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Abstract—This paper introduces and implements a method
for real-time mode scheduling in linear time-varying switched
systems subject to a quadratic cost functional. The execution
time of switched system algorithms is often prohibitive for real-
time applications and typically may only be reduced at the
expense of approximation accuracy. We address this trade-off by
taking advantage of system linearity to formulate a projection-
based approach such that no simulation is required during
open-loop optimization. A numerical example shows how the
proposed open-loop algorithm outperforms methods employing
common numerical integration techniques. Additionally, we fol-
low a receding-horizon scheme to schedule the modes of a
customized experimental setup in real time, using the Robot
Operating System (ROS). In particular, we demonstrate—both in
Monte-Carlo simulation and in experiment—that optimal mode
scheduling efficiently regulates a cart and suspended mass system
and rejects disturbances online.

Note to Practitioners—This paper is motivated by the prob-
lem of reliable and fast implementation of mode scheduling
algorithms in real-time applications where control authority is
discrete. Switched systems cover a range of real-world con-
trol platforms like antilock braking systems and other valve-
operated settings. However, most current approaches to dynamic
compensation rely on specialized ODE solvers to simulate the
hybrid dynamics and thus exhibit high execution times and/or
approximation errors. In our approach, we only require that a set
of data is calculated offline and stored in memory so that online
computational complexity is significantly reduced. Importantly,
for memory efficiency, we show that approximation accuracy is
independent of the number of stored samples i.e. the size of the
stored dataset. Using ROS, we apply the proposed algorithm to
regulate the swing angle of a mass suspended from a planar
robotic system in real time with hybrid control signals. Our
experimental results verify that our algorithm is fast and rejects
disturbances online even using inexpensive hardware for sensing
and actuation. This result presents an opportunity for real-time
optimal control of automation platforms with finite set of control
signals.

Index Terms—switching controllers, real-time experimental
validation, receding-horizon control, optimal control

I. INTRODUCTION

It is common in the automation industry that control author-
ity is not continuous, for example, due to the discontinuous
characteristics of actuators operated by valves. Optimal mode
scheduling—model-based control of both the sequence and
timing of operating modes—is a natural and efficient way
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of approaching these discrete1 problems, with an abundance
of algorithms proposed by the research community (e.g. [1],
[2] and more—see below). However, despite the common use
of model predictive control (MPC, in the sense of receding
horizon control as defined in Section III-B) for continuous
control problems, mode scheduling algorithms are rarely used
in MPC schemes for real-time control in discrete control
setting—in fact, the discontinuous components of automation
platforms are sometimes disregarded to allow for application
of continuous dynamic solutions (e.g. [3]). The main reasons
for this lack of applicability are prohibitive execution times
and/or high approximation errors resulting from the use of
specialized ODE solvers for numerical integration of hybrid
differential equations. We aim to overcome this drawback, by
considering the problem of real-time mode scheduling for an
autonomous linear time-varying switched system to optimize
a quadratic performance metric. In particular, the contribu-
tions of this paper are: 1) The formulation of an open-loop
mode scheduling algorithm (referred to as Single Integration
Optimal Mode Scheduling—SIOMS) so that no differential
equation needs to be solved for during optimization; 2) The
formulation and experimental validation of receding-horizon
SIOMS for real-time closed-loop mode scheduling so that a
differential equation only needs to be integrated over a limited
time interval—typically the time step of the receding-horizon
window—rather than the full time horizon.

Switching control problems arise in a number of application
domains in automation industry, such as robot locomotion
[4], manufacturing production [5], [6], power electronics [7],
telecommunications [8] and air traffic management [9]. Sev-
eral algorithmic methods have been proposed to deal with
scheduling problems. Many approaches have relied on a bi-
level hierarchical structure with only a subset of the design
variables considered at each level [6], [10]. Other proposed
methods include: embedding methods [2], which relax, or
embed, the integer constraint and find the optimal of the
relaxed cost; relaxed dynamic programming [11], [12] where
complexity is reduced by relaxing optimality within pre-
specified bounds; variants of gradient-descent methods [13],
[14]; and application-specific solutions [15].

The iterative projection-based approach as introduced in
[16]–[18] forms the basis for the work in this paper. The mode
scheduling problem is formulated as an infinite-dimensional
optimal control problem where the variables to be optimized

1Here and for the rest of the paper, “discrete” denotes a finite number of
control settings and is not to be confused with discretization in time, unless
otherwise noted.
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are a set of functions of time constrained to the integers.
For a projection-based method, the design variables are in an
unconstrained space but the cost is computed on the projection
of the design variables to the set of admissible switched system
trajectories. In [16], an iterative optimization algorithm is
synthesized that employs the Pontryagin Maximum Principle
and a projection-based technique. We adapt this algorithm
by taking advantage of the linearity of the dynamical system
under concern. The specific case of linear switching control
has been extensively investigated by others (see [19]–[21]).
The approaches in [22], [23] solve for a differential equation
at each step of the iterative algorithm. Previous attempts to
avoid the online integration of differential equations are limited
to switching time optimization problems where the mode
sequence is fixed [22]–[24].

