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A Linear-Size Logarithmic Stretch Path-Reporting Distance
Oracle for General Graphs

MICHAEL ELKIN, Ben-Gurion University of the Negev, Beer-Sheva, Israel

SETH PETTIE, University of Michigan, Ann Arbor

Thorup and Zwick [2001a] proposed a landmark distance oracle with the following properties. Given an n-
vertex undirected graph G = (V, E) and a parameter k = 1, 2, . . . , their oracle has size O(kn1+1/k), and upon a
query (u, v) it constructs a path � between uand v of length δ(u, v) such that dG(u, v) ≤ δ(u, v) ≤ (2k−1)dG(u, v).
The query time of the oracle from Thorup and Zwick [2001a] is O(k) (in addition to the length of the returned
path), and it was subsequently improved to O(1) [Wulff-Nilsen 2012; Chechik 2014]. A major drawback of
the oracle of Thorup and Zwick [2001a] is that its space is �(n · log n). Mendel and Naor [2006] devised an
oracle with space O(n1+1/k) and stretch O(k), but their oracle can only report distance estimates and not
actual paths. In this article, we devise a path-reporting distance oracle with size O(n1+1/k), stretch O(k), and
query time O(nε ), for an arbitrarily small constant ε > 0. In particular, for k = log n, our oracle provides
logarithmic stretch using linear size. Another variant of our oracle has size O(n log log n), polylogarithmic
stretch, and query time O(log log n).

For unweighted graphs, we devise a distance oracle with multiplicative stretch O(1), additive stretch
O(β(k)), for a function β(·), space O(n1+1/k), and query time O(nε ), for an arbitrarily small constant ε > 0.
The tradeoff between multiplicative stretch and size in these oracles is far below Erdős’s girth conjecture
threshold (which is stretch 2k − 1 and size O(n1+1/k)). Breaking the girth conjecture tradeoff is achieved by
exhibiting a tradeoff of different nature between additive stretch β(k) and size O(n1+1/k). A similar type of
tradeoff was exhibited by a construction of (1 + ε, β)-spanners due to Elkin and Peleg [2001]. However, so far
(1 + ε, β)-spanners had no counterpart in the distance oracles’ world.

An important novel tool that we develop on the way to these results is a distance-preserving path-reporting
oracle. We believe that this oracle is of independent interest.

CCS Concepts: � Theory of computation → Shortest paths; Routing and network design problems;
� Information systems → Data compression
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1. INTRODUCTION

1.1. Distance Oracles for General Graphs

In the distance oracle problem, we wish to preprocess a weighted undirected n-vertex
graph G = (V, E). As a result of this preprocessing, we construct a compact data struc-
ture (which is called distance oracle) D(G), which, given a query pair (u, v) of vertices,
will efficiently return a distance estimate δ(u, v) of the distance dG(u, v) between u and v

in G. Moreover, the distance oracle should also compute an actual path �(u, v) of length
δ(u, v) between these vertices in G. We say that a distance oracle is path-reporting if it
does produce the paths �(u, v) as above; otherwise, we say that it is not path-reporting.

The most important parameters of a distance oracle are its stretch, its size, and its
worst-case query time.1 The stretch α of a distance oracle D(G) is the smallest (in fact,
infimum) value such that for every u, v ∈ V , dG(u, v) ≤ δ(u, v) ≤ α · dG(u, v).

The term distance oracle was coined by Thorup and Zwick [2001a]. See their paper,
also, for a very persuasive motivation of this natural notion. In their seminal paper,
Thorup and Zwick [2001a] devised a path-reporting distance oracle (henceforth, TZ
oracle). The TZ oracle with a parameter k = 1, 2, . . . has size O(k·n1+1/k), stretch 2k−1,
and query time O(k). The size is measured in log n-bit words. As argued in Thorup and
Zwick [2001a], in Section 5, this tradeoff between size and stretch is essentially optimal
for small k, assuming Erdős’ girth conjecture, which implies that �(n1+1/k) bits of space
are required for stretch 2k−1, for any k. Note, however, that k·n1+1/k = �(n· log n), and
Thorup and Zwick [2001a] left it open if one can obtain meaningful distance oracles of
linear size, or more generally, of size o(n log n) words.

A partial answer to this question was provided by Mendel and Naor [2006], who
devised a distance oracle with size O(n1+1/k) words, stretch O(k), and query time O(1).
Alas, their distance oracle is inherently not path-reporting. Specifically, the oracle of
Mendel and Naor [2006] stores a collection of O(k · n1/k) hierarchically-separated trees
(henceforth, HSTs; See Bartal [1996] for its definition), whose sizes sum up to O(n1+1/k).
The query algorithm for this oracle can return paths from these HSTs, i.e., paths which,
at best, can belong to the metric closure of the original graph. These paths will typically
not belong to the graph itself.

One can try to convert this collection into a collection of low-stretch spanning trees
of the input graph G using star-decomposition or petal-decomposition techniques (see
Elkin et al. [2005] and Abraham and Neiman [2012]). However, each of these spanning
trees is doomed to have n− 1 edges, making the size of the entire structure as large as
�(k · n1+1/k). In addition, with the current state-of-the-art techniques with low-stretch
spanning trees, one can only achieve bounds which are somewhat worse than the
optimal ones, achievable with HSTs. Hence, the approach that we have just outlined
will probably produce an oracle with stretch ω(k), while using space O(k · n1+1/k).

Another result in this direction was recently obtained by Elkin et al. [2014]. For a
parameter t ≥ 1 their oracle uses size O(n · t · logn wmax) words, and provides stretch

O(
√

t ·n2/
√

t) for weighted graphs. (Henceforth, we will measure oracles’ sizes in words.)
The query time of their oracle is O(log(t · logn wmax)), where wmax is the aspect ratio of
the graph, i.e., the ratio between the heaviest and the lightest edge. For unweighted

1The query time of all path-reporting distance oracles that we will discuss is of the form O(q + |�|), where �

is the path returned by the query algorithm. To simplify the notation, we will often omit the additive term
of O(|�|).
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graphs, their oracle exhibits roughly the same behavior. For a parameter ε > 0, it has
size O(n · t/ε), provides stretch O(t · n1/t(t + nε/t)), and has query time O(1).

The distance oracles of Elkin et al. [2014] are the first path-reporting oracles that
use o(n log n) space and provide non-trivial stretch. However, their stretch is by far
larger than that of the oracles of Thorup and Zwick [2001a] and Mendel and Naor
[2006]. Therefore, the tantalizing problem of whether one can have a linear-size path-
reporting distance oracle with logarithmic stretch remained wide open. In the current
article, we answer this question in the affirmative. For any k, log n

log log n
≤ k ≤ log n, and

any arbitrarily small constant ε > 0, our path-reporting distance oracle D1 has stretch
O(k), size O(n1+1/k), and query time O(nε). (When ε > 0 is subconstant, the stretch
becomes O(k) · (1/ε)O(1), the space becomes O(n log 1/ε), and the query time is at most
O(nε · log n). See Theorem 6.3, and the discussion that follows it, for more details.)
Hence, our oracle achieves an optimal tradeoff, up to constant factors, between size
and stretch in the range log n

log log n
≤ k ≤ log n, i.e., in the range “missing” in the Thorup-

Zwick’s result. Though our query time is nε for an arbitrarily small constant, ε > 0 is
much larger than Thorup-Zwick’s query time, we stress that all existing path-reporting
distance oracles either use space �(n · log n) [Thorup and Zwick 2001a; Wulff-Nilsen
2012; Chechik 2014] or have stretch n�(1) [Elkin et al. 2014]. The query time of the
TZ oracle was recently improved to O(1) in Wulff-Nilsen [2012] and Chechik [2014].
The only previously existing path-reporting distance oracle that achieves the optimal
tradeoff in this range of parameters can be obtained by constructing a (2k−1)-spanner2

with O(n1+1/k) edges and answering queries by conducting Dijkstra explorations in the
spanner. However, with this approach, the query time is O(n1+1/k). Our result is a
drastic improvement of this trivial bound from O(n log n) to O(nε), for an arbitrarily
small constant ε > 0.

We can also trade between the stretch and the query time. Specifically, a variant
D2 of our oracle uses O(n log log n) space, has stretch O(loglog4/3 7 n) ≈ O(log6.76 n), and
query time O(log log n), and more generally, for any k = 2, 3, . . . , O(log n), uses space
O(n1+1/k·log k), has stretch O(k6.76), and query time O(log k). For a comparison, the path-
reporting distance oracle of Elkin et al. [2014] with this stretch uses space �(n · log n

log log n
)

and has query time O(log log n + log logn wmax), i.e., both its space and query time are
larger than those of our oracle. Also, in the regime, when the oracle of Elkin et al. [2014]

uses nearly the same space O(n log log n) as our oracle,3 its stretch becomes 2
O( log n√

log log n
)
,

while our stretch is polylogarithmic in n. The query time of the oracle of Elkin et al.

[2014] in this regime is, however, O(log(3) n + log logn wmax), while our query time is
O(log log n). These two expressions are incomparable. Our oracle exhibits analogous
exponential improvements in the stretch in comparison with the oracle of Elkin et al.
[2014] in many other points on the tradeoff curve in the relevant size range, (i.e., when
the size is o(n log n)), e.g., when the size is O(n logδ n), for any constant δ > 0. In general,
the size-stretch tradeoff of our oracle is better than that of Elkin et al. [2014] in the
entire relevant size range, but in some points on the tradeoff curve, the query time of
Elkin et al. [2014] might be (depending on wmax) smaller than ours. Also, the oracle
of Elkin et al. [2014] provides meaningful results even for size o(n log log n), while our
oracle D2 never gets that sparse. Our oracle D1 can have linear size, but its query time
is nε , for an arbitrarily small constant ε > 0.

2For a parameter t ≥ 1, G′ = (V, H) is a t-spanner of a graph G = (V, E), H ⊆ E, if dH (u, v) ≤ t · dG(u, v).
3In fact, the oracle of Elkin et al. [2014] uses a slightly larger space O(n(log log n + log logn wmax)).
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1.2. Distance Oracles with Stretch (α, β) for Unweighted Graphs

We say that a distance oracle D(G) provides stretch (α, β) for a pair of parameters
α ≥ 1, β ≥ 0 if for any query (u, v) it constructs a path �(u, v) of length δ(u, v) which
satisfies dG(u, v) ≤ δ(u, v) ≤ α · dG(u, v) + β. The notion of (α, β)-stretch is originated
from the closely related area of spanners. A subgraph G′ = (V, H) is said to be an
(α, β)-spanner of a graph G = (V, E), H ⊆ E, if for every pair u, v ∈ V , it holds that
dH(u, v) ≤ α · dG(u, v) + β.

This notion was introduced in Elkin and Peleg [2001], where it was shown that for
any ε > 0 and k = 1, 2, . . . , for any n-vertex unweighted graph G = (V, E) there exists a
(1+ε, β)-spanner with O(β ·n1+1/k) edges, where β = β(ε, k) is independent of n. Later, a
number of additional constructions of (1 + ε, β)-spanners with similar properties were
devised in Elkin [2001], Thorup and Zwick [2006], and Pettie [2009].

It is natural to attempt converting these constructions of spanners into distance
oracles with a similar tradeoff between stretch and size. However, generally so far,
such attempts were not successful. See, e.g., the discussion titled “Additive Guarantees
in Distance Oracles” in the introduction of Pǎtraşcu and Roditty [2010]. Pǎtraşcu and
Roditty [2010] devised a distance oracle with stretch (2, 1) and size O(n5/3), and query
time O(1). Abraham and Gavoille [2011] generalized the result of Pǎtraşcu and Roditty
[2010] to devise a distance oracle with stretch (2k − 2, 1), query time O(k), and size
Õ(n1+(2/(2k−1))).

Note, however, that neither of these previous results achieves multiplicative stretch
o(k) with size O(n1+1/k), at the expense of an additive stretch. (This is the case with the
result of Elkin and Peleg [2001] in the context of spanners, where the multiplicative
stretch becomes as small as 1 + ε, for an arbitrarily small ε > 0.) In this article, we
devise the first distance oracles that do achieve such a tradeoff. Specifically, our path-
reporting distance oracle has stretch (O(1), β(k)), size O(n1+1/k), β(k) = kO(1), and query
time O(nε), for an arbitrarily small ε > 0. The multiplicative stretch O(1) here is a
polynomial function of 1/ε, but it can be made much smaller than k. (Think, e.g., of
ε > 0 being a constant and k being a slowly growing function of n.) We can also have
stretch (o(k), β(k)), size O(n1+1/k), and query time nO(k−γ ), where γ > 0 is a universal
constant. Specifically, the theorem holds, e.g., for γ = 1/7.

In both these results, the tradeoff between multiplicative stretch and size of the oracle
is below Erdős’ girth conjecture barrier, which is stretch 2k − 1 and space O(n1+1/k).
In fact, it is known that when the additive stretch is 0, distance oracles for general
n-vertex graphs that have size O(n1+1/k) must have multiplicative stretch �(k) [Thorup
and Zwick 2001a; Lubotsky et al. 1988; Lazebnik and Ustimenko 1995]. Our results,
like the results of Elkin and Peleg [2001] for spanners, break this barrier by introducing
an additive stretch β(k). To the best of our knowledge, our distance oracles are the first
distance oracles that exhibit this behavior.

Using known lower bounds we also show that there exist no distance labeling schemes
with stretch (O(1), β(k)) and maximum label size O(β(k) · n1/k), but rather one needs
labels of size n�(1) for this. This is also the case for routing schemes. (See Section 2 for
relevant definitions.) We also show that in the cell-probe model of computation, any
distance oracle for unweighted, undirected n-vertex graphs with stretch (O(1), β(k))
and space O(β(k) · n1+1/k) has query time �(k). This is in contrast to distance oracles
with multiplicative stretch, which can have constant query time [Mendel and Naor
2006; Chechik 2014].

