A Linear-Size Logarithmic Stretch Path-Reporting Distance
Oracle for General Graphs

MICHAEL ELKIN, Ben-Gurion University of the Negev, Beer-Sheva, Israel
SETH PETTIE, University of Michigan, Ann Arbor

Thorup and Zwick [2001a] proposed a landmark distance oracle with the following properties. Given an n-
vertex undirected graph G = (V, E) and a parameter k = 1, 2, .. ., their oracle has size O(kn1*/%) and upon a
query (u, v) it constructs a path IT between u and v of length §(u, v) such that dg(u, v) < §(u, v) < (2k—1)dg(u, v).
The query time of the oracle from Thorup and Zwick [2001a] is O(k) (in addition to the length of the returned
path), and it was subsequently improved to O(1) [Wulff-Nilsen 2012; Chechik 2014]. A major drawback of
the oracle of Thorup and Zwick [2001a] is that its space is Q(n - logn). Mendel and Naor [2006] devised an
oracle with space O(n!*1/%) and stretch O(k), but their oracle can only report distance estimates and not
actual paths. In this article, we devise a path-reporting distance oracle with size O(n*+1/¥), stretch O(k), and
query time O(nf), for an arbitrarily small constant ¢ > 0. In particular, for £ = logn, our oracle provides
logarithmic stretch using linear size. Another variant of our oracle has size O(nloglogn), polylogarithmic
stretch, and query time O(loglogn).

For unweighted graphs, we devise a distance oracle with multiplicative stretch O(1), additive stretch
O(B(k)), for a function B(-), space O */%), and query time O(n¢), for an arbitrarily small constant ¢ > 0.
The tradeoff between multiplicative stretch and size in these oracles is far below Erdds’s girth conjecture
threshold (which is stretch 2% — 1 and size O(n't1/%)). Breaking the girth conjecture tradeoff is achieved by
exhibiting a tradeoff of different nature between additive stretch A(%) and size O(n't1/%). A similar type of
tradeoff was exhibited by a construction of (1 + ¢, 8)-spanners due to Elkin and Peleg [2001]. However, so far
(1 + €, B)-spanners had no counterpart in the distance oracles’ world.

An important novel tool that we develop on the way to these results is a distance-preserving path-reporting
oracle. We believe that this oracle is of independent interest.

CCS Concepts: ® Theory of computation — Shortest paths; Routing and network design problems;
® Information systems — Data compression

Additional Key Words and Phrases: Distance oracles, distance preservers

A preliminary version of this article was published in SODA’15 [Elkin and Pettie 2015].

This research has been supported by the Israeli Academy of Science, grants 593/11 and 724/15, and by the
Binational Science Foundation, grant 2008390. In addition, this research has been supported by the Lynn
and William Frankel Center for Computer Science. A part of this research was performed while visiting the
Center for Massive Algorithms (MADALGO), which is supported by Danish National Research Foundation
grant DNRF84. Department of Computer Science, University of Michigan, Ann Arbor.

This research has been supported by the Binational Science Foundation, grant 2008390, and NSF grants
CCF-1217338, CNS-1318294, and CCF-1514383. A part of this research was performed while visiting the
Center for Massive Algorithms (MADALGO), which is supported by Danish National Research Foundation
grant DNRF84.

Authors’ addresses: M. Elkin, Department of Computer Science, Ben-Gurion University of the Negev, Beer-
Sheva, 84105, Israel; email: elkinm@cs.bgu.ac.il; S. Pettie, 2260 Hayward St., Department of Electrical Engi-
neering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA; email: pettie@umich.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2016 ACM 1549-6325/2016/08-ART50 $15.00

DOI: http://dx.doi.org/10.1145/2888397

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:2 M. Elkin and S. Pettie

ACM Reference Format:

Michael Elkin and Seth Pettie. 2016. A linear-size logarithmic stretch path-reporting distance oracle for
general graphs. ACM Trans. Algorithms 12, 4, Article 50 (August 2016), 31 pages.

DOIL: http://dx.doi.org/10.1145/2888397

1. INTRODUCTION
1.1. Distance Oracles for General Graphs

In the distance oracle problem, we wish to preprocess a weighted undirected n-vertex
graph G = (V, E). As a result of this preprocessing, we construct a compact data struc-
ture (which is called distance oracle) D(G), which, given a query pair (u, v) of vertices,
will efficiently return a distance estimate §(u, v) of the distance dg(u, v) between u and v
in G. Moreover, the distance oracle should also compute an actual path I(«, v) of length
3(u, v) between these vertices in G. We say that a distance oracle is path-reporting if it
does produce the paths I(u, v) as above; otherwise, we say that it is not path-reporting.

The most important parameters of a distance oracle are its stretch, its size, and its
worst-case query time.! The stretch « of a distance oracle D(G) is the smallest (in fact,
infimum) value such that for every u, v € V, dg(u, v) < 8(u, v) < o - dg(u, v).

The term distance oracle was coined by Thorup and Zwick [2001a]. See their paper,
also, for a very persuasive motivation of this natural notion. In their seminal paper,
Thorup and Zwick [2001a] devised a path-reporting distance oracle (henceforth, TZ
oracle). The TZ oracle with a parameter 2 = 1, 2, ... has size O(k-n'*1/*), stretch 2k —1,
and query time O(k). The size is measured in log n-bit words. As argued in Thorup and
Zwick [2001a], in Section 5, this tradeoff between size and stretch is essentially optimal
for small %, assuming Erdds’ girth conjecture, which implies that Q(n!*1/*) bits of space
are required for stretch 2 — 1, for any k. Note, however, that 2-n!*t1/* = Q(n-logn), and
Thorup and Zwick [2001a] left it open if one can obtain meaningful distance oracles of
linear size, or more generally, of size o(nlogn) words.

A partial answer to this question was grovided by Mendel and Naor [2006], who
devised a distance oracle with size O(n'*1/*) words, stretch O(k), and query time O(1).
Alas, their distance oracle is inherently not path-reporting. Specifically, the oracle of
Mendel and Naor [2006] stores a collection of O(% - n'/*) hierarchically-separated trees
(henceforth, HSTs; See Bartal [1996] for its definition), whose sizes sum up to O(n!*1/%),
The query algorithm for this oracle can return paths from these HSTs, i.e., paths which,
at best, can belong to the metric closure of the original graph. These paths will typically
not belong to the graph itself.

One can try to convert this collection into a collection of low-stretch spanning trees
of the input graph G using star-decomposition or petal-decomposition techniques (see
Elkin et al. [2005] and Abraham and Neiman [2012]). However, each of these spanning
trees is doomed to have n — 1 edges, making the size of the entire structure as large as
Q(k - n't1/%). In addition, with the current state-of-the-art techniques with low-stretch
spanning trees, one can only achieve bounds which are somewhat worse than the
optimal ones, achievable with HSTs. Hence, the approach that we have just outlined
will probably produce an oracle with stretch w(k), while using space O(k - n'+1/%),

Another result in this direction was recently obtained by Elkin et al. [2014]. For a
parameter ¢ > 1 their oracle uses size O(n - ¢ - 10og, W) Words, and provides stretch
O(V/t - n?/V%) for weighted graphs. (Henceforth, we will measure oracles’ sizes in words.)
The query time of their oracle is O(log(¢ - log,, wux)), Where w,, is the aspect ratio of
the graph, i.e., the ratio between the heaviest and the lightest edge. For unweighted

1The query time of all path-reporting distance oracles that we will discuss is of the form O(g + |I1|), where IT
is the path returned by the query algorithm. To simplify the notation, we will often omit the additive term
of O(|T1)).

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:3

graphs, their oracle exhibits roughly the same behavior. For a parameter ¢ > 0, it has
size O(n - t/¢), provides stretch O(¢ - n/*(t + n</?)), and has query time O(1).

The distance oracles of Elkin et al. [2014] are the first path-reporting oracles that
use o(nlogn) space and provide non-trivial stretch. However, their stretch is by far
larger than that of the oracles of Thorup and Zwick [2001a] and Mendel and Naor
[2006]. Therefore, the tantalizing problem of whether one can have a linear-size path-
reporting distance oracle with logarithmic stretch remained wide open. In the current

article, we answer this question in the affirmative. For any &, 102)1%) g -~ < k < logn, and
any arbitrarily small constant ¢ > 0, our path-reporting distance oracle D1 has stretch
O(k), size O(n'*V/*) and query time O(n¢). (When ¢ > 0 is subconstant, the stretch
becomes O(k) - (1/€)°1, the space becomes O(nlog1/¢), and the query time is at most
O(n¢ - logn). See Theorem 6.3, and the discussion that follows it, for more details.)
Hence, our oracle achieves an optimal tradeoff, up to constant factors, between size
and stretch in the range Olo% <k <logn,i.e., in the range “missing” in the Thorup-
g logn

Zwick’s result. Though our query time is n¢ for an arbitrarily small constant, ¢ > 0 is
much larger than Thorup-Zwick’s query time, we stress that all existing path-reporting
distance oracles either use space Q(n - logn) [Thorup and Zwick 2001a; Wulff-Nilsen
2012; Chechik 2014] or have stretch n® [Elkin et al. 2014]. The query time of the
TZ oracle was recently improved to O(1) in Wulff-Nilsen [2012] and Chechik [2014].
The only previously existing path-reporting distance oracle that achieves the optimal
tradeoff in this range of parameters can be obtained by constructing a (2k — 1)-spanner?
with O(n'*t1/%) edges and answering queries by conducting Dijkstra explorations in the
spanner. However, with this approach, the query time is O(n!*1/%). Our result is a
drastic improvement of this trivial bound from O(nlogn) to O(n¢), for an arbitrarily
small constant ¢ > 0.

We can also trade between the stretch and the query time. Specifically, a variant
D2 of our oracle uses O(nloglogn) space, has stretch O(log'®®s " n) ~ 0(log®" n), and
query time O(loglogn), and more generally, for any £ = 2, 3, ..., O(logn), uses space
O(n'*1/*.Jog k), has stretch O(k%7%), and query time O(log k). For a comparison, the path-

reporting distance oracle of Elkin et al. [2014] with this stretch uses space Q(n - 101;1%)

and has query time O(loglogn + loglog, wuy), i.e., both its space and query time are
larger than those of our oracle. Also, in the regime, when the oracle of Elkin et al. [2014]

. 0(logn)
uses nearly the same space O(nloglogn) as our oracle,? its stretch becomes 2~ Vieeler |

while our stretch is polylogarithmic in n. The query time of the oracle of Elkin et al.
[2014] in this regime is, however, O(log® n + log log,, Wmayx), While our query time is
O(loglogn). These two expressions are incomparable. Our oracle exhibits analogous
exponential improvements in the stretch in comparison with the oracle of Elkin et al.
[2014] in many other points on the tradeoff curve in the relevant size range, (i.e., when
the size is o(nlogn)), e.g., when the size is O(nlog’ n), for any constant § > 0. In general,
the size-stretch tradeoff of our oracle is better than that of Elkin et al. [2014] in the
entire relevant size range, but in some points on the tradeoff curve, the query time of
Elkin et al. [2014] might be (depending on w;,,,) smaller than ours. Also, the oracle
of Elkin et al. [2014] provides meaningful results even for size o(nloglogn), while our
oracle D2 never gets that sparse. Our oracle D1 can have linear size, but its query time
is n¢, for an arbitrarily small constant € > 0.

2For a parameter ¢ > 1, G = (V, H) is a t-spanner of a graph G = (V, E), H C E, if dg(u, v) < ¢ - dg(u, v).
31n fact, the oracle of Elkin et al. [2014] uses a slightly larger space O(n(loglogn + loglog,, wnax)).

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:4 M. Elkin and S. Pettie

1.2. Distance Oracles with Stretch («, g) for Unweighted Graphs

We say that a distance oracle D(G) provides stretch («, 8) for a pair of parameters
a > 1,8 > 0 if for any query (u, v) it constructs a path IT(u, v) of length §(u, v) which
satisfies dg(u, v) < 8(u,v) < « - dg(u, v) + B. The notion of («, B)-stretch is originated
from the closely related area of spanners. A subgraph G' = (V, H) is said to be an
(a, B)-spanner of a graph G = (V, E), H C E, if for every pair u, v € V, it holds that
dy(u,v) < a-dg(u, v) + B.

This notion was introduced in Elkin and Peleg [2001], where it was shown that for
anye >0andk=1,2,..., for any n-vertex unweighted graph G = (V, E) there exists a
(1+¢, p)-spanner with O(B8-n'*t1/*) edges, where 8 = (e, k) is independent of n. Later, a
number of additional constructions of (1 + ¢, B8)-spanners with similar properties were
devised in Elkin [2001], Thorup and Zwick [2006], and Pettie [2009].

It is natural to attempt converting these constructions of spanners into distance
oracles with a similar tradeoff between stretch and size. However, generally so far,
such attempts were not successful. See, e.g., the discussion titled “Additive Guarantees
in Distance Oracles” in the introduction of Patragcu and Roditty [2010]. Patrascu and
Roditty [2010] devised a distance oracle with stretch (2, 1) and size O(n%/3), and query
time O(1). Abraham and Gavoille [2011] generalized the result of Patrascu and Roditty
[2010] to devise a distance oracle with stretch (2k — 2, 1), query time O(k), and size
O(nl+2/2k-1))y,

Note, however, that neither of these previous results achieves multiplicative stretch
o(k) with size O(n'*t1/%), at the expense of an additive stretch. (This is the case with the
result of Elkin and Peleg [2001] in the context of spanners, where the multiplicative
stretch becomes as small as 1 + ¢, for an arbitrarily small ¢ > 0.) In this article, we
devise the first distance oracles that do achieve such a tradeoff. Specifically, our path-
reporting distance oracle has stretch (O(1), B(k)), size O(n't1/%), B(k) = OV, and query
time O(nf), for an arbitrarily small € > 0. The multiplicative stretch O(1) here is a
polynomial function of 1/¢, but it can be made much smaller than k. (Think, e.g., of
€ > 0 being a constant and % being a slowly growing function of n.) We can also have
stretch (o(k), B(k)), size O(n't1/%), and query time n®* "), where y > 0 is a universal
constant. Specifically, the theorem holds, e.g., for y = 1/7.

