 2004] is obtained

by considering the line graph of the KWM graph, which has girth 3, not 
(
√

log n
log log n

).

Thus, our indistinguishability argument does not apply.

8. MIS IN TREES AND HIGH GIRTH GRAPHS

One of the MIS algorithms of Luby [1986] works as follows. In each round each re-
maining node v chooses a random real r(v) ∈ (0, 1) and includes itself in the MIS if
r(v) is greater than maxw∈�(v) r(w), thereby eliminating v and its neighborhood from
further consideration.21 Observe that the probability that v joins the MIS in a round is
1/(deg(v) + 1), irrespective of the degrees of its neighbors.

We would like to say that degrees decay geometrically, that is, after O(k) iterations of
Luby’s algorithm the maximum degree is �/2k, with high probability. Invariant 8.1 is
not quite this strong but just as useful, algorithmically. It states that after O(k log log �)
iterations, no node has �/2k+2 neighbors with degree at least �/2k, provided that �/2k

is not too small.

INVARIANT 8.1. At the end of scale k, for all v ∈ VIB,
∣

∣

{

w ∈ �IB(v) | degIB(w) > �/2k
}
∣

∣ ≤ max{�/2k+2, 12 ln �}.

21In practice it suffices to generate only the O(log n) most significant bits. That is, nodes choose an integer
from, say, {1, . . . , n10} uniformly at random.
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Fig. 14. The kth scale of TreeIndependentSet, from the perspective of v. Only v’s neighbors with degree greater
than �/2k are shown; w is one such neighbor. They are partitioned into those with degrees in (�/2k−1,∞)
and (�/2k, �/2k−1]. The first category numbers at most �/2(k−1)+2; the second category is unbounded. At
most �/2(k−1)+2 of w’s neighbors have degree more than �/2(k−1), leaving at least half with degree at most
�/2(k−1). If any neighbor x joins the MIS, then w will be eliminated.

Randomness plays no role in Invariant 8.1: It holds with probability 1. Any node
that violates the invariant is marked bad (placed in B) and temporarily excluded from
consideration. As we will soon prove, the probability a node is marked bad is 1/poly(�).
We will only make use of Invariant 8.1 when �/2k+2 is, in fact, greater than 12 ln �, so
the 12 ln � term will not be mentioned until we need to have a lower bound on �/2k+2.

LEMMA 8.2. In one iteration of scale k, a node w with degIB(w) > �/2k is eliminated

(appears in �̂(I)) with probability at least (1 − o(1))(1 − e−1/4) > 0.22. Moreover, this
probability holds even if we condition on arbitrary behavior at a single neighbor of w.

PROOF. By Invariant 8.1, |{x ∈ �IB(w) | degIB(x) > �/2k−1}| ≤ �/2k+1. Let M be the
neighbors of w with degree at most �/2k−1, so |M| ≥ degIB(w)−�/2k+1 > �/2k+1. Refer
to the portion of Figure 14 depicting w and its neighborhood. The probability that w is
eliminated is minimized when M-nodes attain their maximum degree �/2k−1, so in the
calculations below we shall assume this is the case. Let x� ∈ M be the first neighbor
for which r(x�) > max{r(y) | y ∈ �IB(x�)\{w}}. The probability x� exists is at least

Pr(x� exists) = 1 −
∏

x∈M

(

1 −
1

degIB(x)

)

≥ 1 −
(

1 −
1

�/2k−1

)

�/2k+1

> 1 − e−1/4.

Since, in the most extreme case, degIB(x) = �/2k−1, Pr(x� joins I | x� exists) =
Pr(r(x�) > r(w) | x� exists) ≥ 1 − 1

�/2k−1+1
. The probability that w is eliminated is

therefore at least (1− 1
�/2k−1+1

)(1− e−1/4) > (1− 1
96 ln �

)(1− e1/4) > 0.22 > 1/5. Moreover,

this probability is perturbed by a negligible (1 − 
(1/�/2k)) = (1 − o(1)) factor if one
conditions on arbitrary behavior by a single neighbor of w.