We also show a higher conditional lower bound on our oracle. Specifically, we show
that if there exists a distance oracle D for general unweighted graphs with the same
properties as those of our oracle (i.e., stretch (O(1), kO(1)), size O(n1+1/k)), and polylog-
arithmic in n query time, then there exists a distance oracle D′ for sparse unweighted
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graphs with near-linear size Õ(n), constant stretch and polylogarithmic in n query
time. Moreover, if D is path-reporting, then D′ is path-reporting, as well. On the other
hand, the currently best-known distance oracle for sparse unweighted graphs with
near-linear size and constant stretch has query time n�(1) [Agarwal et al. 2011]. (See
Sections 1.3 and 7.3 for more details.)

1.3. Distance Oracles for Sparse Graphs

In recent years a significant research effort was invested in distance oracles for sparse
graphs. See, e.g., a recent survey of Roditty [2015] devoted specifically to this subject.
Typically, by “sparse,” one means a graph with m = Õ(n) edges. This line of research is
motivated by the fact that the lower bound based on Erdős girth conjecture is applicable
only to dense graphs. Pǎtraşcu and Roditty [2010] devised a distance oracle for sparse
unweighted graphs with stretch 2, query time O(1), and space Õ(n5/3). Pǎtraşcu et al.
[2012] extended this result to weighted graphs, and generalized it to higher values
of stretch and smaller space. Like in the results of Thorup and Zwick [2001a] and
Mendel and Naor [2006], when the stretch is constant, the oracle of Pǎtraşcu et al.
[2012] requires a superlinear size, even when m = O(n). Agarwal et al. [2011], Porat
and Roditty [2013], Agarwal and Godfrey [2013], and Agarwal [2014b] explored space-
stretch-time tradeoff for distance oracles for sparse graphs when the stretch is at most
2. All these oracles [Agarwal et al. 2011; Porat and Roditty 2013; Agarwal and Godfrey
2013; Agarwal 2014b] also have superlinear size, even when m = O(n). Their query
time is also at least polynomial in n.

In addition to an oracle with stretch 2 with super-linear size and polynomial query
time, Agarwal et al. [2011] also devised a not path-reporting 4 linear-size distance oracle
for sparse graphs which, given a parameter k = 2, 3, . . . , provides distance estimates
with stretch 4k − 5, and has query time O(n1/k). (Both their and our results are, in
fact, more general than this. We provide the results just for m = O(n) to facilitate the
comparison.) To our knowledge, prior to our work, this was the only oracle with linear
size (for graphs with m = O(n)) and constant stretch. We devise the first path-reporting
counterpart of their result. Our oracle (Corollary 6.4) also uses linear size, has stretch
O(klog4/3 7), and query time O(n1/k), for any constant parameter k of the form k = (4/3)h,
h = 1, 2, . . . .

From the technical perspective, the not path-reporting distance oracle of Agarwal

et al. [2011] is very simple. One samples roughly n1− 1
k landmarks and builds the TZ

oracle for the metric induced by them with parameter k. On the other hand, our path-
reporting oracle is more involved. Specifically, we use a hierarchy of sampled sets of
landmarks, and distance-preserving path-reporting oracles (see Section 1.4) for each
level of the hierarchy.

Finally, we remark that by the lower bounds of Sommer et al. [2009] for distance
oracles for sparse graphs, any linear-size oracle with stretch kO(1) must have query
time �( log n

kO(1)·log log n
). There is a significant gap between the upper bound O(n1/k) of Agar-

wal et al. [2011] and ours, and Sommer et al.’s lower bound [Sommer et al. 2009].
Nevertheless, the latter implies that in contrast to the situation with distance oracles
for general graphs where the query time can be made constant [Thorup and Zwick
2001a; Wulff-Nilsen 2012; Chechik 2014], in the context of linear-size distance oracles
for sparse graphs with constant stretch, the query time must be at least �( log n

log log n
).

4It was erroneously claimed in Agarwal et al. [2011] that all their distance oracles are path-reporting. While
their distance oracles with stretch smaller than three are path-reporting (albeit their space requirement is
superlinear), this is not the case for their oracles with stretch 4k − 1, k ≥ 1 [Agarwal 2014a].
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1.4. A Distance-Preserving Path-Reporting Distance Oracle

In Coppersmith and Elkin [2005], the authors showed that for any n-vertex graph
G = (V, E) and a collection P of P pairs of vertices, there exists a subgraph G′ = (V, H)
of size O(max{n+

√
n· P,

√
P ·n}), so that for every (u, v) ∈ P, dH(u, v) = dG(u, v). In this

article, we devise the first distance-oracle counterpart of this result. Specifically, our
distance oracle uses O(n+ P2) space, and for any query (u, v) ∈ P it produces the exact
shortest path � between u and v in O(|�|) time, where |�| is the number of edges in
�. This oracle is deterministic.

We employ this distance oracle very heavily in all our other constructions.

Remark. The construction time of our distance-preserving oracle is O(n · P2) + Õ(m ·
min{n, P}). The construction time of our path-reporting oracle for sparse graphs is
Õ(m · n) = Õ(n2λ), where λ = m/n. The construction time of our oracles with nearly-
linear space for general graphs is Õ(n2+1/k). Finally, the construction time of our oracle
for unweighted graphs with a hybrid multiplicative-additive stretch is Õ(β(k)n2+1/k) =
kO(log log k)Õ(n2+1/k). In both cases, k is the stretch parameter of the respective oracle.

1.5. Related Work

There is a huge body of literature about distance oracles by now. The history of this
subject can be traced back to a seminal paper by Peleg [2000] on distance labeling,
where for any parameter k = 1, 2, . . . , he implicitly devised a distance oracle for general
undirected weighted graphs with size O(n1+1/k · k · log n · log wmax), stretch O(k), and
query time O(n1/k · k · log n · log wmax). A similar result can be derived from Matousek’s
embedding of general metrics into �∞ with distortion 2k−1 and dimension O(n1/k ·log n)
[Matousek 1996].

Baswana and Sen [2006], Baswana and Kavitha [2006], and Baswana et al. [2008]
improved the preprocessing time of the TZ oracle.

1.6. Structure of the Article

We start with describing our distance preserving oracle (Section 3). We then proceed
with devising our basic path-reporting oracle for sparse graphs (Section 4). This ora-
cle can be viewed as a composition of an oracle from Agarwal et al. [2011] with our
distance-preserving oracle from Section 3. The oracle is described for graphs with small
arboricity. Its extension to general sparse graphs (based on a reduction from Agarwal
et al. [2011]) is described in Section 5. Then, we devise a much more elaborate multi-
level path-reporting oracle for sparse graphs. The oracle of Agarwal et al. [2011] and
our basic oracle from Section 4 both use just one set of sampled vertices. Our multi-
level oracle uses a carefully constructed hierarchy of sampled sets which enables us
to get the query time down from n1/2+ε to nε . Next, we proceed (Section 6) to using
this multi-level oracle for a number of applications. Specifically, we use it to construct
a linear-size logarithmic stretch path-reporting oracle with query time nε , linear-size
polylogarithmic stretch path-reporting oracle with query time O(log log n), and finally,
oracles that break the girth barrier for unweighted graphs. Our lower bounds can be
found in Section 7.

2. PRELIMINARIES

For a pair of integers a ≤ b, we denote [a, b] = {a, a + 1, . . . , b}, and [b] = [1, b]. The

arboricity of a graph G is given by λ(G) = maxU⊆V,|U |≥2
|E(U )|
|U |−1 , where E(U ) is the set of

edges induced by the vertex set U . We denote by degG(u) the degree of a vertex u in
G; we omit G from this notation whenever G can be understood from the context. We
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use the notation Õ( f (n)) = O( f (n)polylog( f (n))) and �̃( f (n) = �( f (n)/polylog( f (n))).

We say that a function f () is quasi-polynomial if f (n) ≤ nlogO(1) n.
Given two paths � = (x1, x2, . . . , xa) and �′ = (xa = y1, y2, . . . , yb), for some posi-

tive integers a, b, which share a common endpoint xa = y1, we denote by � · �′ the
concatenation path (x1, x2, . . . , xa = y1, y2, . . . , yb).

A distance-labeling scheme for a graph G = (V, E) assigns every vertex v ∈ V a short
label ϕ(v). Given a pair of labels ϕ(u), ϕ(v) of a pair of vertices u, v ∈ V , the scheme
computes an estimate δ(ϕ(u), ϕ(v)). This estimate has to be within a factor α, for some
α ≥ 1, from the actual distance dG(u, v) between u and v in G. The parameter α is called
the stretch of the labeling scheme, and the maximum number of bits employed by one
of the labels is called the (maximum) label size of the scheme.

A closely related notion is that of compact routing scheme. Here, each vertex v is
assigned a label ϕ(v) and a routing table ψ(v). Given a label ϕ(u) of routing destination
u and its own routing table ψ(v), the vertex v = v0 needs to be able to compute the
next hop v1. Given the table ψ(v1) of v1 and the destination’s label ϕ(u), the vertex v1

computes the next hop v2, and so on. The resulting path v = v0, v1, v2, . . . has to end
up, eventually, in u, and its length needs to be at most α times longer than the length
of the shortest u − v path in G, for a stretch parameter α ≥ 1. In addition to stretch,
another important parameter in this context is the maximum number of bits used by
the label and the routing table (together) of any individual vertex. This parameter will
be referred to as maximum memory requirement of a routing scheme.

3. A DISTANCE-PRESERVING PATH-REPORTING ORACLE

Consider an undirected weighted n-vertex graph G = (V, E, ω). Let Pairs ⊆ V × V be a
subset of ordered pairs of distinct vertices. We denote its cardinality by P = |Pairs|. In
this section, we describe a distance oracle which, given a pair (u, v) ∈ Pairs, returns a
shortest path �u,v from u to v in G. The query time of the oracle is proportional to the
number of edges (hops) |�u,v| in �u,v. The oracle uses O(n + P2) space.

The construction of the oracle starts with computing a set Paths = {�u,v | (u, v) ∈
Pairs} of shortest paths between pairs of vertices from Pairs. This collection of shortest
paths is required to satisfy the property that if two distinct paths �,�′ ∈ Paths traverse
two common vertices x and y in the same order (e.g., both traverse first x and then
y), then they necessarily share the entire subpath between x and y. It is argued in
Coppersmith and Elkin [2005] that this property can be easily achieved.

We will need the following definitions from Coppersmith and Elkin [2005].
For a path � = (u0, u1, . . . , uh) and a vertex ui ∈ V (�), the predecessor of ui in �,

denoted pred�(ui), is the vertex ui−1 (assuming that i ≥ 1; otherwise, it is defined
as NULL), and the successor of ui in �, denoted succ�(ui), is the vertex ui+1 (again,
assuming that i ≤ h − 1; otherwise, it is NULL).

Definition 3.1. Coppersmith and Elkin [2005] define a branching event (�,�′, x) to
be a triple with �,�′ ∈ being two distinct paths and x ∈ V (�) ∩ V (�′) be a vertex that
belongs to both paths and such that {pred�(x), succ�(x)} �= {pred�′ (x), succ�′(x)}. We
will also say that the two paths �,�′ branch at the vertex x.

Note that, under this definition, if � traverses edges (ui−1, ui), (ui, ui+1) and �′ tra-
verses edges (ui+1, ui), (ui, ui−1), then (�,�′, ui) is not a branching event.

It follows directly from the above property of the collection Paths (see also
Coppersmith and Elkin [2005], Lemma 7.5, for a more elaborate discussion) that for
every pair of distinct paths �,�′ ∈ Paths, there are at most two branching events that
involve that pair of paths. Let B denote the set of branching events. The overall number
of branching events for the set Paths is |B| ≤ |Paths|2 = P2. Our oracle will keep O(1)
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data for each vertex, O(1) data for each branching event, and O(1) data for each path.
Hence, the oracle stores O(n + |B| + P) data in total.

Specifically, in our oracle, for every vertex v ∈ V we keep an identity of some path
� ∈ Paths that contains v as an internal point, and two edges of � incident on v. (If
there is no path � ∈ Paths that contains v as an internal point, then our oracle stores
nothing for v in this data structure.) The path � stored for v will be referred to as the
home path of v.

In addition, for every branching event (�,�′, v) we keep the (at most four) edges of
� and �′ incident on v. Finally, for every pair (x, y) ∈ Pairs we also store the first and
the last edges of the path �x,y. Observe that the resulting space requirement is at most
O(n+ |B| + P) = O(n+ P2). We assume that the branching events are stored in a hash
table of linear size, which allows membership queries in O(1) time per query.

ALGORITHM 1: DPPRO Query(x, y)

1: Fetch the first edge (x, x′) of �x,y

2: if x′ = y then
3: Return((x, y))
4: else
5: Path′ ← Move to(x, y, x′) {“Moving” to x′, i.e., invoking the subroutine Move to with x′}
6: Return((x, x′) · Path′)
7: end if

ALGORITHM 2: Procedure Move to(x, y, x′)

1: if (x′, y) is the last edge of �x,y then
2: Return(x′, y)
3: else if (�(x′), �x,y, x′) is not a branching event then
4: Fetch the next edge (x′, x′′) of �(x′)
5: else
6: Fetch the next edge (x′, x′′) of �x,y

7: end if
8: Path′′ ← Move to(x, y, x′′) {A recursive invocation of Procedure Move to with x′′}
9: Return((x′, x′′) · Path′′)

The query algorithm proceeds as follows. See also Algorithm 1 for the pseudo-code.
Given a pair (x, y) ∈ Pairs, we find the first edge (x, x′) of the path �x,y, and “move” to
x′. This corresponds to the invocation of Procedure Move to with the parameter x′ on
line 5 of Algorithm 1. The procedure itself is given in Algorithm 2. It accepts as input
three parameters. The first two are the query vertices x, y, and the third one is a vertex
x′ ∈ V (�x,y).