In both these results, the tradeoff between multiplicative stretch and size of the oracle
is below Erdés’ girth conjecture barrier, which is stretch 2k — 1 and space O(n!*1/%).
In fact, it is known that when the additive stretch is 0, distance oracles for general
n-vertex graphs that have size O(n!'*1/*) must have multiplicative stretch Q(%) [Thorup
and Zwick 2001a; Lubotsky et al. 1988; Lazebnik and Ustimenko 1995]. Our results,
like the results of Elkin and Peleg [2001] for spanners, break this barrier by introducing
an additive stretch (k). To the best of our knowledge, our distance oracles are the first
distance oracles that exhibit this behavior.

Using known lower bounds we also show that there exist no distance labeling schemes
with stretch (O(1), B(k)) and maximum label size O(B(k) - n/*), but rather one needs
labels of size n®? for this. This is also the case for routing schemes. (See Section 2 for
relevant definitions.) We also show that in the cell-probe model of computation, any
distance oracle for unweighted, undirected n-vertex graphs with stretch (O(1), (%))
and space O(B(k) - n't1/%) has query time Q(%). This is in contrast to distance oracles
with multiplicative stretch, which can have constant query time [Mendel and Naor
2006; Chechik 2014].

We also show a higher conditional lower bound on our oracle. Specifically, we show
that if there exists a distance oracle D for general unweighted graphs with the same
properties as those of our oracle (i.e., stretch (O(1), k1), size O(n'*t1/%)), and polylog-
arithmic in n query time, then there exists a distance oracle I’ for sparse unweighted

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:5

graphs with near-linear size O(n), constant stretch and polylogarithmic in n query
time. Moreover, if D is path-reporting, then D’ is path-reporting, as well. On the other
hand, the currently best-known distance oracle for sparse unweighted graphs with
near-linear size and constant stretch has query time n®V [Agarwal et al. 2011]. (See
Sections 1.3 and 7.3 for more details.)

1.3. Distance Oracles for Sparse Graphs

In recent years a significant research effort was invested in distance oracles for sparse
graphs. See, e.g., a recent survey of Roditty [2015] devoted specifically to this subject.
Typically, by “sparse,” one means a graph with m = O(n) edges. This line of research is
motivated by the fact that the lower bound based on Erdés girth conjecture is applicable
only to dense graphs. Patragcu and Roditty [2010] devised a distance oracle for sparse
unweighted graphs with stretch 2, query time O(1), and space O(n®/3). Patrascu et al.
[2012] extended this result to weighted graphs, and generalized it to higher values
of stretch and smaller space. Like in the results of Thorup and Zwick [2001a] and
Mendel and Naor [2006], when the stretch is constant, the oracle of Patrascu et al.
[2012] requires a superlinear size, even when m = O(n). Agarwal et al. [2011], Porat
and Roditty [2013], Agarwal and Godfrey [2013], and Agarwal [2014b] explored space-
stretch-time tradeoff for distance oracles for sparse graphs when the stretch is at most
2. All these oracles [Agarwal et al. 2011; Porat and Roditty 2013; Agarwal and Godfrey
2013; Agarwal 2014b] also have superlinear size, even when m = O(n). Their query
time is also at least polynomial in .

In addition to an oracle with stretch 2 with super-linear size and polynomial query
time, Agarwal et al. [2011] also devised a not path-reporting * linear-size distance oracle
for sparse graphs which, given a parameter £ = 2, 3, ..., provides distance estimates
with stretch 4% — 5, and has query time O(n'/*). (Both their and our results are, in
fact, more general than this. We provide the results just for m = O(n) to facilitate the
comparison.) To our knowledge, prior to our work, this was the only oracle with linear
size (for graphs with m = O(n)) and constant stretch. We devise the first path-reporting
counterpart of their result. Our oracle (Corollary 6.4) also uses linear size, has stretch
O(K"24:), and query time O(n'/%), for any constant parameter % of the form % = (4/3)",
h=12,....

From the technical perspective, the not path-reporting distance oracle of Agarwal
et al. [2011] is very simple. One samples roughly n'~# landmarks and builds the TZ
oracle for the metric induced by them with parameter k. On the other hand, our path-
reporting oracle is more involved. Specifically, we use a hierarchy of sampled sets of
landmarks, and distance-preserving path-reporting oracles (see Section 1.4) for each
level of the hierarchy.

Finally, we remark that by the lower bounds of Sommer et al. [2009] for distance
oracles for sparse graphs, any linear-size oracle with stretch 2°? must have query

time Q(M%Ogn). There is a significant gap between the upper bound O(n!/*) of Agar-

wal et al. [2011] and ours, and Sommer et al’s lower bound [Sommer et al. 2009].
Nevertheless, the latter implies that in contrast to the situation with distance oracles
for general graphs where the query time can be made constant [Thorup and Zwick
2001a; Wulff-Nilsen 2012; Chechik 2014], in the context of linear-size distance oracles

for sparse graphs with constant stretch, the query time must be at least 9(101;1%) ’g‘ —).

41t was erroneously claimed in Agarwal et al. [2011] that all their distance oracles are path-reporting. While
their distance oracles with stretch smaller than three are path-reporting (albeit their space requirement is
superlinear), this is not the case for their oracles with stretch 42 — 1, £ > 1 [Agarwal 2014a].

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:6 M. Elkin and S. Pettie

1.4. A Distance-Preserving Path-Reporting Distance Oracle

In Coppersmith and Elkin [2005], the authors showed that for any n-vertex graph
G = (V, E) and a collection P of P pairs of vertices, there exists a subgraph G’ = (V, H)
of size O(max{n+ /n- P, JVP. n}), so that for every (u, v) € P, dg(u, v) = dg(u, v). In this
article, we devise the first distance-oracle counterpart of this result. Specifically, our
distance oracle uses O(n+ P2) space, and for any query (u, v) € P it produces the exact
shortest path IT between u and v in O(|I1|) time, where |I1] is the number of edges in
I1. This oracle is deterministic.
We employ this distance oracle very heavily in all our other constructions.

Remark. The construction time of our distance-preserving oracle is O(n - P2) + O(m -
min{n, P}). The construction time of our path-reporting oracle for sparse graphs is
O(m - n) = O(n21), where » = m/n. The construction time of our oracles with nearly-
linear space for general graphs is O(n?*1/%). Finally, the construction time of our oracle
for unweighted graphs with a hybrid multiplicative-additive stretch is O(B(k)n2t1/%) =
EOUoglogh) O(n2+1/k) Tn both cases, & is the stretch parameter of the respective oracle.

1.5. Related Work

There is a huge body of literature about distance oracles by now. The history of this
subject can be traced back to a seminal paper by Peleg [2000] on distance labeling,
where for any parameter 2 = 1, 2, ..., he implicitly devised a distance oracle for general
undirected weighted graphs with size O(n!*1/* . k. logn - 1og W), stretch O(k), and
query time O(n'* . k- logn - 108 W). A similar result can be derived from Matousek’s
embedding of general metrics into £, with distortion 2k — 1 and dimension O(n!/*-log n)
[Matousek 1996].

Baswana and Sen [2006], Baswana and Kavitha [2006], and Baswana et al. [2008]
improved the preprocessing time of the TZ oracle.

1.6. Structure of the Article

We start with describing our distance preserving oracle (Section 3). We then proceed
with devising our basic path-reporting oracle for sparse graphs (Section 4). This ora-
cle can be viewed as a composition of an oracle from Agarwal et al. [2011] with our
distance-preserving oracle from Section 3. The oracle is described for graphs with small
arboricity. Its extension to general sparse graphs (based on a reduction from Agarwal
et al. [2011]) is described in Section 5. Then, we devise a much more elaborate multi-
level path-reporting oracle for sparse graphs. The oracle of Agarwal et al. [2011] and
our basic oracle from Section 4 both use just one set of sampled vertices. Our multi-
level oracle uses a carefully constructed hierarchy of sampled sets which enables us
to get the query time down from n'/?*¢ to n¢. Next, we proceed (Section 6) to using
this multi-level oracle for a number of applications. Specifically, we use it to construct
a linear-size logarithmic stretch path-reporting oracle with query time n¢, linear-size
polylogarithmic stretch path-reporting oracle with query time O(log log), and finally,
oracles that break the girth barrier for unweighted graphs. Our lower bounds can be
found in Section 7.

2. PRELIMINARIES
For a pair of integers a < b, we denote [a, b] = {a,a + 1,...,b}, and [b] = [1, b]. The
arboricity of a graph G is given by A(G) = maxycv, ju|>2 ‘IEU(l—lﬁ, where E(U) is the set of

edges induced by the vertex set U. We denote by deg,(w) the degree of a vertex u in
G; we omit G from this notation whenever G can be understood from the context. We

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:7

use the notation O(f(n)) = O(f(n)polylog(f(n)) and Q(f(n) = Q(f(n)/polylog(f(n))).
We say that a function f() is quasi-polynomial if f(n) < nl°g “n,

Given two paths IT = (x1,%2,...,%,) and IT" = (x, = y1,¥2,...,Ys), for some posi-
tive integers a, b, which share a common endpoint x, = y;, we denote by IT - [T’ the
concatenation path (x1, X, ..., % = Y1, Y2, ..., Yb)-

A distance-labeling scheme for a graph G = (V, E) assigns every vertex v € V a short
label ¢(v). Given a pair of labels ¢(u), ¢(v) of a pair of vertices u, v € V, the scheme
computes an estimate §(p(u), ¢(v)). This estimate has to be within a factor «, for some
a > 1, from the actual distance dg(u, v) between u and v in G. The parameter « is called
the stretch of the labeling scheme, and the maximum number of bits employed by one
of the labels is called the (maximum) label size of the scheme.

A closely related notion is that of compact routing scheme. Here, each vertex v is
assigned a label ¢(v) and a routing table v/(v). Given a label ¢(u) of routing destination
u and its own routing table ¥(v), the vertex v = vy needs to be able to compute the
next hop vi. Given the table v/(v1) of v; and the destination’s label ¢(u), the vertex vy
computes the next hop vy, and so on. The resulting path v = vg, vy, ve, ... has to end
up, eventually, in u, and its length needs to be at most « times longer than the length
of the shortest u — v path in G, for a stretch parameter « > 1. In addition to stretch,
another important parameter in this context is the maximum number of bits used by
the label and the routing table (together) of any individual vertex. This parameter will
be referred to as maximum memory requirement of a routing scheme.

3. A DISTANCE-PRESERVING PATH-REPORTING ORACLE

Consider an undirected weighted n-vertex graph G = (V, E, w). Let Pairs CV x V be a
subset of ordered pairs of distinct vertices. We denote its cardinality by P = |Pairs|. In
this section, we describe a distance oracle which, given a pair (u, v) € Pairs, returns a
shortest path I, , from « to v in G. The query time of the oracle is proportional to the
number of edges (hops) |I1,,,| in T, ,. The oracle uses O(n + P?) space.

The construction of the oracle starts with computing a set Paths = {I1,, | (v, v) €
Pairs} of shortest paths between pairs of vertices from Pairs. This collection of shortest
paths is required to satisfy the property that if two distinct paths I, I1" € Paths traverse
two common vertices x and y in the same order (e.g., both traverse first x and then
y), then they necessarily share the entire subpath between x and y. It is argued in
Coppersmith and Elkin [2005] that this property can be easily achieved.

We will need the following definitions from Coppersmith and Elkin [2005].

For a path IT = (ug, u1, ..., up) and a vertex u; € V(IT), the predecessor of u; in TI,
denoted predp(w;), is the vertex u;_; (assuming that i > 1; otherwise, it is defined
as NULL), and the successor of u; in I, denoted succp(y;), is the vertex ;1 (again,
assuming that i < A — 1; otherwise, it is NULL).

Definition 3.1. Coppersmith and Elkin [2005] define a branching event (I1, IT', x) to
be a triple with IT, IT" € being two distinct paths and x € V(IT) N V(IT') be a vertex that
belongs to both paths and such that {pred(x), succn(x)} # {pred (x), succr (x)}. We
will also say that the two paths IT, IT" branch at the vertex x.

Note that, under this definition, if I1 traverses edges (u; 1, u;), (&;, u; 1) and I1’ tra-
verses edges (u; 11, u;), (u;, u;_1), then (I1, I, ;) is not a branching event.

It follows directly from the above property of the collection Paths (see also
Coppersmith and Elkin [2005], Lemma 7.5, for a more elaborate discussion) that for
every pair of distinct paths IT, IT" € Paths, there are at most two branching events that
involve that pair of paths. Let B denote the set of branching events. The overall number
of branching events for the set Paths is |B| < |Paths|? = P2. Our oracle will keep O(1)

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:8 M. Elkin and S. Pettie

data for each vertex, O(1) data for each branching event, and O(1) data for each path.
Hence, the oracle stores O(n + |B| + P) data in total.

Specifically, in our oracle, for every vertex v € V we keep an identity of some path
I1 € Paths that contains v as an internal point, and two edges of IT incident on v. (If
there is no path IT € Paths that contains v as an internal point, then our oracle stores
nothing for v in this data structure.) The path IT stored for v will be referred to as the
home path of v.