In this paper, we extend our work in [25] to present and
experimentally evaluate a projection-based mode scheduling
algorithm (SIOMS) where a single set of differential equa-
tions is solved offline, so that no additional simulation is
required during the open-loop optimization routine. These
offline solutions to differential equations are independent of
the mode sequence and switching times in contrast to [22]–
[24]. Moreover, no assumption about the time-variance of the
modes is made. Therefore, SIOMS does not exclude many
important linear systems, such as time-varying power systems
[26], traffic models [27], and nonlinear systems linearized
about a trajectory.

Here, our objective is to emphasize the importance of
SIOMS as a tool for model-based mode scheduling in real-
time applications (see [6], [28], for example). Real-time imple-
mentation of switched system algorithms is often impractical
due their dependence on numerical solutions of differential
equations. Three main points are listed to support this argu-
ment. First, the use of ODE solvers often renders algorithm
execution times prohibitive for real-time implementation [29],
[30]. Second, the solution approximation through discretiza-
tion does not always guarantee consistency (see Definition
3.3.6 in [31]), and lastly, discontinuous differential equations
require specialized event-based numerical techniques that are
prone to approximation errors [32].

SIOMS overcomes the aforementioned issues by avoiding
online simulations. As far as the first point is concerned, one
of the strongest assets of the proposed algorithm is that its
timing behavior—i.e., the execution time of a single iteration
of the optimization algorithm—is independent of the choice of
ODE solver; it only depends on the number of multiplications
and inversions required for the calculation of the optimality
condition. As a result, SIOMS is fast and intrinsically free
of the common trade-off between execution time and ap-
proximation accuracy that normally dictates the selection of
numerical integration technique. Furthermore, authors in [30]
address the second issue by proposing a time discretization
that guarantees consistency for nonlinear systems. In this
paper, by restricting our focus to linear time-varying systems,
we introduce a method where approximation accuracy and
consistency are independent of the number of samples used for
approximation of the state and co-state trajectories. Lastly, to
address the third point, SIOMS only requires offline integration

of differential equations that are continuous and as smooth
as each of the linear modes. Thus, our algorithm exhibits
robustness to numerical errors due to discontinuous vector
fields. All the above SIOMS advantages are verified through
a method-comparison numerical study in Section IV.

Exploiting the aforementioned computational and timing ad-
vantages, we can use SIOMS for real-time control applications
by means of a receding-horizon synthesis [33]. Importantly, in
receding-horizon optimization with SIOMS, a simple update
step removes the need for numerical integration over the full
time horizon in between consecutive algorithm runs—only
integration over a few time steps is required. Although stability
analysis of closed-loop SIOMS is not provided in this paper,
we include a short discussion on stability requirements based
on established results in Section III-B.

Finally, we choose to experimentally validate SIOMS real-
time implementability by regulating the swing angle of a
mobile robot and suspended mass system, online, using a finite
number of control actions (i.e. switched system modes). For
additional complexity, the string holding the mass exhibits a
pre-defined time-varying length. Although not intrinsically a
switched system, our example resembles many systems that
admit hybrid input by construction and thus are difficult to
control (e.g. antilock braking systems (ABS) [34], tanks [35]
and other valve-operated systems). Moreover, despite the fact
that conventional real-time control of variants of this system
has been extensively studied [36]–[38]), we are interested in
showing how a limited number of actions may suffice for
control, even with time-varying parameters; a result that opens
a discussion for alternative, inexpensive actuation and sensing
solutions in seemingly complex control platforms. Our experi-
mental work—based on the Robot Operating System (ROS)—
demonstrates that closed-loop SIOMS regulates the example
system reliably in real time, while rejecting disturbances.

This paper is structured as follows: Section II reviews
switched systems and their representations while stating the
optimization problem. The single-integration mode scheduling
algorithm is proposed in Section III where a receding-horizon
approach for closed-loop control is also introduced. Details
about the numerical implementation of open-loop SIOMS are
provided in Section IV, along with a comparison with former
implementations [16], [17]. Finally, Section V verifies closed-
loop SIOMS through a Monte-Carlo analysis and a real-time
experiment.

II. Review

A. Switched Systems

Switched systems are a class of hybrid systems [39], [40]
that evolve according to one of N vector fields (modes) fi :
Rn → R, i ∈ {1, ...,N} at any time over the finite time interval
[T0,TM], where T0 is the initial time and TM > 0 is the final
time. We consider two representations of the switched system,
namely mode schedule and switching control. As a unique
mapping exists between each representation [16], the two will
be used interchangeably throughout the paper.

