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A B S T R A C T

Standard MRI methods are often inadequate for identifying mild traumatic brain injury (TBI). Advances in

diffusion tensor imaging now provide potential biomarkers of TBI among white matter fascicles (tracts).

However, it is still unclear which tracts are most pertinent to TBI diagnosis. This study ranked fiber tracts on

their ability to discriminate patients with and without TBI. We acquired diffusion tensor imaging data from

military veterans admitted to a polytrauma clinic (Overall n = 109; Age: M = 47.2, SD= 11.3; Male: 88%; TBI:

67%). TBI diagnosis was based on self-report and neurological examination. Fiber tractography analysis pro-

duced 20 fiber tracts per patient. Each tract yielded four clinically relevant measures (fractional anisotropy,

mean diffusivity, radial diffusivity, and axial diffusivity). We applied receiver operating characteristic (ROC)

analyses to identify the most diagnostic tract for each measure. The analyses produced an optimal cutpoint for

each tract. We then used kappa coefficients to rate the agreement of each cutpoint with the neurologist's di-

agnosis. The tract with the highest kappa was most diagnostic. As a check on the ROC results, we performed a

stepwise logistic regression on each measure using all 20 tracts as predictors. We also bootstrapped the ROC

analyses to compute the 95% confidence intervals for sensitivity, specificity, and the highest kappa coefficients.

The ROC analyses identified two fiber tracts as most diagnostic of TBI: the left cingulum (LCG) and the left

inferior fronto-occipital fasciculus (LIF). Like ROC, logistic regression identified LCG as most predictive for the

FA measure but identified the right anterior thalamic tract (RAT) for the MD, RD, and AD measures. These

findings are potentially relevant to the development of TBI biomarkers. Our methods also demonstrate how ROC

analysis may be used to identify clinically relevant variables in the TBI population.
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1. Introduction

In the U.S. military, the rigors of training and dangers of combat

yield thousands of traumatic brain injuries (TBI) every year (Defense

and Veterans Brain Injury Center, 2012). The Centers for Disease

Control and Prevention (2013) reported that from 2000 to 2011, a total

of 235,046 service members sustained a TBI, approximately 4% of the

armed forces. Traumatic brain injury was also a major source of mor-

bidity during the campaigns in Iraq and Afghanistan (Okie, 2005;

Warden, 2006). Many of these veterans have returned to civilian life

but continue to endure the symptoms and limitations of their injuries.

The military now regards the physical and psychological consequences

of TBI as a major medical challenge (Tanielian et al., 2008).

A compelling need exists to develop objective and reliable methods

of diagnosing TBI and predicting its outcomes. Over the past decade,

diffusion tensor imaging (DTI) has emerged as a promising new tech-

nology with both research and clinical implications (Belanger et al.,

2007; Dong et al., 2004; Hunter et al., 2012). Measurements derived

from DTI sequences assess the integrity of brain tissue by evaluating the

diffusion of water molecules (Mukherjee et al., 2008). Accordingly, DTI

may provide a reliable method of detecting microstructural abnormal-

ities in the brain and thereby aid in the development of TBI biomarkers

(Bigler, 2013; Bigler and Bazarian, 2010).

In this report, we present a method for exploring relationships be-

tween DTI measures and TBI diagnosis. We leveraged a specialized

receiver operating characteristic (ROC) analysis to identify white

matter tracts and DTI thresholds potentially diagnostic of TBI in U.S.

veterans. Our goal was to apply this method in a polytrauma context

and assess its findings in relation to the current literature.

1.1. TBI symptoms and diagnosis

Traumatic brain injury is a disruption in normal brain functioning

caused by an external force (Menon et al., 2010). The Glasgow Coma

Scale (GCS) categorizes TBI cases as mild, moderate, or severe based on

the patient's level of consciousness shortly after injury (Teasdale and

Jennett, 1974). The Mild Traumatic Brain Injury Committee of the

Head Injury Interdisciplinary Special Interest Group of the American

Congress of Rehabilitation Medicine (1993) defines mild TBI (mTBI) as

a head injury with an initial GCS score between 13 and 15 (30 min after

injury) and at least one of the following criteria: an alteration of con-

sciousness (AOC), such as feeling dazed or confused; a loss of con-

sciousness (LOC), 30 min or less; and posttraumatic amnesia no longer

than 24 h after injury.

Diagnosis of TBI has traditionally relied on self-report and neuro-

logical testing (Ruff et al., 2009). Initially, patients may experience

headache, amnesia, nausea, slurred speech, dizziness, incoordination,

and emotional malaise (Kelly and Rosenberg, 1997; Levin et al., 1987).

Most will recover in a matter of days, but some experience symptoms

weeks, even months later (Alexander, 1995). These lingering sequelae

include cognitive, sensory, somatic, and affective components

(Cicerone and Kalmar, 1995; Halbauer et al., 2009). Collectively they

are referred to as post-concussive syndrome (PCS) (Bigler, 2008;

Broshek et al., 2015; Mittenberg and Strauman, 2000).

Scientists continue to debate the nature of PCS (Prigatano and Gale,

2011). It is unclear, for example, whether the etiology is organic or

psychogenic (King, 2003). Most patients will convalesce in one to three

months (Levin et al., 1987). However, a proportion (10–30%) will ex-

perience symptoms longer (Alexander, 1995; Barlow et al., 2010;

Eisenberg et al., 2013; Levin et al., 2013; Ponsford et al., 2011;

Vanderploeg et al., 2007). This chronic form, known as persistent post-

concussion syndrome (PPCS), may trouble some patients indefinitely

(McMillan et al., 2012). The burden imposed by PPCS can be sub-

stantial, straining a person's work, relationships, and daily life. Cur-

rently, there are no biological or behavioral indicators that signal

whether a TBI patient will develop chronic symptoms.

1.2. TBI pathophysiology

Research over the last 20 years has detailed the pathophysiology of

TBI (Blennow et al., 2012; Johnson et al., 2013). Moderate and severe

TBIs can result in visible intracranial abnormalities: hemorrhages, he-

matomas, the laceration of cerebrovascular tissues. However, the vast

majority of TBIs is closed-head injuries and are mild in nature (Bazarian

et al., 2005). Here the damage is microscopic or metabolic. It involves

microstructural damage to white matter axons, ionic imbalances, or

alterations in neural metabolism (Barkhoudarian et al., 2011).

A common result of TBI is stretching or distortion of white matter

axons (Smith and Meaney, 2000). Animal and in vitro models show

traumatized axons trigger a biochemical cascade that alters neuronal

homeostasis (Giza and Hovda, 2014). Affected neurons experience an

abnormal influx of calcium ions into the axon (Wolf et al., 2001)

causing mitochondrial swelling (Cheng et al., 2012), neurofilament

compaction (Siedler et al., 2014), and compromise of microtubules

(Tang-Schomer et al., 2010). This pathology, in turn, impairs ax-

oplasmic transport. Organic materials begin to accumulate along the

axon creating periodic swellings (Christman et al., 1994; Povlishock

and Becker, 1985; Smith et al., 1999). These varicosities signal a

breakdown in cellular structure (Pettus and Povlishock, 1996;

Povlishock and Pettus, 1996; Saatman et al., 2003). Axons may even-

tually disconnect from the cell body and deteriorate, a process known as

Wallerian degeneration (Wang et al., 2012).

When widely distributed throughout the brain, this pathology is

called diffuse axonal injury (DAI) (Johnson et al., 2013; Smith et al.,

2003). Researchers have observed evidence of DAI, post-mortem, for

over half a century (Adams et al., 1982; Oppenheimer, 1968; Peerless

and Rewcastle, 1967; Strich, 1956). A more complex issue is the con-

dition's effect on TBI survivors. One hypothesis is DAI impairs com-

munication in large-scale neural networks (Irimia et al., 2012; Sharp

et al., 2014). This disconnection may underlie the cognitive and af-

fective symptoms patients experience post-injury. However, with lim-

ited evidence, this is still conjecture. Currently, the only objective

biomarkers of DAI are histopathological, but recent advances in neu-

roimaging hold promise to assess DAI in vivo.