In addition, for every branching event (I, IT’, v) we keep the (at most four) edges of
IT and IT incident on v. Finally, for every pair (x, y) € Pairs we also store the first and
the last edges of the path IT, ,. Observe that the resulting space requirement is at most
O(n+ |B| + P) = O(n+ P?). We assume that the branching events are stored in a hash
table of linear size, which allows membership queries in O(1) time per query.

ALGORITHM 1: DPPRO Query(x, y)

: Fetch the first edge (x, x') of I, ,

if x' = y then
Return((x, y))

else
Path’ < Move_to(x, y, x') {“Moving” to x’, i.e., invoking the subroutine Move_to with x'}
Return((x, x') - Path’)

end if

ALGORITHM 2: Procedure Move_to(x, y, x')

1: if («', y) is the last edge of I1,, then

2 Return(x’, y)

3: else if (I1(x"), I, ,, «') is not a branching event then
4: Fetch the next edge (x’, x”) of TT(x’)

5: else
6
7
8
9

Fetch the next edge (x, x”) of T, ,

: end if

: Path” < Move_to(x,y,x") {A recursive invocation of Procedure Move_to with x"}
: Return((x’, x") - Path")

The query algorithm proceeds as follows. See also Algorithm 1 for the pseudo-code.
Given a pair (x, y) € Pairs, we find the first edge (x, x) of the path I1, ,, and “move” to
x’. This corresponds to the invocation of Procedure Move_to with the parameter x’ on
line 5 of Algorithm 1. The procedure itself is given in Algorithm 2. It accepts as input
three parameters. The first two are the query vertices x, y, and the third one is a vertex
x' € V(I).

Then, wyithin Procedure Move_to, we check if (x', y) is the last edge of Il ,. If it is
then we are done. Otherwise, let [1(x’) denote the home path of x’. Observe that since
the vertex x’ is an internal vertex in I1, ,, it follows that there exists a home path IT(x")
for x’.

Next, we check if IT(x’) = I, ,. This test is performed by comparing the identities
of the two paths. If it is the case then we fetch the next edge (x’,x”) of IT(x'), and
move to x”. Otherwise (if IT(x") # I(x, y)), then we check if the triple (I1(x"), I, ,, x)
is a branching event. This check is performed by querying the branching events’ hash
table.

If there is no branching event (I1(x"), I, ,, ') then we again fetch the next edge (x', x”)
of T(x’), and move to x”. In fact, the algorithm does not need to separate between this

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:9

case and the case that Il(x") = II, ,. We distinguished between these cases here for
clarity of presentation. See lines 3-4 of Algorithm 2.

Finally, if there is a branching event (I1(x'), Il ,, x") then we fetch from our data
structure all the information associated with this event. In particular, we fetch the
next edge (x', x”) of I, ,, and move to x” (line 6 of Algorithm 2).

In all cases, the procedure then recurses with x” (line 8). It is easy to verify that,
using appropriate hash tables, all queries can be implemented in O(1) time per vertex,
and in total O(|I1, ,|) time. We will write DPPRO as a shortcut for distance-preserving
path-reporting oracle. The main result of this section is the following theorem.

THEOREM 3.2. Given an undirected weighted graph G = (V, E,) and a collection
Pairs € V x V of pairs of vertices, our DPPRO reports shortest paths Il , for query
pairs (x,y) € Pairs in O(|Tl,,|) time. The oracle employs O(n + |B| + P) = O(n + P?)
space, where B is the set of branching events for a fixed set of shortest paths between
pairs of vertices from Pairs, and P = |Pairs|.

Remark. In the preliminary version [Elkin and Pettie 2015] of this article, Theo-
rem 3.2 was claimed for directed graphs. However, the proof argument given here (and
in Elkin and Pettie [2015]) is valid only for undirected graphs.

One can construct the shortest paths in O(m - min{P, n}) time. Then, for each vertex
v one keeps the list of paths that traverse v. For every such path, one keeps the two
edges of this path which are incident on v. In overall O(n - P?) additional time, one
can use these lists to create the list of branching events. A hash table with them can
be constructed in additional O(P?) time. Hence, the overall construction time of this
oracle is O(m - min{P, n}) + O(n - P?).

Observe that if one is given a set S, |S| = O(n!/*), of terminals, then Theorem 3.2
provides a linear-size DPPRO (i.e., O(1) words per vertex on average) which can report
shortest paths between all pairs of terminals. It is well-known that any distance la-
beling scheme which is guaranteed to return exact distances between all pairs of n!/*
terminals must use maximum label size Q(n'/4) [Thorup and Zwick 2001a]. This is also
the case for compact routing schemes [Thorup and Zwick 2001b]. In the latter case,
the lower bound of Q(n'/4) is on the maximum memory requirement of any individual
vertex.

We remark that our DPPRO here employs O(n + |5| + P) space, whereas the under-
lying distance preserver has O(n + /n - |B]) edges [Coppersmith and Elkin 2005]. It
is plausible that there exists a DPPRO of size O(n + 4/n - [B]). We leave this question
open.

4. A BASIC DISTANCE ORACLE FOR GRAPHS WITH BOUNDED ARBORICITY

In this section we describe a basic variant of our path-reporting distance oracle for
weighted undirected graphs G = (V, E, w) of arboricity A(G) < A, for some parameter A.
(We will mostly use this oracle for constant or small values of 1. On the other hand, the
result is meaningful for higher values of A, as well.) Our oracle reports paths of stretch
O(k), for some positive integer parameter k. Unlike the partial oracle from Section 3,
the oracle in this section is a full one, i.e., it reports paths for all possible queries
(u,v) € (‘2]). This is the case, also, for all our other oracles, which will be described in

consequent sections. The expected query time of our oracle is O(n!/ ZHgim L)), (Whp?, the

5Here and thereafter we use the shortcut “whp” for “with high probability”. The meaning is that the proba-
bility is at least 1 — n~¢, for some constant ¢ > 2.

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:10 M. Elkin and S. Pettie

query time is O(nY/ 2o . logn - 1).) The oracle requires O(n) space, in addition to the
space required to store the graph G, itself. Observe that for A = O(1), the query time is
O(n'/?+¢), for an arbitrarily small constant ¢ > 0, while the stretch is O(%) = 0(1). In
Section 5, we extend this oracle to general m-edge n-vertex graphs with » = 7.

Our basic oracle employs just one level of sampled vertices, which we (following
the terminology of Agarwal et al. [2011]) call landmarks. Each v € V is sampled
independently at random with probability £, where p is a parameter which will be
determined in the sequel. Denote by L the set of sampled vertices (landmarks). Note
that IE(|L]) = p.

For every vertex v € V, we keep the path I1(v) from v to its closest landmark vertex
£(v), breaking ties arbitrarily. Denote by D(v) the length w(IT(v)) of this path. This is
a collection of vertex-disjoint shortest paths trees (shortly, SPTs) {T'(v) | u € L}, where
each T (u) is an SPT rooted at u for the subset {v | dg(u, v) < dg(u/, v), Vu' # u, u, ' € L}.
(Ties are broken arbitrarily.) This collection is a forest, and storing it requires O(n)
space.

The oracle also stores the original graph G. For the set of landmarks we compute the
complete graph £ = (L, (15), dg|L). Here, dg|L stands for the metric of G restricted to
the point set L. (In other words, in the landmarks graph £, for every pair u, v’ € L of
distinct landmarks, the weight w,(u, «') of the edge (u, v') connecting them is defined
by wr(u, ') = dg(u, v).)

Next, we invoke Thorup-Zwick’s distance oracle [Thorup and Zwick 2001a] with a
parameter k. (Henceforth, we will call it the TZ oracle.) One can also use here Mendel-
Naor’s oracle [Mendel and Naor 2006], but the resulting tradeoff will be somewhat
inferior to the one that is obtained via the TZ oracle. Denote by H the TZ distance
oracle for the landmarks graph £. The oracle requires O(% - |L|**/*) space, and it
provides (2k — 1)-approximate paths IT,,, in £ for pairs of landmarks u, v’ € L. The
query time is O(k) (plus O(|I1, |)). Observe that some edges of 1, ,, may not belong to
the original graph G. We note also that by using more recent oracles [Chechik 2014;
Wulff-Nilsen 2012], one can have query time O(1), but this improvement is immaterial
for our purposes.

The TZ oracle H has a useful property that the union H = [J{I1,, | (v, u) € (12‘)} of
all paths that the oracle returns forms a sparse (2k — 1)-spanner. Specifically, [E(|H|) =
O(k - |L|*Vk). (This property holds for Mendel-Naor’s oracle as well, but there, the
stretch of the spanner is O(k), where the constant hidden by the O-notation is greater
than 2. On the other hand, their space requirement is O(|L|**1/*), rather than O(% -
|L|**1/%).) An invocation of the procedure of Thorup and Zwick that constructs an oracle
for the landmarks’ graph £ returns a probability distribution of oracles H, which, in
turn, gives rise to a probability distribution of spanners H. Their expected size IE(H)
is O(k - |L|*t1/%). We fix a particular oracle H from this distribution that satisfies
|H| = O(k - |L|**1/*). Whp, such an H can be computed by running the procedure that
computes the TZ oracle for O(logn) times. We will view the spanner H as a collection
of pairs of vertices of our original graph G.

Finally, we invoke our DPPRO from Section 3 on the graph G and set the set Pairs
to contain all edges of H. We will refer to this oracle as D(G, H). Its size is, with high
probability, O(n + |H|?) = O(n + k2 - |L|?t2?/%). Upon a query (y,y’) € H, this oracle
returns a shortest path IT, ,, between y and y" in G in time O(|IT, ,|).

Observe that |L| is the sum of identical independent indicator random variables
Ll = ,.v I, where I, is the indicator random variable of the event {v € L}. Hence, by
Chernoff’s inequality, for any constant ¢ > 0,

IP(IL| > (1 4+ e)IE(LD) = IP(IL| > (1 4+ €) - p) < exp(—Q(p)).

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:11

We will set the parameter p to be at least clogn, for a sufficiently large constant c.

This will ensure that, whp, |L| = O(p), and so |L|>*?/* = O(p2t?/*). Set p so that

k2. p2+2/k — @(n),ie., p = n¥= . # . This guarantees that, aside from the storage needed

for the original graph, the total space used by our oracle is O(n).

This completes the construction algorithm of our oracle. Next, we describe its query
algorithm. We need the following definition. For a vertex v € V, let Ball(v) = {x |
dg(v,x) < dg(v, £(v))} denote the set of all vertices x which are closer to v than the
closest landmark vertex £(v) to v.

Given a pair u, v of vertices of G, our oracle starts with testing if u € Ball(v) and if
v € Ball(u). To test if u € Ball(v) we just conduct a Dijkstra exploration rooted at v in
the graph G, until we discover either u or £(v). (Recall that G is stored in our oracle.)
If u is discovered before ¢(v), we conclude that u € Ball(v), and return the (exact)
shortest path between them. Otherwise, we conclude that u ¢ Ball(v). Analogously, the
algorithm tests if v € Ball(u).

Henceforth, we assume that u ¢ Ball(v) and v ¢ Ball(x), and therefore, the two
searches returned v’ = £(u), v/ = £(v), and the shortest paths IT(z) and IT1(v) between
u and v’ and between v and v/, respectively. (In fact, using the forest of SPTs rooted
at landmarks that our oracle stores, the query algorithm can compute shortest paths
between uand v’ and between v and v’ in time proportional to the lengths of these paths.)
Observe that dg(W', V') < dg(t/, u) + dg(u, v) + dg(v, V'), and dg(v', w), dg(v, v') < dg(u, v).
Hence, dg(@/, v') < 3 - dg(u, v).

Then, the query algorithm invokes the query algorithm of the oracle H for the land-
marks graph L. The latter algorithm returns a path Il" = (&' = z¢,21,...,25 = V') in
L between ' and v'. The length w,(IT’) of this path is at most (2k — 1) - dg(W/, v/) <
(6k — 3) - dg(u, v). The time required for this computation is O(k + h), where |IT'| = A.
For each edge (z;, z;11) € I, i € [0, h— 1], we invoke the query algorithm of the DPPRO
D(G, H). (The edges (z;, z; 1) of the path T’ are typically not edges of the original graph.
H is a (2k — 1)-spanner of £ produced by the oracle H. Observe that 1" C H, and so
(zi,2i41) € H, for every index i € [0, h — 1].) The oracle D(G, H) returns a path
between z; and z;+1 1n G of length w,(z;, z;11) = dg(z,, zi41). Let TT = Iy - Iy - I'Ih 1
be the concatenation of these paths. Observe that I1 is a path in G between zo = u/ and
zp =1, and

h—1 h—1
(M) = Zwm)= dataizip) =) or(i zi1) = () < (6k — 3) - dg(u, v).
1=0 1=0 1=0

Finally, the query algorithm returns the concatenated path IT = IT(w) - IT - TI(v) as
the approximate path for the pair u, v. This completes the description of the query
algorithm of our basic oracle. Observe that

o(I1) = o(IT(w)+ (M) +o(T1(v)) < dg(u, v)+(6k—3)-dg(u, v)+dg(u, v) = (6k—1)-dg(u, v).

Next, we analyze the running time of the query algorithm. First, consider the step that
tests if v € Ball(u) and if u € Ball(v). Denote by X the random variable that counts
the number of vertices discovered by some fixed Dijkstra exploration originated at u
before the landmark ¢(u) is discovered. We order all graph vertices by their distance
from u in a non-decreasing order, i.e., u = ug, u1, .. ., U,_1, such that do(u, v;) < de(u, u;)
for i < j. Note that this is the order in which the aforementioned Dijkstra exploration
originated at u discovers them. For an integer value 1 < ¢ < n — 1, the probability that
X = t is equal to the probability that the vertices ug, u1, ..., u;_1 are not all sampled
and the vertex u; is sampled. Hence, X is distributed geometrically with the parameter

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:12 M. Elkin and S. Pettie

p = p/n. Hence,

n—1
IE(X)=Z(1—p)t-p-t§%=%. €]

t=1

Also, obviously for any positive constant ¢, P(X > Zclnn) < (1 - p/n)"/??" < n¢ je.,
whp, X = O(% logn).