Then, within Procedure Move to, we check if (x′, y) is the last edge of �x,y. If it is
then we are done. Otherwise, let �(x′) denote the home path of x′. Observe that since
the vertex x′ is an internal vertex in �x,y, it follows that there exists a home path �(x′)
for x′.

Next, we check if �(x′) = �x,y. This test is performed by comparing the identities
of the two paths. If it is the case then we fetch the next edge (x′, x′′) of �(x′), and
move to x′′. Otherwise (if �(x′) �= �(x, y)), then we check if the triple (�(x′),�x,y, x′)
is a branching event. This check is performed by querying the branching events’ hash
table.

If there is no branching event (�(x′),�x,y, x′) then we again fetch the next edge (x′, x′′)
of �(x′), and move to x′′. In fact, the algorithm does not need to separate between this

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.



A Linear-Size Logarithmic Stretch 50:9

case and the case that �(x′) = �x,y. We distinguished between these cases here for
clarity of presentation. See lines 3-4 of Algorithm 2.

Finally, if there is a branching event (�(x′),�x,y, x′) then we fetch from our data
structure all the information associated with this event. In particular, we fetch the
next edge (x′, x′′) of �x,y, and move to x′′ (line 6 of Algorithm 2).

In all cases, the procedure then recurses with x′′ (line 8). It is easy to verify that,
using appropriate hash tables, all queries can be implemented in O(1) time per vertex,
and in total O(|�x,y|) time. We will write DPPRO as a shortcut for distance-preserving
path-reporting oracle. The main result of this section is the following theorem.

THEOREM 3.2. Given an undirected weighted graph G = (V, E, ω) and a collection
Pairs ⊆ V × V of pairs of vertices, our DPPRO reports shortest paths �x,y for query

pairs (x, y) ∈ Pairs in O(|�x,y|) time. The oracle employs O(n + |B| + P) = O(n + P2)
space, where B is the set of branching events for a fixed set of shortest paths between
pairs of vertices from Pairs, and P = |Pairs|.

Remark. In the preliminary version [Elkin and Pettie 2015] of this article, Theo-
rem 3.2 was claimed for directed graphs. However, the proof argument given here (and
in Elkin and Pettie [2015]) is valid only for undirected graphs.

One can construct the shortest paths in Õ(m · min{P, n}) time. Then, for each vertex
v one keeps the list of paths that traverse v. For every such path, one keeps the two
edges of this path which are incident on v. In overall O(n · P2) additional time, one
can use these lists to create the list of branching events. A hash table with them can
be constructed in additional O(P2) time. Hence, the overall construction time of this
oracle is Õ(m · min{P, n}) + O(n · P2).

Observe that if one is given a set S, |S| = O(n1/4), of terminals, then Theorem 3.2
provides a linear-size DPPRO (i.e., O(1) words per vertex on average) which can report
shortest paths between all pairs of terminals. It is well-known that any distance la-
beling scheme which is guaranteed to return exact distances between all pairs of n1/4

terminals must use maximum label size �(n1/4) [Thorup and Zwick 2001a]. This is also
the case for compact routing schemes [Thorup and Zwick 2001b]. In the latter case,
the lower bound of �(n1/4) is on the maximum memory requirement of any individual
vertex.

We remark that our DPPRO here employs O(n + |B| + P) space, whereas the under-
lying distance preserver has O(n +

√
n · |B|) edges [Coppersmith and Elkin 2005]. It

is plausible that there exists a DPPRO of size O(n +
√

n · |B|). We leave this question
open.

4. A BASIC DISTANCE ORACLE FOR GRAPHS WITH BOUNDED ARBORICITY

In this section we describe a basic variant of our path-reporting distance oracle for
weighted undirected graphs G = (V, E, ω) of arboricity λ(G) ≤ λ, for some parameter λ.
(We will mostly use this oracle for constant or small values of λ. On the other hand, the
result is meaningful for higher values of λ, as well.) Our oracle reports paths of stretch
O(k), for some positive integer parameter k. Unlike the partial oracle from Section 3,
the oracle in this section is a full one, i.e., it reports paths for all possible queries
(u, v) ∈ ( V

2 ). This is the case, also, for all our other oracles, which will be described in

consequent sections. The expected query time of our oracle is O(n1/2+ 1
2k+2 ·λ). (Whp5, the

5Here and thereafter we use the shortcut “whp” for “with high probability”. The meaning is that the proba-
bility is at least 1 − n−c, for some constant c ≥ 2.
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50:10 M. Elkin and S. Pettie

query time is O(n1/2+ 1
2k+2 · log n · λ).) The oracle requires O(n) space, in addition to the

space required to store the graph G, itself. Observe that for λ = O(1), the query time is
O(n1/2+ε), for an arbitrarily small constant ε > 0, while the stretch is O( 1

ε
) = O(1). In

Section 5, we extend this oracle to general m-edge n-vertex graphs with λ = m
n

.
Our basic oracle employs just one level of sampled vertices, which we (following

the terminology of Agarwal et al. [2011]) call landmarks. Each v ∈ V is sampled
independently at random with probability ρ

n
, where ρ is a parameter which will be

determined in the sequel. Denote by L the set of sampled vertices (landmarks). Note
that IE(|L|) = ρ.

For every vertex v ∈ V , we keep the path �(v) from v to its closest landmark vertex
�(v), breaking ties arbitrarily. Denote by D(v) the length w(�(v)) of this path. This is
a collection of vertex-disjoint shortest paths trees (shortly, SPTs) {T (u) | u ∈ L}, where
each T (u) is an SPT rooted at u for the subset {v | dG(u, v) ≤ dG(u′, v),∀u′ �= u, u, u′ ∈ L}.
(Ties are broken arbitrarily.) This collection is a forest, and storing it requires O(n)
space.

The oracle also stores the original graph G. For the set of landmarks we compute the
complete graph L = (L, ( L

2 ), dG|L). Here, dG|L stands for the metric of G restricted to
the point set L. (In other words, in the landmarks graph L, for every pair u, u′ ∈ L of
distinct landmarks, the weight ωL(u, u′) of the edge (u, u′) connecting them is defined
by ωL(u, u′) = dG(u, u′).)

Next, we invoke Thorup-Zwick’s distance oracle [Thorup and Zwick 2001a] with a
parameter k. (Henceforth, we will call it the TZ oracle.) One can also use here Mendel-
Naor’s oracle [Mendel and Naor 2006], but the resulting tradeoff will be somewhat
inferior to the one that is obtained via the TZ oracle. Denote by H the TZ distance
oracle for the landmarks graph L. The oracle requires O(k · |L|1+1/k) space, and it
provides (2k − 1)-approximate paths �u,u′ in L for pairs of landmarks u, u′ ∈ L. The
query time is O(k) (plus O(|�u,u′ |)). Observe that some edges of �u,u′ may not belong to
the original graph G. We note also that by using more recent oracles [Chechik 2014;
Wulff-Nilsen 2012], one can have query time O(1), but this improvement is immaterial
for our purposes.

The TZ oracle H has a useful property that the union H =
⋃

{�u,u′ | (u, u′) ∈ ( L
2 )} of

all paths that the oracle returns forms a sparse (2k − 1)-spanner. Specifically, IE(|H|) =
O(k · |L|1+1/k). (This property holds for Mendel-Naor’s oracle as well, but there, the
stretch of the spanner is O(k), where the constant hidden by the O-notation is greater
than 2. On the other hand, their space requirement is O(|L|1+1/k), rather than O(k ·
|L|1+1/k).) An invocation of the procedure of Thorup and Zwick that constructs an oracle
for the landmarks’ graph L returns a probability distribution of oracles H, which, in
turn, gives rise to a probability distribution of spanners H. Their expected size IE(H)
is O(k · |L|1+1/k). We fix a particular oracle H from this distribution that satisfies
|H| = O(k · |L|1+1/k). Whp, such an H can be computed by running the procedure that
computes the TZ oracle for O(log n) times. We will view the spanner H as a collection
of pairs of vertices of our original graph G.

Finally, we invoke our DPPRO from Section 3 on the graph G and set the set Pairs
to contain all edges of H. We will refer to this oracle as D(G, H). Its size is, with high
probability, O(n + |H|2) = O(n + k2 · |L|2+2/k). Upon a query (y, y′) ∈ H, this oracle
returns a shortest path �y,y′ between y and y′ in G in time O(|�y,y′ |).

Observe that |L| is the sum of identical independent indicator random variables
|L| =

∑

v∈V Iv, where Iv is the indicator random variable of the event {v ∈ L}. Hence, by
Chernoff ’s inequality, for any constant ε > 0,

IP(|L| > (1 + ε)IE(|L|)) = IP(|L| > (1 + ε) · ρ) < exp(−�(ρ)).
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We will set the parameter ρ to be at least c log n, for a sufficiently large constant c.
This will ensure that, whp, |L| = O(ρ), and so |L|2+2/k = O(ρ2+2/k). Set ρ so that

k2 ·ρ2+2/k = �(n), i.e., ρ = n
k

2k+2 · 1
k

. This guarantees that, aside from the storage needed
for the original graph, the total space used by our oracle is O(n).

This completes the construction algorithm of our oracle. Next, we describe its query
algorithm. We need the following definition. For a vertex v ∈ V , let Ball(v) = {x |
dG(v, x) < dG(v, �(v))} denote the set of all vertices x which are closer to v than the
closest landmark vertex �(v) to v.

Given a pair u, v of vertices of G, our oracle starts with testing if u ∈ Ball(v) and if
v ∈ Ball(u). To test if u ∈ Ball(v) we just conduct a Dijkstra exploration rooted at v in
the graph G, until we discover either u or �(v). (Recall that G is stored in our oracle.)
If u is discovered before �(v), we conclude that u ∈ Ball(v), and return the (exact)
shortest path between them. Otherwise, we conclude that u �∈ Ball(v). Analogously, the
algorithm tests if v ∈ Ball(u).

Henceforth, we assume that u �∈ Ball(v) and v �∈ Ball(u), and therefore, the two
searches returned u′ = �(u), v′ = �(v), and the shortest paths �(u) and �(v) between
u and u′ and between v and v′, respectively. (In fact, using the forest of SPTs rooted
at landmarks that our oracle stores, the query algorithm can compute shortest paths
between uand u′ and between v and v′ in time proportional to the lengths of these paths.)
Observe that dG(u′, v′) ≤ dG(u′, u) + dG(u, v) + dG(v, v′), and dG(u′, u), dG(v, v′) ≤ dG(u, v).
Hence, dG(u′, v′) ≤ 3 · dG(u, v).

Then, the query algorithm invokes the query algorithm of the oracle H for the land-
marks graph L. The latter algorithm returns a path �′ = (u′ = z0, z1, . . . , zh = v′) in
L between u′ and v′. The length ωL(�′) of this path is at most (2k − 1) · dG(u′, v′) ≤
(6k − 3) · dG(u, v). The time required for this computation is O(k + h), where |�′| = h.
For each edge (zi, zi+1) ∈ �′, i ∈ [0, h−1], we invoke the query algorithm of the DPPRO
D(G, H). (The edges (zi, zi+1) of the path �′ are typically not edges of the original graph.
H is a (2k − 1)-spanner of L produced by the oracle H. Observe that �′ ⊆ H, and so
(zi, zi+1) ∈ H, for every index i ∈ [0, h − 1].) The oracle D(G, H) returns a path �̃i

between zi and zi+1 in G of length ωL(zi, zi+1) = dG(zi, zi+1). Let �̃ = �̃0 · �̃1 · . . . · �̃h−1

be the concatenation of these paths. Observe that �̃ is a path in G between z0 = u′ and
zh = v′, and

ω(�̃) =
h−1
∑

i=0

ω(�̃i) =
h−1
∑

i=0

dG(zi, zi+1) =
h−1
∑

i=0

ωL(zi, zi+1) = ωL(�′) ≤ (6k − 3) · dG(u, v).

Finally, the query algorithm returns the concatenated path �̂ = �(u) · �̃ · �(v) as
the approximate path for the pair u, v. This completes the description of the query
algorithm of our basic oracle. Observe that

ω(�̂) = ω(�(u))+ω(�̃)+ω(�(v)) ≤ dG(u, v)+(6k−3)·dG(u, v)+dG(u, v) = (6k−1)·dG(u, v).

Next, we analyze the running time of the query algorithm. First, consider the step that
tests if v ∈ Ball(u) and if u ∈ Ball(v). Denote by X the random variable that counts
the number of vertices discovered by some fixed Dijkstra exploration originated at u
before the landmark �(u) is discovered. We order all graph vertices by their distance
from u in a non-decreasing order, i.e., u = u0, u1, . . . , un−1, such that dG(u, ui) ≤ dG(u, uj)
for i ≤ j. Note that this is the order in which the aforementioned Dijkstra exploration
originated at u discovers them. For an integer value 1 ≤ t ≤ n− 1, the probability that
X = t is equal to the probability that the vertices u0, u1, . . . , ut−1 are not all sampled
and the vertex ut is sampled. Hence, X is distributed geometrically with the parameter
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p = ρ/n. Hence,

IE(X) =
n−1
∑

t=1

(1 − p)t · p · t ≤
1

p
=

n

ρ
. (1)

Also, obviously for any positive constant c, IP(X > n
ρ
c ln n) ≤ (1−ρ/n)(n/ρ)c ln n ≤ n−c, i.e.,

whp, X = O( n
ρ

log n).