1.3. Diffusion tensor imaging (DTI) analysis

In many cases, the physical damage from mTBI is not detectable

using standard, clinical neuroimaging (Bigler and Snyder, 1995;

Hughes et al., 2004; Jeret et al., 1993; Lee et al., 2008; Mittl et al.,

1994; for a review see Provenzale, 2010). However, DTI has shown

potential for identifying microstructural damage in mTBI patients

(Bigler, 2013; Bigler and Bazarian, 2010). DTI capitalizes on the nature

of water's diffusion to yield measures of tissue integrity (Basser et al.,

1994a, 1994b). White matter bundles are composed of axons, densely

packed and collinear in organization. When net diffusion occurs along

the fibers' axis of orientation, it is said to be anisotropic. However, da-

mage to axonal membranes may increase diffusion in all directions,

making it more isotropic. By evaluating these properties, DTI provides

information on the health and architecture of brain white matter tracts.

All DTI measures are derived from the tensor, a mathematical model

that describes the direction and magnitude of diffusion in MRI voxels

(Le Bihan et al., 2001; Pierpaoli et al., 1996). Axial diffusivity (AD) is

the eigenvalue (magnitude) of the tensor's principal axis (λ1), which is

parallel to fiber orientation. Thus, AD describes the rate of diffusion

along a fiber tract's main pathway. Radial diffusivity (RD), in contrast,

describes diffusion in the transverse or perpendicular directions:

(λ2 + λ3 / 2). Combining these eigenvalues yields other summary

measures. Mean diffusivity (MD) describes the total amount of diffusion

in a voxel by averaging the parallel (AD) and transverse (RD) eigen-

values: (λ1 + λ2 + λ3 / 3). Fractional anisotropy (FA) is the normal-

ized variance of these eigenvalues: √ 3 / 2 ∙ √

[(λ1 − D)2 + (λ2 − D)2 + (λ3 − D)2] / (λ2
1 + λ2

2 + λ2
3). It isolates the
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proportion of diffusion that is anisotropic (Basser and Pierpaoli, 1996).

These measures are particularly informative when mapped to neu-

roanatomy. Tractography analysis can localize DTI measures to specific

fiber groups. It digitally traces fascicle pathways by identifying the

direction of net diffusion, voxel-by-voxel (Basser et al., 2000). The

agreement between DTI tractography and white matter structure is not

perfect and may suffer from inherent limitations (Thomas et al., 2014).

In many cases fibers cross, branch, and touch in ways that produce

artefactual and/or incomplete reconstructions (Catani, 2007). Still,

current methods have clinical utility in evaluating large-scale fiber

bundles (Yamada et al., 2009). Tractography has demonstrated poten-

tial in aiding neurosurgical planning (Fernandez-Miranda et al., 2012),

the assessment of stroke (Nelles et al., 2008; Yamada et al., 2003), and

tracking of neurodegenerative diseases (Bozzali et al., 2005; Matsuo

et al., 2008; Taoka et al., 2006).

Over the past decade, a growing scientific literature has used DTI to

examine white matter pathology in TBI patients (for reviews see Eierud

et al., 2014; Gardner et al., 2012; Hulkower et al., 2013; Kou et al.,

2010; Shenton et al., 2012). Among chronic patients, research con-

sistently shows a reduction in FA and/or increase in MD relative to

controls (Cubon et al., 2011; Davenport et al., 2012; Geary et al., 2010;

Grossman et al., 2012; Inglese et al., 2005; Kraus et al., 2007; Lipton

et al., 2008; Little et al., 2010; Lo et al., 2009; Niogi et al., 2008a,

2008b; Rutgers et al., 2008a, 2008b; Salmond et al., 2006). Research

also documents a list of commonly affected tracts including the corpus

callosum, cingulum bundle, cortico-spinal tract, superior and inferior

longitudinal fasciculus, internal capsule, and the corona radiata

(Hulkower et al., 2013; Shenton et al., 2012).

As DTI analysis becomes more refined, it may contribute to the

development of TBI biomarkers. However, foundational information is

currently lacking. What DTI measures best identify patients with TBI?

What brain regions yield pertinent clinical information? Can certain

fiber tracts or groups of tracts be linked to specific symptoms? An es-

tablished technique in medical diagnostics may provide preliminary

answers.

1.4. Receiver operating characteristic (ROC) analysis

The receiver operating characteristic (ROC) is a signal detection

technique that evaluates the accuracy of a binary classifier on an out-

come of interest (Macmillan and Creelman, 2005). Initially developed

in the context of radar detection, ROC has been applied in fields as

diverse as psychophysics, weather forecasting, and aptitude testing

(Swets, 1988). The ROC methodology has also become central to re-

search on medical decision making (Kraemer, 1992; Metz, 1986; Zweig

and Campbell, 1993). For example, an exploratory ROC technique has

recently proven useful in identifying the characteristics of clinical

subgroups at risk for certain outcomes (Fairchild et al., 2013; Hoblyn

et al., 2006; Kiernan et al., 2001; Kinoshita et al., 2012; Noda et al.,

2006; O'Hara et al., 2002a; Periyakoil et al., 2005; Thanassi et al., 2012;

Tinklenberg et al., 2015; Yesavage et al., 2003). The method has re-

vealed predictors of rapid cognitive decline in Alzheimer's disease pa-

tients (O'Hara et al., 2002b), the onset of depression in the seriously ill

(Periyakoil et al., 2012), and the decline of flight simulator perfor-

mance in aging pilots (Yesavage et al., 2011).

The advent of extensive patient databases and personalized inter-

ventions will likely make ROC just as applicable in the future

(Alemayehu and Zou, 2012). New approaches in precision medicine

profile patients based on their risk of a disease, potential for recovery,

and interaction with treatments (Mirnezami et al., 2012). The idea is to

acknowledge heterogeneity in patient populations and tailor treatments

accordingly. The bedrock of this approach is a data-driven taxonomy.

Exploratory ROC may prove invaluable in this regard. It has the po-

tential to make connections between test results, patient profiles, and

likely outcomes. Thus, in a complex domain like brain injury, ROC may

distil and identify crucial information.

1.5. Current study

We submit there is merit in using ROC to explore the diagnostic

accuracy of DTI measures. While cross-sectional research has identified

group differences between TBI cases and controls, these findings have

little to no clinical significance. They do not inform the diagnosis and/

or classification of individual patients. There is a need then to apply

methods in clinical diagnostics to DTI data. Doing so may identify

measures, thresholds, and brain regions clinically relevant to the di-

agnosis and care of TBI patients.

In the current study, we applied ROC analysis to DTI measures. We

acquired DTI scans from a sample of veterans evaluated at War Related

Illness and Injury Study Center (WRIISC). The patients were diagnosed

with or without TBI based on VA/DoD guidelines. DTI pre-processing

and tractography analysis generated a set of twenty major fiber tracts

for each patient. Standard measures (FA, MD, RD, and AD) were ex-

tracted from these tracts and used as predictors in a set of exploratory

ROC analyses.

2. Material and methods

2.1. Patients

Patients were assessed at the War Related Illness and Injury Study

Center (WRIISC-CA), a VA second-level clinic dedicated to performing

comprehensive evaluations on veterans with post-deployment health

concerns (Lange et al., 2013). Funded by the Office of Public Health,

WRIISC sites (East Orange, NJ, Washington, DC, and Palo Alto, CA)

accept veteran patients with complex medical and behavioral condi-

tions including TBI and PTSD. Stanford University's IRB committee and

the VA Palo Alto Health Care System's (VAPAHCS) research adminis-

tration approved the study. Patient consent was obtained according to

the Declaration of Helsinki.

We recruited 109 veteran patients (Age: M = 47.2, SD = 11.3;

Male: 88%) from the WRIISC clinic at VAPAHCS. Ninety-seven of these

patients were previously deployed (Operation Iraqi Freedom = 30,

Operation Enduring Freedom = 13, Somalia = 4, Bosnia = 2, Gulf

War = 56, Grenada = 1, Vietnam = 15, Korea = 2, and Other = 2).

The sum of 125 is due to multiple deployments. All patients received a

comprehensive physical, neurological, neuropsychological, and psy-

chiatric evaluation. Exclusion criteria included schizophrenia, bipolar

and psychotic disorders, somatoform disorders, and a history of neu-

rological disorder (other than PTSD) not caused or precipitated by

traumatic injury. Seventy-three of the patients were diagnosed with

TBI. Among the TBI patients, 15 (21%) individuals were diagnosed with

only TBI; 57 (78%) had both TBI and PTSD. One TBI patient lacked a

PTSD diagnosis. Thirty-six of the patients were not diagnosed with TBI.

Among the non-TBI patients, 21 (58%) were diagnosed with PTSD, 15

(42%) without. Table 1 summarizes demographics and clinical in-

formation for the patients.