Recall that the graph G has arboricity at most A, and thus, any set of n’ < n vertices
induces O(n’ - 1) edges. Hence, the expected number of traversed edges by the Dijk-
stra algorithm is O(%k), and, whp, O(%Mogn) edges. In an unweighted graph, such

exploration requires time linear in the number of edges, and in weighted® graphs, the
required time is O(%(A + logn)) in expectation, and O(%A - logn), whp. (Recall that
Dijkstra algorithm that scans a subgraph (V’, E’) requires time O(|E’'| + |V’|log |[V'|).)

The second step of our query algorithm queries the distance oracle H for the land-
marks graph £. The query is (&', v'), ' = £(u), v/ = £(v). This query returns a path
IT" between ¢’ and v’ in £ in time O(|IT'| + k). Next, for each of the A~ = |IT'| edges
(zi,zi41), 1 = 0,1,...,h — 1 of the path IT’, the query algorithm invokes our DPPRO
D(G, H) with the query (z;, z;.1). This oracle returns the shortest path [1; between
z; and z;11 in G within time O(|T1;|). Finally, the algorithm returns the concatenated
path IT = I(w) - o - Iy - ... - TT_1 - TI(v). The running time required for producing
the path Iy - ... [1;_1 is O(Zf:ol ITL;]) = O(|11]), and |IT'| < |I1|. Hence, the overall
expected running time of the algorithm is O(% - & + |I1]) for unweighted graphs, and is
O(% - (» 4+ logn) + |11)) for weighted ones. We remark that the additive term of O(k) is
dominated by O(% - A). To ensure this, we will be using p < n/logn, and k£ < O(logn).

For the high-probability bounds, one needs to multiply the first term of the running
time by an additional O(logn) factor in both the unweighted and the weighted cases.

Now, we substitute p = % -n#@. The resulting expected query time becomes O(% -

nit@e)+ O(|11]). We summarize the properties of our basic oracle in the following
theorem.

THEOREM 4.1. For an undirected n-vertex graph G of arboricity » and a positive
integer parameter k = 1,2, ..., there exists a path-reporting distance oracle of size
(whp) O(n) (in addition to the size required to store the input graph G) that returns

(6k — 1)-approximate shortest paths T1. The expected query time is On:*t#z . k- 1) in
unweighted graphs and Onztse k- () + logn)) in weighted ones. (The same bounds on

the query time apply, whp, if one multiplies them by O(logn). In addition, in all cases,
the query time contains the additive term O(|I1|).)

In particular, Theorem 4.1 implies that for any constant ¢ > 0 one can have a path-
reporting oracle with query time O(n'/2*¢1), which provides O(1)-approximate shortest
paths for weighted undirected graphs. Observe, also, that for 2 = 1, we obtain a 5-
approximate path-reporting oracle with query time O(n%/#1). We remark that to get the
latter oracle, one does not need to use the TZ oracle for the landmarks graph £. Rather,

60ne subtlety: we have to avoid scanning too many edges with just one endpoint in Ball(z). We store the
edges incident to each vertex x in increasing order of their weights and relax them in that order when x is
scanned. As soon as an edge (x, y) is relaxed such that the tentative distance to y is greater than dg(u, £(u)),
we can dispense with relaxing the remaining edges. Alternatively, a modification of the sampling rule which
we describe in Section 5 also resolves this issue.

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:13

one can build a DPPRO for all pairs of landmarks. (In this case p = n'/4, |L| = O(p),
|Pairs| = |(§)| = 0(p?) = O(\/n), and so the size of the oracle H is O(|Pairs|?>+n) = O(n).)

One can build the forest of SPTs rooted at the landmarks in O(m) time. Within
additional Om-p + p -n-logn) = Ok - m - nl2-mm 4 i logn) time one can
construct the metric closure of L, i.e., the graph £. This graph has n’ = p vertices and
m < p? edges. In O(km' - V%) = O(kp2+V/%) = O(k - n%%) time, one can construct the
TZ oracle for it. To construct the DPPRO with P = O(k - p*V*) = O(k - n'/?) pairs, one
needs O(n - P2) + O(k - m - n/?> =) = O(k% - n?) + O(k - m - n'/> %) time. Hence, the
overall construction time of this oracle is O(k2 - n2) + O(k - m - n¥/2~ms2),

In Section 5, we show (see Corollary 5.1) that Theorem 4.1 extends to general graphs
with m = A - n edges.

5. AN EXTENSION TO GENERAL GRAPHS

In this section, we argue that Theorem 4.1 can be extended to general n-vertex graphs
G = (V,E,w) with m = An edges. In its current form, the theorem only applies to
graphs of arboricity at most A. While this is sufficient for our main application, i.e., for
Theorem 6.9, our other application (Theorem 6.10) requires a more general result. Our
extension is based on the reduction of Agarwal et al. [2011] of the distance oracle prob-
lem in general graphs to the same problem in bounded-degree graphs. Our argument
is somewhat more general than the one from Agarwal et al. [2011], as it also applies to
path-reporting distance oracles. We provide our extension for the sake of completeness.

THEOREM 5.1. Up to constant factors, the result of Theorem 4.1 holds for general
undirected unweighted m-edge n-vertex graphs with m = in. For undirected weighted
graphs, the expected query time becomes O(n!/ 2+ vz k-2-logn) = O(nY 2o . = -logn),
and the same bound applies, whp, if one multiplies it by another logn factor.

Proor. Given an m-edge n-vertex graph G with A = m/n, we split each vertex u;
into d(u) = e copies u'P, u?, ..., u¥®) Each copy is now selected independently
at random Witﬁ probability p/n, for a parameter p determined in the same way as in
Section 4. The original vertex u is selected to the landmarks’ set if and only if at least
one of its copies (which will also be called virtual nodes) is selected. Observe that the
rule that we have described is up to a constant factor equivalent to selecting u with
probability d() - £ = [%&® . 2,

The expected number of selected virtual nodes is

o p deg(u) P deg(v) _ Y _
Zd(v)'ﬁ_Z'%ZV’VT—‘ 5;%2‘/(A +1>—,0+)Ln2deg(v)—3,0.

veV veV

The number |L| of landmarks is at most the number of selected virtual nodes, and so
IE(|L|) < 3p. By Chernoff’s bound, the number of selected virtual nodes is, whp, O(p),
and so, whp, |L|?*%/k = O(p?*%/%), as well. Hence, the size of our oracle remains O(n).

The rest of the construction algorithm for our distance oracle is identical to that
of Section 4. (The only change is the distribution of selecting landmarks.) The query
algorithm is identical to the query algorithm from Section 4. In particular, note that
the virtual nodes have no effect on the computation, i.e., the returned paths contain
only original vertices.

Next, we argue that the expected query time of the modified oracle is still at most
O(% - A) in unweighted graphs, and O(% - Alogn) in weighted ones. (As usual, we omit

the additive term of the number of edges of the returned path.) Specifically, we argue

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:14 M. Elkin and S. Pettie

that the tests, if v € Ball(u) and if u € Ball(v), can be carried out within the above
expected time.

Let u = ug, u1, ..., u,_1 be all graph vertices ordered by a Dijkstra exploration orig-
inated from u, and replace each vertex u; by its d(i;) copies ugl), cee, ugd(”")). The copies
appear in an arbitrary order. Since each virtual node has probability £ to be selected
independently of other vertices, it follows by a previous argument that the number N
of virtual nodes that the algorithm encounters before seeing a selected virtual node
is O(%). (The algorithm actually explores only original vertices. For the sake of this
argument, we imagine that when the algorithm reaches a vertex y it reaches its first
copy y'V. Right after that, it reaches the next copy y'?, and so on, and then reaches
¥ @0 After “reaching” all these copies, the algorithm continues to the next original
vertex.)

Denote the original vertices explored by the algorithm uq, ug, ..., u; 1, 4;, and let uf
be a selected copy of u;. (We assume that all copies of u;, for j < i, are not selected, and

all copies u”, ' < h, are also not selected.) It follows that N = 23—211 d(u;) + h. Hence,

n

i—1
B(Y dup) B -0(%).
j=1

Hence,

(£[#2]) o (2)

J=1

as well. Thus,
! AR m
E (Y degw,) =o(_)=o(_).
JX_; gl P P

Observe that the number of edges explored by the algorithm before reaching u; is at
most 23_:11 deg(u;). (The only edges incident on u; explored by the algorithm are edges
(uj, u;), for j < i. These edges are accounted for in the above sum of degrees.) Hence,
the expected number of edges explored by the algorithm is O(7}). Hence, its expected
running time is 0(%‘) (respectively, O(%‘ -log n)) in unweighted (resp., weighted) graphs.
The bounds that hold with high probability are higher, by a factor of O(logn). O

Since IE(|L|) = O(p), the construction time of the oracle is, up to constant factors, the
same as in Section 4.

This result provides a path-reporting analogue of the result of Agarwal et al. [2011],
which provides stretch O(k) and query time (n1)°1/®_ Their oracle is not path-reporting.
Our oracle is path-reporting, but its query time is significantly higher, specifically, it is
n1/2+0(1/k) k.

6. ORACLES WITH SMALLER QUERY TIME

In this section, we devise two path-reporting oracles with improved query time. The
first oracle has size O(m + n) (it stores the original graph), and query time A - n¢, for an
arbitrarily small € > 0. The stretch parameter of this oracle grows polynomially with
e L. For the time being, we will focus on graphs of arboricity at most A. The argument
extends to general graphs with m = An in the same way as was described in Section 5.
Our second oracle has size O(nloglogn) (independent of the size of the original graph)

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:15

and reports stretch-O(logh’g‘*/37 n) paths in O(loglogn) time. Both draw on techniques
used in sublinear additive spanner constructions of Pettie [2009]. We will later build
upon the first oracle to construct additional oracles that work for dense graphs, as well.
Like the second oracle, these later oracles will not have to store the input graph.

6.1. Construction of an Oracle with Time O(A - n¢)

In this section, we describe the construction algorithm of our oracle. It will use a
hierarchy of landmarks’ sets L1, Lo, ..., Ly, for a positive integer parameter A that
will be determined later. For each index i € [h], every vertex v is selected into L;
independently at random with probability p; = %, p1 > ps > --- > pp. The sequence
01, P2, . .., pp Will be determined in the sequel. The vertices of L; will be called the i-level
landmarks, or shortly, the i-landmarks. For convenience of notation, we also denote
Ly=V.

For each vertex v € V and index i € [A], let ¢;(v) denote the closest i-landmark to
v, where ties are broken in an arbitrary consistent way. Denote r;(v) = dg(v, ¢;(v)) the
distance between v and its closest i-landmark ¢;(v). Following [Pettie 2009], for a real
number 0 < ¢ < 1, let B{(v) = {u | dg(v, u) < ¢ - r;(v)} denote the ith c-fraction-ball of
v. In our analysis, ¢ will be set to either 1/3 or 1. Specifically, let Bil /3(v) denote the
one-third-ball of v, and Ball;(v) = Bil(v) = {u | dg(v, u) < r;(v)} denote the ith ball of v.

For each vertex v € V, we keep a shortest path between v and ¢1(v). (This is a forest of
vertex-disjoint SPTs rooted at 1-landmarks. For each 1-landmark «/, its SPT spans all
vertices v € V, which are closer to ¢’ than to any other 1-landmark.) Similarly, for each
i € [h — 1] and every i-landmark u, we keep a shortest path between u and its closest
(i + st landmark ¢, ;(u) = u®*V. Again, this entails storing a forest of vertex-disjoint
SPTs rooted at (i + 1)-landmarks, for each each index i € [h — 1]. Overall, this part of
the oracle requires O(n - h) space.

For the Ath-level landmarks’ set L;, we build a DPPRO £, described in Section 3.
Given a pair u, v of h-landmarks, this oracle returns a shortest path I(u, v) between
them in time proportional to the number of edges in this path, i.e., O(|T1(u, v)|). The
space requirement of the oracle £, is O(n + |L|*), and thus, we will select p;, to ensure
that |L;|* = O(n), i.e., ps will be roughly n'/%. Denote also Pj, = (Lz") be the set of all
pairs of h-landmarks.

For each index i € [h — 1], we also build a DPPRO D; for the following set P; of pairs

of i-landmarks. Each pair of i-landmarks u, v, such that either v € Bil ﬁ(u) oru e Bil ﬁ(v)
is inserted into P;.

Similarly to the DPPRO £, given a pair (u, v) € P; for some i € [h — 1], the oracle
D; returns a shortest path IT(u, v) between u and v in time O(|I1(«, v)|). Our oracle also
stores the graph G itself. We will later show a variant of this oracle that does not store
G (Theorem 6.6). The size of the oracle D; is O(n + |Branch;|), where Branch; is the set
of branching events for the set P;. Since we aim at a linear size bound, we will ensure
that |Branch;| = O(n), for every i € [h — 1]. We will also construct a hash table H; for
P; of size O(|P;]) that supports membership queries to P; in O(1) time per query. The
resulting A-level oracle will be denoted Aj,.

6.2. The Query Algorithm

Next, we describe the query algorithm of our oracle Aj,. The query algorithm (see
Algorithm 3 for the pseudo-code) is given a pair u = u®, v = v'? of vertices. The
algorithm starts (line 1 of Algorithm 3) with testing if u € Ball;(v) and if v € Ball;(w).
For this test, the algorithm just conducts a Dijkstra search from v until it discovers
either vV or u (and, symmetrically, also conducts a search from).