LEMMA 8.3. In any scale, a node v is included in B with probability at most 1/�2,
independent of the behavior of any one neighbor of v.

PROOF. Fix a node v and let N = {w ∈ �IB(v) | degIB(w) > �/2k} at the beginning
of scale k. See Figure 14. In the figure, only N-node neighbors of v are depicted. If
|N| ≤ �/2k+2, then the invariant is already satisfied at v, so assume otherwise. There
are two cases, depending on the size of N.
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Case 1: |N| is large. We argue that if |N| > �(8 ln �+1)/2k+1, then v is eliminated with
probability at least 1−�−2 in a single iteration and can therefore be bad with probability
at most �−2. According to the algorithm, r(v) = 0, so v has no chance to hold a locally
maximum r-value. Since, by Invariant 8.1, v has at least |N| − �/2k+1 > 8� ln �/2k+1

neighbors with degree at most �/2k−1, the probability that v is not eliminated is at
most the probability that no N-node joins I. This occurs with probability at most

(

1 −
1

�/2k−1

)

|N|−�/2k+1 ≤ exp

(

8� ln �

2k+1
·

2k−1

�

)

= �−2.

Case 2: |N| is small. In this case |N| ≤ �(8 ln � + 1)/2k+1, that is, |N| is within a
O(log �) factor of satisfying Invariant 8.1. By Lemma 8.2 each N-node, so long as it
has degree at least �/2k, is eliminated with probability at least 1/5. Moreover, these
events are independent, conditioned on some arbitrary behavior at v, the only common
neighbor of N-nodes. Thus, each node will survive log5/4(4(8 ln �+1)) = O(log log �) it-
erations with probability 1/[4(8 ln �+1)]. The expected number of surviving N-nodes is
therefore less than �/2k+3. By a Chernoff bound (Theorem A.1), the probability that this
quantity exceeds twice its expectation, thereby putting v into B, is exp(−(�/2k+3)/3),
which is at most �−2 since �/2k ≥ 48 ln �.

LEMMA 8.4. All connected components in the subgraph induced by B have at most
t = c log� n nodes with probability 1 − n−c/2.

PROOF. There are less than 4t topologically distinct rooted t-node trees and at most
n�t−1 ways to embed such a tree, say, T , in the graph. There are (log �)t schedules for
when (in which scale) the T -nodes were added to B. Since the probability that each
T -node becomes bad in a scale is at most �−2, independent of the behavior of its parent
in T , the probability that B contains a t-node tree is at most

4t · n�t−1 · (log �)t · �−2t

< (4 log �)c log� n · nc+1 · n−2c

< n−c/2.

The last inequality holds when � is at least some sufficiently large constant.

8.1. The TreeMIS Algorithm

Let us review the situation. TreeIndependentSet(G) takes O(log � log log �) time and
returns a pair (I, B) satisfying two properties, the second of which holds with probability
1 − n−c/2.

—Although the degree of nodes in the graph induced by VIB = V (G)\(�̂(I) ∪ B) is not
bounded, no node has 12 ln � neighbors with degree at least 48 ln �.

—The graph induced by B is composed of small connected components, each with size
at most t ≤ c log� n.

The TreeMIS algorithm (Figure 15) starts by obtaining a pair (I, B) satisfying these
properties and then extends I to a maximal independent set in three stages. It parti-
tions VIB into low- and high-degree sets Vlo and Vhi. By definition, the graph induced
by Vlo has maximum degree 48 ln � and by the first property above the graph induced
by Vhi has maximum degree 12 ln �. An MIS Ilo for Vlo can be computed determin-
istically in O(log � + log∗ n) time [Barenboim et al. 2014], that is, in time linear in
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Fig. 15. A maximal independent set algorithm for unoriented trees.

the degree.22 An MIS Ihi for Vhi\�̂(Ilo) can then be computed, also in O(log � + log∗ n)
time. At this point only B-nodes may not be adjacent to some node in I ∪ Ilo ∪ Ihi. For
each component C in the graph induced by B\�̂(I ∪ Ilo ∪ Ihi) we compute an MIS IC in
O(log t/ log log t) = O( log log n

log log log n
) time using the Barenboim-Elkin [2010] algorithm.