Recall that the graph G has arboricity at most λ, and thus, any set of n′ ≤ n vertices
induces O(n′ · λ) edges. Hence, the expected number of traversed edges by the Dijk-
stra algorithm is O( n

ρ
λ), and, whp, O( n

ρ
λ log n) edges. In an unweighted graph, such

exploration requires time linear in the number of edges, and in weighted6 graphs, the
required time is O( n

ρ
(λ + log n)) in expectation, and O( n

ρ
λ · log n), whp. (Recall that

Dijkstra algorithm that scans a subgraph (V ′, E′) requires time O(|E′| + |V ′| log |V ′|).)
The second step of our query algorithm queries the distance oracle H for the land-

marks graph L. The query is (u′, v′), u′ = �(u), v′ = �(v). This query returns a path
�′ between u′ and v′ in L in time O(|�′| + k). Next, for each of the h = |�′| edges
(zi, zi+1), i = 0, 1, . . . , h − 1 of the path �′, the query algorithm invokes our DPPRO
D(G, H) with the query (zi, zi+1). This oracle returns the shortest path �̃i between
zi and zi+1 in G within time O(|�̃i|). Finally, the algorithm returns the concatenated
path �̂ = �(u) · �̃0 · �̃1 · . . . · �̃h−1 · �(v). The running time required for producing

the path �̃0 · . . . · �̃h−1 is O(
∑h−1

i=0 |�̃i|) = O(|�̂|), and |�′| ≤ |�̂|. Hence, the overall
expected running time of the algorithm is O( n

ρ
· λ + |�̂|) for unweighted graphs, and is

O( n
ρ

· (λ + log n) + |�̂|) for weighted ones. We remark that the additive term of O(k) is

dominated by O( n
ρ

· λ). To ensure this, we will be using ρ ≤ n/ log n, and k ≤ O(log n).

For the high-probability bounds, one needs to multiply the first term of the running
time by an additional O(log n) factor in both the unweighted and the weighted cases.

Now, we substitute ρ = 1
k

· n
k

2k+2 . The resulting expected query time becomes O(k ·
n

1
2 + 1

2k+2 · λ) + O(|�̂|). We summarize the properties of our basic oracle in the following
theorem.

THEOREM 4.1. For an undirected n-vertex graph G of arboricity λ and a positive
integer parameter k = 1, 2, . . . , there exists a path-reporting distance oracle of size
(whp) O(n) (in addition to the size required to store the input graph G) that returns

(6k − 1)-approximate shortest paths �̂. The expected query time is O(n
1
2 + 1

2k+2 · k · λ) in

unweighted graphs and O(n
1
2 + 1

2k+2 · k · (λ+ log n)) in weighted ones. (The same bounds on
the query time apply, whp, if one multiplies them by O(log n). In addition, in all cases,
the query time contains the additive term O(|�̂|).)

In particular, Theorem 4.1 implies that for any constant ε > 0 one can have a path-
reporting oracle with query time O(n1/2+ελ), which provides O(1)-approximate shortest
paths for weighted undirected graphs. Observe, also, that for k = 1, we obtain a 5-
approximate path-reporting oracle with query time Õ(n3/4λ). We remark that to get the
latter oracle, one does not need to use the TZ oracle for the landmarks graph L. Rather,

6One subtlety: we have to avoid scanning too many edges with just one endpoint in Ball(u). We store the
edges incident to each vertex x in increasing order of their weights and relax them in that order when x is
scanned. As soon as an edge (x, y) is relaxed such that the tentative distance to y is greater than dG(u, �(u)),
we can dispense with relaxing the remaining edges. Alternatively, a modification of the sampling rule which
we describe in Section 5 also resolves this issue.
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one can build a DPPRO H for all pairs of landmarks. (In this case ρ = n1/4, |L| = O(ρ),
|Pairs| = |( L

2 )| = O(ρ2) = O(
√

n), and so the size of the oracleH is O(|Pairs|2+n) = O(n).)

One can build the forest of SPTs rooted at the landmarks in Õ(m) time. Within
additional O(m · ρ + ρ · n · log n) = O(k · m · n1/2− 1

2k+2 + n
3
2 − 1

2k+2 · log n) time one can
construct the metric closure of L, i.e., the graph L. This graph has n′ = ρ vertices and

m′ ≤ ρ2 edges. In O(km′ · n′1/k) = O(kρ2+1/k) = Õ(k · n
2k+1
2k+2 ) time, one can construct the

TZ oracle for it. To construct the DPPRO with P = O(k · ρ1+1/k) = O(k · n1/2) pairs, one

needs O(n · P2) + Õ(k · m · n1/2− 1
2k+2 ) = O(k2 · n2) + Õ(k · m · n1/2− 1

2k+2 ) time. Hence, the

overall construction time of this oracle is O(k2 · n2) + Õ(k · m · n1/2− 1
2k+2 ).

In Section 5, we show (see Corollary 5.1) that Theorem 4.1 extends to general graphs
with m = λ · n edges.

5. AN EXTENSION TO GENERAL GRAPHS

In this section, we argue that Theorem 4.1 can be extended to general n-vertex graphs
G = (V, E, ω) with m = λn edges. In its current form, the theorem only applies to
graphs of arboricity at most λ. While this is sufficient for our main application, i.e., for
Theorem 6.9, our other application (Theorem 6.10) requires a more general result. Our
extension is based on the reduction of Agarwal et al. [2011] of the distance oracle prob-
lem in general graphs to the same problem in bounded-degree graphs. Our argument
is somewhat more general than the one from Agarwal et al. [2011], as it also applies to
path-reporting distance oracles. We provide our extension for the sake of completeness.

THEOREM 5.1. Up to constant factors, the result of Theorem 4.1 holds for general
undirected unweighted m-edge n-vertex graphs with m = λn. For undirected weighted

graphs, the expected query time becomes O(n1/2+ 1
2k+2 ·k·λ · log n) = O(n1/2+ 1

2k+2 ·k· m
n

· log n),
and the same bound applies, whp, if one multiplies it by another log n factor.

PROOF. Given an m-edge n-vertex graph G with λ = m/n, we split each vertex ui

into d(u) = �deg(u)
λ

� copies u(1), u(2), . . . , u(d(u)). Each copy is now selected independently
at random with probability ρ/n, for a parameter ρ determined in the same way as in
Section 4. The original vertex u is selected to the landmarks’ set if and only if at least
one of its copies (which will also be called virtual nodes) is selected. Observe that the
rule that we have described is up to a constant factor equivalent to selecting u with

probability d(u) · ρ

n
= �deg(u)

λ
� · ρ

n
.

The expected number of selected virtual nodes is

∑

v∈V

d(v) ·
ρ

n
=

ρ

n
·
∑

v∈V

⌈

deg(u)

λ

⌉

≤
ρ

n

∑

v∈V

(

deg(v)

λ
+ 1

)

= ρ +
ρ

λn

∑

v∈V

deg(v) = 3ρ.

The number |L| of landmarks is at most the number of selected virtual nodes, and so
IE(|L|) ≤ 3ρ. By Chernoff ’s bound, the number of selected virtual nodes is, whp, O(ρ),
and so, whp, |L|2+2/k = O(ρ2+2/k), as well. Hence, the size of our oracle remains O(n).

The rest of the construction algorithm for our distance oracle is identical to that
of Section 4. (The only change is the distribution of selecting landmarks.) The query
algorithm is identical to the query algorithm from Section 4. In particular, note that
the virtual nodes have no effect on the computation, i.e., the returned paths contain
only original vertices.

Next, we argue that the expected query time of the modified oracle is still at most
O( n

ρ
· λ) in unweighted graphs, and O( n

ρ
· λ log n) in weighted ones. (As usual, we omit

the additive term of the number of edges of the returned path.) Specifically, we argue
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50:14 M. Elkin and S. Pettie

that the tests, if v ∈ Ball(u) and if u ∈ Ball(v), can be carried out within the above
expected time.

Let u = u0, u1, . . . , un−1 be all graph vertices ordered by a Dijkstra exploration orig-

inated from u, and replace each vertex ui by its d(ui) copies u(1)
i , . . . , u

(d(ui ))
i . The copies

appear in an arbitrary order. Since each virtual node has probability ρ

n
to be selected

independently of other vertices, it follows by a previous argument that the number N
of virtual nodes that the algorithm encounters before seeing a selected virtual node
is O( n

ρ
). (The algorithm actually explores only original vertices. For the sake of this

argument, we imagine that when the algorithm reaches a vertex y it reaches its first
copy y(1). Right after that, it reaches the next copy y(2), and so on, and then reaches
y(d(y)). After “reaching” all these copies, the algorithm continues to the next original
vertex.)

Denote the original vertices explored by the algorithm u1, u2, . . . , ui−1, ui, and let uh
i

be a selected copy of ui. (We assume that all copies of uj , for j < i, are not selected, and

all copies uh′

i , h′ < h, are also not selected.) It follows that N =
∑i−1

j=1 d(uj) + h. Hence,

IE

⎛

⎝

i−1
∑

j=1

d(uj)

⎞

⎠ ≤ IE(N) = O

(

n

ρ

)

.

Hence,

IE

⎛

⎝

i−1
∑

j=1

⌈

deg(uj)

λ

⌉

⎞

⎠ = O

(

n

ρ

)

as well. Thus,

IE

⎛

⎝

i−1
∑

j=1

deg(uj)

⎞

⎠ = O

(

λn

ρ

)

= O

(

m

ρ

)

.

Observe that the number of edges explored by the algorithm before reaching ui is at

most
∑i−1

j=1 deg(uj). (The only edges incident on ui explored by the algorithm are edges

(uj, ui), for j < i. These edges are accounted for in the above sum of degrees.) Hence,
the expected number of edges explored by the algorithm is O( m

ρ
). Hence, its expected

running time is O( m
ρ

) (respectively, O( m
ρ

· log n)) in unweighted (resp., weighted) graphs.

The bounds that hold with high probability are higher, by a factor of O(log n).

Since IE(|L|) = O(ρ), the construction time of the oracle is, up to constant factors, the
same as in Section 4.

This result provides a path-reporting analogue of the result of Agarwal et al. [2011],
which provides stretch O(k) and query time (nλ)O(1/k). Their oracle is not path-reporting.
Our oracle is path-reporting, but its query time is significantly higher, specifically, it is
n1/2+O(1/k) · k · λ.

6. ORACLES WITH SMALLER QUERY TIME

In this section, we devise two path-reporting oracles with improved query time. The
first oracle has size O(m + n) (it stores the original graph), and query time λ · nε , for an
arbitrarily small ε > 0. The stretch parameter of this oracle grows polynomially with
ε−1. For the time being, we will focus on graphs of arboricity at most λ. The argument
extends to general graphs with m = λn in the same way as was described in Section 5.
Our second oracle has size O(n log log n) (independent of the size of the original graph)
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and reports stretch-O(loglog4/3 7 n) paths in O(log log n) time. Both draw on techniques
used in sublinear additive spanner constructions of Pettie [2009]. We will later build
upon the first oracle to construct additional oracles that work for dense graphs, as well.
Like the second oracle, these later oracles will not have to store the input graph.

6.1. Construction of an Oracle with Time O(λ · nε)

In this section, we describe the construction algorithm of our oracle. It will use a
hierarchy of landmarks’ sets L1, L2, . . . , Lh, for a positive integer parameter h that
will be determined later. For each index i ∈ [h], every vertex v is selected into Li

independently at random with probability pi = ρi

n
, ρ1 > ρ2 > · · · > ρh. The sequence

ρ1, ρ2, . . . , ρh will be determined in the sequel. The vertices of Li will be called the i-level
landmarks, or shortly, the i-landmarks. For convenience of notation, we also denote
L0 = V .

For each vertex v ∈ V and index i ∈ [h], let �i(v) denote the closest i-landmark to
v, where ties are broken in an arbitrary consistent way. Denote ri(v) = dG(v, �i(v)) the
distance between v and its closest i-landmark �i(v). Following [Pettie 2009], for a real
number 0 < c ≤ 1, let Bc

i (v) = {u | dG(v, u) < c · ri(v)} denote the ith c-fraction-ball of

v. In our analysis, c will be set to either 1/3 or 1. Specifically, let B
1/3
i (v) denote the

one-third-ball of v, and Balli(v) = B1
i (v) = {u | dG(v, u) < ri(v)} denote the ith ball of v.

For each vertex v ∈ V , we keep a shortest path between v and �1(v). (This is a forest of
vertex-disjoint SPTs rooted at 1-landmarks. For each 1-landmark u′, its SPT spans all
vertices v ∈ V , which are closer to u′ than to any other 1-landmark.) Similarly, for each
i ∈ [h − 1] and every i-landmark u, we keep a shortest path between u and its closest
(i + 1)st landmark �i+1(u) = u(i+1). Again, this entails storing a forest of vertex-disjoint
SPTs rooted at (i + 1)-landmarks, for each each index i ∈ [h − 1]. Overall, this part of
the oracle requires O(n · h) space.

For the hth-level landmarks’ set Lh, we build a DPPRO Lh described in Section 3.
Given a pair u, v of h-landmarks, this oracle returns a shortest path �(u, v) between
them in time proportional to the number of edges in this path, i.e., O(|�(u, v)|). The
space requirement of the oracle Lh is O(n+ |Lh|4), and thus, we will select ρh to ensure
that |Lh|4 = O(n), i.e., ρh will be roughly n1/4. Denote also Ph = ( Lh

2 ) be the set of all
pairs of h-landmarks.

For each index i ∈ [h− 1], we also build a DPPRO Di for the following set Pi of pairs

of i-landmarks. Each pair of i-landmarks u, v, such that either v ∈ B
1/3
i+1(u) or u ∈ B

1/3
i+1(v)

is inserted into Pi.
Similarly to the DPPRO Lh, given a pair (u, v) ∈ Pi for some i ∈ [h − 1], the oracle

Di returns a shortest path �(u, v) between u and v in time O(|�(u, v)|). Our oracle also
stores the graph G itself. We will later show a variant of this oracle that does not store
G (Theorem 6.6). The size of the oracle Di is O(n+ |Branchi|), where Branchi is the set
of branching events for the set Pi. Since we aim at a linear size bound, we will ensure
that |Branchi| = O(n), for every i ∈ [h − 1]. We will also construct a hash table Hi for
Pi of size O(|Pi|) that supports membership queries to Pi in O(1) time per query. The
resulting h-level oracle will be denoted �h.