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:16 M. Elkin and S. Pettie

ALGORITHM 3: Hierarchical Query(u, v)
1: if u € Ball;(v) or v € Ball;(x) then

2: Return(shortest u — v path) {The test is conducted via Dijkstra explorations. These explo-
rations return either a shortest u — v path, or shortest u — «'¥ and v — vV paths.}

3: else

4: Path < Connect(u™, vV 1)

5: Return(I(u, uV) - Path - TI(v™Y, v))

6: end if

ALGORITHM 4: Procedure Connectw”, v\, j)
1: if j = h then
2: Return(L,u™, v'®)) {Query the DPPRO L, with the pair («”, v'?), and return the path that
Ly, returns.}
3: else if ', v")) € P; then
4: Return(I1(u"”, v'")) {The condition is tested via the hash table 7{;, and the path is computed
by the oracle D;.}
else
Fetch MY, uv*) and (v, vU+D)
Path < H(u(j), u<j+1>) . Connect(u(j“), v(j“), j +1)- l'I(v(j“), v(j))
Return(Path)
: end if

Observe that by Equation (1), the expected size of Ball; (v) and of Ball; (u) is O(p—”l), and,
whp, both these sets have size O(p—"1 -logn). Hence, the running time of this step is, whp,
O(p—”1 -A). (Specifically, it is O(ﬁ -A-logn) in unweighted graphs, and O(p—”1 logn-(A+logn))
in weighted ones. The expected running time of this step is smaller, by a factor of logn,
than the above bound.)

If the algorithm discovers that v € Ball;(u) or that u € Ball;(v), then it has found the
shortest path between v and v. In this case, the algorithm returns this path (line 2 of
Algorithm 3). Otherwise, it has found uV = ¢;(@?) and vV = £,(v?).

In general, consider a situation when, for some index j, 1 < j < h, the algo-
rithm has already computed '’ and v'”. In this case, inductively, the algorithm

has already computed shortest paths IT(«?, u), M@, u®), ..., M@V ?,) and
N0, v0), D, v®), ..., YD, v) between «® and u®, &V and u®., ..., uo-D
and z“, v and vV, v'¥ and v?, ..., vY~D and v, respectively. Note that the base

case j = 1 has been just argued. The algorithm, then, invokes Procedure Connect (Al-
gorithm 4) with parameters », v'”) and j. This procedure accepts as input an index
J» 1 < j < h, and a pair of j-landmarks «, v"") € L;. It returns an approximately
shortest path between them.

For j < h, the query algorithm of our oracle A, then queries the hash table #;

whether the pair (1), v")) € P; (line 3 of Algorithm 4). If it is the case, then the al-
gorithm queries the oracle D;, which, in turn, returns the shortest path @Y, v)

between ¢ and v in time O(|T1(z"’, v*")|). The algorithm then reports the concate-
nated path

n(u’ U) — H(u(O)’ u(l)) . H(u(l), u(2)) . I—[(u(jfl)7 u(j)) A l'[(u(j), v(j))
. H(v(j) v(j—l)) o H(U(Z) U(l)) . H(v(l) U(O)).

This is done on line 4 of Algorithm 4. Computing this concatenation requires O(j) <
O(|T1(u, v)|) time.

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:17

In the complementary case when (u', v"/)) ¢ P;, the algorithm fetches the pre-
recorded paths M"Y, uY+P) and M"Y, vU+Y), and invokes itself recursively on the
pair (uV+V pU+D) This is done on line 7 of Algorithm 4. Recall that for each index j,
1 < j < h— 1, the algorithm stores a forest of vertex-disjoint SPTs rooted at (j + 1)-
landmarks L;1. These SPTs enable us to compute the paths I, u*V), TI(v"V), v/ +1)
for all j € [h — 1], in time proportional to the number of edges in these paths.

Finally, if j = h, then we query the DPPRO L; of the graph L, with the query
(u®, v™). Note that it is not necessary to query if (u”, v'?) is in the DPPRO £}, since,
by construction, all such pairs are there. The query returns the shortest path between
them in time O(|TT(u®, v'™)|). This is done on lines 1-2 of Algorithm 4. It follows that
the overall running time of the query algorithm is dominated by the time required to
compute (@ ?, uV) and MW@, vV). Specifically, it is

j-1
O (i ,)\) + (|H(u(i), u(i+1))| + |1—[(v(i)’ v(i+1))|) + |H(u(j), U(j))|,
L1 :
1=0
where 1 < j < his the smallest index such that (u'/), v')) € P;. (Recall that for j = A,
Pr = (L2"), i.e., all pairs of h-landmarks belong to P;.) Hence, the overall query time

is (j(pi1 - A) + O(|II(u, v)| + h), where Il(u, v) is the path that the algorithm ultimately
returns.

Remark. If for each index 0 < j < h — 1 at least one of the subpaths
@Y, uV+D), (Y, vYU+D) is not empty, then 2 < |[1(x, v)|, and the resulting query
time is O(pll)») + O(|TI(u, v)|). One can artificially guarantee that all these subpaths
will not be empty, i.e., that u' # ¢+V and v # vU*D, for every j. To do this, one
can modify the construction slightly so that the set of i-landmarks and the set of j-
landmarks will be disjoint for all i # j. Under this modification of the algorithm, the
query time is O(ﬁ - A) + O(|TI(w, v)|), while the stretch guarantee of the oracle (which
will be analyzed in Section 6.3) stays the same. This modification can make oracle’s
performance only worse than it is without this modification, but the bounds on the
query time of the modified oracle, in terms of the number of edges in the returned path,
become somewhat nicer. (See Theorem 6.6.)

6.3. The Stretch Analysis

Recall that in the case that v € Ball;(x) or u € Ball;(v), our algorithm returns the
exact shortest path between u = ©/% and v = v'?. Hence, we next consider the situation
when v ¢ Ball;(x) and u ¢ Ball;(v). For brevity, let d = d'© = dg(u, v). At this point,
the algorithm also has already computed «'V and vV, along with the shortest paths
@, V) and (W, vV) between ©¥ and ©' and between v'? and vV, respectively.
Observe that in this scenario, we have dg(@?, u'V), dg(@'?, v'V) < d, and so

dG(u(l), v(l)) < dG(u(l), u(O)) + dG(u(O), U(O)) + dG(v(O), v(l)) <3.d.

Hence, if (u'V, vV) € Py, then the path [T, «V) - T, v) - (WY, v?) returned by
the algorithm is a 5-approximate path between u and v. Indeed, its length is at most

do@?, uV) + d@®, v) + dgw, v) <d +3-d+d =5-d.

More generally, suppose the query algorithm reached the j-level landmarks u', v/, for
some j, 1 < j < h—1, and suppose that (", v")) ¢ P;. This means that v/ ¢ B}fl(u(f))

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:18 M. Elkin and S. Pettie
and u") ¢ le-fl(v(j)). By definition of the one-third-ball, it follows that
de@? o) = % - d(D),y = %),
and
de@ v = % g, v+ = % (09,
where uV*V (respectively, vV*?) is the (j + 1)-landmark closest to u'’ (resp., v'/).
Hence,

da(0, 09) < dg@V ™V, u) + da?, o) + o, 09 < T dg@?, o).

Denote by p, 1 < p < h, the index for which the algorithm discovers that (u'?, v'?)) € Pp.
(Since (™, v™) e Py, for every pair ™, v'?) of h-landmarks, it follows that the index
p is well-defined.)

We have seen that dg(u'’, v'V) < 3d, and for every index j, 1 < j < p — 1,
de@V*D vUtD)y < 7. dgw?, v)). Hence, for every j, 1 < j < p, it holds that
dew, v) < 3.7/71.d. Denote dV = 3.7-1.d, for 0 < j < p. Also,
de@®, uV), dg(v'?, vV) < d = d?, and for every index j,1 < j < p—1,

do@?, V) < 3. dg, v) <8.dV =37 T . d.
Hence, the length of the path
l—I(u(O), u(l)) e H(u(p—l)’ u(p)) . H(u(p), v(p)) X H(v(p)’ U(p—l)) o H(v(l), U(O))

returned by the algorithm is at most

p-1 p-1
(0) . (j) (p) X (J) (0)
d”+3 E d +d? +3 E d +d
Jj=1 Jj=1

p—1
=d-[2 (1+3-[Y 3.7 ||+3. 77| =d 677" - 1.
j=1

Since p < h, we conclude that the oracle has stretch at most 6 - 7*~1 — 1.

6.4. The Size of the Oracle

For each index i € [h], our oracle stores a forest of (vertex-disjoint) SPTs rooted at
i-landmarks. Each of these forests requires O(n) space, i.e., together these A forests
require O(n - h) space.

We next set the values p;1 > ps > --- > pp, so that each of the auxiliary oracles
D1, D, ..., Dy_1, Ly requires O(n) space. Each of the hash tables H1, Ha, ..., H; asso-
ciated with these oracles requires less space than its respective oracle. Recall that the
parameter p; also determines the query time. Specifically, it is O(ﬁk) + O(|I1|), where
IT is the path returned by the algorithm. In the sequel, we will often skip the additive
term of O(|IT|) when stating the query time.

For each i € [h], we write p; = n%, where o; = 1 — (3/4)"7i*1. Observe that oj, = 1/4,
i.e., p = n'/%. Hence, IE(|L;|) = p, = n'/4, and by Chernoff’s bound, whp, |L;| = O(n!/4).
(Recall that |L;| is a Binomial random variable.) Hence, the DPPRO L}, for P, = (L2")
requires space O(|L|* + n) = O(n), whp.

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:19

Next, we analyze the space requirements of the oracles D1, Ds, ..., D;_1. Fix an index
i € [h—1], and recall that the space requirement of the DPPRO D; is O(n + |Branch;| +
|P;]), where Branch; is the set of branching events for the set P; of pairs of vertices.
Next, we argue that (whp) |Branch;| = O(n). Recall that the set P; contains all pairs of
i-landmarks (u®, v?) such that either v € B,/ 3 D) or u® € Bl/g(v(’))

The following two lemmas from Pettie [2009] are the key to the analys1s of the oracle’s
size. The first says that with our definition of P;;; all branching events are confined
to (i 4+ 1)st level balls. The second bounds the expected number of branching events in
terms of the sampling probabilities. For completeness, the proofs of these lemmas are
provided in Appendix A.

LemMA 6.1. Suppose that v € Bil ﬁ(u). Then, if (x, y) € P;y1 and there is a branching
event between the pairs (u, v) and (x, y), then necessarily x,y € Ball;1(u).

LeEMMA 6.2. Whp, |Branch;| = O(%— s
t+1
whp, |P;| = (pf—il -logn), and IE(|P;|) = (pf—:l).

log n), and IE(|Branch;|) = O() Moreover,

1

Observe that with our choice of i (pi = n%, a; =1 — (3/4)i+1 for every i € [h]), it
holds for every i € [A—1] that O() = O(n*%—3%+1) = O(n), and O() = O(n2ei—%in) =
O(nt-3"), Hence, by Lemma 6 2 for each i € [h — 1], the oracle D requires expected
space O(n + |Branch |+ 1P = O(n) Thus, the overall expected space required by our
h-level oracle oracle Ay, (in addition to the space required to store the original graph G)
is O(n - h). Recall that the query time is (whp) O((n/p1)r) = O(®4" .).

The argument described in Section 5 enables us to extend these results to general
m-edge n-vertex graphs.

THEOREM 6.3. For any parameter h = 1,2, ... and any n-vertex undirected possibly
weighted graph G with arboricity X, the path-reporting distance oracle Ay uses expected
space O(n - h), in addition to the space required to store G. Its stretch is (6 - 7"~1 — 1),
and its query time is (whp) O(n®/ ")), The same result applies for any m-edge n-vertex
graph with . = m/n.

Specifically, in unweighted graphs with arboricity A, the query time is O((n/p1) - X -
logn) = O(m®3/%" . & . logn), while in weighted graphs it is O®®/?" . (A + logn)logn).
In unweighted m-edge n-vertex graphs, the query time is O(n®/ o = -logn), while in
m-edge n-vertex weighted graphs it is O(n®/4"
unweighted (respectively, weighted) graphs is O(n®/4" . 2+ h) (resp., onB/9" . Z+
logn) + h)). .

By introducing a parameter ¢ = (4/3)", we get query time O(n'/*1), space O(n - logt),
and stretch at most #'°8+:7. (The exponent is ~ 6.76.)

S log? n). The expected query time in

COROLLARY 6.4. For any constant t of the form t = (4/3)", for a positive integer h,
and an n-vertex graph G with arboricity)\, our path-reporting distance oracle Aj, uses
expected space O(n) in addition to the space needed to store G. It provides stretch at most
9237 and its query time is (whp) O(nY/t1). (For a non-constant t, the space requirement
becomes O(n-logt).) The same result applies for any m-edge n-vertex graph with . = m/n.

Yet better bounds can be obtained if one is interested in small expected query time.
The expected query time is dominated by the time required to test if v € Ball;(x) and

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:20 M. Elkin and S. Pettie

if u € Ball;(v). For unweighted graphs these tests require O(21) = O(n®/ ") expected
time.

COROLLARY 6.5. For any t of the form t = (4/3)", for a positive integer h, and an n-vertex
m-edge graph G, our path-reporting oracle Aj, uses expected O(n - h) space in addition to
the space required to store G. It provides stretch at most t'°%27, and its expected query
time is O(n'/! . (m/n) + logt) for unweighted graphs. In the case of weighted graphs, the
expected query time is O(n'/*(m/n) - logn).