Definition 1 The mode schedule is defined as the pair {Σ,T }
where Σ = {σ1, ..., σM} is the sequence of active modes σi ∈
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{1, ...,N} and T = {T1, ...,TM−1} is the set of the switching
times Ti ∈ [T0,TM]. The total number of modes in the mode
sequence—which may vary across optimization iterations—is
M ∈ Z+.

Definition 2 A switching control corresponds to a list of
curves u = [u1, ..., uN]T composed of N piecewise constant
functions of time, one for each different mode fi. For all t ∈
[T0,TM],

∑N
i=1 ui(t) = 1, and for all i ∈ {1, ...,N}, ui(t) ∈ {0, 1}.

This dictates that the state evolves according to only one mode
for all time. We represent the set of all admissible switching
controls as Ω.

We will refer to the mode schedule corresponding to the
switching control u as {Σ(u),T (u)}.

For a system with n states x = [x1, ..., xn]T and N different
modes, the state equations are given by

ẋ(t) = F(t, x(t), u(t)) :=
N∑

i=1

ui(t) fi(x(t), t) (1)

subject to the initial condition x(T0) = x0. For this paper, we
restrict our focus to linear time-varying systems so that

F(t, x(t), u(t)) :=
N∑

i=1

ui(t)Ai(t)x(t). (2)

Alternatively, we may express the system dynamics with
respect to the current mode schedule as follows:

F(t, x(t), Σ,T ) := A(t, Σ,T )x(t) (3)

where A(t, Σ,T ) = Aσi (t) for Ti−1 ≤ t < Ti.

B. Problem Statement

Our objective is the minimization of a quadratic cost func-
tion

J(x, u) =

∫ TM

T0

1
2

x(τ)T Q(τ)x(τ)dτ +
1
2

x(TM)T P1x(TM) (4)

where x is the state, u the switching control and the pair (x, u)
satisfy (1). Here, Q and P1 are the running and terminal cost
respectively, and are both symmetric positive semi-definite.
Note that this cost functional can also be adapted to include
reference trajectory, in which case the objective would be to
minimize the error between the state and the reference ( [24]).

C. Projection-based Optimization

From Definition 2 of an admissible switching control u,
it follows that our optimization problem is subject to an
integer constraint [16]. Let S represent the set of all pairs
of admissible state and switching control trajectories (x, u),
i.e. all pairs that satisfy the constraint (1) and are consistent
with Definition 2 so that u ∈ Ω. In [17], the authors propose
a projection-based technique for handling these constraints
set by S. In particular, an equivalent problem is considered
where the design variables (α, µ) belong to an unconstrained
set (X,U) and the cost J is evaluated on the projection of
these variables to the set S. Now, the problem is reformulated
as

arg min
(α,µ)

J(P(α, µ)) (5)

where P is a projection—with P(P(α, µ)) = (P(α, µ))—that
maps curves from the unconstrained set (X,U) to the set of
admissible switched systems S. As the cost is calculated on
the admissible projected trajectories, this problem is equivalent
to the original problem described in II-B and (4).

The optimal mode scheduling algorithm developed in [16]
utilizes the max-projection operator. The max-projection op-
erator P : X × U → S at time t ∈ [T0,TM] is defined as

P(α(t), µ(t)) :=

 ẋ(t) = F(t, x(t), u(t)), x(T0) = x0

u(t) = Q(µ(t))
(6)

where Q is a mapping from a list of N real-valued control
trajectories, µ(·) = [µ1(·), ..., µN(·)]T ∈ RN to a list of N feasible
switching controls, u ∈ Ω. We define Q as

Q(µ(t)) =


Q1(µ(t))

...
QN(µ(t))

 with Qi(µ(t)) :=
N∏
j,i

1(µi(t) − µ j(t))

(7)
where 1 : R→ {0, 1} is the step function given by

1(t) =

1, t ≥ 0
0, else.

(8)

Notice that the max-projection operator does not depend on the
unconstrained state trajectories α(·). The unconstrained state α
is included in the left hand side of the definition in order for
P to be a projection.

D. Mode Insertion Gradient

The mode insertion gradient appears in previous studies [1],
[41], [42]. Here, it is defined as the list of functions d =

[d1(t), ..., dN(t)] ∈ RN that calculate the sensitivity of cost J to
inserting one of the N modes at some time t for an infinitesimal
interval (i.e. dJ

dλ+ as λ+ → 0). Each element of d is given by:

di(t) := ρ(t)T ( fi(x(t), t) − fσ(t)(x(t), t)), i = 1, ...,N (9)

where x ∈ Rn is the solution to the state equations (1) for all
t ∈ [T0,TM] and ρ ∈ Rn, the co-state, is the solution to the
adjoint equation2

ρ̇(t) = −DxF(t, x(t), u(t))Tρ(t) − Q(t)x(t), (10)

for all t ∈ [T0,TM] subject to ρ(TM) = P1x(TM). (In (9), σ(t) :
[T0,TM] → {1, ...,N} is the function that returns the active
mode at any time t.)