In total, the running time of TreeMIS is O(log � log log � + log log n
log log log n

) and its failure

probability is less than n−c/2.

THEOREM 8.5. In an unoriented tree with maximum degree �, a maximal independent
set can, with high probability, be computed in time on the order of

min

{

log � log log � +
log log n

log log log n
,
√

log n log log n

}

.

PROOF. The O(log � log log � + log log n
log log log n

) bound was shown above. If � > �̂
def=

2
√

log n/ log log n, use Theorem 7.2 to reduce the maximum degree to �̂ in O(log�̂ n) =
O(
√

log n log log n) time and then compute an MIS in O(log �̂ log log �̂ + log log n
log log log n

) =
O(
√

log n log log n) time.

8.2. MIS on High Girth Graphs

Our analysis of TreeIndependentSet and TreeMIS requires that certain events are in-
dependent and this independence is guaranteed if the radius-3 neighborhood around

22Since we are already spending O(log � log log �) time in TreeIndependentSet, we can afford to use a simpler
MIS algorithm [Kuhn and Wattenhofer 2006] running in O(log � log log � + log∗ n) time.
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each node looks like a tree. In other words, parts of the analysis do not distinguish
between actual trees and graphs with girth greater than 6.23

In order to make the analysis work on graphs with girth greater than 6, we need to
make a number of small modifications to TreeIndependentSet and TreeMIS.

—We substitute log n for log � in Invariant 8.1. It now states that at the end of scale k,
for all v ∈ VIB,

∣

∣

{

w ∈ �IB(v) | degIB(w) > �/2k
}
∣

∣ ≤ max{�/2k+2, c ln n}

for some sufficiently large c.
—We change the critical threshold in TreeIndependentSet from �(8 ln � + 1)/2k+1 to

�(8 ln n+ 1)/2k+1 and change the number of iterations per scale from O(log log �) to
O(log log n).

—Lemmas 8.3 and 8.4 now claim that after log(�/(4c ln n)) scales,
—In GIB, each node has no more than c ln n neighbors with degree greater than

4c ln n.
—With high probability, namely 1 − n−�(c), all nodes satisfy Invariant 8.1. That is,

B = ∅.
—Provided that B = ∅, in order to extend I to an MIS we only need to find an MIS Ilo

of Vlo and Ihi of Vlo\�̂(Ihi). Since the graphs induced by Vlo and Vhi have maximum
degree 4c ln n, this takes exp(O(

√

log log n)) time using the MIS algorithm of Section 3.

THEOREM 8.6. In a graph of girth greater than 6 (in which no cycle has length at most

6), an MIS can be computed in O(log � log log n + exp(O(
√

log log n))) time with high
probability.

9. CONCLUSIONS

In this work, we have advanced the state of the art in randomized symmetry break-
ing using a powerful new set of algorithmic tools. Our MIS and maximal matching
algorithms represent the first significant improvements (for general graphs) to the
classic algorithms of the 1980s [Luby 1986; Alon et al. 1986; Israeli and Itai 1986]. Our
maximal matching algorithms (for general graphs, trees, and low-arboricity graphs)
are among a small group of nearly optimal symmetry-breaking algorithms for a wide
range of parameters. However, we feel the most important contribution of this work is
the identification of the union bound barrier.

All of our algorithms reduce an n-node instance of the problem to a disjoint set of
poly(log n)-node components,24 which is the threshold beyond which known random-
ized symmetry-breaking strategies fail to achieve a (log n)o(1) running time. Even if the
probability of failure on one component is small, by the union bound the probability of
failure on some component is nearly certain. Unless, of course, the probability of failure
is zero, meaning we forswear random bits altogether and opt to use the best available
deterministic algorithm. We conjecture that the union bound barrier is “real” and, in
particular, that (log n)o(1)-time randomized algorithms must revert to a deterministic al-
gorithm. If true, then this means that the randomized complexities of many symmetry-
breaking problems are tethered to their deterministic counterparts. For example, we