Sixty-three (86%) of the TBI cases were classified as mild, 10 (14%)

as moderate. There were no severe cases. Most TBI patients reported

some loss of consciousness (LOC). Forty-four (60%) had an LOC with a

duration under 24 h. Eighteen (25%) reported no LOC. Data was not

available on 11 (15%) patients. Forty-four (60%) of the TBI patients

reported injuries due to impact, 9 (12%) from blast exposure, and 20

(27%) from a combination of impact and blast. An exact time since

injury was not available given our reliance on self-report data. We do

know patients deployed before OEF/OIF sustained their injuries several

years ago. In addition, the process of primary care, referral, and sche-

duling means even OEF/OIF patients were months, if not years, post-

injury when admitted to WRIISC.

Finally, we compared age, years of education, the number of diag-

noses, and the number of medications between the TBI and non-TBI

groups. The TBI (M= 18.6, SD= 9.7) patients had significantly more

diagnoses than the non-TBI (M= 13.1, SD = 8.1) patients, t(98)
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= −2.74, p= 0.007. Age, years of education, and the number of

medications were not significantly different between the groups.

2.2. Patient diagnosis

Board-certified neurologists and clinical psychologists determined

diagnoses for the TBI and PTSD patients, respectively. Physicians based

the TBI diagnosis on standards from the American Congress of

Rehabilitation Medicine Head Injury Interdisciplinary Special Interest

Group. WRIISC neurologists conducted a structured interview for each

patient. The questions evaluated the incidence and circumstances of TBI

across the lifespan, not just during military service. Patients were

questioned on persistent symptoms, including headaches, paralysis,

dizziness, vertigo, fatigue, mobility, sleep disturbances, as well as

cognitive and emotional problems. Physical examinations assessed

muscle tone, reflexes, gait, spasticity, sensory function, and cerebellar

signs. The clinical team met and evaluated each case, discussing the

interview, military records, physical examination, and neuroimaging

(CT, PET, and structural MRI). For most patients, CT and structural MRI

images were negative. A prior review of WRIISC records found that

approximately 10% of scans showed an indication of brain injury (e.g.,

hemorrhage, edema, ischemia, microbleeds). Accordingly, self-report

and clinical observations were the main determinants of TBI diagnosis

and severity.

Psychologists used the Clinician-Administered PTSD Scale (CAPS)

(Blake et al., 1995) with guidelines set forth by the International So-

ciety for Traumatic Stress Studies to diagnose PTSD. Through a semi-

structured interview the CAPS assesses behavioral features of PTSD as

defined by the DSM-IV (American Psychiatric Association, 2000). The

interviewer identified a traumatic event or events to serve as a basis for

inquiry then assessed PTSD symptoms using 30 standard questions and

probes. The questions targeted 5 PTSD criteria: re-experiencing,

avoidance of stimuli, persistent arousal, duration of symptoms, and

impact on social and professional life. Questions specifically evaluated

current symptoms. The interviewer rated all responses to initial and

follow-up questions then made diagnostic and severity determinations

based on established scoring rules and observed patient behavior. The

CAPS took between 30 and 60 min to administer.

2.3. MRI acquisition

Neuroimaging was conducted at VAPAHCS. We acquired all MRI

data on a 3 T Discovery MR750 (GE Medical Systems, Milwaukee, WI)

with an eight channel, GE head coil. Each neuroimaging session lasted

approximately 40 min and included a DTI sequence and several struc-

tural scans (T1 and T2-weighted, SWI, FLAIR). The current analyses

exclude the structural scans. We acquired the DTI data using a single-

shot, spin-echo, echo-planar sequence with 50 axial slices (TE = 80 ms;

TR = 6600 ms; FOV = 240 mm; slice thickness = 2.5 mm, no gap;

acquisition matrix = 96 × 96; number of excitations = 1). Diffusion

weighting was applied along 30 non-collinear directions (b= 1000 s/

mm2). The sequence had 5 non-diffusion (b= 0) volumes. We collected

two DTI acquisitions run at NEX = 1 and combined them in post-pro-

cessing to improve the signal-to-noise ratio. The reconstructed voxel

dimensions were 2.5 × 2.5 × 2.5 mm.

2.4. MRI analysis

2.4.1. Preprocessing

We analyzed DTI data using mrDiffusion, open-source software

developed by the Vista Laboratory, Stanford University (http://white.

stanford.edu/software). Images from each patient's two DTI sequences

were concatenated, and the resulting file entered a preprocessing pi-

peline consisting of bias correction (motion, eddy current, and EPI

distortion), non-linear registration to the Montreal Neurological

Institute (MNI) template, resampling, and fitting of the tensor model.

We subsequently examined head motion in the TBI and non-TBI pa-

tients. The average motion in both groups was less than one voxel (TBI:

x = 0.91, y = 0.56, z = 0.66; non-TBI: x = 0.79, y = 0.52, z = 0.52)

or< 2.5 mm.

Fiber tracking was carried out using a customized version of MRtrix

software (Tournier et al., 2012). MRtrix is an open-source suite of tools

for analysis of diffusion MRI data. Its tractography algorithms use

constrained spherical deconvolution and probabilistic streamline

tracking to produce fibers robust against crossing fiber effects. We in-

corporated MRtrix in our processing stream using procedures described

in Pestilli et al. (2014). Fiber tracking with MRtrix produced a whole-

brain tractography for each patient.

2.4.2. Tractography

The whole-brain tractography is a representation of the brain's

white matter connectome. In these models, the direction of diffusion is

tracked voxel-to-voxel, producing virtual “fibers” that connect brain

regions. These fibers have a coherent organization and may be grouped

together into large-scale fascicles or tracts. A way of doing this is to

define two or more regions of interest (ROIs) in specific parts of the

brain then identify all fibers that pass through these areas (Wakana

et al., 2004). Segregating these fibers as a collective yields tracts with

good agreement to gross level neuroanatomy (Wakana et al., 2007). We

employed the open-source software Automated Fiber Quantification

(AFQ) to segment patient tractographies (http://github.com/jyeatman/

AFQ). This automated pipeline uses a two-ROI approach and produces

tracts highly correlated with manual segmentation (Yeatman et al.,

2012).

For automated segmentation, AFQ used pre-defined ROIs from a DTI

data set registered to the MNI template. The AFQ developers drew these

ROIs based on prescriptions from Wakana et al. (2007). We mapped the

whole-brain tractography of each patient onto this atlas using a non-

linear version of the transformation described in Zhang et al. (2008).

Unique ROI pairs served as waypoints for each tract of interest. AFQ

isolated individual tracts by subtracting all fibers that failed to traverse

both ROIs.

The pipeline further refined tracts through a two-step cleaning

process. (1) AFQ made voxel-wise comparisons between fiber trajec-

tories and tract probability maps. Hua et al. (2008) manually

Table 1

Patient demographics and clinical characteristics.

With TBI

(n= 73)

Without TBI

(n= 36)

Diagnosis: TBI + PTSD 57 (78%) 0

TBI only 15 (21%) 0

PTSD only 0 21 (58%)

Neither TBI nor PTSD 0 15 (42%)

Symptoms: Cognitive 43 (61%) 13 (42%)

Pain 68 (97%) 29 (94%)

Fatigue 30 (43%) 13 (42%)

Sleep 60 (86%) 26 (84%)

Pulmonary 19 (27%) 8 (26%)

Dermatological 25 (36%) 9 (29%)

Gastrointestinal 44 (63%) 18 (58%)

Other 70 (100%) 29 (94%)

Total, M (SD) 18.6 (9.7) 13.1 (8.1)

Medications, M (SD) 9.8 (7.4) 8.3 (6.9)

Age in years, M (SD) 47.7 (12.0) 46.3 (9.7)

Years of education, M (SD) 14.6 (2.5) 13.7 (2.6)

Men, n (%) 63 (86%) 33 (92%)

Note. Diagnosis: One participant with TBI lacked a PTSD diagnosis. Therefore, TBI only

and TBI + PTSD percentages from this column do not add to 100%. Symptoms: Patients

had multiple symptoms. Accordingly, column percentages add to over 100%. Symptom

data was not available for 3 patients with TBI, 5 patients without TBI.
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segmented and coregistered tracts from a group of healthy adults. For

every tract, they calculated a probability map depicting its likely tra-

jectory. Applying these maps to the current data, AFQ culled fibers that

passed through voxels with low probability values. (2) AFQ also re-

moved fiber outliers in relation to each tract's core. Tract cores were

generated by dividing the length of each tract into 90 equidistant sec-

tions then calculating the mean of the fibers' x, y, and z coordinates for

every section. The Mahalanobis distance of a fiber from the section's

core was interpreted as a z-score on a 3-dimensional, Gaussian dis-

tribution. AFQ removed fibers> 3 standard deviations from the core

mean. This process was iterated across sections until no outliers re-

mained.