Consider now the oracle A, for a superconstant number of levels 2 = [log,3(logn +

1)]. Then, p; = (2n)* = (2n)}~®/4" > . In other words, all vertices V of G are now de-
fined as the first level landmarks (1-landmarks), i.e., L1 = V. (For levels: = 2,3, ..., h,
landmarks L; are still selected at random from V with probability p;/n < 1, indepen-
dently. For level 1 this probability is 1.) Recall that our oracle starts with testing if
v € Ball;(v) and if u € Ball;(v). Now both these balls are empty sets, because all ver-
tices belong to L;. Thus, with this setting of parameters, the oracle A;, no longer needs
to conduct this time-consuming test. Rather, it proceeds directly to querying the oracle
D1. Remarkably, this variant of our oracle does not require storing the graph G. (Recall
that the graph was only used by the query algorithm for testing if v € Ball;(v) and if
u € Ball1(v).) The query time of the new oracle is now dominated by the & queries to the
oracles Dy, Do, ..., Dy_1, L, 1.e., O(h) = O(loglogn). Recall that, by the remark at the
end of Section 6.2, one can always make our oracle to return paths with at least 4 edges,
and thus, the O(h) = O(loglogn) additive term in the query time can be swallowed by
O(|11]), where IT is the path that our oracle returns.

Denote by A the oracle which was just described. The stretch of A is (by Theorem 6.3)

671 — 1= 0(log'*#» " n).

THEOREM 6.6. The oracle A is a path-reporting oracle with expected space
O(nloglogn), where n is the number of vertices of its input undirected weighted graph
G. Its stretch is 0(10g'%»" n) and its query time is O(loglogn). (It can be made O(1),
but the paths returned by the oracle will then contain Q(loglogn) edges.)

Note that by Markov’s inequality, Theorem 6.6 implies that one can produce a path-
reporting oracle with space O(nloglogn), query time O(loglogn), and polylogarithmic
stretch by just repeating the above oracle-constructing algorithm for O(logn) times.
Whp, in one of the executions, the oracle’s space will be O(nloglogn). Similarly, by the
same Markov’s argument, Corollary 6.4 implies that, whp, one can have the space of
the oracle A, bounded by O(n) (in addition to the space required to store the input
graph).

Next, we analyze the construction time of our oracle. The A forests rooted at land-
marks can be constructed in O(m - h) time. We also spend O(m - n) = O(n?1) time
to compute all-pairs-shortest-paths (henceforth, APSP). Then, for each ball B; (),
u € L;, we store all i-landmarks that belong to it. They can be fetched from the
APSP structure in O(1) time per i-landmark. The expected size of this data struc-

2
ture is O(|P;]) = O(ﬁ) = O(n). Then, we produce all possible quadruples u, v, x, y
with v,x,y € Ball;;1(w) N L;, u € L;. By the proof of Lemma 6.2, there are expected
4
O(p’%) = O(n) such quadruples. For each of these quadruples, we check if the involved
i+1
shortest paths intersect, and compute the corresponding branching events. Since the
length of each such path is, whp, O(pi—’i1 - logn), it follows that the entire computa-

tion can be carried out in O(p’;—i) expected time. Recall that p;,; = Q(n'/4), and, thus,

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:21

this running time is O(n"/4). In O(n - P2) = O(n?) additional time, we construct the
DPPRO £, for the set of all pairs of h-landmarks. The total expected construction time
is therefore dominated by the APSP computation, i.e., it is O(m - n).

Theorem 6.6 can be generalized to provide a tradeoff between oracle’s parameters.

+ 4
Specifically, when aiming at size O(n!*1/% . log k), one can set py = ni"'%, % = pltl/k,
ie., '
i = -
As a result, we have p, = n for h > logy,3(k + 1) — 1. Hence, for h = [logy3(k + 1)] — 1,

all vertices are h-level landmarks. The stretch becomes O(798s*+1)) — O(El8437) ~
O(k57%). Each of the O(log k) DPPROs requires now size O(n'*1/%), i.e., the overall size
is O(n'*t1/% .log k), and the query time is O(log k).

COROLLARY 6.7. Our path-reporting oracle, parameterized by k = 1,2, ..., O(logn),
uses expected space O(n**1/* .logk), provides stretch O(k'°%:7), and has query time

O(log k).

This oracle improves previous bounds for all points in the size range between
Q(nloglogn) and o(nlogn). Recall that the oracle of Thorup and Zwick [2001a] always
has size Q(nlogn), and the oracle of Mendel and Naor [2006] is not path-reporting.
The only previously existing path-reporting oracle that can be that sparse is the oracle
of Elkin et al. [2014], which, for a parameter ¢, has size O(n - t - log, W), stretch

O/t - n%), and query time O(logt + loglog, w..). Next, we compare our oracle with
that of Elkin et al. [2014] in a number of points on the tradeoff curve.

For size O(nloglogn), our oracle has stretch O(log® ™ n) and query time O(loglogn),
while the oracle of Elkin et al. [2014] with size O(n(loglog n+loglog, wm.)) has stretch

logn

0
2 Togiozs” and query time O(log® n + loglog, wiy). For size O(n,/logn), our oracle
provides stretch O((lolgol%)ﬁm) and has query time O(loglogn). The oracle of Elkin

et al. [2014] can have size O(n(y/logn + loglog, wy..)), stretch 20(1""53/4”), and query
time O(loglogn + loglog, wia,). In other words, for size O(n log’ n), for any constant
8 > 0, our oracle is strictly better than that of Elkin et al. [2014], and its stretch is
exponentially better than the stretch of Elkin et al. [2014].

Finally, we generalize the path-reporting oracle for sparse graphs (Corollary 6.4) so
that it will provide a tradeoff between size and stretch.

THEOREM 6.8. For any parameters k = 1,2, ... and ¢ > 0, our path-reporting oracle
for sparse graphs provides stretch O(k°8137), has expected size O(n*+* -log k) in addition

to the size of the input graph G, and has query time O(%‘)

1 4 .
Proor. We set pg = ni119), 2t = pl+¢ j e

i

0 = =G/ D+0).

To get query time O(%1 - n¢), for some € > 0, we set the number of levels A to be the
smallest integer that satisfies

op = nI=@HATD 5 pl-e

This gives rise to A > logy s }%ﬁ — 1. Hence, we set & = [logy s ;%1 — 1. (Observe that
for { = 1/k and € = 0 we get i = [log,5(k+ 1)] — 1, exactly as in Corollary 6.7. Indeed,

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:22 M. Elkin and S. Pettie

when € = 0, this oracle does not need to store the input graph G, and thus, it applies
to general, and not only to sparse, graphs.)
Hence, the resulting oracle has expected size O(n'*¢ . log }%ﬁ), provides stretch

0((}%)105’4/37), and has query time O(% -n¢). We write k = ;% and obtain € = _1_(kk_1){‘

In terms of ¢ and %, the oracle has stretch O(%'°%::7), expected size O(n'*¢ - logk), and
query time O(%1),

6.5. Spanner-Based Oracles

While the query time of our oracle A is close to optimal (there is an additive slack
of O(loglogn)), its space requirement O(nloglogn) is slightly suboptimal, and also its
stretch requirement is O(logl°g4/37n), instead of the desired O(logn). Next, we argue
that one can get an optimal space O(n) and optimal stretch O(logn), at the expense of
increasing the query time to O(n¢), for an arbitrarily small constant ¢ > 0.

Given an n-vertex weighted graph G = (V, E,), we start with constructing an
O(logn)-spanner G’ = (V, H, w) of G with O(n) edges. (See Althofer et al. [1990]; a
faster algorithm was given in Roditty et al. [2005]. For unweighted graphs a linear-time
construction can be found in Peleg and Schaffer [1989], and a linear-time construction
with optimal stretch-space tradeoff can be found in Halperin and Zwick [2000].) Then,
we build the oracle Aj for the spanner G'. The space required by the oracle is (by
Corollary 6.4) O(n), plus the space required to store the spanner G, i.e., also O(n).
Hence, the total space required for this spanner-based oracle is O(n). Its stretch is
the product of the stretch of the oracle, i.e., at most 87 with ¢t = (4/3)" for an
integer A, and the stretch of the spanner, i.e., O(logn). Hence, the oracle’s stretch is
O(t'°8:37 . log n). The oracle reports paths in G = (V, H), but since H C E, these paths
belong to G as well. Observe also that the query time of the spanner-based oracle is
O/t . %'), where m' = |H| is the number of edges in the spanner. Since m’ = O(n), it
follows that the query time is, whp, O(n!/?). We remark also that the spanners produced
by Althéfer et al. [1990] and Roditty et al. [2005] have constant arboricity, and thus,
one does not really need the reduction described in Section 5 for this result.

THEOREM 6.9. For any constant € > 0, the oracle obtained by invoking the oracle
Ap with h = [logys €11 from Corollary 6.4 on a linear-size O(log n)-spanner is a path-
reporting oracle with space O(n), stretch O(logn), and query time O(nc).

Generally, we can use an O(k)-spanner, b;%l < k < logn with O(n'*Y*) edges. As

a result, we obtain a path-reporting distance oracle with space O(n't1/%), stretch O(k),
and query time O(n<t1*) = O(nctoW),

Observe that Theorem 6.9 exhibits an optimal (up to constant factors) tradeoff be-

tween the stretch and the oracle size in the range logjﬁ)gn < k < logn. The only known
oracle that exhibits this tradeoffis due to Mendel and Naor [2006]. However, the oracle
of Mendel and Naor [2006] is not path-reporting, while our oracle is.

The construction time of this oracle consists of the time required to build the O(log n)-
spanner (which is O(n?) [Roditty et al. 2005]) and the construction time of the oracle A},
in G’ (which is also O(n?), because G’ has O(n) edges). Hence, its overall construction
time is O(n2).

In the context of unweighted graphs, the same idea of invoking our oracle from
Corollary 6.4 on a spanner can be used in conjunction with (1 + ¢, 8)-spanners. Given
an unweighted n-vertex graph G = (V, E), let G’ = (V, H) be its (1 + §, B)-spanner,

B = B, k) = (128E)0logh with |H| = O(B - n'*V/*) edges, for a pair of parameters

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:23

§ >0,k =1,2,.... (Such a construction was devised in Elkin and Peleg [2001].)
For the sake of the following application, one can set § = 1. Invoke the distance
oracle from Corollary 6.4 with a parameter ¢ on top of this spanner. We obtain a path-
reporting distance oracle with space O(8n'*'/*) (whp). Its stretch is (O(#'°%:7), g =
B(t. k), Bt k) = O87 . B(1, k)) = ¢1°847 . pOUoglogh) "and its query time is O(nl/tt1/k),

1
whp. As long as ¢ = o(k"*37), the multiplicative stretch is o(k), the additive stretch is
still (k) = EOUoglogh) wwhile the space is O(Bn'*1/%). In particular, one can have query

1
time n2% "*™") for an arbitrarily small constant > 0, stretch (o(k), £OUoglogk)) and
space O(kO(loglogk)nlJrl/k).

Another variant of this construction has a higher query time O(n¢), for some arbi-
trarily small constant € > 0, but its multi?licative stretch is O(1). We just set ¢ to be
a large fixed constant and consider % >> t°8#:7, Then, the query time is O(n¢), whp,
(e =t 1), stretch is (O(1), poly(1/e) - kOUoglogh)) "and space O(B - n1*1/%).

THEOREM 6.10. For any unweighted undirected n-vertex graph G, any arbitrarily
small constant € > 0 and any parameter k = 1,2, ..., our path-reporting distance oracle
has query time O(n¢) (whp), stretch (O(1), B(k)) and space O(B(k) - n*t1/%) (whp), where

B(k) = k018l Another variant of this oracle has query time n®% ““*"™") whp, for an

arbitrarily small constant n > 0, stretch (o(k), k218188 and space O(kO1glogk) . pl+1/k)
whp.

To our knowledge, these are the first distance oracles whose tradeoff between mul-
tiplicative stretch and space is better than the classical tradeoff, i.e., 2k — 1 versus
O(n'*1/*%), Naturally, we pay by having an additive stretch. By lower bounds from
Thorup and Zwick [2001a], an additive stretch of Q(%) is inevitable for such distance
oracles.

One can also use a (5 + ¢, k%V)-spanner with O(n'*/*) edges from Pettie [2009]
instead of (1 + ¢, (@)O(l"gk))-spanner with (l28%)0deghp1+1/k edges from Elkin and
Peleg [2001] for our distance oracle. As a resuft, the oracle’s space bound decreases
to O(n'*t1/%), its additive stretch becomes polynomial in %, but the multiplicative
stretch grows by a factor of 5 + ¢. In general, any construction of («, 8)-spanners
with size O(S - n) can be plugged in our oracle. The resulting oracle will have stretch
(t'°8437 . o, 108437 . B), size O(Sn + n -logt), and query time O(S - nl/?).

The construction time of this oracle is the time needed to construct the (1 + €, 8)-
spanner (, plus the construction of A, on . The construction time of Elkin and Peleg
[2001] is O(n?*V/*). The construction time of the oracle A; on G is O(m - /), where
m = O(B - n'*1/*) is the number of edges in G, and n’ = n is the number of vertices in
(. Hence, the overall construction time in this case is O(B(k) - n2t1/k) = gOloglogh),2+1/k

7. LOWER BOUNDS

In this section, we argue that one cannot expect to obtain distance labeling or routing
schemes (see Section 2 for their definitions) with properties analogous to those of our
distance oracles (given by Theorem 6.10 and Corollary 6.5). We also employ lower
bounds of Sommer et al. [2009] to show that a distance oracle with stretch (O(1), 8(k))
and space O(B(k) - n'*1/*) for unweighted n-vertex graphs (like the distance oracle given
by Theorem 6.10) must have query time Q(k).