It has been shown in [43], that when a quadratic cost is
optimized subject to a linear time-varying switched system, a
linear mapping between state x and co-state ρ exists. Thus,
we may express the co-state as

ρ(t) = P(t)x(t) (11)

where P(t) ∈ Rn×n is calculated by the following differential
equation:

Ṗ(t) = −A(t, Σ,T )T P(t) − P(t)A(t, Σ,T ) − Q(t) (12)

2Dx f (·) denotes the partial derivative ∂ f (·)
∂x .
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subject to P(TM) = P1. Note that this is the linear switched
system analog to the Riccati equation from the LQR problem
in classical control theory [44]. Using (2) and (11), the mode
insertion gradient element can be written as

di(t) := x(t)T P(t)T [Ai(t) − Aσ(t)(t)]x(t). (13)

E. Iterative Optimization

To calculate the switching control u(t) that optimizes the
quadratic performance metric (4), we follow an iterative ap-
proach. Iterative optimization computes a new estimate of the
optimum by taking a step from the current estimate in a search
direction so that a sufficient decrease in cost is achieved [13],
[16], [42], [45]. A single iteration is commonly structured in
the following scheme: Given a current iterate, i) Calculate
a descent direction; ii) Calculate a step size; iii) Update the
current iterate by taking a step in the descent direction. The
procedure is repeated until a terminating condition is satisfied.

In the following section, we formulate an iterative
projection-based algorithm for quadratic optimization of linear
time-varying switched systems that requires no online simu-
lations.

Algorithm 1 SIOMS

Offline:
• Solve for the STM Φ j(t,T0) and ATM Ψ j(t,TM) ∀ j ∈ {1, ...,N} and

t ∈ [T0,TM].
• Choose initial u0 → {Σ(u0),T (u0)}.
• Set x(T0) = x0 and P(TM) = P1.

Online iterative process:
Set k = 0, uk = u0.

1) Evaluate xk(t) := χ(t, Σ(uk),T (uk)) as in Eq. (15).
2) Evaluate Pk(t) := %(t, Σ(uk),T (uk)) as in Eq. (21).
3) Evaluate the descent direction −dk(t) as in Eq. (28).
4) Calculate step size γk by backtracking.
5) Update: uk+1(t) = Q(uk(t) − γkdk(t)).
6) If uk+1 satisfies a terminating condition, then exit, else, increment k

and repeat from step 1.

III. Single Integration OptimalMode Scheduling

A. Open Loop Control over Finite Time Horizon

The problem of optimizing an arbitrary cost functional
J(x, u) subject to the switching control u(t) and switching
system state x(t) is considered in [16]. Here, we increase the
computational performance of [16] in the special case of linear
time-varying systems with quadratic performance metric. In
particular, we reformulate this problem so that no differential
equations are solved during the iterative optimization routine.
Algorithm 1 provides a summary of SIOMS.

Consider the optimization problem constrained by the sys-
tem dynamics (3), as described in Section II. The dynamic con-
straint dictates that a system simulation should be performed
at each iteration in Algorithm 1 as soon as the next switching
control has been calculated. In particular, the calculation of the
mode insertion gradient (9) involves the solution of the state
and adjoint equations, (3) and (10), while the max-projection
operator also includes the state equation (3).

We follow a similar approach to the switching time opti-
mization approach in [24], extending it to the situation where
the mode sequence Σ is unknown. Building on the existence
of a linear relationship between the state and co-state as
described in Section II-D, we utilize operators to formulate
algebraic expressions for the calculation of the state x(t) and
the relation P(t) at any time t ∈ [T0,TM]. The operators are
available prior to optimization through offline solutions to
differential equations. Moreover, they are independent of the
mode sequence and switching times.

In the switching time optimization case [24]—where
the mode sequence is constant and the problem is finite-
dimensional—a single optimization iteration involves only a
finite number of state and co-state evaluations; these occur
at the (finite) switching times for that particular iteration.
However, mode scheduling is an infinite-dimensional optimal
control problem and requires the time evolution of the state
and co-state trajectories at each iteration.

Therefore, in order for the proposed algorithm to be feasible,
an explicit mapping from time t to x and P is needed
at each iteration, depending on the current mode schedule
{Σ,T }. The mapping, below in (15) and (21), only includes
algebraic expressions dependent on solutions to pre-computed
differential equations. The exact number of multiplications
executed in each iteration depends on how many time instances
the state and co-state must be evaluated.