6.2. The Query Algorithm

Next, we describe the query algorithm of our oracle �h. The query algorithm (see
Algorithm 3 for the pseudo-code) is given a pair u = u(0), v = v(0) of vertices. The
algorithm starts (line 1 of Algorithm 3) with testing if u ∈ Ball1(v) and if v ∈ Ball1(u).
For this test, the algorithm just conducts a Dijkstra search from v until it discovers
either v(1) or u (and, symmetrically, also conducts a search from u).
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ALGORITHM 3: Hierarchical Query(u, v)

1: if u ∈ Ball1(v) or v ∈ Ball1(u) then
2: Return(shortest u − v path) {The test is conducted via Dijkstra explorations. These explo-

rations return either a shortest u − v path, or shortest u − u(1) and v − v(1) paths.}
3: else
4: Path ← Connect(u(1), v(1), 1)
5: Return(�(u, u(1)) · Path · �(v(1), v))
6: end if

ALGORITHM 4: Procedure Connect(u( j), v( j), j)

1: if j = h then
2: Return(Lh(u(h), v(h))) {Query the DPPRO Lh with the pair (u(h), v(h)), and return the path that

Lh returns.}
3: else if (u( j), v( j)) ∈ P j then

4: Return(�(u( j), v( j))) {The condition is tested via the hash table H j , and the path is computed
by the oracle D j .}

5: else
6: Fetch �(u( j), u( j+1)) and �(v( j), v( j+1))
7: Path ← �(u( j), u( j+1)) · Connect(u( j+1), v( j+1), j + 1) · �(v( j+1), v( j))
8: Return(Path)
9: end if

Observe that by Equation (1), the expected size of Ball1(v) and of Ball1(u) is O( n
ρ1

), and,

whp, both these sets have size O( n
ρ1

· log n). Hence, the running time of this step is, whp,

Õ( n
ρ1

·λ). (Specifically, it is O( n
ρ1

·λ·log n) in unweighted graphs, and O( n
ρ1

·log n·(λ+log n))

in weighted ones. The expected running time of this step is smaller, by a factor of log n,
than the above bound.)

If the algorithm discovers that v ∈ Ball1(u) or that u ∈ Ball1(v), then it has found the
shortest path between u and v. In this case, the algorithm returns this path (line 2 of
Algorithm 3). Otherwise, it has found u(1) = �1(u(0)) and v(1) = �1(v(0)).

In general, consider a situation when, for some index j, 1 ≤ j ≤ h, the algo-
rithm has already computed u( j) and v( j). In this case, inductively, the algorithm
has already computed shortest paths �(u(0), u(1)),�(u(1), u(2)), . . . , �(u( j−1), u( j)) and
�(v(0), v(1)),�(v(1), v(2)), . . . ,�(v( j−1), v( j)) between u(0) and u(1), u(1) and u(2), . . . , u( j−1)

and u( j), v(0) and v(1), v(1) and v(2), . . . , v( j−1) and v( j), respectively. Note that the base
case j = 1 has been just argued. The algorithm, then, invokes Procedure Connect (Al-
gorithm 4) with parameters u( j), v( j) and j. This procedure accepts as input an index
j, 1 ≤ j ≤ h, and a pair of j-landmarks u( j), v( j) ∈ Lj . It returns an approximately
shortest path between them.

For j < h, the query algorithm of our oracle �h then queries the hash table H j

whether the pair (u( j), v( j)) ∈ P j (line 3 of Algorithm 4). If it is the case, then the al-

gorithm queries the oracle D j , which, in turn, returns the shortest path �(u( j), v( j))

between u( j) and v( j) in time O(|�(u( j), v( j))|). The algorithm then reports the concate-
nated path

�(u, v) = �(u(0), u(1)) · �(u(1), u(2)) · . . . �(u( j−1), u( j)) · �(u( j), v( j))

· �(v( j), v( j−1)) · . . . · �(v(2), v(1)) · �(v(1), v(0)).

This is done on line 4 of Algorithm 4. Computing this concatenation requires O( j) ≤
O(|�(u, v)|) time.
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In the complementary case when (u( j), v( j)) �∈ P j , the algorithm fetches the pre-

recorded paths �(u( j), u( j+1)) and �(v( j), v( j+1)), and invokes itself recursively on the
pair (u( j+1), v( j+1)). This is done on line 7 of Algorithm 4. Recall that for each index j,
1 ≤ j ≤ h − 1, the algorithm stores a forest of vertex-disjoint SPTs rooted at ( j + 1)-
landmarks Lj+1. These SPTs enable us to compute the paths �(u( j), u( j+1)), �(v( j), v( j+1))
for all j ∈ [h − 1], in time proportional to the number of edges in these paths.

Finally, if j = h, then we query the DPPRO Lh of the graph Lh with the query
(u(h), v(h)). Note that it is not necessary to query if (u(h), v(h)) is in the DPPRO Lh, since,
by construction, all such pairs are there. The query returns the shortest path between
them in time O(|�(u(h), v(h))|). This is done on lines 1-2 of Algorithm 4. It follows that
the overall running time of the query algorithm is dominated by the time required to
compute �(u(0), u(1)) and �(v(0), v(1)). Specifically, it is

Õ

(

n

ρ1
· λ

)

+
j−1
∑

i=0

(

|�(u(i), u(i+1))| + |�(v(i), v(i+1))|
)

+ |�(u( j), v( j))|,

where 1 ≤ j ≤ h is the smallest index such that (u( j), v( j)) ∈ P j . (Recall that for j = h,

Ph = ( Lh

2 ), i.e., all pairs of h-landmarks belong to Ph.) Hence, the overall query time

is Õ( n
ρ1

· λ) + O(|�(u, v)| + h), where �(u, v) is the path that the algorithm ultimately
returns.

Remark. If for each index 0 ≤ j ≤ h − 1 at least one of the subpaths
�(u( j), u( j+1)),�(v( j), v( j+1)) is not empty, then h ≤ |�(u, v)|, and the resulting query
time is Õ( n

ρ1
λ) + O(|�(u, v)|). One can artificially guarantee that all these subpaths

will not be empty, i.e., that u( j) �= u( j+1) and v( j) �= v( j+1), for every j. To do this, one
can modify the construction slightly so that the set of i-landmarks and the set of j-
landmarks will be disjoint for all i �= j. Under this modification of the algorithm, the
query time is Õ( n

ρ1
· λ) + O(|�(u, v)|), while the stretch guarantee of the oracle (which

will be analyzed in Section 6.3) stays the same. This modification can make oracle’s
performance only worse than it is without this modification, but the bounds on the
query time of the modified oracle, in terms of the number of edges in the returned path,
become somewhat nicer. (See Theorem 6.6.)

6.3. The Stretch Analysis

Recall that in the case that v ∈ Ball1(u) or u ∈ Ball1(v), our algorithm returns the
exact shortest path between u = u(0) and v = v(0). Hence, we next consider the situation
when v �∈ Ball1(u) and u �∈ Ball1(v). For brevity, let d = d(0) = dG(u, v). At this point,
the algorithm also has already computed u(1) and v(1), along with the shortest paths
�(u(0), u(1)) and �(v(0), v(1)) between u(0) and u(1) and between v(0) and v(1), respectively.
Observe that in this scenario, we have dG(u(0), u(1)), dG(v(0), v(1)) ≤ d, and so

dG(u(1), v(1)) ≤ dG(u(1), u(0)) + dG(u(0), v(0)) + dG(v(0), v(1)) ≤ 3 · d.

Hence, if (u(1), v(1)) ∈ P1, then the path �(u(0), u(1)) · �(u(1), v(1)) · �(v(1), v(0)) returned by
the algorithm is a 5-approximate path between u and v. Indeed, its length is at most

dG(u(0), u(1)) + dG(u(1), v(1)) + dG(v(1), v(0)) ≤ d + 3 · d + d = 5 · d.

More generally, suppose the query algorithm reached the j-level landmarks u( j), v( j), for

some j, 1 ≤ j ≤ h− 1, and suppose that (u( j), v( j)) �∈ P j . This means that v( j) �∈ B
1/3
j+1(u( j))
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and u( j) �∈ B
1/3
j+1(v( j)). By definition of the one-third-ball, it follows that

dG(u( j), v( j)) ≥
1

3
· dG(u( j), u( j+1)) =

1

3
· r j+1(u( j)),

and

dG(u( j), v( j)) ≥
1

3
· dG(v( j), v( j+1)) =

1

3
· r j+1(v( j)),

where u( j+1) (respectively, v( j+1)) is the ( j + 1)-landmark closest to u( j) (resp., v( j)).
Hence,

dG(u( j+1), v( j+1)) ≤ dG(u( j+1), u( j)) + dG(u( j), v( j)) + dG(v( j), v( j+1)) ≤ 7 · dG(u( j), v( j)).

Denote by p, 1 ≤ p ≤ h, the index for which the algorithm discovers that (u(p), v(p)) ∈ Pp.

(Since (u(h), v(h)) ∈ Ph for every pair (u(h), v(h)) of h-landmarks, it follows that the index
p is well-defined.)

We have seen that dG(u(1), v(1)) ≤ 3d, and for every index j, 1 ≤ j ≤ p − 1,
dG(u( j+1), v( j+1)) ≤ 7 · dG(u( j), v( j)). Hence, for every j, 1 ≤ j ≤ p, it holds that
dG(u( j), v( j)) ≤ 3 · 7 j−1 · d. Denote d( j) = 3 · 7 j−1 · d, for 0 ≤ j ≤ p. Also,
dG(u(0), u(1)), dG(v(0), v(1)) ≤ d = d(0), and for every index j, 1 ≤ j ≤ p − 1,

dG(u( j), u( j+1)) ≤ 3 · dG(u( j), v( j)) ≤ 3 · d( j) = 32 · 7 j−1 · d.

Hence, the length of the path

�(u(0), u(1)) · . . . · �(u(p−1), u(p)) · �(u(p), v(p)) · �(v(p), v(p−1)) · . . . �(v(1), v(0))

returned by the algorithm is at most

d(0) + 3 ·

⎛

⎝

p−1
∑

j=1

d( j)

⎞

⎠ + d(p) + 3 ·

⎛

⎝

p−1
∑

j=1

d( j)

⎞

⎠ + d(0)

= d ·

⎛

⎝2 ·

⎛

⎝1 + 3 ·

⎛

⎝

p−1
∑

j=1

3 · 7 j−1

⎞

⎠

⎞

⎠ + 3 · 7p−1

⎞

⎠ = d · (6 · 7p−1 − 1).

Since p ≤ h, we conclude that the oracle has stretch at most 6 · 7h−1 − 1.

6.4. The Size of the Oracle

For each index i ∈ [h], our oracle stores a forest of (vertex-disjoint) SPTs rooted at
i-landmarks. Each of these forests requires O(n) space, i.e., together these h forests
require O(n · h) space.

We next set the values ρ1 > ρ2 > · · · > ρh, so that each of the auxiliary oracles
D1,D2, . . . ,Dh−1,Lh requires O(n) space. Each of the hash tables H1,H2, . . . ,Hh asso-
ciated with these oracles requires less space than its respective oracle. Recall that the
parameter ρ1 also determines the query time. Specifically, it is Õ( n

ρ1
λ) + O(|�|), where

� is the path returned by the algorithm. In the sequel, we will often skip the additive
term of O(|�|) when stating the query time.

For each i ∈ [h], we write ρi = nαi , where αi = 1 − (3/4)h−i+1. Observe that αh = 1/4,
i.e., ρh = n1/4. Hence, IE(|Lh|) = ρh = n1/4, and by Chernoff ’s bound, whp, |Lh| = O(n1/4).
(Recall that |Lh| is a Binomial random variable.) Hence, the DPPRO Lh for Ph = ( Lh

2 )

requires space O(|Lh|4 + n) = O(n), whp.
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Next, we analyze the space requirements of the oracles D1,D2, . . . ,Dh−1. Fix an index
i ∈ [h− 1], and recall that the space requirement of the DPPRO Di is O(n+ |Branchi| +
|Pi|), where Branchi is the set of branching events for the set Pi of pairs of vertices.
Next, we argue that (whp) |Branchi| = O(n). Recall that the set Pi contains all pairs of

i-landmarks (u(i), v(i)) such that either v(i) ∈ B
1/3
i+1(u(i)) or u(i) ∈ B

1/3
i+1(v(i)).

The following two lemmas from Pettie [2009] are the key to the analysis of the oracle’s
size. The first says that with our definition of Pi+1 all branching events are confined
to (i + 1)st level balls. The second bounds the expected number of branching events in
terms of the sampling probabilities. For completeness, the proofs of these lemmas are
provided in Appendix A.

LEMMA 6.1. Suppose that v ∈ B
1/3
i+1(u). Then, if (x, y) ∈ Pi+1 and there is a branching

event between the pairs (u, v) and (x, y), then necessarily x, y ∈ Balli+1(u).

LEMMA 6.2. Whp, |Branchi| = O(
ρ4

i

ρ3
i+1

· log3 n), and IE(|Branchi|) = O(
ρ4

i

ρ3
i+1

). Moreover,

whp, |Pi| = O(
ρ2

i

ρi+1
· log n), and IE(|Pi|) = O(

ρ2
i

ρi+1
).

Observe that with our choice of ρi (ρi = nαi , αi = 1 − (3/4)h−i+1, for every i ∈ [h]), it

holds for every i ∈ [h−1] that O(
ρ4

i

ρ3
i+1

) = O(n4αi−3αi+1 ) = O(n), and O(
ρ2

i

ρi+1
) = O(n2αi−αi+1 ) =

O(n1− 1
2 ( 3

4 )h−i

). Hence, by Lemma 6.2, for each i ∈ [h− 1], the oracle Di requires expected
space O(n + |Branchi| + |Pi|) = O(n). Thus, the overall expected space required by our
h-level oracle oracle �h (in addition to the space required to store the original graph G)
is O(n · h). Recall that the query time is (whp) Õ((n/ρ1)λ) = Õ(n(3/4)h · λ).