In a final check, visual inspection and manual editing by trained

staff removed any remaining aberrant fibers. The segmentation and

cleaning process rendered 20 fiber tracts for each patient (Fig. 1): the

left and right anterior thalamic radiations (LAT and RAT), left and right

cingulum (LCG and RCG), left and right cingulum-hippocampus (LCH

and RCH), left and right cortico-spinal tract (LCS and RCS), left and

right inferior fronto-occipital fasciculus (LIF and RIF), left and right

inferior longitudinal fasciculus (LIL and RIL), left and right superior

longitudinal fasciculus (LSL and RSL), left and right superior long-

itudinal fasciculus-temporal (LST and RST), left and right uncinate

fasciculus (LUN and RUN), the genu (GN), and splenium (SP). More

information on AFQ's procedures for tract segmentation and editing can

be found in Yeatman et al. (2012).

2.4.3. DTI quantification

In-house, custom MATLAB code quantified fiber diffusion properties

for every tract. These measures include fractional anisotropy (FA),

mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity

(AD). Each tract was previously divided into 90 sections. The program

calculated the weighted average of each measure for each section. An

individual fiber's contribution to this value was determined by calcu-

lating its Mahalanobis distance from the core tract (Yeatman et al.,

2012). Thus fibers farther away from the core were weighted less in the

averages. This procedure reduced the influence of partial volume ef-

fects, where adjacent tissues (gray matter, cerebral spinal fluid, other

white matter) bias tract diffusion measures. Finally, a representative

value for each tract was determined by calculating the arithmetic mean

of all its sections.

2.5. Statistical analysis

We conducted a three-part statistical analysis on the data. (1)

Exploratory ROCs identified tracts predictive of the TBI diagnosis for

each measure (FA, MD, RD, and AD). (2) We implemented a resampling

procedure on these ROCs, generating confidence intervals around their

outputs. (3) We then applied a stepwise logistic regression to each

measure with the purpose of verifying the ROC-identified tracts.

2.5.1. Receiver operating characteristic analysis

We used publicly available software to conduct the ROC analyses

(ROC version 4.22; http://www.stanford.edu/~yesavage/ROC.html).

The software was specially designed to evaluate clinical databases for

predictive variables. This application of ROC is non-parametric and

non-hypothesis testing. It accepts any type of data (dichotomous, or-

dinal, and continuous) and has no limit on the number of variables

assessed. It is well-suited to hypothesis generation in scenarios where

the diagnosis might be influenced by many variables and data that are

characterized by collinearity and interaction effects. We ran a separate

ROC for each DTI measure (FA, MD, RD, and AD). Patient age and the

20 fiber tracts were the independent variables or predictors. The de-

pendent or outcome variable for each analysis was TBI diagnosis.

The ROC searches all predictor variables and selects the optimal

classifier for a data set. This predictor has the best agreement with the

outcome variable. The optimal classifier is determined by calculation of

Cohen's kappa (Cohen, 1960), a measure of inter-rater agreement for

categorical items. The ROC program ranks all variables according to the

size of their kappa coefficients and selects the variable with the largest

as the optimal classifier. The selection must also demonstrate a sig-

nificant chi-square statistic (p < 0.05), indicating a relationship be-

tween the predictor and outcome variables.

The ROC software addresses two types of data in its calculations.

When all variables in the data set are binary (e.g., male/female), it

simply calculates the kappa coefficients and selects the largest among

them. When one or more variables are ordinal or continuous (e.g., age;

severity), identifying the optimal classifier involves two steps. (1) The

program first determines data cutpoints. For each variable it reorders

the values with respect to magnitude then divides the data at a point

that produces the best agreement with the outcome variable. (2) The

program then compares all these dichotomized variables and de-

termines which one has the largest kappa coefficient.

Once an optimal classifier is selected, the ROC program divides the

data according to its prescribed grouping. The analysis then repeats and

kappa coefficients are calculated and ranked for the two new groups. If

another classifier is identified in either group, they will divide again.

The algorithm will continue this way until a sub-group is too small for

further analysis (n < 20), the chi-square is not significant (p > 0.05),

or there are no further variables to select. The ROC essentially performs

a type of recursive partitioning, dividing the sample into smaller and

Fig. 1. The twenty major fiber tracts included as

variables in the ROC analysis. The left hemi-

sphere fiber tracts from one patient are depicted

in normalized, MNI space. Fiber tracts with right

hemisphere homologs are notated “L/R”. Two

callosal fiber groups, the genu and splenium,

span both hemispheres.

K.L. Main et al. NeuroImage: Clinical 16 (2017) 1–16

5



smaller subsets as long as it can identify a classifier and stopping rules

do not occur. The end result is a decision tree that arranges classifiers in

a hierarchy of diagnostic importance. The program also produces a

number of values critical to inter-rater assessment. For each classifier,

these include its kappa coefficient, sensitivity, specificity, and cutpoint

(if applicable).

2.5.2. Resampling analysis

To test the accuracy of the initial ROCs, we addressed whether the

tracts are frequently identified as optimal classifiers when the analysis

is iterated. To do so, we implemented a three-step resampling proce-

dure using custom code in SAS (http://www.sas.com). This analysis

also generated confidence intervals for the tract cutpoints, sensitivity,

specificity, and kappa coefficients.

(1) For each DTI measure, we resampled with replacement 1000

times from the original data and performed a ROC analysis on each

sample. We tallied the number of times each tract was identified as the

optimal classifier. Tracts identified over 100 times were kept for further

analysis.

(2) To assess collinearity, we performed Spearman correlations and

a principal component (PCA) analysis on the tracts from Step 1. We first

determined whether any of the tracts are highly correlated with the

initial optimal classifiers. Tracts with Spearman correlation coeffi-

cients> 0.8 were discarded. The rest of the tracts were evaluated by

PCA. We kept for further analysis only those tracts that loaded onto the

first principal component.

(3) Using the remaining variables from Step 2, we re-ran the re-

sampling analysis on each measure. As before, the procedure yielded

1000 unique samples with a ROC on each. From these results, we de-

termined our final set of classifiers (reported in the Results). For each

measure, we selected the tract identified as the optimal classifier in the

majority (> 500) of samples. Once the optimal classifiers were se-

lected, we calculated 95% confidence intervals (CI) for their cutpoints,

sensitivity, specificity, and kappa coefficients (Table 2). To do this, we

aggregated the results for each test statistic into sampling distributions

and selected the 97.5th and 2.5th centiles as upper and lower bounds,

respectively. Thus, for each sampling distribution, the range of values

representing the confidence interval has a 95% chance of containing the

population parameter.

2.5.3. Stepwise logistic regression

As a confirmation of the ROC findings, we applied stepwise logistic

regression to each of the DTI measures. Stepwise logistic regression is

appropriate here given the large number of predictor variables and

exploratory nature of analyses. Each regression involved the entire data

set (n = 109). The 20 tracts served as predictors for each of the four

analyses. TBI diagnosis was the dependent variable.

3. Results

3.1. Initial exploratory ROC

Our initial ROC analyses identified two primary tracts of interest.

The left cingulum (LCG) was the optimal classifier for the FA measure.

The left inferior fronto-occipital fasciculus (LIF) was optimal classifier

for the MD, RD, and AD measures. In addition, the MD ROC yielded a

secondary classifier in the left superior longitudinal fasciculus – tem-

poral (LST). For the other ROCs, stopping rules halted the analysis after

the first division.

3.2. Resampling and identification of optimal classifiers

In Step 1 of the resampling analysis, we selected tracts identified as

optimal classifiers over 100 times. These included LCG and RIL for the

FA measure; LIF and RCG for the MD measure; LIF, LAT, RAT, and RIL

for the RD measure; and LIF, LCG, and RCG for the AD measure. In Step

2, we found that none of the newly identified tracts (i.e., RIL, RCG, LAT,

RAT, RIL, and RCG) were highly correlated with the optimal classifiers

(LCG, LIF). Principal components analysis for each measure yielded

only one factor with an eigenvalue above Kaiser's criterion (λ > 1). All

tracts clustered onto the first principal component. Finally, in Step 3,

the resampling analysis demonstrated that the majority tracts (i.e.,

identified as optimal classifiers> 500 times) were the same as those

identified in the initial ROCs: LCG for the FA measure; LIF for the MD,

RD, and AD measures.