For the rest of the paper, a variable with the superscript k
implies that the variable depends directly on uk, the switching
control at the kth algorithm iteration.

a) Evaluating x(t): The operators for evaluating x(t)
are the state-transition matrices (STM) of the N modes. Let
Φ j(· ,T0) : R → Rn×n denote the STM for the linear mode
j ∈ {1, ...,N} with A j(t). The STM are the solutions to the N
matrix differential equations

d
dt

Φ j(t,T0) = A j(t)·Φ j(t,T0), j = 1, ...,N (14)

subject to the initial condition Φ j(T0,T0) = In. The following
two STM properties are useful for computing the state x(t)
given a mode schedule {Σ,T }. For an arbitrary STM, Φ,
characterized by A(t), we have [46] :

1) x(t) = Φ(t, τ)x(τ)
2) Φ(t1, t3) = Φ(t1, t2)Φ(t2, t3) = Φ(t1, t2)Φ(t3, t2)−1.

We emphasize the importance of Property 2 in that it allows
us to use a single operator for the evaluation of the state as
explained in the following.

Proposition 3.1: The state x(t) at all t ∈ [T0,TM] depends
on the mode schedule {Σ,T } and the STM Φ j(· ,T0) and is
given by x(t) := χ(t, Σ,T ) where

χ(t, Σ,T ) =

M∑
i=1

{[
1(t − Ti−1) − 1(t − Ti)

]
Φσi (t,T0)Φσi (Ti−1,T0)−1x(Ti−1)

}
subject to x(T0) = x0,

(15)

1(·) is the step function defined in (8) and Ti , σi are the ith

switching time and corresponding active mode as defined in
Section II-A.
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Proof Using the STM properties 1 and 2, the state x at the
ith switching time is

x(Ti) = Φ(Ti,T0)x0 =

 1∏
j=i

Φσ j (T j,T j−1)

 x0 (16)

where Φ(Ti,T0) is the state-transition matrix corresponding
to A(t, Σ,T ) as defined in (3). Hence, the state evolution is
defined as a piecewise function of time, each piece correspond-
ing to a time interval between consecutive switching times
{Ti,Ti+1}:

x(t) =



Φσ1 (t,T0)x(T0), T0 ≤ t < T1

Φσ2 (t,T1)Φσ1 (T1,T0)x(T0), T1 ≤ t < T2
...

...

ΦσM (t,TM−1)[
1∏

j=M−1
Φσ j (T j,T j−1)]x(T0) TM−1 ≤ t ≤ TM

(17)
For a more compact representation of the state, we employ
unit step functions and (16) to get

x(t) =

M∑
i=1

{
[1(t − Ti−1) − 1(t − Ti)]Φσi (t,Ti−1)x(Ti−1)

}
(18)

where, from STM property 2,

Φσi (t,Ti−1) = Φσi (t,T0)Φσi (Ti−1,T0)−1. (19)

This concludes the proof.

Prior to the iterative optimization, the STM operators
Φ j(t,T0) are solved offline for t ∈ [T0,TM] and for all
different modes j = 1, ...,N. Thus, given a mode schedule,
the calculation of state x(t) via (15) requires no additional
integrations beyond the offline calculations used for Φ j(t,T0).

b) Evaluating P(t): As proven in [24], an analogous
operator to the STM exists for the evaluation of the relation
P(t) appearing in (11). As in [24], we will refer to the operator
as the adjoint-transition matrix (ATM) and use Ψ j(· ,TM) :
R → Rn×n to denote the ATM corresponding to each mode
j ∈ {1, ...,N}. The ATM are defined to be the solutions to the
following N matrix differential equations:

d
dt

Ψ j(t,TM) = −A j(t)T Ψ j(t,TM) − Ψ j(t,TM)A j(t) − Q(t) (20)

subject to the initial condition Ψ j(TM ,TM) = 0n×n.
The following two ATM properties will be useful for

evaluating P(t) given a mode schedule {Σ,T }. For an arbitrary
ATM, Ψ, characterized by A(t) and associated STM Φ, and
cost function defined by Q(t), we have [24]:

1) P(t) = Ψ(t, τ) ◦ P(τ) := Ψ(t, τ) + Φ(τ, t)T P(τ)Φ(τ, t)
2) Ψ(t1, t3) = Ψ(t1, t2) ◦ Ψ(t2, t3) := Ψ(t1, t2) +

Φ(t2, t1)T Ψ(t2, t3)Φ(t2, t1).

Notice that Property 2 of ATM is equivalent to Property 2 of
STM and similarly allows us to evaluate the co-state.