The argument described in Section 5 enables us to extend these results to general
m-edge n-vertex graphs.

THEOREM 6.3. For any parameter h = 1, 2, . . . and any n-vertex undirected possibly
weighted graph G with arboricity λ, the path-reporting distance oracle �h uses expected
space O(n · h), in addition to the space required to store G. Its stretch is (6 · 7h−1 − 1),
and its query time is (whp) Õ(n(3/4)h

λ). The same result applies for any m-edge n-vertex
graph with λ = m/n.

Specifically, in unweighted graphs with arboricity λ, the query time is O((n/ρ1) · λ ·
log n) = O(n(3/4)h · λ · log n), while in weighted graphs it is O(n(3/4)h · (λ + log n) log n).
In unweighted m-edge n-vertex graphs, the query time is O(n(3/4)h · m

n
· log n), while in

m-edge n-vertex weighted graphs it is O(n(3/4)h · m
n

· log2 n). The expected query time in

unweighted (respectively, weighted) graphs is O(n(3/4)h · m
n

+ h) (resp., O(n(3/4)h · ( m
n

+
log n) + h)).

By introducing a parameter t = (4/3)h, we get query time Õ(n1/tλ), space O(n · log t),
and stretch at most tlog4/3 7. (The exponent is ≈ 6.76.)

COROLLARY 6.4. For any constant t of the form t = (4/3)h, for a positive integer h,
and an n-vertex graph G with arboricity λ, our path-reporting distance oracle �h uses
expected space O(n) in addition to the space needed to store G. It provides stretch at most

tlog4/3 7, and its query time is (whp) Õ(n1/tλ). (For a non-constant t, the space requirement
becomes O(n·log t).) The same result applies for any m-edge n-vertex graph with λ = m/n.

Yet better bounds can be obtained if one is interested in small expected query time.
The expected query time is dominated by the time required to test if v ∈ Ball1(u) and
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if u ∈ Ball1(v). For unweighted graphs these tests require O( n
ρ1

λ) = O(n(3/4)h

λ) expected
time.

COROLLARY 6.5. For any t of the form t = (4/3)h, for a positive integer h, and an n-vertex
m-edge graph G, our path-reporting oracle �h uses expected O(n · h) space in addition to
the space required to store G. It provides stretch at most tlog4/3 7, and its expected query
time is O(n1/t · (m/n) + log t) for unweighted graphs. In the case of weighted graphs, the
expected query time is O(n1/t(m/n) · log n).

Consider now the oracle �h for a superconstant number of levels h = �log4/3(log n +
1)�. Then, ρ1 = (2n)α1 = (2n)1−(3/4)h ≥ n. In other words, all vertices V of G are now de-
fined as the first level landmarks (1-landmarks), i.e., L1 = V . (For levels i = 2, 3, . . . , h,
landmarks Li are still selected at random from V with probability ρi/n < 1, indepen-
dently. For level 1 this probability is 1.) Recall that our oracle starts with testing if
v ∈ Ball1(u) and if u ∈ Ball1(v). Now both these balls are empty sets, because all ver-
tices belong to L1. Thus, with this setting of parameters, the oracle �h no longer needs
to conduct this time-consuming test. Rather, it proceeds directly to querying the oracle
D1. Remarkably, this variant of our oracle does not require storing the graph G. (Recall
that the graph was only used by the query algorithm for testing if v ∈ Ball1(u) and if
u ∈ Ball1(v).) The query time of the new oracle is now dominated by the h queries to the
oracles D1,D2, . . . ,Dh−1,Lh, i.e., O(h) = O(log log n). Recall that, by the remark at the
end of Section 6.2, one can always make our oracle to return paths with at least h edges,
and thus, the O(h) = O(log log n) additive term in the query time can be swallowed by
O(|�|), where � is the path that our oracle returns.

Denote by �̃ the oracle which was just described. The stretch of �̃ is (by Theorem 6.3)
6 · 7h−1 − 1 = O(loglog4/3 7 n).

THEOREM 6.6. The oracle �̃ is a path-reporting oracle with expected space
O(n log log n), where n is the number of vertices of its input undirected weighted graph

G. Its stretch is O(loglog4/3 7 n) and its query time is O(log log n). (It can be made O(1),
but the paths returned by the oracle will then contain �(log log n) edges.)

Note that by Markov’s inequality, Theorem 6.6 implies that one can produce a path-
reporting oracle with space O(n log log n), query time O(log log n), and polylogarithmic
stretch by just repeating the above oracle-constructing algorithm for O(log n) times.
Whp, in one of the executions, the oracle’s space will be O(n log log n). Similarly, by the
same Markov’s argument, Corollary 6.4 implies that, whp, one can have the space of
the oracle �h bounded by O(n) (in addition to the space required to store the input
graph).

Next, we analyze the construction time of our oracle. The h forests rooted at land-
marks can be constructed in Õ(m · h) time. We also spend Õ(m · n) = Õ(n2λ) time
to compute all-pairs-shortest-paths (henceforth, APSP). Then, for each ball Bi+1(u),
u ∈ Li, we store all i-landmarks that belong to it. They can be fetched from the
APSP structure in O(1) time per i-landmark. The expected size of this data struc-

ture is O(|Pi|) = O(
ρ2

i

ρi+1
) = O(n). Then, we produce all possible quadruples u, v, x, y

with v, x, y ∈ Balli+1(u) ∩ Li, u ∈ Li. By the proof of Lemma 6.2, there are expected

O(
ρ4

i

ρ3
i+1

) = O(n) such quadruples. For each of these quadruples, we check if the involved

shortest paths intersect, and compute the corresponding branching events. Since the
length of each such path is, whp, O( n

ρi+1
· log n), it follows that the entire computa-

tion can be carried out in Õ( n2

ρi+1
) expected time. Recall that ρi+1 = �̃(n1/4), and, thus,
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this running time is Õ(n7/4). In O(n · P2) = Õ(n2) additional time, we construct the
DPPRO Lh for the set of all pairs of h-landmarks. The total expected construction time
is therefore dominated by the APSP computation, i.e., it is Õ(m · n).

Theorem 6.6 can be generalized to provide a tradeoff between oracle’s parameters.

Specifically, when aiming at size O(n1+1/k · log k), one can set ρ0 = n
1
4 · k+1

k ,
ρ4

i+1

ρ3
i

= n1+1/k,
i.e.,

ρi = n(1−(3/4)i+1) k+1
k .

As a result, we have ρh = n for h ≥ log4/3(k + 1) − 1. Hence, for h = �log4/3(k + 1)� − 1,

all vertices are h-level landmarks. The stretch becomes O(7log4/3(k+1)) = O(klog4/3 7) ≈
O(k6.76). Each of the O(log k) DPPROs requires now size O(n1+1/k), i.e., the overall size
is O(n1+1/k · log k), and the query time is O(log k).

COROLLARY 6.7. Our path-reporting oracle, parameterized by k = 1, 2, . . . , O(log n),
uses expected space O(n1+1/k · log k), provides stretch O(klog4/3 7), and has query time
O(log k).

This oracle improves previous bounds for all points in the size range between
�(n log log n) and o(n log n). Recall that the oracle of Thorup and Zwick [2001a] always
has size �(n log n), and the oracle of Mendel and Naor [2006] is not path-reporting.
The only previously existing path-reporting oracle that can be that sparse is the oracle
of Elkin et al. [2014], which, for a parameter t, has size O(n · t · logn wmax), stretch

O(
√

t · n
2√
t ), and query time O(log t + log logn wmax). Next, we compare our oracle with

that of Elkin et al. [2014] in a number of points on the tradeoff curve.
For size O(n log log n), our oracle has stretch O(log6.76 n) and query time O(log log n),

while the oracle of Elkin et al. [2014] with size O(n(log log n+ log logn wmax)) has stretch

2
O( log n√

log log n
)

and query time O(log(3) n + log logn wmax). For size O(n
√

log n), our oracle

provides stretch O(( log n
log log n

)6.76) and has query time O(log log n). The oracle of Elkin

et al. [2014] can have size O(n(
√

log n + log logn wmax)), stretch 2O(log3/4 n), and query

time O(log log n + log logn wmax). In other words, for size O(n logδ n), for any constant
δ > 0, our oracle is strictly better than that of Elkin et al. [2014], and its stretch is
exponentially better than the stretch of Elkin et al. [2014].

Finally, we generalize the path-reporting oracle for sparse graphs (Corollary 6.4) so
that it will provide a tradeoff between size and stretch.

THEOREM 6.8. For any parameters k = 1, 2, . . . and ζ > 0, our path-reporting oracle
for sparse graphs provides stretch O(klog4/3 7), has expected size O(n1+ζ · log k) in addition

to the size of the input graph G, and has query time Õ( m
n

· n
1−(k−1)ζ

k ).

PROOF. We set ρ0 = n
1
4 (1+ζ ),

ρ4
i+1

ρ3
i

= n1+ζ , i.e.,

ρi = n(1−(3/4)i+1)(1+ζ ).

To get query time Õ( m
n

· nε), for some ε > 0, we set the number of levels h to be the
smallest integer that satisfies

ρh = n(1−(3/4)h+1)(1+ζ ) ≥ n1−ε .

This gives rise to h ≥ log4/3
1+ζ

ζ+ε
− 1. Hence, we set h = �log4/3

1+ζ

ζ+ε
� − 1. (Observe that

for ζ = 1/k and ε = 0 we get h = �log4/3(k+ 1)� − 1, exactly as in Corollary 6.7. Indeed,
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when ε = 0, this oracle does not need to store the input graph G, and thus, it applies
to general, and not only to sparse, graphs.)

Hence, the resulting oracle has expected size O(n1+ζ · log 1+ζ

ζ+ε
), provides stretch

O(( 1+ζ

ζ+ε
)log4/3 7), and has query time Õ( m

n
· nε). We write k = 1+ζ

ζ+ε
and obtain ε = 1−(k−1)ζ

k
.

In terms of ζ and k, the oracle has stretch O(klog4/3 7), expected size O(n1+ζ · log k), and

query time Õ( m
n

· n
1−(k−1)ζ

k ).

6.5. Spanner-Based Oracles

While the query time of our oracle �̃ is close to optimal (there is an additive slack
of O(log log n)), its space requirement O(n log log n) is slightly suboptimal, and also its
stretch requirement is O(loglog4/3 7 n), instead of the desired O(log n). Next, we argue
that one can get an optimal space O(n) and optimal stretch O(log n), at the expense of
increasing the query time to O(nε), for an arbitrarily small constant ε > 0.

Given an n-vertex weighted graph G = (V, E, ω), we start with constructing an
O(log n)-spanner G′ = (V, H, ω) of G with O(n) edges. (See Althöfer et al. [1990]; a
faster algorithm was given in Roditty et al. [2005]. For unweighted graphs a linear-time
construction can be found in Peleg and Schäffer [1989], and a linear-time construction
with optimal stretch-space tradeoff can be found in Halperin and Zwick [2000].) Then,
we build the oracle �h for the spanner G′. The space required by the oracle is (by
Corollary 6.4) O(n), plus the space required to store the spanner G′, i.e., also O(n).
Hence, the total space required for this spanner-based oracle is O(n). Its stretch is
the product of the stretch of the oracle, i.e., at most tlog4/3 7, with t = (4/3)h for an
integer h, and the stretch of the spanner, i.e., O(log n). Hence, the oracle’s stretch is
O(tlog4/3 7 · log n). The oracle reports paths in G′ = (V, H), but since H ⊆ E, these paths
belong to G as well. Observe also that the query time of the spanner-based oracle is
Õ(n1/t · m′

n
), where m′ = |H| is the number of edges in the spanner. Since m′ = O(n), it

follows that the query time is, whp, Õ(n1/t). We remark also that the spanners produced
by Althöfer et al. [1990] and Roditty et al. [2005] have constant arboricity, and thus,
one does not really need the reduction described in Section 5 for this result.

THEOREM 6.9. For any constant ε > 0, the oracle obtained by invoking the oracle
�h with h = �log4/3 ε−1� from Corollary 6.4 on a linear-size O(log n)-spanner is a path-

reporting oracle with space O(n), stretch O(log n), and query time O(nε).
Generally, we can use an O(k)-spanner, log n

log log n
≤ k ≤ log n with O(n1+1/k) edges. As

a result, we obtain a path-reporting distance oracle with space O(n1+1/k), stretch O(k),
and query time O(nε+1/k) = O(nε+o(1)).

Observe that Theorem 6.9 exhibits an optimal (up to constant factors) tradeoff be-
tween the stretch and the oracle size in the range log n

log log n
≤ k ≤ log n. The only known

oracle that exhibits this tradeoff is due to Mendel and Naor [2006]. However, the oracle
of Mendel and Naor [2006] is not path-reporting, while our oracle is.

The construction time of this oracle consists of the time required to build the O(log n)-
spanner (which is Õ(n2) [Roditty et al. 2005]) and the construction time of the oracle �h

in G′ (which is also Õ(n2), because G′ has O(n) edges). Hence, its overall construction
time is Õ(n2).