3.3. Fractional anisotropy (FA)

The ROC analysis of the FA data demonstrated that the left cin-

gulum bundle (LCG) has the highest significant kappa (κ= 0.264,

χ2 = 7.60, p < 0.01). In relation to TBI diagnosis, LCG's sensitivity is

74%. Specificity is 52.8% (Table 2, Fig. 2a). The optimal cut point for

LCG is a mean FA value of 0.433. Of the 71 patients with FA< 0.433,

54 (76.1%) have TBI. Of the 38 patients with FA greater than or equal

to 0.433, 19 (50%) have TBI (Fig. 3a). A logistic regression analysis on

the whole sample confirmed that LCG significantly predicts TBI status

(χ2 = 6.62, p < 0.05 with df = 1; Table 3).

Table 2

Receiver operating characteristic (ROC) results.

Measure Tract Cutpt. Sens. Spec. κ χ2 p

FA LCG 0.433 74.0% 52.8% 0.264 7.60 < 0.01

(0.397–0.452) (44.0–89.5%) (37.1–89.7%) (0.212–0.493)

MD* LIF 0.837 68.5% 61.1% 0.278 8.72 < 0.01

(0.820–0.861) (54.8–88.0%) (35.3–80.6%) (0.139–0.478)

RD LIF 0.613 74.0% 55.6% 0.289 9.15 < 0.01

(0.610–0.647) (52.1–83.8%) (41.9–78.1%) (0.140–0.476)

AD LIF 1.272 72.6% 52.8% 0.249 6.76 < 0.01

(1.272–1.314) (53.8–84.8%) (44.7–83.9%) (0.182–0.478)

*ROC secondary cutpoint (where LIF is< 0.837, n = 45)

Measure Tract Cutpt. Sens. Spec. κ χ2 p

MD LST 0.744 65.2% 72.7% 0.379 6.51 < 0.05

Note. Cutpt, cutpoint; Sens, sensitivity; Spec, specificity; κ, Cohen's kappa, FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity; AD, axial diffusivity; LCG, left cingulum

tract; LIF, Left Inferior Fronto-Occipital Fasciculus; Values in parentheses represent the lower and upper bounds (i.e., Lower – Upper) of the 95% CI.
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3.4. Mean diffusivity (MD)

The ROC of the MD data found that the left inferior fronto-occipital

fasciculus (LIF) has the highest significant kappa (κ = 0.278,

χ2 = 8.72, p < 0.01). LIF sensitivity is 68.5%. Specificity is 61.1%

(Table 2, Fig. 2b). The optimal cutpoint for LIF is a mean MD value of

0.837. Of the 64 patients with MD greater than or equal to 0.837, 50

(78.1%) have TBI. Of the 45 patients with MD< 0.837, 23 (51.1%)

have TBI (Fig. 3b).

In addition, the ROC identified another classifier, the left superior

longitudinal fasciculus – temporal (LST), among the 45 cases with MD

values< 0.837 (κ= 0.379, χ2 = 6.51, p < 0.05). LST sensitivity is

65.2%, specificity 72.7% (Table 2, Fig. 2b). The optimal cutpoint for

LST is a mean MD value of 0.744. Of the 24 patients with MD greater

than or equal to 0.744, 8 (33.3%) have TBI. Of the 21 patients with

MD< 0.744, 15 (71.4%) have TBI (Fig. 3b). Logistic regression ana-

lysis on the whole sample did not confirm either result but identified

another tract, the right anterior thalamic (RAT), as most predictive

(χ2 = 5.44, p < 0.05 with df = 1; Table 3).

3.5. Radial diffusivity (RD)

The ROC of the RD data demonstrated that the left inferior fronto-

occipital fasciculus (LIF) has the highest significant kappa (κ = 0.289;

χ2 = 9.15, p < 0.01). Tract sensitivity is 74%, specificity 55.6%

(Table 2, Fig. 2c). The optimal cutpoint for LIF is a mean RD value of

0.613. Of the 70 patients with RD greater than or equal to 0.613, 54

(77.1%) have TBI. Of the 39 patients with RD< 0.613, 19 (48.7%)

have TBI (Fig. 3c). Logistic regression analysis on the whole sample did

not confirm the ROC but identified RAT as the most predictive tract

(χ2 = 5.68, p < 0.05 with df = 1; Table 3).

3.6. Axial diffusivity (AD)

The ROC of the AD data showed that the left inferior fronto-occipital

fasciculus (LIF) has the highest significant kappa: (κ= 0.249,

χ2 = 6.76, p < 0.01). Tract sensitivity is 72.6%, specificity 52.8%

(Table 2, Fig. 2d). The optimal cutpoint for LIF is a mean AD value of

1.272. Of the 70 subjects with AD greater than or equal to 1.272, 53

(75.7%) have TBI. Of the 39 patients with AD< 1.272, 20 (51.3%)

have TBI (Fig. 3d). A logistic regression analysis on the whole sample

did not confirm the ROC but identified RAT as the most predictive tract:

(χ2 = 3.86, p < 0.05 with df = 1; Table 3).

4. Discussion

We used exploratory ROC analysis to assess the agreement between

DTI measures and TBI diagnosis. Our procedure involved ROCs

Fig. 2. ROC graphs for each of the four metrics: a.

FA, fractional anisotropy; b. MD, mean diffusivity;

c. RD, radial diffusivity; d. AD, axial diffusivity.

Green circles represent cutpoints identified by the

ROC analysis. The bold red lines represent ROC

curves for the logistic regression score vs the di-

agnosis. To construct these curves, we took every

possible cutpoint from the logistic regression

scores, computed their sensitivity/specificity va-

lues, and located them on the graph. The pro-

portion of patients with TBI (67%) is represented

by the intersection of the dotted Diagnosis Line

and the bold Random ROC line.

K.L. Main et al. NeuroImage: Clinical 16 (2017) 1–16

7



performed on four DTI measures. They identified the left cingulum

bundle (LCG) as the optimal classifier for the FA measure and the left

inferior fronto-occipital fasciculus (LIF) for the MD, RD, and AD mea-

sures. We obtained these results from both the initial ROCs and the

resampling analyses. For each measure, we calculated 95% CIs around

the optimal classifier's sensitivity, specificity, cutpoint, and kappa

coefficient. Finally, we employed stepwise logistic regression to in-

dependently verify these tracts as predictors. The regression results

showed that LCG was the best predictor for the FA measure. However,

RAT, as opposed to LIF, was the best predictor for the MD, RD, and AD

measures.

4.1. Optimal classifiers

The cingulum runs longitudinally above the corpus callosum,

connecting the frontal lobe and the parahippocampal gyrus of the

temporal lobe (Wakana et al., 2004). The inferior fronto-occipital fas-

ciculus innervates the occipital cortex above the optic radiations and

runs laterally and inferiorly to the anterior tip of the temporal lobe

(Wakana et al., 2004). Both tracts are identified in cross-sectional DTI

studies comparing TBI patients with the neurologically healthy. A re-

cent review by Hulkower et al. (2013) found that 23 out of 100 DTI

papers report a compromised cingulum in TBI patients, 12 report the

inferior fronto-occipital fasciculus.

Pathology in the cingulum and inferior fronto-occipital fasciculus is

associated with deficits in memory and executive function. Kraus et al.

(2007) examined DTI measures and neuropsychological performance in

patients with chronic TBI. They found FA from the cingulum and in-

ferior fronto-occipital fasciculus are negatively correlated with memory

and executive domain scores. More recently, studies on U.S. veterans

with mild TBI report FA from the cingulum is associated with impaired

executive function (Sorg et al., 2014) and is negatively correlated with

processing speed (Sorg et al., 2015). Among brain damaged patients

(i.e., stroke and/or TBI), FA from the inferior fronto-occipital fasciculus

is correlated with performance on semantic tasks (Han et al., 2013). In

sum, the tracts identified by our ROCs are frequently identified in the

DTI literature and are associated with known TBI pathology.

Confirmation of these results with stepwise logistic regression is

mixed. For the FA measure, the regression analysis found that LCG is

most predictive of TBI diagnosis. However, the same analysis identified

the right anterior thalamic tract (RAT) for the MD, RD, and AD mea-

sures. These results differ from those of the ROC, which found LIF was

the optimal classifier. There could be many reasons for this discrepancy.

Our ROC analysis was limited to only one division. With more parti-

cipants, RAT could emerge as a classifier at later points in the decision

tree. Another consideration is that the best predictor from the stepwise

regression must satisfy its linear parameters. The ROC analysis is not

constrained in this way.