Proposition 3.2: The relation P(t) at all t ∈ [T0,TM] depends
on the current mode schedule {Σ,T }, the STM Φ j(· ,T0) and
the ATM Ψ j(· ,TM) and is given by P(t) := %(t, Σ,T ) where

%(t, Σ,T ) =

M∑
i=1

{[
1(t − Ti−1) − 1(t − Ti)

]
·[

Ψσi (t,TM) + Φσi (t,T0)−T Φσi (Ti,T0)T [P(Ti)

−Ψσi (Ti,TM)]Φσi (Ti,T0)Φσi (t,T0)−1
]}

subject to P(TM) =P1,
(21)

1(·) is the step function defined in (8) and Ti , σi are the ith

switching time and corresponding active mode as defined in
Section II-A.

Proof From the ATM properties 1 and 2, P(t) at the ith

switching time is

P(Ti) = Ψ(Ti,TM) ◦ P(TM)

= Ψ(Ti,TM) + Φ(TM ,Ti)T P(TM)Φ(TM ,Ti)
(22)

where Ψ(Ti,TM) is the adjoint-transition matrix corresponding
to A(t, Σ,T ) as defined above. From ATM property 2, this is
equal to

Ψ(Ti,TM) =Ψσi+1 (Ti,Ti+1) ◦ · · · ◦ ΨσM (TM−1,TM)

=

M∑
m=i+1

Φ(Tm−1,Ti)T Ψσm (Tm−1,Tm)Φ(Tm−1,Ti).

(23)

As in the previous case, we aim to derive an expression for
the evaluation of P(t) at arbitrary time instances. Again, we
will represent P(t) as a piecewise function of time:

P(t) =


ΨσM (t,TM) ◦ P(TM), TM−1 ≤ t < TM

ΨσM−1 (t,TM−1) ◦ P(TM−1), TM−2 ≤ t < TM−1
...

...

Ψσ1 (t,T1) ◦ P(T1), T0 ≤ t < T1

(24)

For a more compact representation of P(t), we employ unit
step functions to get

P(t) =

M∑
i=1

{
[1(t − Ti−1) − 1(t − Ti)][Ψσi (t,Ti) ◦ P(Ti)]

}
(25)

where, from ATM property 2,

Ψσi (t,Ti) = Ψσi (t,TM)+Φσi (Ti, t)T Ψσi (Ti,TM)Φσi (Ti, t). (26)

Combining ATM property 1 with (21) and (26), we end up
with the expression

P(t) =

M∑
i=1

{
[1(t − Ti−1) − 1(t − Ti)]·

[Ψσi (t,TM) + Φσi (Ti, t)T [P(Ti) − Ψσi (Ti,TM)]Φσi (Ti, t)]
}

(27)

with Φσi (Ti, t) = Φσi (Ti,T0)Φσi (t,T0)−1. This completes the
proof.
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Prior to the iterative optimization, the ATM operators

Ψ j(t,TM) are solved offline for all t ∈ [T0,TM] and for all

different modes j = 1, ...,N. Thus, given a mode schedule, the

calculation of P(t) via (21) requires no additional integrations.

c) Calculating the descent direction using the mode
insertion gradient: An iterative optimization method com-

putes a new estimate of the optimum by taking a step in a

search direction from the current estimate of the optimum

so that a sufficient decrease in cost is achieved. The mode

insertion gradient d(t) defined above, has a similar role in the

mode scheduling optimization as the gradient does for finite-

dimensional optimization. It has been shown in [16], [41], [42]

that −dk(t) is a descent direction.

Proposition 3.3: An element of dk(t) is given by

dk
i (t) := χ(t, Σ(uk),T (uk))T
(t, Σ(uk),T (uk))

[Ai(t) − Aσk(t)(t)]χ(t, Σ(uk),T (uk))

(28)

where i = {1, ...,N}.

Proof After the definition for the state and co-state, an

equivalent expression for the mode insertion gradient may be

obtained from (15),(21) and (9).

d) Update rule: A new estimate of the optimal switching

control uk+1 is obtained by varying from the current iterate uk

in the descent direction and projecting the result to the set of

admissible switching control trajectories. For this purpose, we

employ the max-projection operator (6) and get a new estimate

of the optimum,

uk+1(t) = Q(uk(t) − γkdk(t))

xk+1(t) := χ(t, Σ(uk+1),T (uk+1))
(29)

where Q is given by (7). For choosing a sufficient step size

γk, we may utilize a projection-based backtracking process as

described in [18].

The reader is referred to [16], [17] for a more detailed

description of these algorithm steps, along with the associated

proofs for convergence.

e) Calculating the optimality condition: The optimality

function θk ∈ R is [16]

θk := dk
i0 (t0) (30)

where

(i0, t0) = arg min
i∈{1,...,N},t∈[T0,TM ]

di(t). (31)

The limit of the sequence of optimality functions is proven to

go to zero as a function of iteration k in [16]. This allows us

to utilize θk also as a terminating condition for the iterative

algorithm.