In the context of unweighted graphs, the same idea of invoking our oracle from
Corollary 6.4 on a spanner can be used in conjunction with (1 + ε, β)-spanners. Given
an unweighted n-vertex graph G = (V, E), let G′ = (V, H) be its (1 + δ, β)-spanner,
β = β(δ, k) = ( log k

δ
)O(log k), with |H| = O(β · n1+1/k) edges, for a pair of parameters
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δ > 0, k = 1, 2, . . . . (Such a construction was devised in Elkin and Peleg [2001].)
For the sake of the following application, one can set δ = 1. Invoke the distance
oracle from Corollary 6.4 with a parameter t on top of this spanner. We obtain a path-
reporting distance oracle with space O(βn1+1/k) (whp). Its stretch is (O(tlog4/3 7), β =
β(t, k)), β(t, k) = O(tlog4/3 7 · β(1, k)) = tlog4/3 7 · kO(log log k), and its query time is Õ(n1/t+1/k),

whp. As long as t = o(k
1

log4/3 7 ), the multiplicative stretch is o(k), the additive stretch is
still β(k) = kO(log log k), while the space is O(βn1+1/k). In particular, one can have query

time nO(k
− 1

log4/3 7+η ), for an arbitrarily small constant η > 0, stretch (o(k), kO(log log k)), and
space O(kO(log log k)n1+1/k).

Another variant of this construction has a higher query time O(nε), for some arbi-
trarily small constant ε > 0, but its multiplicative stretch is O(1). We just set t to be
a large fixed constant and consider k � tlog4/3 7. Then, the query time is O(nε), whp,
(ε = t−1), stretch is (O(1), poly(1/ε) · kO(log log k)), and space O(β · n1+1/k).

THEOREM 6.10. For any unweighted undirected n-vertex graph G, any arbitrarily
small constant ε > 0 and any parameter k = 1, 2, . . . , our path-reporting distance oracle
has query time O(nε) (whp), stretch (O(1), β(k)) and space O(β(k) · n1+1/k) (whp), where

β(k) = kO(log log k). Another variant of this oracle has query time nO(k
− 1

log4/3 7+η ) whp, for an

arbitrarily small constant η > 0, stretch (o(k), kO(log log k)), and space O(kO(log log k) ·n1+1/k),
whp.

To our knowledge, these are the first distance oracles whose tradeoff between mul-
tiplicative stretch and space is better than the classical tradeoff, i.e., 2k − 1 versus
O(n1+1/k). Naturally, we pay by having an additive stretch. By lower bounds from
Thorup and Zwick [2001a], an additive stretch of �(k) is inevitable for such distance
oracles.

One can also use a (5 + ε, kO(1))-spanner with O(n1+1/k) edges from Pettie [2009]
instead of (1 + ε, ( log k

ε
)O(log k))-spanner with ( log k

ε
)O(log k)n1+1/k edges from Elkin and

Peleg [2001] for our distance oracle. As a result, the oracle’s space bound decreases
to O(n1+1/k), its additive stretch becomes polynomial in k, but the multiplicative
stretch grows by a factor of 5 + ε. In general, any construction of (α, β)-spanners
with size O(S · n) can be plugged in our oracle. The resulting oracle will have stretch
(tlog4/3 7 · α, tlog4/3 7 · β), size O(Sn + n · log t), and query time O(S · n1/t).

The construction time of this oracle is the time needed to construct the (1 + ε, β)-
spanner G′, plus the construction of �h on G′. The construction time of Elkin and Peleg
[2001] is O(n2+1/k). The construction time of the oracle �h on G′ is Õ(m′ · n′), where
m′ = O(β · n1+1/k) is the number of edges in G′, and n′ = n is the number of vertices in
G′. Hence, the overall construction time in this case is O(β(k) ·n2+1/k) = kO(log log k)n2+1/k.

7. LOWER BOUNDS

In this section, we argue that one cannot expect to obtain distance labeling or routing
schemes (see Section 2 for their definitions) with properties analogous to those of our
distance oracles (given by Theorem 6.10 and Corollary 6.5). We also employ lower
bounds of Sommer et al. [2009] to show that a distance oracle with stretch (O(1), β(k))
and space O(β(k) · n1+1/k) for unweighted n-vertex graphs (like the distance oracle given
by Theorem 6.10) must have query time �(k).

7.1. Distance Labeling and Routing

We start with discussing distance labeling schemes.
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THEOREM 7.1. Any distance labeling scheme for general unweighted graphs that
provides stretch (t, t · β(k)), for a pair of parameters t, k, and a fixed function β(·),
requires labels of size �(n

1
2t+5 ).

PROOF. Suppose for contradiction that there were a distance labeling scheme D for

unweighted n-vertex graphs with maximum label size O(n
1

2t+5 ) and stretch (t, t ·β(k)), for
some fixed function β(·), and any parameter k. Consider an infinite family of n-vertex

unweighted graphs Gn = (V, En) with girth at least t + 2 and |En| = �(n1+ 1
t+2 ). (Such

a family can be easily constructed by probabilistic method; see, e.g., Bollobas [1998],
Theorem 3.7(a). Denser extremal graphs can be found in Lubotsky et al. [1988] and

Lazebnik and Ustimenko [1995].) There are 2�(n
1+ 1

t+2 ) different subgraphs of each Gn.

To achieve stretch t, one would need 2�(n
1+ 1

t+2 ) distinct encodings for these graphs, i.e.,

the total label size for this task is �(n1+ 1
t+2 ), and the maximum individual label size is

�(n
1

t+2 ). (See e.g., Thorup and Zwick [2001a], Chapter 5, for this lower bound.)
Replace every edge of G = Gn by a path of length 10t ·β(k), consisting of new vertices.

The new graph G′
n has N = O(n1+ 1

t+2 · t · β(k)) vertices. Invoke the distance labeling
scheme D on G′

n. For a pair of original vertices u, v (vertices of Gn), the distance between
them in G′

n is d′(u, v) = 10tβ(k) · dG(u, v). Given their labels ϕ(u) and ϕ(v), the labeling
scheme D provides us with an estimate δ(ϕ(u), ϕ(v)) of the distance between them in
G′

n which satisfies:

δ(ϕ(u), ϕ(v)) ≤ t · d′(u, v) + t · β(k) = (10tβ(k) · dG(u, v)) · t + t · β(k).

On the other hand, a path of length dG(u, v) · t + 1 in G between u and v translates into
a path of length at most

10t · β(k)(dG(u, v) · t + 1) = 10t2β(k)dG(u, v) + 10tβ(k)

between them in G′
n. Hence, the estimate provided by D corresponds to a path between

u and v of length at most dG(u, v) · t in Gn, i.e., via D we obtain a t-approximate distance
labeling scheme for Gn.

The maximum label size used by D is

O(N
1

2t+5 ) = O((n
t+3
t+2 · t · β(k))

1
2t+5 ) = O(n

t+3
(t+2)(2t+5) · (β(k))

1
2t+5 ).

However, by the above argument, this label size must be �(n
1

t+2 ). Note that

n
t+3

(t+2)(2t+5) (β(k))
1

2t+5 < n
1

t+2 ,

as long as β(k) < n. This condition holds for any k = O(log n) and subexponential
function β(·). (Recall that in all relevant upper bounds for spanners/distance oracles/
distance labeling/routing schemes, it is always the case that k = O(log n) and β(·)
is at most a quasi-polynomial function of k. Moreover, an additive stretch of �(t ·
n) is obviously meaningless in the context of unweighted graphs.) Hence, this is a
contradiction, and there can be no distance labeling scheme for unweighted graphs

with label size O(n
1

2t+5 ) and stretch (t, t · β(k)), for any parameter k.

The same argument clearly applies to routing schemes as well. The only difference
is that one needs to use lower bounds on the tradeoff between space and multiplicative
stretch for routing due to Peleg and Upfal [1989], Thorup and Zwick [2001b], and
Abraham et al. [2006], instead of analogous lower bounds of Thorup and Zwick [2001a]
for distance labeling.
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To summarize, while Theorem 6.10 provides a distance oracle with stretch (t, t · β(k))
and average space per vertex of O(β(k) · n1/k) for k � tlog4/3 7, for distance labeling or
routing one needs at least n�(1/t) space per vertex to achieve the same stretch guarantee.

Similarly, one cannot have a distance labeling scheme for sparse graphs (graphs
G = (V, E) with O(n1+1/k) edges, for some k ≥ 1) with maximum label size O(n1/k) and
stretch O(t), for a parameter t � k.7 A distance labeling scheme, as above, requires
maximum label size of n�(1/t), as otherwise one would get a distance labeling with
stretch (t, t · poly(k)) for general graphs with maximum label size no(1/t), contradiction.

7.2. Distance Oracles, Cell-Probe Model

Next, we argue that in the cell-probe model of computation (cf., Milterson [1999]),
any distance oracle with size and stretch like in Theorem 6.10 (i.e., size O(n1+1/k) and
stretch (O(1), β(k)), for a fixed function β(·)) must have query time �(k). We rely on the
following lower bound of Sommer et al. [2009].

THEOREM 7.2 (SOMMER ET AL. [2009]). A distance oracle with stretch t using query

time q requires space S ≥ n1+ c
t·q / log n in the cell-probe model with w-bit cells, even

on unweighted undirected graphs with maximum degree at most (t · q · w)O(1), where

t = o( log n
log w+log log n

), and c is a positive constant.

Suppose, for a contradiction, that there exists a distance oracle with stretch (t, t·β(k)),

for a pair of parameters t � k and a fixed function β(·), with space at most n1+ c/2
t·q / log n

(and query time q) for general unweighted graphs.
Let G = (V, E) be an n-vertex unweighted graph with maximum degree at most

(t · q · w)O(1), and let G′ be the graph obtained from G by replacing each edge of G by a
path of length 10t · β(k). The graph G′ has N ≤ (t · q · w)O(1) · β(k) · n vertices, and an
oracle with stretch (t, t ·β(k)) for G′ can be used also as a stretch-t oracle for G. The size
of this oracle is, by our assumption, at most

(n · (t · q · w)O(1) · β(k))1+ c/2
t·q

log N
<

n1+ c/2
t·q

log n
· ((t · q · w)O(1)β(k))1+ c/2

t·q .

As long as ((t · q · w)O(1) · β(k))1+ c/2
t·q < n

c/2
t·q , i.e., as long as

((t · q · w)O(1) · β(k))
2
c
t·q+1 < n, (2)

we have a contradiction to Theorem 7.2. (As the oracle uses less than n1+ c
t·q / log n space

and has stretch t and query time q.)
For k being at most a mildly growing function of n (specifically, k ≤ logζ n, ζ < 1/2),

t = o(k), q ≤ k, w = O(log n), and β(·) being a polynomial (or even a quasi-polynomial)
function, the condition (2) holds. Hence, in this range of parameters, any distance
oracle for unweighted graphs with stretch (t, t · β(k)) and query time q requires space

S ≥ n1+ c/2
t·q / log n in the cell-probe model with w-bit cells, assuming t = o( log n

log w+log log n
).

So, if this oracle uses S = O(n1+1/k ·β(k)) space, then it holds that n1+1/k · log n·β(k) ≥
n1+ c/2

t·q , i.e.,

1 + 1/k +
log log n + log β(k)

log n
≥ 1 +

c/2

t · q
,

and so q = �(k/t).

7Recall that by Corollary 6.5, a path-reporting distance oracle of total size O(n1+1/k) with stretch O(t) and

query time O(n
1
tc

+ 1
k + |�(u, v)|) (for a query u, v; the constant c is given by c = log7 4/3) does exist.

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.



50:26 M. Elkin and S. Pettie

We summarize this lower bound in the next theorem.

THEOREM 7.3. Let k ≤ logζ n, for any constant ζ < 1/2, t = o(k), w = O(log n), and β(·)
being a polynomial or a quasi-polynomial function. In the cell-probe model with w-bit
cells, any distance oracle for general unweighted undirected n-vertex graphs with space
O(β(k) · n1+1/k) and stretch (t, t · β(k)) has query time q = �(k/t) = �(k).

Theorem 7.3 states that in contrast to distance oracles with multiplicative stretch
which can have constant query time (see Mendel and Naor [2006] and Chechik [2014]),
a distance oracle with stretch (O(1), β(k)) (like the one given by our Theorem 6.10) must
have query time �(k).

7.3. Distance Oracles, A Conditional Lower Bound

In this section, we argue that even relatively mild improvement of Theorem 6.10 would
give rise to improved distance oracles for sparse unweighted graphs.

Recall that Agarwal et al. [2011] devised a not path-reporting distance oracle for
sparse graphs, which for parameters t = 1, 2, . . . and ε > 0, provides stretch 4t − 1, has
expected size O(t · n(1+1/t)(1−ε), in addition to the size of the input graph, and has query
time Õ( m

n
· nε). Set ζ = t+1

t
(1 − ε) − 1, i.e., ε = 1−ζ t

t+1 . The size becomes O(t · n1+ζ ), and the

query time is Õ( m
n

· n
1−ζ t
t+1 ). In the next theorem, we consider a special case of this oracle

for graphs with m = O(n) edges.

THEOREM 7.4 (AGARWAL ET AL. [2011]). For any parameters t = 1, 2, . . . , ζ > 0, the not
path-reporting distance oracle of Agarwal et al. [2011] for sparse graphs (m = O(n)) has

stretch 4t − 1, expected size O(t · n1+ζ ), and query time Õ(n
1−ζ t
t+1 ).

See also our Theorem 6.8 for a path-reporting counterpart of this result.
We will now argue that a path-reporting distance oracle for unweighted gen-

eral graphs, which provides a mixed multiplicative-additive stretch, and has signif-
icantly better parameters than those given Theorem 6.10, can be used to devise a
path-reporting oracle for sparse unweighted graphs that outperforms the (not path-
reporting) oracle of Agarwal et al. [2011] from Theorem 7.4. (Note, however, that The-
orem 7.4 applies to weighted graphs as well. On the other hand, no better bound than
the one given by Theorem 7.4 for sparse unweighted graphs is known.) We view this
as an indication that obtaining a path-reporting oracle with mixed stretch for general
unweighted graphs with parameters similar to those given in Theorem 6.10, but with
polylogarithmic query time, might be hard.

Specifically, our Theorem 6.10 provides a distance oracle with stretch (O(tlog4/3 7),
O(tlog4/3 7 ·β(k))), size O(n1+1/k), and query O(n1/t) for general unweighted graphs, where
β(·) is a polynomial function.