However, our regression results are not unique to the TBI/DTI lit-

erature. Other DTI studies have demonstrated abnormal FA, MD, and

RD values in the anterior thalamic tracts of TBI patients (Dennis et al.,

2015; Kinnunen et al., 2011). In addition, anterior thalamic measures

account for variance on neuropsychological assessments of memory,

attention, semantic processing, and executive function (Han et al.,

2013; Little et al., 2010).

It is possible then the ROC and regression analyses identified two

different, but clinically relevant tracts. Inherent differences in the

analyses may be the cause. A study by Kiernan et al. (2001) reports one

such discrepancy. They used ROC and logistic regression to identify

high-risk individuals in a patient population. While the analyses iden-

tified similar predictors, they did not classify cases in the same way. The

ROC grouped patients with homogenous outcomes and homogeneous

Fig. 3. Charts depicting raw numbers and percentages for the ROC analyses: a. FA,

fractional anisotropy; b. MD, mean diffusivity; c. RD, radial diffusivity; d. AD, axial dif-

fusivity. The central boxes represent the tracts with the highest significant kappa values:

LCG, left cingulum; LIF, left inferior fronto-occipital fasciculus. Lateral boxes represent

sample subsets where kappa values are either above (≥) or below (<) the cutpoint.

Lateral boxes also contain the number and percentage of cases diagnosed with TBI.

Percentages are rounded to whole numbers.

Table 3

Logistic regression table of all measures.

Measure Parameter df Parameter

estimate

Standard

error

Wald χ2 Pr > χ2

FA Intercept 1 5.86 2.03 8.3 0.004

LCG 1 −12.41 4.82 6.62 0.010

MD Intercept 1 −9.62 4.4 4.78 0.028

RAT 1 12.29 5.27 5.44 0.019

RD Intercept 1 −7.88 3.58 4.85 0.027

RAT 1 13.26 5.56 5.68 0.017

AD Intercept 1 −7.83 4.33 3.27 0.070

RAT 1 6.96 3.54 3.86 0.049

Note. FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity; AD, axial

diffusivity; LCG, left cingulum tract; RAT, right anterior thalamic tract.
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predictors together. Logistic regression, however, yielded groups with

homogeneous outcomes, but heterogeneous predictors. Because of

ROC's ability to identify homogeneous subgroups, Kiernan et al. (2001)

suggest it may be more useful in exploring patient risk factors than

regression.

One tract not identified in either analysis was the corpus callosum

(CC). This interhemispheric fiber bundle is one of the most commonly

damaged tracts in TBI patients (for reviews see Hulkower et al., 2013;

Shenton et al., 2012). A recent meta-analysis of DTI studies from Aoki

et al. (2012) reports that the splenium, the most posterior segment of

the CC, is frequently compromised after TBI. For this analysis, we in-

cluded both the splenium (SP) and the anterior genu (GN) in the ROC.

Neither were optimal classifiers. More detailed analyses, parsing the

body of the commissure, may yield different results.

However, it is important to consider that the tracts frequently

identified in cross-sectional studies may not necessarily make the best

classifiers. For any tract, the extent of agreement between DTI measures

and a diagnosis may be attributable to the frequency and magnitude of

damage as well as normal variance in the DTI scores. Tract size, loca-

tion, and the presence of crossing fibers may all be factors. For example,

because the cingulum bundle connects the frontal and temporal lobes, it

may be especially vulnerable to contrecoup injury (Goggio, 1941). Here

a jolt or impact to the back of the head causes the brain to move inside

the skull, hitting the anterior cranium (Bigler, 2007). Similarly, the

inferior fronto-occipital fasciculus is one of the largest tracts in the

brain. Its size and location make it subject to the biomechanics of lat-

eral, blunt-force trauma, arguably the most common cause of TBI

(Delaney et al., 2006; Hodgson et al., 1983). The frequency of these

injuries may make LCG and LIF better classifiers, even if the corpus

callosum has more pronounced pathology.

At the moment, these are informed speculations. However, the ROC

results do have an accord with the TBI/DTI literature. We submit the

identification of LCG and LIF as successful classifiers has a basis in

actual pathology. This information may inform future research as well

as efforts to develop TBI biomarkers. Ultimately, though, it is still un-

clear what parameters make one tract a better classifier than another.

4.2. FA and MD measurements

Fractional anisotropy (FA) is a DTI measure widely applied in in-

vestigations of TBI. It quantifies the degree of anisotropy in the diffu-

sion process (Basser and Pierpaoli, 1996). Values between 0 and 1 de-

note the fraction of diffusion along the tensor's principal axis, as

opposed to the transverse directions. Higher FA values indicate con-

strained diffusion. In the case of the brain, this is often due to collinear

cellular structures, as found in white matter fascicles (Mukherjee et al.,

2008). Lower FA values indicate relatively unconstrained diffusion,

characteristic of gray matter and cerebral spinal fluid.

In contrast, mean diffusivity (MD) quantifies the overall degree of

diffusion in tissue (Basser and Pierpaoli, 1996). The measure represents

the average displacement of water molecules independent of fiber or-

ientation. Higher MD values are associated with neuropathology be-

cause disrupted or distorted fiber bundles allow a greater influx of

water across cellular membranes (Gass et al., 2001). Brain tissue with

high MD values may have potential inflammation, edema, necrosis, or

neoplasia (Alexander et al., 2007).

A growing literature links TBI pathology to abnormally low FA and

high MD values. Our results reinforce these findings. The ROC found

that lower FA values from the LCG (< 0.433) are associated with the

TBI diagnosis, which is consistent with several published reports

(Bendlin et al., 2008; Bigler et al., 2010; Bonnelle et al., 2011; Kinnunen

et al., 2011; Kraus et al., 2007; Levin et al., 2011; Mac Donald et al.,

2011; Marquez de la Plata et al., 2011; Maruta et al., 2010; Niogi et al.,

2008a; Pal et al., 2012; Palacios et al., 2011; Rutgers et al., 2008b;

Sugiyama et al., 2009; Wilde et al., 2010; Xu et al., 2007; Yurgelun-

Todd et al., 2011).

The ROC also demonstrated that higher MD values (> 0.837) from

the LIF are associated with TBI diagnosis. Abnormally high MD values

are also common in TBI patients (Chu et al., 2010; Henry et al., 2011;

Lipton et al., 2008; Lipton et al., 2009; Marquez de la Plata et al., 2011;

Perlbarg et al., 2009; Porto et al., 2011; Salmond et al., 2006). Other

investigations report high MD from the LIF specifically (Bendlin et al.,

2008; Kinnunen et al., 2011; Messe et al., 2011; Xu et al., 2007).

While most DTI studies associate low FA values with TBI, a handful

of reports say the same for high FA (Bazarian et al., 2007; Henry et al.,

2011; Ling et al., 2012; Mayer et al., 2010; Wilde et al., 2008). The

literature's discrepancy regarding high and low FA may stem from

differences in acute and chronic injury. Findings of high FA in TBI

patients may be limited to acute cases where cytotoxic edema has

caused an influx of water into axons' intracellular space (Ling et al.,

2012; Mayer et al., 2010). In contrast, low FA may characterize a later

stage of neuropathology involving demyelination and axonal degen-

eration.

The current findings seem consistent with this explanation. Our

patients were imaged months to years after injury. Accordingly, their

chronic condition may preclude finding high FA as a biomarker. We

argue our findings only have implications for understanding long-term

pathology. Further studies are necessary to examine the diagnostic

value of DTI measures at acute and sub-acute stages.

4.3. RD and AD measurements

The ROC analysis demonstrated that the LIF has the highest sig-

nificant kappa value for both the RD and AD measures. Higher RD

(> 0.613) and AD values (> 1.272) from this tract are associated with

TBI diagnosis. The relationship of these measures to TBI is less clear.

Previous work suggests that RD and AD may be more precise measures

of neural pathology because they involve specific eigenvalues

(Alexander et al., 2007). The RD measure may be most affected by the

integrity of myelin sheaths while AD may reflect axonal degeneration

(Song et al., 2002). Diffusion tensor imaging studies in non-human

animals have associated higher RD values with dysmyelination (Tyszka

et al., 2006) and demyelination (Harsan et al., 2006; Song et al., 2005).

In contrast, lower AD values are thought to reflect degeneration of the

axon itself (Sun et al., 2006).