B. A Receding-Horizon Approach

Section III-A provides an offline approach for computing

an open-loop optimizer for the problem in Section II-B. Here,

we follow a receding-horizon approach in order to achieve

closed-loop optimization over an infinite time horizon.

Receding-horizon control strategies (often referred to as

MPC strategies [11], [33], [47], [48]) have become quite

popular recently, partly due to their robustness to model

uncertainties or to sensor measurement noise. This paper’s

approach enables real-time closed-loop execution of finite-

horizon optimal control algorithms. Based on our performance

evaluation in the next section, the finite-horizon SIOMS is

well-suited for receding-horizon linear switched-system con-

trol because it is fast and accurate.

A receding-horizon scheme for optimal mode scheduling

can be implemented as follows. From the current time t and

measured state x(t) as the initial condition in (1), use SIOMS

to obtain an optimal switching control ut(τ) for τ ∈ [t, t + T ]

where T := (TM − T0) in Algorithm 1. Apply the calculated

control for time duration δ with 0 < δ ≤ T to drive the system

from x(t) at time t to x(t + δ). Set t ← t + δ and repeat. This

scheme requires execution of the optimal mode scheduling

algorithm every δ seconds.

Following Algorithm 1, SIOMS requires an offline calcula-

tion of operators before the online iterative process is executed.

However, in order for SIOMS to be efficient in a receding-

horizon approach, it is undesirable to recalculate each STM

and ATM every δ seconds for the next T seconds. Instead,

each STM and ATM of the previous time interval [T0,TM] are

updated for the new information on [TM ,TM+δ] only (Fig. 1).

Such an approach is feasible because of the following lemma.

Lemma 3.4: Suppose Φ(t,T0) and Ψ(t,TM) are known for

all t ∈ [T0,TM]. Assuming also that Φ(t,TM) and Ψ(t,T ′M) are

known for all t ∈ [TM ,T ′M], the STM and ATM for the time

interval t ∈ [T ′0,T
′
M] with T0 < T ′0 and TM < T ′M are given by

Φ(t,T ′0) =

⎧⎪⎪⎨⎪⎪⎩
Φ(t,T0)Φ(T ′0,T0)−1, T ′0 ≤ t < TM

Φ(t,TM)Φ(TM ,T0)Φ(T ′0,T0)−1, TM ≤ t ≤ T ′M
(32)

and

Ψ(t,T ′M) =

⎧⎪⎪⎨⎪⎪⎩
Ψ(t,TM) ◦ Ψ(TM ,T ′M), T ′0 ≤ t < TM

Ψ(t,T ′M), TM ≤ t ≤ T ′M .
(33)

Proof The proof of Lemma 3.4 is a straightforward conse-

quence of STM property 2 and ATM properties 1 and 2 in

Section III-A.

Despite its simplicity, Lemma 3.4 is the key to efficient real-

time execution of a receding-horizon hybrid control scheme.

Using Lemma 3.4 with T ′0 = T0 + δ and T ′M = TM + δ,

T0

T0+

T

TM+TT T

( ,T0) ( ,TM)

( ,TM) ( ,TM+ )
Given: 

( ,TM+ )

( ,T0+ )
Compute:

Fig. 1. An illustration of the operators update step in a receding-horizon
scheme. A differential equation needs to be integrated only over a limited
time interval δ rather than the time horizon (TM − T0) := T .
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Fig. 2. Spring-Mass-Damper vibration control: (a) Optimal trajectory and
switching control and (b) the cost versus iteration count.

we formulate Algorithm 2 that allows for real-time closed-
loop SIOMS execution. The proposed formulation requires a
numerical integration over the limited time interval δ rather
than the full time horizon T (step 3.1 in Algorithm 2).
A graphical representation of the operators update every δ
seconds (step 3 in Algorithm 2) is given in Fig. 1.

As mentioned in the introduction, this paper does not
address stability of the receding-horizon SIOMS algorithm.
Many papers offer a detailed stability analysis for receding-
horizon algorithms, e.g. [33], [49], [50], with only a few
focusing on switched systems in particular [51], [52]. The
latter establish stability criteria that rely on hysteresis and
dwell-time conditions. However, as is obvious from our main
example in Section V, we wish to give special consideration
to applications where SIOMS is used for system control
with hybrid inputs by expressing the problem in a switched
system framework. The foundation of a stability proof for
this SIOMS implementation is given in [53] where authors
provide stability conditions on the design parameters of model
predictive control algorithms with input discontinuities. In
short, conditions are imposed on the time horizon T , the
terminal and running cost in (4) and the terminal constraint
set.

Algorithm 2 Receding-Horizon SIOMS

• Initialize current time t, finite horizon T and control duration δ.
• Solve for Φ j(τ, t) and Ψ j(τ, t + T ) ∀ j ∈ {1, ...,N} and τ ∈ [t, t + T ].