could not hope to get rid of the 2O(
√

log log n) terms in our MIS and coloring algorithms

23The analysis could probably be made to work for graphs with girth 6 or 5, but it does not work for
graphs of girth 4. If the graph is formed by grafting together a sequence of bipartite �/2 × �/2 cliques,
then the probability a node becomes bad after one scale of TreeIndependentSet is not 1/poly(�) but
exp(−�((log log �)2/ log log log �)).
24Or, in the case of the MIS algorithm, (poly(�) log n)-size components.
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without first improving the 2O(
√

log n)-time Panconesi-Srinivasan [1996] algorithms. We

also could not hope to achieve an (optimal) O(min{ log �

log log �
+ log∗ n,

√

log n
log log n

})-time algo-

rithm for MIS or maximal matching unless that algorithm were already deterministic.
After the initial publication of this work, there have been several breakthroughs in

randomized symmetry breaking wthat have built on the two-phase approach developed

here. Ghaffari [2016] gave an MIS algorithm running in O(log � + 2O(
√

log log n)) time,
and Harris, Schneider, and Su [2016] developed a (�+1)-coloring algorithm running in

O(
√

log � + 2O(
√

log log n)) time. In terms of �, both improve on our algorithms quadrat-
ically. However, the dependence on n is unchanged, which highlights the difficulty of
circumventing the union bound barrier.

APPENDIX

A. CONCENTRATION INEQUALITIES

See Dubhashi and Panconesi [2009] for proofs of these and related concentration
bounds.

THEOREM A.1 (CHERNOFF). Let X be the sum of n independent, identically distributed
0/1 random variables. For any δ ∈ (0, 1),

Pr(X < (1 − δ) E[X]) < exp(−δ2 E[X]/2)

and Pr(X > (1 + δ) E[X]) < exp(−δ2 E[X]/3).

THEOREM A.2 (NEGATIVE CORRELATION). Let X = X1 + · · · + Xn be the sum of n random
variables, where the {Xi} are independent or negatively correlated. Then for any t > 0:

Pr(X ≥ E[X] + t), Pr(X ≤ E[X] − t) ≤ exp

(

−
2t2

∑

i(a
′
i − ai)2

)

,

where ai ≤ Xi ≤ a′
i.

THEOREM A.3 (JANSON). For X = X1 + · · · + Xn the sum of n random variables and
t > 0,

Pr(X ≥ E[X] + t), Pr(X ≤ E[X] − t) ≤ exp

(

−
2t2

χ ·
∑

i(a
′
i − ai)2

)

,

where ai ≤ Xi ≤ a′
i and χ is the fractional chromatic number of the dependency graph

G = (V ,E ). By definition V = {X1, . . . , Xn}, and the edge set E satisfies the property that
Xi is independent of V \�(Xi), for all i.

THEOREM A.4 (AZUMA-HOEFFDING). A sequence Y0, . . . , Yn is a martingale with respect
to X0, . . . , Xn if Yi is a function of X0, . . . , Xi and E[Yi | X0, . . . , Xi−1] = Yi−1. For such a
martingale with bounded differences ai ≤ Yi − Yi−1 ≤ a′

i,

Pr(Yn > Y0 + t), Pr(Yn < Y0 − t) ≤ exp

(

−
t2

2
∑

i(a
′
i − ai)2

)

.

COROLLARY A.5. Let Z = Z1 +· · ·+ Zn be the sum of n random variables and X0, . . . , Xn

be a sequence, where Zi is uniquely determined by X0, . . . , Xi, μi = E[Zi | X0, . . . , Xi−1],
μ =

∑

i μi, and ai ≤ Zi ≤ a′
i. Then

Pr(Z > μ + t), Pr(Z < μ − t) ≤ exp

(

−
t2

2
∑

i(a
′
i − ai)2

)

.
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PROOF. Define the martingale Y0, . . . , Yn w.r.t. X0, . . . , Xn by Y0 = 0 and Yi = Yi−1 +
Zi − μi, and then apply Theorem A.4. Note Yn − Y0 = Z − μ and the range of Yi − Yi−1

still has size a′
i − ai.

Note that Corollary A.5 says that one random variable, Z, is well concentrated around
another random variable, namely μ.
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