One theory is that chronic pathology in the cellular matrix such as

gliosis (Pierpaoli et al., 2001) and a corresponding reduction in extra-

cellular water (Niogi and Mukherjee, 2010) may enhance diffusivity

along the principle eigenvector and increase AD. A recent report found

an increase in AD for the right inferior fronto-occipital fasciculus in

veterans with the chronic symptoms commonly referred to as Gulf War

Illness (Rayhan et al., 2013). However, others have cautioned against

using RD and AD measures to make specific statements regarding the

biophysical properties of damaged tissue (Wheeler-Kingshott and

Cercignani, 2009). Pathology may affect the direction of the principal

eigenvector, which, in turn, artificially increases or decreases RD and

AD values. This bias may vary between individual data sets, making any

relationship between the measures and pathology suspect.

Like the MD analysis, the stepwise regression did not identify LIF,

but RAT, as the best predictor for the RD and AD measures. As discussed

above, this may be due to a limited decision tree or inherent differences

between the analyses. However, it is notable that LIF is the optimal

classifier for three out of the four measures: MD, RD, and AD. A con-

comitant increase in RD and AD was observed in chronic TBI patients

(Kraus et al., 2007). Increases in MD are even more common. We

suggest this pattern of results is not coincidental. The combination of

higher MD, RD and AD values localized to single tract is likely pa-

thology.

Alternatively, if AD and RD measures suffer from a type of random

error, as suggested above, they should not consistently identify da-

maged tracts. This means further research should not produce the same

pattern of DTI measures (i.e., low FA and high MD, RD, and AD values,
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possibly co-located on the same tracts). Accordingly, we suggest con-

tinued research with more patients is necessary to address the validity

of the RD and AD measures as well as their relevance to the ROC ap-

proach.

4.4. Cutpoints

The optimal cutpoints varied considerably between measures.

However, the 95% CIs for all cutpoints were relatively small given the

range of potential values (Table 2). For example, our analysis found the

optimal cutpoint for LCG-FA was 0.433, 95% CI [0.397–0.452]. Frac-

tional anisotropy values have a potential range between 0 and 1. The

actual LCG-FA values from our data set ranged between 0.216 and

0.532. Thus, the cutpoint's confidence interval is approximately 1/20th

the potential range, 1/6th the actual range. Narrow CIs indicate our

sample supports a precise estimate.

There is currently little evidence regarding what DTI thresholds are

diagnostic of TBI. Most DTI research on TBI patients has been cross-

sectional in nature. Finding group differences suggests some deviation

from the norm is diagnostic. However, between-group comparisons

cannot provide a meaningful threshold, only an assurance that the

groups do, in fact, differ. An advantage of the exploratory ROC is that it

searches each continuous variable for a division that produces the best

agreement with the outcome variable. The end result is the optimal,

diagnostic threshold. More research with more subjects is necessary,

but our findings suggest exploratory ROC may help identify DTI

thresholds indicative of TBI pathology.

4.5. Kappa values

When validating medical tests, researchers often look for the degree

of consistency between different methods or “raters.” However, com-

paring the output of any two raters produces a certain amount of

agreement simply due to chance. Chance accord inflates the relative

number of cases in agreement. This happens regardless of inherent

commonalities or differences between the raters. Consequently, a

simple percentage will always overestimate the extent of actual

agreement (Gwet, 2014).

Inter-rater reliability coefficients take chance agreement into ac-

count when comparing raters of categorical data. The kappa coefficient

is perhaps the most widely used of these indices (Cohen, 1960). Here

the percent of expected agreement (Pe) is used to adjust the percent of

observed agreement (Po): κ= (Po − Pe) ∕ (1 − Pe). Cohen's kappa is

frequently employed in medical research to assess the precision of di-

agnostic tests (Kraemer et al., 2005). The kappa values reported here

comprise some of the first information on the inter-rater agreement

between DTI measures and TBI diagnosis.

Cohen's kappa ranges between 0 (chance) and 1 (perfect agree-

ment). Thus, all of our values are in the lower half of the scale. The

benchmark scale from Landis and Koch (1977) regards kappa values

between 0.210 and 0.400 as indicative of fair agreement. Applying

Landis and Koch's interpretation, our kappa values and their confidence

intervals indicate the optimal classifiers are in fair agreement with TBI

diagnosis. However, another scale by Fleiss (1981) considers all values

below 0.400 as indicative of poor agreement.

Ultimately, accumulated experience should determine which kappa

values are deemed favorable, not predefined scales. The context of our

results must be considered. The natural heterogeneity of TBI may oblige

lower kappa values for individual tracts. Because of the diffuse nature

of axonal injury, it is simply unlikely that any one tract will be highly

diagnostic across patients. Our data seem to confirm this reasoning.

While the diagnostic value of any one tract may be limited, this does

not negate the purpose of ranking tracts relative to one another.

Understanding these relationships could aid in developing algorithms

that predict TBI status or outcomes. A fundamental step in algorithm

creation is feature engineering. This involves aggregating or

decomposing raw data to better represent an underlying problem.

Tracts may be uninformative in isolation, but predictive as a composite.

Knowing which tracts to combine and how is crucial in developing

these models. The decision trees provided by exploratory ROC could aid

in this effort.

4.6. ROC and TBI models

Other ROC analyses have assessed relationships between various

metrics (demographics, physician observations, neurological exam re-

sults, CT findings, etc.) and TBI outcomes. Models such as the

International Mission for Prognosis and Analysis of Clinical Trials in TBI

(IMPACT) (Maas et al., 2007), Corticosteroid Randomization After

Significant Head Injury (CRASH) (MRC CRASH Trial Collaborators,

2008), the Marshall classification system (Marshall et al., 1992), and

the Rotterdam CT (Maas et al., 2005) combine several variables to

predict TBI mortality (Roozenbeek et al., 2012a, 2012b) and outcomes

(Roozenbeek et al., 2012a, 2012b). The sensitivity and specificity of

these multi-variable models vary depending on the data set under

scrutiny. Area under the curve (AUC) statistics often range between 0.7

and 0.9 (Steyerberg et al., 2008; Lingsma et al., 2013; Honeybul et al.,

2014).

Unlike the above models our analysis exclusively used DTI data.

Only a handful of ROC models have incorporated DTI. Some have

evaluated whole brain measures (Kim et al., 2013); others have ex-

amined select tracts (Ressel et al., 2016). A recent paper by Galanaud

et al. (2012) combined DTI measures from several tracts to predict TBI

outcomes. They found a DTI composite was more predictive of the

Glasgow Outcome Scale (GOS) than IMPACT. Our paper differs from

Galanaud et al. (2012) in its examination of several tracts rather than a

combination. Also, our approach attempts to classify patients based on

TBI status rather than outcome. To our knowledge, our study is the first

to apply ROC methods to DTI data in order to rank fiber tracts ac-

cording to their diagnostic potential.

4.7. Sensitivity and specificity

Our ROCs demonstrated high sensitivity (69%–74%), but lower

specificity (53%–61%) Table 2. Most clinical tests are not perfectly

diagnostic (100% sensitivity, 100% specificity) and must find a rea-

sonable trade-off between sensitivity and specificity that is context

dependent. In the case of chronic TBI, an MRI-based test with high

sensitivity but reasonable specificity could be useful in corroborating

behavioral symptoms. While this concept is intriguing, our goals here

were strictly exploratory. We did not seek to validate a medical test, but

to explore a method potentially relevant to TBI diagnosis. Further re-

search is necessary to apply these and future results to clinical aims.

It is encouraging, though, that a single tract could attain 74% sen-

sitivity. As with kappa, we consider the possibility of improving accu-

racy by combining data from multiple tracts into composite measures

(Shen, 2008; Su and Liu, 1993). The sensitivity and/or specificity of

composites may surpass any of their constituents. In fact, we found that

crudely combining data from the LIF-MD and LST-MD increased sen-

sitivity to 89% but reduced specificity to 44%.

More advanced composites may integrate data from several tracts.

Multivariate ROC (MultiROC) provides a method for making logical

variable combinations (Shultz, 1995). It uses Boolean operators to in-

corporate two test results. One has a fixed threshold (e.g. Test A >

constant); the other is allowed to vary (Test B > variable). The Mul-

tiROC analysis generates a ROC curve for the combination (Test

A + Test B). Its optimal sensitivity and specificity are then compared to

that of the fixed test (Test A). Statistics (AUC) determine whether or not

the new variable (Test B) adds diagnostic value.