7.1. Distance Labeling and Routing
We start with discussing distance labeling schemes.

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:24 M. Elkin and S. Pettie

TurEOREM 7.1. Any distance labeling scheme for general unweighted graphs that
provides stretch (¢,t - B(k)), for a pair of parameters t,k, and a fixed function B(.),

requires labels of size Qns).

Proor. Suppose for contradiction that there were a distance labeling scheme D for
unweighted n-vertex graphs with maximum label size O(n#+) and stretch (¢, t-B(k)), for
some fixed function B(-), and any parameter k. Consider an infinite family of n-vertex
unweighted graphs G,, = (V, E,) with girth at least ¢t + 2 and |E,| = O(n'*72). (Such
a family can be easily constructed by probabilistic method; see, e.g., Bollobas [1998],
Theorem 3.7(a). Denser extremal graphs can be found in Lubotsky et al. [1988] and

14+
Lazebnik and Ustimenko [1995].) There are 20" “*) different subgraphs of each G,.

To achieve stretch ¢, one would need 200" %) distinet encodings for these graphs, i.e.,
the total label size for this task is Q(n”w%), and the maximum individual label size is
Q(n72). (See e.g., Thorup and Zwick [2001a], Chapter 5, for this lower bound.)

Replace every edge of G = G, by a path of length 10¢ - (%), consisting of new vertices.
The new graph G/, has N = Otz . ¢ . B(k)) vertices. Invoke the distance labeling
scheme D on G,. For a pair of original vertices u, v (vertices of G,,), the distance between
them in G}, is d'(u, v) = 10¢8(k) - dg(u, v). Given their labels ¢(x) and ¢(v), the labeling
scheme D provides us with an estimate §(¢(w), p(v)) of the distance between them in
G/, which satisfies:

8lpw), () <t -d'(u,v) +t - pk) = (10tB(k) - dg(u, v)) - t + ¢ - B(k).

On the other hand, a path of length dg(u, v) -t + 1 in G between u and v translates into
a path of length at most

10t - B(R)(dg(u, v) - t + 1) = 1062 8(k)dg(u, v) + 10t8(k)

between them in G/,. Hence, the estimate provided by D corresponds to a path between
u and v of length at most dg(u, v) -t in G, i.e., via D we obtain a t-approximate distance
labeling scheme for G,,.

The maximum label size used by D is

43

ON=%) = O((n72 - t - B(R))75) = O(nwiarss - (B(k))7).
However, by the above argument, this label size must be Q(n72). Note that
s (B(k)75 < i,

as long as B(k) < n. This condition holds for any £ = O(logn) and subexponential
function B(-). (Recall that in all relevant upper bounds for spanners/distance oracles/
distance labeling/routing schemes, it is always the case that & = O(logn) and B(-)
is at most a quasi-polynomial function of k. Moreover, an additive stretch of Q(z -
n) is obviously meaningless in the context of unweighted graphs.) Hence, this is a
contradiction, and there can be no distance labeling scheme for unweighted graphs

with label size O(n#w) and stretch (¢, ¢ - B(k)), for any parameter k. 0O

The same argument clearly applies to routing schemes as well. The only difference
is that one needs to use lower bounds on the tradeoff between space and multiplicative
stretch for routing due to Peleg and Upfal [1989], Thorup and Zwick [2001b], and
Abraham et al. [2006], instead of analogous lower bounds of Thorup and Zwick [2001a]
for distance labeling.

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:25

To summarize, while Theorem 6.10 provides a distance oracle with stretch (¢, ¢ - B(k))
and average space per vertex of O(B(k) - n'/*) for k > t'°8427 for distance labeling or
routing one needs at least n%1/9 space per vertex to achieve the same stretch guarantee.

Similarly, one cannot have a distance labeling scheme for sparse graphs (graphs
G = (V, E) with O(n'*1/*) edges, for some %k > 1) with maximum label size O(n'/*) and
stretch O(t), for a parameter ¢ « k.7 A distance labeling scheme, as above, requires
maximum label size of n®1/9 as otherwise one would get a distance labeling with
stretch (¢, ¢ - poly(k)) for general graphs with maximum label size n°1/?), contradiction.

7.2. Distance Oracles, Cell-Probe Model

Next, we argue that in the cell-probe model of computation (cf., Milterson [1999]),
any distance oracle with size and stretch like in Theorem 6.10 (i.e., size O(n!*/*) and
stretch (O(1), B(k)), for a fixed function B(-)) must have query time Q(k). We rely on the
following lower bound of Sommer et al. [2009].

THEOREM 7.2 (SOMMER ET AL. [2009]). A distance oracle with stretch t using query
time q requires space S > n'"ii/logn in the cell-probe model with w-bit cells, even
on unweighted undirected graphs with maximum degree at most (t - q - w)°YV, where

_ logn . ..
t = 0(ozmihgiogn » @nd ¢ is a positive constant.

Suppose, for a contradiction, that there exists a distance oracle with stretch (¢, ¢- (%)),

for a pair of parameters ¢ « k and a fixed function B(-), with space at most Rt /logn
(and query time q) for general unweighted graphs.

Let G = (V, E) be an n-vertex unweighted graph with maximum degree at most
(t-q-w)°Y, and let G’ be the graph obtained from G by replacing each edge of G by a
path of length 10¢ - S(k). The graph G’ has N < (¢ - q - w)°Y . B(k) - n vertices, and an
oracle with stretch (¢, ¢ - B(k)) for G’ can be used also as a stretch-¢ oracle for G. The size
of this oracle is, by our assumption, at most

(n-(t-q-woD. ﬂ(k))H% it
<
log N logn

. ((t q- w)O(l)ﬁ(k))l-F%.

Aslong as ((t-q - w)°W. ,B(k))“% <nf,ie,as long as
(g - w)D . pR)TIH <, 2)

we have a contradiction to Theorem 7.2. (As the oracle uses less than n'* 7 /log n space
and has stretch ¢ and query time q.)

For % being at most a mildly growing function of n (specifically, £ < log® n, ¢ < 1/2),
t =o(k),q <k, w= O(ogn), and B(-) being a polynomial (or even a quasi-polynomial)
function, the condition (2) holds. Hence, in this range of parameters, any distance

oracle for unweighted graphs with stretch (¢, ¢ - (k) and query time g requires space
c/2
S>n"tt /log n in the cell-probe model with w-bit cells, assuming ¢ = o(bglﬁ%).
So, if this oracle uses S = O(n'*/*. B(k)) space, then it holds that n'*1/*.logn - g(k) >
c/2

ntti e,
loglogn + log B(k) S 14 ﬁ

logn - t-q

1+1/k+
and so g = Q(k/t).

"Recall that by Corollary 6.5, a path-reporting distance oracle of total size O(n't1/%) with stretch O(t) and
1 1
query time O(n# "% 4 |[1(u, v)|) (for a query u, v; the constant c is given by ¢ = log; 4/3) does exist.

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:26 M. Elkin and S. Pettie

We summarize this lower bound in the next theorem.

THEOREM 7.3. Let k < log® n, for any constant { < 1/2, t = o(k), w = O(logn), and B(-)
being a polynomial or a quasi-polynomial function. In the cell-probe model with w-bit
cells, any distance oracle for general unweighted undirected n-vertex graphs with space
O(B(k) - n1tV/*) and stretch (¢, t - B(k)) has query time q = Qk/t) = Q(k).

Theorem 7.3 states that in contrast to distance oracles with multiplicative stretch
which can have constant query time (see Mendel and Naor [2006] and Chechik [2014]),
a distance oracle with stretch (O(1), 8(k)) (like the one given by our Theorem 6.10) must
have query time Q(k).

7.3. Distance Oracles, A Conditional Lower Bound

In this section, we argue that even relatively mild improvement of Theorem 6.10 would
give rise to improved distance oracles for sparse unweighted graphs.

Recall that Agarwal et al. [2011] devised a not path-reporting distance oracle for
sparse graphs, which for parameters ¢t = 1, 2, ... and € > 0, provides stretch 4¢ — 1, has
expected size O(¢ - n1t1/91-9) in addition to the size of the input graph, and has query

time O(% -nf).Set ¢ = %(1 —e)—1,1e.,e= % The size becomes O(¢ - n1*¢), and the

query time is O("ﬁ nEr). In the next theorem, we consider a special case of this oracle
for graphs with m = O(n) edges.

THEOREM 7.4 (AGARWAL ET AL. [2011]). For any parameterst =1,2,..., ¢ > 0, the not
path-reporting distance oracle of Agarwal et al. [2011] for sparse graphs (m = O(n)) has

stretch 4t — 1, expected size O(t - n'*¢), and query time O(nt).

See also our Theorem 6.8 for a path-reporting counterpart of this result.

We will now argue that a path-reporting distance oracle for unweighted gen-
eral graphs, which provides a mixed multiplicative-additive stretch, and has signif-
icantly better parameters than those given Theorem 6.10, can be used to devise a
path-reporting oracle for sparse unweighted graphs that outperforms the (not path-
reporting) oracle of Agarwal et al. [2011] from Theorem 7.4. (Note, however, that The-
orem 7.4 applies to weighted graphs as well. On the other hand, no better bound than
the one given by Theorem 7.4 for sparse unweighted graphs is known.) We view this
as an indication that obtaining a path-reporting oracle with mixed stretch for general
unweighted graphs with parameters similar to those given in Theorem 6.10, but with
polylogarithmic query time, might be hard.

Specifically, our Theorem 6.10 provides a distance oracle with stretch (O(t'°847),
O(t'"°8437. B(k))), size O(n'*t1/%), and query O(nl/?) for general unweighted graphs, where
B(-) is a polynomial function.

TuEOREM 7.5. We are given a positive integer n, a pair of positive integer parameters
t,k, and an at most exponential function B(-), such that t < m, k < logn.
Suppose that there exists a path-reporting oracle D for general unweighted n-vertex
graphs with stretch (t,t - B(k)), size O(n'+t1/%), and query time O(n'/%). Then, there exists
a path-reporting oracle D' for sparse (m = O(n)) unweighted n-vertex graphs, which
outperforms the not path-reporting oracle of Agarwal et al. [2011] given in Theorem 7.4.

Proor. Consider an unweighted sparse graph G = (V, E), m = |E| = O(n). Replace
every edge e € E with a path of length 10t - B(k). We get a sparse unweighted G’
with N = 10t - B(k) - n vertices. Invoke the oracle D on G'. It has size O(N*t1/%) =
O((t-B(R) 11/ k.1 + kY = O(t- B(k)-n1+1/*). Also, it provides pure multiplicative stretch at
most ¢ for G. Since the additive term (k) < O(n), the query time is O((¢-B(k))1/8 .n1/8%) =
O(B(R)Y/B . pl/8) = O(n'/4). The size of the oracle is O(n'*?), for ¢ = 1/k+log,(t - B(k)).

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:27

So the resulting path-reporting oracle D’ for sparse unweighted graphs has size
O(n'*), for ¢ as above, stretch ¢, and query time O(n'/#). On the other hand, the
not path-reporting oracle D of Agarwal et al. [2011], Theorem 7.4, gives (for ¢ =

1/k +log,(t - B(k))) size O(n'*?), stretch 4¢ — 1, and query time O(n7). Since

1—¢t > 1-(1/k+log ()t > 1—t/k—2- —log(ﬁ(;ff »
log(g(logn)) k 0

> 9/10-2- logn 10 -log(B(logn)) —

we have that this query time is at least Q(n1#1), Hence, D/ strictly outperforms D. O

In particular, if the query time of D is polylogarithmic in n, then the query time of I/
is polylogarithmic in 7 as well, in a sharp contrast to the polynomial in n query time in
Theorem 7.4.

APPENDIX
A. MISSING PROOFS
In this section, we provide proofs of Lemmas 6.1 and 6.2.

Proor or LEMMA 6.1. Suppose for contradiction that there exists a pair (x, y) € Pii1
such that the pairs (u, v), (x, y) participate in a branching event B, and such that
either x ¢ Ball; 1(x) or y ¢ Ball,,1(w). Then, g = (Il(u, v), [1(x, y), z), where T1(u, v)
(respectively, I1(x, y)) is a shortest path between u and v (respectively, between x and
y), and z is a node at which these two paths branch. Since (x, y) € P;,1, it follows that
either y € Bl.l ﬁ(x) orx € Bil ﬁ(y). Without loss of generality, suppose that y Bil ﬁ(x).

The proof splits into two cases. In the first case, we assume that x ¢ Ball;, 1(u),
and in the second, we assume that y ¢ Ball,,1(u). (Note that roles of x and y are not
symmetric.) In both cases, we reach a contradiction.

We start with the case x ¢ Ball;;1(u). Observe that dg(x, z) < dg(x, y) < % -riy1(x) and
da(u, 2) < dg(u, v) < % -riy1(w). Denote § = dg(u, u™V) = ri;1(w), where vV = ¢;,1(w).
Denote also 8’ = dg(u, x). Observe that r; 1(x) < dg(x, u*?P) < § + &, and also (since
x ¢ Ball;11(w) & = dg(u, x) > 8§ = ri11(w). Then,

do(u, 2) + do(z, x) < % o % () < g + % (6 +8) <8 = dglu,).

Hence, dg(u, z) + dg(z, x) < dg(u, x), contradicting the triangle inequality.
We are now left with the case that x € Ball;;1(w), but ¥ ¢ Ball; (). Then,

da(y,2) < dglx,y) < } - riqx). Also, dg(u,z) < dg(u,v) < % -rii1(w). In addition,
ris1(x) < dgloe, u™V) < dglx, w) + riy1(w) < 28. (Note that dg(x, w) < § = ri11(w), be-
cause x € Ball; ;1(w).) Hence,

1 1
de(u, 2) +dglz, y) < 3 (ri1(W) + i) < 3 (8 +28) =68 <dg(u, y).