THEOREM 7.5. We are given a positive integer n, a pair of positive integer parameters
t, k, and an at most exponential function β(·), such that t ≤ k

10·log(β(log n)) , k ≤ log n.

Suppose that there exists a path-reporting oracle D for general unweighted n-vertex
graphs with stretch (t, t ·β(k)), size O(n1+1/k), and query time O(n1/8t). Then, there exists
a path-reporting oracle D′ for sparse (m = O(n)) unweighted n-vertex graphs, which
outperforms the not path-reporting oracle of Agarwal et al. [2011] given in Theorem 7.4.

PROOF. Consider an unweighted sparse graph G = (V, E), m = |E| = O(n). Replace
every edge e ∈ E with a path of length 10t · β(k). We get a sparse unweighted G′

with N = 10t · β(k) · n vertices. Invoke the oracle D on G′. It has size O(N1+1/k) =
O((t·β(k))1+1/k·n1+1/k) = O(t·β(k)·n1+1/k). Also, it provides pure multiplicative stretch at
most t for G. Since the additive term β(k) ≤ O(n), the query time is O((t·β(k))1/8t ·n1/8t) =
O(β(k)1/8t · n1/8t) = O(n1/4t). The size of the oracle is O(n1+ζ ), for ζ = 1/k + logn(t · β(k)).

ACM Transactions on Algorithms, Vol. 12, No. 4, Article 50, Publication date: August 2016.



A Linear-Size Logarithmic Stretch 50:27

So the resulting path-reporting oracle D′ for sparse unweighted graphs has size
O(n1+ζ ), for ζ as above, stretch t, and query time O(n1/4t). On the other hand, the
not path-reporting oracle D̃ of Agarwal et al. [2011], Theorem 7.4, gives (for ζ =
1/k + logn(t · β(k))) size O(n1+ζ ), stretch 4t − 1, and query time Õ(n

1−ζ t
t+1 ). Since

1 − ζ t ≥ 1 − (1/k + logn(tβ(k)))t ≥ 1 − t/k − 2 ·
log(β(log n))

log n
· t

≥ 9/10 − 2 ·
log(β(log n))

log n
·

k

10 · log(β(log n))
≥ 7/10,

we have that this query time is at least �(n
7
10

1
t+1 ). Hence, D′ strictly outperforms D̃.

In particular, if the query time of D is polylogarithmic in n, then the query time of D′

is polylogarithmic in n as well, in a sharp contrast to the polynomial in n query time in
Theorem 7.4.

APPENDIX

A. MISSING PROOFS

In this section, we provide proofs of Lemmas 6.1 and 6.2.

PROOF OF LEMMA 6.1. Suppose for contradiction that there exists a pair (x, y) ∈ Pi+1

such that the pairs (u, v), (x, y) participate in a branching event β, and such that
either x �∈ Balli+1(u) or y �∈ Balli+1(u). Then, β = (�(u, v),�(x, y), z), where �(u, v)
(respectively, �(x, y)) is a shortest path between u and v (respectively, between x and
y), and z is a node at which these two paths branch. Since (x, y) ∈ Pi+1, it follows that

either y ∈ B
1/3
i+1(x) or x ∈ B

1/3
i+1(y). Without loss of generality, suppose that y ∈ B

1/3
i+1(x).

The proof splits into two cases. In the first case, we assume that x �∈ Balli+1(u),
and in the second, we assume that y �∈ Balli+1(u). (Note that roles of x and y are not
symmetric.) In both cases, we reach a contradiction.

We start with the case x �∈ Balli+1(u). Observe that dG(x, z) ≤ dG(x, y) < 1
3 ·ri+1(x) and

dG(u, z) ≤ dG(u, v) < 1
3 · ri+1(u). Denote δ = dG(u, u(i+1)) = ri+1(u), where u(i+1) = �i+1(u).

Denote also δ′ = dG(u, x). Observe that ri+1(x) ≤ dG(x, u(i+1)) ≤ δ + δ′, and also (since
x �∈ Balli+1(u)) δ′ = dG(u, x) ≥ δ = ri+1(u). Then,

dG(u, z) + dG(z, x) <
1

3
· ri+1(u) +

1

3
· ri+1(x) ≤

δ

3
+

1

3
· (δ + δ′) ≤ δ′ = dG(u, x).

Hence, dG(u, z) + dG(z, x) < dG(u, x), contradicting the triangle inequality.
We are now left with the case that x ∈ Balli+1(u), but y �∈ Balli+1(u). Then,

dG(y, z) ≤ dG(x, y) < 1
3 · ri+1(x). Also, dG(u, z) ≤ dG(u, v) < 1

3 · ri+1(u). In addition,

ri+1(x) ≤ dG(x, u(i+1)) ≤ dG(x, u) + ri+1(u) ≤ 2δ. (Note that dG(x, u) ≤ δ = ri+1(u), be-
cause x ∈ Balli+1(u).) Hence,

dG(u, z) + dG(z, y) <
1

3
· (ri+1(u) + ri+1(x)) ≤

1

3
· (δ + 2δ) = δ ≤ dG(u, y).

(The last inequality is because, by an assumption, y �∈ Balli+1(u).) This is, however,
again a contradiction to the triangle inequality.

PROOF OF LEMMA 6.2. Recall that (see Coppersmith and Elkin [2005], Lemma 7.5)
each pair (u, v), (x, y) may produce at most two branching events. Hence, next we focus
on providing an upper bound on the number of intersecting pairs of paths �(u, v),�(x, y)
for (u, v), (x, y) ∈ Pi.
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By the previous lemma, for a pair (u, v), (x, y) to create a branching event, there must
be one of these four vertices (without loss of generality we call it u) such that the three
other vertices belong to Balli+1(u). Hence, the number of intersecting pairs as above
is at most (a constant factor multiplied by) the number of quadruples (u, v, x, y) with
v, x, y ∈ Balli+1(u). For a fixed i-landmark u, the number of vertices in its (i + 1)st ball
Balli+1(u(i)) is, whp, O( n

ρi+1
· log n). (This random variable is distributed geometrically

with the parameter p = ρi+1

n
.) Each of the vertices in Balli+1(u) has probability ρi

n
to

belong to Li, independently of other vertices. Hence, by Chernoff ’s bound, whp, there
are ρi

n
· O( n

ρi+1
· log n) = O( ρi

ρi+1
· log n) i-landmarks in Balli+1(u). (We select the constant c

hidden by the O-notation in O( n
ρi+1

· log n) to be sufficiently large. Then, the expectation

is c · ρi

ρi+1
· log n ≥ c · log n. Hence, the Chernoff ’s bound applies with high probability.)

Hence, the number of triples v, x, y of i-landmarks in Balli+1(u) is, whp, O(
ρ3

i

ρ3
i+1

·log3 n).

The number of i-landmarks u is, by the Chernoff ’s bound, whp, O(ρi). Hence, the
number of quadruples as above is, whp, at most

O(ρi) · O

(

ρ3
i

ρ3
i+1

· log3 n

)

= O

(

ρ4
i

ρ3
i+1

· log3 n

)

.

Also, the number of pairs |Pi| is at most the number of i-landmarks (whp, it is O(ρi))
multiplied by the maximum number of i-landmarks in an (i + 1)-level ball Balli+1(u)

(whp, it is O( ρi

ρi+1
· log n)), i.e., |Pi| = O(

ρ2
i

ρi+1
· log n).

Next, we argue that the expected number of quadruples (u, v, x, y) of i-landmarks

such that v, x, y ∈ Balli+1(u) is O(
ρ4

i

ρ3
i+1

) and that IE(|Pi|) = O(
ρ2

i

ρi+1
).

For a fixed vertex u, write X(u) = I({u ∈ Li}) ·Y (u), where Y (u) is the number of triples
of distinct i-landmarks different from u which belong to Balli+1(u), and I({u ∈ Li}) is
the indicator random variable of the event {u ∈ Li}. (Note that the ball is defined even
if u �∈ Li.) Observe that the random variables I({u ∈ Li}) and Y (u) are independent, and
thus,

IE(X(u)) = IE(I({u ∈ Li})) · IE(Y (u)) =
ρi

n
· IE(Y (u)).

Let σ = (v1, v2, . . . , vn−1) be the sequence of vertices ordered by the non-decreasing
distance from u. (They appear in the order in which the Dijkstra algorithm initiated
at u discovers them.) For k = 3, 4, . . . , n − 1, denote by Jk the random variable which
is equal to 0 if vk+1 is not the first vertex in σ which belongs to Li+1. If vk+1 is the first
vertex as above then Jk is equal to the number of triples v j1 , v j2 , v j3 , 1 ≤ j1 < j2 < j3 ≤ k
such that v j1 , v j2 , v j3 ∈ Li. Also, for each quadruple 1 ≤ j1 < j2 < j3 < j4 ≤ n − 1 of
indices, define J( j1, j2, j3, j4) to be the indicator random variable of the event that
v j1 , v j2 , v j3 ∈ Li, v j4 ∈ Li+1, and for each j, 1 ≤ j < j4, the vertex v j is not an (i + 1)-
landmark. Observe that

IE(J( j1, j2, j3, j4)) =
(ρi

n

)3
·
(

1 −
ρi+1

n

) j4−1
·
ρi+1

n
.

Also,

IE(Jk) =
∑

1≤ j1< j2< j3≤k

IE(J( j1, j2, j3, k + 1)) =
(

k

3

)

(ρi

n

)3
·
(

1 −
ρi+1

n

)k

·
ρi+1

n
.
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Note that Y (u) =
∑n−2

k=3 Jk, and so

IE(Y (u)) ≤
∞

∑

k=3

(

k

3

)

(ρi

n

)3
·
(

1 −
ρi+1

n

)k

·
ρi+1

n
.

Denote A = 10 n
ρi+1

. For k ≤ A, since (1 − ρi+1

n
)k = O(1), it follows that

A
∑

k=3

(

k

3

)

(ρi

n

)3
·
(

1 −
ρi+1

n

)k

·
ρi+1

n
= O

(

ρ3
i · ρi+1

n4

)

A
∑

k=3

k3 = O

(

ρ3
i

ρ3
i+1

)

.

Also,

∞
∑

k=A+1

(

k

3

)

(ρi

n

)3
·
(

1 −
ρi+1

n

)k

·
ρi+1

n
≤ O

(

ρ3
i · ρi+1

n4

)

·
∞

∑

k=A+1

k3 ·
(

1 −
ρi+1

n

)k

.

Denote γ = 1 − ρi+1/n. Then,

∞
∑

k=A+1

k3γ k ≤
d3

dγ 3

∞
∑

k=A+1

γ k+3 ≤
d3

dγ 3

1

1 − γ
=

6

(1 − γ )4
= O

(

(

n

ρi+1

)4
)

.

Hence,

∞
∑

k=A+1

(

k

3

)

(ρi

n

)3
·
(

1 −
ρi+1

n

)k

·
ρi+1

n
= O

(

ρ3
i · ρi+1

n4

)

· O

(

(

n

ρi+1

)4
)

= O

(

ρ3
i

ρ3
i+1

)

,

and so IE(Y (u)) = O(
ρ3

i

ρ3
i+1

). Hence, IE(X(u)) = ρi

n
· IE(Y (u)) = O(

ρ4
i

ρ3
i+1

· 1
n
).

Finally, the overall expected number of quadruples (u, v, x, y) of i-landmarks such

that v, x, y ∈ Balli+1(u) is, by linearity of expectation, at most
∑

v∈V IE(X(u)) = O(
ρ4

i

ρ3
i+1

).

A similar argument provides an upper bound of O(
ρ2

i

ρi+1
) on the expected number of

pairs |Pi|. We shortly sketch it below.
For a vertex u, let X′(u) = I({u ∈ Li}) ·Y ′(u), where Y ′(u) is the number of i-landmarks

which belong to Balli+1(u). Clearly, IE(I({u ∈ Li})) = ρi/n, and the two random variables
(I({u ∈ Li}) and Y ′(u)) are independent. For every integer k ≥ 1, let J ′

k be a random
variable which is equal to 0 if vk+1 is not the first vertex in σ which belongs to Li+1.
Otherwise, it is the number of i-landmarks among v1, v2, . . . , vk. For integer j1, j2,
1 ≤ j1 < j2 ≤ n − 1, let J′( j1, j2) be the indicator random variable of the event that
v j1 ∈ Li, v j2 ∈ Li+1, and for every j < j2, it holds that v j �∈ Li+1. Then,

IE(J′( j1, j2)) =
ρi

n
·
(

1 −
ρi+1

n

) j2−1
·
ρi+1

n
.

Hence,

IE(J ′
k) =

∑

1≤ j1≤k

IE(J′( j1, k + 1)) =
ρi · ρi+1

n2
· k ·

(

1 −
ρi+1

n

)k

,

and

IE(Y ′(u)) ≤
∞

∑

k=1

IE(J ′
k) =

ρi · ρi+1

n2
·

∞
∑

k=1

k ·
(

1 −
ρi+1

n

)k

.
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Write A = 10 n
ρi+1

, and

∞
∑

k=1

k
(

1 −
ρi+1

n

)k

=
A

∑

k=1

k
(

1 −
ρi+1

n

)k

+
∑

k>A

k
(

1 −
ρi+1

n

)k

.

Each term of the first sum is O(1), and thus, the first sum is at most O(A2) = O(n2/ρ2
i+1).

The second sum is at most d
dγ

∑

k>A γ k+1 ≤ d
dγ

1
1−γ

= O(n2/ρ2
i+1) as well. Hence,

IE(Y ′(u)) =
ρi · ρi+1

n2
· O

(

n2

ρ2
i+1

)

= O

(

ρi

ρi+1

)

.

Hence, IE(X′(u)) = O(ρ2
i /(ρi+1n)), and by linearity of expectation we conclude that

IE(|Pi|) ≤
∑

u∈V IE(X′(u)) = O(ρ2
i /ρi+1).
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