Running an exploratory ROC beforehand may improve the validity

of the MultiROC procedure. Because the ROC determines the most di-

agnostic tract in the sample, it provides an excellent candidate for the
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fixed test. Other tracts, identified further down the decision tree, could

serve as varying tests. Wu et al. (2013) recently used a MultiROC

technique to assess the interaction of multiple indices in relation to

Alzheimer's disease. For practicality, they limited their analysis to a few

measures. It is likely exploratory ROC would be serviceable here and

other situations where brute-force analysis is needed to identify re-

levant variables from a larger set.

4.8. Left hemisphere bias

An interesting aspect of our data is that the tracts with the highest

kappa values are all located in the left hemisphere. While this pattern

may simply be a peculiarity of this data set, it may also demonstrate an

asymmetry in the structure of brain white matter. Klingberg et al.

(1999) postulated that left hemisphere axons are more densely packed

than the right. This could make them more resistant to trauma and

disease. If this is the case, then there could be less variation in DTI

measures from the left hemisphere, resulting in a more distinct se-

paration between normal and abnormal. The left hemisphere then may

be more diagnostic of pathology simply because its DTI values have a

limited range.

To investigate asymmetries in our data we examined 9 tracts with

left/right homologs (anterior thalamic, cingulum, cingulum-hippo-

campus, cortico-spinal, inferior fronto-occipital, inferior longitudinal,

superior longitudinal, superior-temporal, and uncinate). We calculated

means and standard deviations for each tract across participants. The

standard deviation analysis showed no interpretable patterns. However,

the mean analysis revealed that 8 out of the 9 tracts have significantly

higher FA values in the left hemisphere. For the MD measure, 6 out of 9

tracts have higher values in the right hemisphere. This pattern occurred

in the same tracts in both TBI and non-TBI patients. The cingulum and

inferior fronto-occipital fasciculus were among them.

Other DTI studies have reported a left hemisphere bias in measures

from the cingulum (Gong et al., 2005; Huster et al., 2009; Yin et al.,

2013) and inferior fronto-occipital fasciculus (Rodrigo et al., 2007;

Thiebaut de Schotten et al., 2011). The etiology of these asymmetries is

not fully understood but may exist because certain left hemisphere

tracts have higher structural integrity than their right hemisphere

homologs. It is possible that the interaction of these natural asymme-

tries and pathology make certain tracts more diagnostic to the ROC.

Evidence also suggests that aging affects the health of the hemi-

spheres differently. White matter undergoes a gradual degeneration

beginning as early as middle age (Yeatman et al., 2014). The right

hemi-aging model posits a faster rate of degeneration in right hemi-

sphere tissue leading to more pronounced deficits in visual (right

hemisphere) compared to language (left hemisphere) abilities (Brown

and Jaffe, 1975). Another model, the hemispheric asymmetry reduction

in old adults (HAROLD), argues perceived asymmetries in behavioral

performance are actually due to older brains becoming less lateralized

in their functioning (Cabeza, 2002). This increase in bilateral proces-

sing, however, could ultimately be caused by greater deterioration in

the right hemisphere.

Our data do not distinguish between these models or necessarily

support an account of asymmetric aging. We discuss these theories only

because they offer context for one aspect of our findings. If there is a

slight bias in the degeneration of some white matter tracts, this may be

exacerbated by the physiological changes associated with chronic TBI.

At the moment, the interaction between brain trauma, chronicity, and

processes of normal aging is a new but developing area of neuroscience

(Smith et al., 2013).

4.9. Limitations

Though most of our findings concur with the TBI/DTI literature, our

approach has limitations. Post-traumatic stress disorder is one compli-

cation. There is high comorbidity between TBI and PTSD (Bryant, 2001;

Hoge et al., 2008; Kennedy et al., 2007; Moore et al., 2006). Patients

with TBI commonly experience PTSD symptoms (e.g. hyperarousal,

avoidance, depression, anxiety, fatigue, poor concentration, irritability,

insomnia) weeks to months after their initial injury (Bombardier et al.,

2006; Bryant et al., 2010; Zatzick et al., 2010). The cause of this co-

morbidity remains unclear. The physical pathology of TBI may pre-

cipitate PTSD-like symptoms. However, the stress and emotional in-

tensity associated with a TBI could do the same.

In our sample, the TBI group had 57 (78%) patients with PTSD. The

non-TBI group had 21 (58%) patients with PTSD. This discrepancy is

not ideal if attempting to control for the effect of PTSD. Accordingly, we

cannot be sure that over-representation of PTSD in the TBI group had

no effect on the ROC analysis. Future investigations with this method

will better counterbalance PTSD status between the groups. However,

there is arguably more ecological validity in investigating TBI and PTSD

as comorbid conditions than apart.

To better understand the potential influence of PTSD on our findings

we re-ran the ROC with PTSD as the outcome variable. The analysis

yielded the following tracts as optimal classifiers: LAT for the FA

measure, RIL for MD, LAT for RD, and RCG for AD. Logistic regression

found RCG was the most predictive tract for the AD measure. No other

tracts were verified. Previous DTI research links pathology in the cin-

gulum to the presence of anxiety, depression, and PTSD (Abe et al.,

2006; Fani et al., 2012; Isaac et al., 2015; Sanjuan et al., 2013;

Sekiguchi et al., 2014). However, there is still a paucity of information

on the association between white matter and PTSD (Daniels, 2016).

We acknowledge that PTSD status may have influenced these re-

sults. However, our study did not intend to dissociate the effects of TBI

and PTSD in white matter. Our goal in this case was to simply evaluate

a potential classification method in relation to existing knowledge.

Interestingly, ROC analysis with either outcome identifies the cin-

gulum, a tract associated with both TBI and PTSD. These findings

suggest that ROC is sensitive to white matter deterioration, but perhaps

cannot discriminate TBI and PTSD pathology in the current sample. We

suggest further research applying the ROC to larger data sets to identify

tract combinations indicative of specific patient groups: those with TBI,

those with PTSD, and those with both TBI and PTSD.

Another issue is how to set the initial parameters for the ROC

analysis. Here we weighted false positives and false negatives the same

(0.5). They contributed equally to calculations of sensitivity and spe-

cificity. However, the relative importance of these values may change

depending on the clinical context. For patients with established symp-

toms (e.g., post-concussive syndrome), high sensitivity, at the expense

of specificity, may be justified for identifying relevant neurocorrelates.

Experimenting with these parameters in different patient groups (acute,

sub-acute, and chronic) will likely reinforce the clinical importance of

certain tracts and demonstrate how they may change with time.

Final considerations are sample size and the generalizability of the

results. While sufficient, our sample size (n= 109) was close to the

minimum number needed to run the ROC. For this reason, the analysis

automatically stopped after only one division for most measures. Only

MD produced a second partition. Including more participants may

strengthen the current results and identify other tracts of diagnostic

value.

However, even with additional subjects, the generalizability of the

results is still an issue. Our study examined adult, former-military TBI

patients with chronic symptoms. Results from this sample may not be

applicable to cases of acute TBI or chronic TBI in civilians and children.

However, it is possible that exploratory ROC could be applied to such

samples. Further research with diverse populations is needed for a

comprehensive understanding of the relationships between white

matter tracts and TBI. We believe the methods presented here could aid

in this work.

K.L. Main et al. NeuroImage: Clinical 16 (2017) 1–16

11



5. Conclusions

The current study used exploratory ROC analysis to rank fiber tracts

according to their agreement with TBI diagnosis. To our knowledge, our

study is the first to apply this method in assessing the diagnostic utility

of DTI data. The information garnered here could potentially inform

future research and aid in hypothesis generation. Extensions of this

method may also yield clinically relevant information on the natural

history of TBI and its variations.

Techniques in DTI are becoming increasingly influential in the

evaluation of brain injury. An understanding of how DTI findings

overlap with the conclusions drawn from traditional diagnostics (e.g.,

clinical screening and neuropsychological tests) is critical to its devel-

opment. Our study sought to evaluate a new method toward this end.

The ROC demonstrates potential for exploring relationships between

DTI data and clinical outcomes.

Our results also have relevance to new approaches in precision

medicine. Here the goal is to leverage computation toward customized

patient care. Classifying disease sub-types is fundamental to this aim.

To date, neuroimaging research has failed to resolve differences be-

tween certain types of TBI. Perhaps the most critical distinction is why

some TBI patients fully recover while others continue to experience

symptoms. The method outlined here may be applied to this question

and many others. We submit exploratory ROC has the potential to sift

through TBI data and generate clinically meaningful classifications.

This information may ultimately guide the development of advanced

biomarkers for clinical practice.
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