(The last inequality is because, by an assumption, y ¢ Ball;;1(«).) This is, however,
again a contradiction to the triangle inequality. O

Proor or LEmMMA 6.2. Recall that (see Coppersmith and Elkin [2005], Lemma 7.5)
each pair (u, v), (x, y) may produce at most two branching events. Hence, next we focus
on providing an upper bound on the number of intersecting pairs of paths IT(«, v), IT(x, y)
for (u, v), (x,y) € P;.

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:28 M. Elkin and S. Pettie

By the previous lemma, for a pair (u, v), (x, y) to create a branching event, there must
be one of these four vertices (without loss of generality we call it u) such that the three
other vertices belong to Ball; ;1(x). Hence, the number of intersecting pairs as above
is at most (a constant factor multiplied by) the number of quadruples (u, v, x, y) with
v,x,y € Ball;,1(w). For a fixed i-landmark u, the number of vertices in its (i + 1)st ball
Ball; 1 (u"?) is, whp, O(-logn). (This random variable is distributed geometrically
with the parameter p = plgl .) Each of the vertices in Ball;,1(z) has probability Z to
belong to Ll, independently of other vertices. Hence, by Chernoff’s bound, whp, there
are 2 -O(*% -logn) = O(- -logn) i-landmarks in BallHl(u) (We select the constant ¢
hidden by the O- notat10n 1n O(— log n) to be sufficiently large. Then, the expectation

isc- -2 .logn >c-logn. Hence the Chernoff’s bound applies with high probability.)

Hence the number of triples v, x, ¥ of i-landmarks in Ball; 1 («) is, whp, O(o log® n).

The number of i-landmarks u is, by the Chernoff’s bound, whp, O(p;). Hence the
number of quadruples as above is, whp, at most

p? o
O(pl) O()ZO(3L . 3)‘
p;+1 Pit1

Also, the number of pairs |P;| is at most the number of i-landmarks (whp, it is O(p;))
multiplied by the maximum number of i -landmarks in an (7 + 1)-level ball Ball;, 1(w)

(whp, it is O(-logn)), ie., |P;| = O(-logn).
Next, we argue that the expected number of quadruples (u v, x,y) of i-landmarks
such that v, x, y € Ball;;1(v) is 0(”—’) and that IE(|7;|) = O(;~ pl).

For a fixed vertex u, write X(u) = I ({u € L;})-Y (), where Y(u) is the number of trlples
of distinct i-landmarks different from & which belong to Ball, 1(w), and I({u € L;}) is
the indicator random variable of the event {u € L;}. (Note that the ball is defined even
ifu ¢ L;.) Observe that the random variables I({u € L;}) and Y (1) are independent, and
thus,

E(Xw) = E(({u € L)) - E(Y @) = % (Y).

Let 0 = (vq,v9,...,v,_1) be the sequence of vertices ordered by the non-decreasing
distance from u. (They appear in the order in which the Dijkstra algorithm initiated
at u discovers them.) For 2 = 3,4, ...,n — 1, denote by J; the random variable which
is equal to 0 if vy, is not the first vertex in o which belongs to L; ;. If Vk+1 is the first
vertex as above then 7}, is equal to the number of triples v; i Vjes Vs l<ji<jo<js<k
such that vj, vj,, vjs € L;. Also, for each quadruple 1 < j; < jo < js < ja <n—1of
indices, define J(j1, jo, j3, j4) to be the indicator random variable of the event that
Vj,, Vj,, Vj;, € Li, vj, € Liy1, and for each j, 1 < j < js, the vertex v; is not an (@ + 1)-
landmark. Observe that

BTG o o o) = (2) - (1= 22) "7 2

Also,

3 n n n

EJ) =Y EWJGjjs.k+1)= (k> (ﬁ)3 : (1 _ @)k i1

1<ji<ja<Jjs<k

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:29

Note that Y (w) = Y}~5 Ji, and so

(R [pi\3 Pi+1* piy1
BY @ =), (5) (%) (1= 2y e
Denote A = 1Opi—’i1. For k < A, since (1 — ’J‘“ Y = O(1), it follows that

(0 @) (-2 22 o (02 S0 ().

pl+1

Also,

kgl <]§> (%>3 (1_ pi;l)k. /Oir-i-l < 0(pl+1> Z 1. (Pz+1>k.

k=A+1

Denote y =1 — p;,1/n. Then,

a3 1 6 n *
ke k<— = =0 () .
Z ’ Z - _dy31—y 1=y (Pit1

k=A+1 k=A+1

Hence,

> (k><ﬁ>3.<1—@>k.@=o) o(()) =l
k=A+1 3/ \n n n nt Pi+1 'Oi3+1 ’

and so IB(Y (u)) = O(4— o}). Hence, E(X(w)) = & - IE(Y (u) = O(ol 1)

L+1

Finally, the overall expected number of quadruples (u, v, x y) of i-landmarks such

that v, x, y € Ball;;1(w) is, by linearity of expectation, at most >_, .y, IE(X(w)) = O(5~)

l+1

A similar argument provides an upper bound of O(p’;—i) on the expected number of
pairs |P;|. We shortly sketch it below.

For a vertex u, let X' (v) = I({u € L;})-Y'(u), where Y'(u) is the number of i-landmarks
which belong to Ball; . 1(u). Clearly, IE(I({z € L;})) = p;/n, and the two random variables
(I{u € L;}) and Y'(v)) are independent. For every integer £ > 1, let 7, be a random
variable which is equal to 0 if vz, is not the first vertex in ¢ which belongs to L; 1.
Otherwise, it is the number of i-landmarks among vy, v, ..., v;. For integer ji, jo,
1< ji1 < jo <n-—1,let J'(ji, j2) be the indicator random variable of the event that
vj, € Lj, vj, € Li11, and for every j < jo, it holds that v; & L; ;1. Then,

L ; i+1\2"1 p;
EJ G, j2) = 2. (1 . ﬂ) Pt
n n n

Hence,

y Pi - pl+1 Pir1\%
E(J) = IZkIE(J(Jl,k+1))— k(122
<]1<

and

EY'(w) < ilE(jk’): %ik (1_ @)’{

n
k=1 k=1

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

50:30 M. Elkin and S. Pettie

Write A = 10#, and

$oh(1-£2) = S (1 B2 a1)

Each term of the first sum is O(1), and thus, the first sum is at most O(A?) = O(n?/p?2,).

The second sum is at most 7 3", v*' < &£ 1 = O(n?/p?,,) as well. Hence,
.o 2 .
]E(Y/(u)) — Pi §l+l . O r; — O (L)]
n Pit1 Pi+1

Hence, E(X'(w)) = O(p?/(pi+1n)), and by linearity of expectation we conclude that
E(P]) < Y,y BX @) = O(pF/piy1). O

ACKNOWLEDGMENTS

The first-named author wishes to thank Christian Wulff-Nilsen for posing the problem of devising path-
reporting oracles of size o(nlogn) for general graphs. A conversation with him triggered the research on
Elkin et al. [2014], and this line of research was continued in this article. The first-named author is also
grateful Ofer Neiman for helpful discussions, Elad Verbin for explaining to him the lower bounds from
Sommer et al. [2009], and an anonymous referee for helping to improve the presentation of this article.

REFERENCES
Ittai Abraham and Cyril Gavoille. 2011. On approximate distance labels and routing schemes with affine
stretch. In DISC. 404—415.

Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. 2006. On space-stretch trade-offs: Lower bounds. In
Proceedings of the 18th Annual ACM Symposium on Parallelism in Algorithms and Architectures. 207—
216. DOI: http://dx.doi.org/10.1145/1148109.1148143

Ittai Abraham and Ofer Neiman. 2012. Using petal-decompositions to build a low stretch spanning tree. In
STOC. 395-406.

R. Agarwal. 2014a. Personal communication. (2014).

Rachit Agarwal. 2014b. The space-stretch-time tradeoffin distance oracles. In Algorithms - ESA 2014 (Lecture
Notes in Computer Science), Andreas S. Schulz and Dorothea Wagner (Eds.), Vol. 8737. Springer Berlin,
49-60. DOI : http://dx.doi.org/10.1007/978-3-662-44777-2_5

Rachit Agarwal and Philip Brighten Godfrey. 2013. Distance oracles for stretch less than 2. In Pro-
ceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’13). 526-538.
DOI:http://dx.doi.org/10.1137/1.9781611973105.38

Rachit Agarwal, Philip Brighten Godfrey, and Sariel Har-Peled. 2011. Approximate distance queries and
compact routing in sparse graphs. In INFOCOM. 1754-1762.

Ingo Althofer, Gautam Das, David P. Dobkin, and Deborah Joseph. 1990. Generating sparse spanners for
weighted graphs. In SWAT'. 26-37.

Yair Bartal. 1996. Probabilistic approximations of metric spaces and its algorithmic applications. In FOCS.
184-193.

Surender Baswana, Akshay Gaur, Sandeep Sen, and Jayant Upadhyay. 2008. Distance oracles for unweighted
graphs: Breaking the quadratic barrier with constant additive error. In ICALP (1). 609-621.

Surender Baswana and Telikepalli Kavitha. 2006. Faster algorithms for approximate distance oracles and
all-pairs small stretch paths. In FOCS. 591-602.

Surender Baswana and Sandeep Sen. 2006. Approximate distance oracles for unweighted graphs in expected
O(nz) time. ACM Transactions on Algorithms 2, 4 (2006), 557-5717.
B. Bollobas. 1998. Extremal Graph Theory. Springer-Verlag.

Shiri Chechik. 2014. Approximate distance oracles with constant query time. In Proceedings of the Sympo-
sium on Theory of Computing (STOC’14). 654—663. DOI : http://dx.doi.org/10.1145/2591796.2591801

D. Coppersmith and M. Elkin. 2005. Sparse source-wise and pair-wise distance preservers. In SODA: ACM-
SIAM Symposium on Discrete Algorithms. 660-669.

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

A Linear-Size Logarithmic Stretch 50:31

M. Elkin. 2001. Computing almost shortest paths. In Proceedings of the 20th ACM Symposium on Principles
of Distributed Computing. 53—62.

Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. 2005. Lower-stretch spanning trees.
In STOC. 494-503.

Michael Elkin, Ofer Neiman, and Christian Wulff-Nilsen. 2014. Space-efficient path-reporting distance
oracles. CoRR abs/1410.0768 (2014). http://arxiv.org/abs/1410.0768.

M. Elkin and D. Peleg. 2001. Spanner constructions for general graphs. In Proceedings of the 33th ACM
Symposium on Theory of Computing. 173-182.

Michael Elkin and Seth Pettie. 2015. A linear-size logarithmic stretch path-reporting distance oracle for
general graphs. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’15). 805-821. DOI : http://dx.doi.org/10.1137/1.9781611973730.55

S. Halperin and U. Zwick. 2000. Unpublished manuscript. (2000).

F. Lazebnik and V. A. Ustimenko. 1995. Explicit construction of graphs with an arbitrary large girth and of
large size. Discrete Applied Mathematics 60, 1-3 (1995), 275-284.

A. Lubotsky, R. Phillips, and P. Sarnak. 1988. Ramanujan graphs. Combinatorica 8 (1988), 261-277.

J. Matousek. 1996. On the distortion required for embedding finite metric spaces into normed spaces. Israeli
J. Math. 93 (1996), 333-344.

Manor Mendel and Assaf Naor. 2006. Ramsey partitions and proximity data structures. In FOCS. 109-118.

Peter Bro Milterson. 1999. Cell probe complexity - A survey. In Invited Talk and Paper in Advances in Data
Structures (Preconference Workshop of FSTTCS).

Mihai Patrascu and Liam Roditty. 2010. Distance oracles beyond the Thorup-Zwick bound. In FOCS. 815—
823.

Mihai Patragcu, Liam Roditty, and Mikkel Thorup. 2012. A new infinity of distance oracles for sparse graphs.
In FOCS. 738-7417.

David Peleg. 2000. Proximity-preserving labeling schemes. Journal of Graph Theory 33, 3 (2000), 167-176.
DOI:http://dx.doi.org/10.1002/(SICI)1097-0118(200003)33:3<167::AID-JGT7>3.0.CO;2-5

D. Peleg and A. Schiffer. 1989. Graph spanners. Journal of Graph Theory 13 (1989), 99-116.

D. Peleg and E. Upfal. 1989. A tradeoff between size and efficiency for routing tables. Journal of the ACM 36
(1989), 510-530.

Seth Pettie. 2009. Low distortion spanners. ACM Transactions on Algorithms 6, 1 (2009).
Ely Porat and Liam Roditty. 2013. Preprocess, set, query! Algorithmica 67, 4 (2013), 516-528.

Liam Roditty. 2015. Distance oracles for sparse graphs. In Encyclopedia of Algorithms. DOI:http:/dx.doi.
org/10.1007/978-3-642-27848-8 571-1

Liam Roditty, Mikkel Thorup, and Uri Zwick. 2005. Deterministic constructions of approximate distance
oracles and spanners. In ICALP. 261-272.

Christian Sommer, Elad Verbin, and Wei Yu. 2009. Distance oracles for sparse graphs. In FOCS. 703-712.

M. Thorup and U. Zwick. 2001a. Approximate distance oracles. In Proceedings of the 33rd ACM Symposium
on Theory of Computing. 183-192.

M. Thorup and U. Zwick. 2001b. Compact routing schemes. In Proceedings of the 13th Symposium on
Parallelism in Algorithms and Architectures. 1-10.

M. Thorup and U. Zwick. 2006. Spanners and emulators with sublinear distance errors. In Proceedings of
the Symposium on Discrete Algorithms. 802—-809.

Christian Wulff-Nilsen. 2012. Approximate distance oracles with improved preprocessing time. In SODA.
202-208.

Received July 2015; revised January 2016; accepted January 2016

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.