Do every δ seconds while control ut(τ) is applied:
1. Update T0 ← t, TM ← t + T and set x(T0) = x(t).
2. Run online part of Algorithm 1 to get ut(τ) for τ ∈ [t, t + δ].

3.1 Solve for Φ j(τ,TM) and Ψ j(τ,TM + δ) ∀τ ∈ [TM ,TM + δ]. *
3.2 Get Φ j(τ,T0 + δ) and Ψ j(τ,TM + δ) ∀ j ∈ {1, ...,N} and τ ∈ [T0 +

δ,TM + δ] from known Φ j(τ,T0) and Ψ j(τ,TM) using Lemma
3.4. *

3.3 Update Φ(τ,T0)← Φ(τ,T0 + δ) and Ψ(τ,TM)← Ψ(τ,TM + δ). *

* In a real-time application, step 3 can be executed at any time when
processing requirements are low, without increasing the amount of time
needed for calculation of control (i.e. steps 1-2).

IV. Open-Loop Implementation and Evaluation
In this section, SIOMS is implemented in a standard open-

loop manner (see Algorithm 1) and its performance is evalu-
ated in terms of i) execution time, ii) error of approximation
and iii) computational complexity.

As a baseline example, we use SIOMS to apply switched
stiffness vibration control on an unforced spring-mass-damper
system. A linear time-invariant system is particularly suited for
evaluation purposes as an analytical solution exists and can be
compared with the computed numerical solution. Variants of
this example system have been used extensively in literature
for the evaluation of hybrid controllers [54], [55]. Denoting
by ki the variable spring stiffness and by m and d the mass
and damping coefficient, the system equations take the form
in (2) with

Ai(t) =

(
0 1
−

ki
m − d

m

)
(34)

and N = 2 i.e. two possible modes. The state vector is
x = [q(t), q̇(t)]T , where q(t) is the mass position. System
parameters are defined as m = 1, d = 2, k1 = 30, and k2 = 70.
Our objective is to find the mode schedule that minimizes
the system vibration and is accordingly characterized by the
quadratic cost functional (4) with Q = diag[1, 0.1], P1 = 02×2
and [T0,TM] = [0, 2]. As an initial estimate u0(t), the system
is in mode 2 with an initial condition x0 = [1, 0]T and cost
J0 ≈ 0.98.

Fig. 2a shows the optimal switching control and correspond-
ing optimal q(t) trajectory after 30 SIOMS iterations. The cost
is reduced to J ≈ 0.38 ( Fig. 2b).

A. Execution Time and Approximation Error

The execution time of iterative optimal control algorithms
might be prohibitive for real-time applications [30]. It is often
the case that appropriate numerical techniques for integrating
the state and adjoint equations, (1) and (10), improve exe-
cution times. However, there is a trade-off to consider—a fast
numerical ODE solver might be prone to approximation errors.
In open-loop SIOMS (Algorithm 1), no differential equations
need to be numerically solved as part of the online iterative
process. Hence, we will show that both the online execution
time and approximation error can be kept low at the same
time.

Referring to Algorithm 1, a set of operator trajectories is
pre-calculated and stored offline, covering the full time horizon
[T0,TM]. In practice, the exact number of stored samples N
needs to be determined to reflect the processor’s computational
capacity and memory availability.3 We use the mass-spring-
damper to illustrate how the SIOMS execution time and error
of approximation vary across different choices of sample sizes
(Fig. 3).

For comparison purposes, we additionally evaluate the per-
formance of the projection-based mode scheduling algorithm
in [16] using the same example employing two different
numerical techniques, namely the Forward and Improved Euler
methods, for the integration of the state and adjoint equations.
In contrast to SIOMS where expressions exist for the state
and co-state evaluation ((15) and (21)), here, the solution to
the state and co-state equations, (2) and (10), is approximated
in every algorithm iteration. The Forward Euler method pro-

3Interpolating methods may be used for intermediate time instances.
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Fig. 3. Variation of (a) online execution times and (b) approximation
errors (2-norm of the root-mean-squared differences between the analytic
and computed state values) with respect to the selected number of samples
evaluated across 3 different optimization methods. SIOMS can achieve both
objectives (i.e. fast execution and high approximation accuracy) for a wide
range of sample sizes.

vides the following approximation to the state and co-state

trajectories of a general linear time-varying switched system:

x(th+1) = (I + Δt · A(th, Σ,T ))x(th), x(t0) = x0

ρ(th) = (I + Δt · A(th+1, Σ,T ))Tρ(th+1) + Δt · Qx(th+1),

ρ(tN ) = P1x(tN )

(35)

where I is the n × n identity matrix, th+1 = th + Δt with Δt the
step size and A(t, Σ,T ) is defined in (3). The Euler method
is simple but can be unstable and inaccurate. On the other
hand, Improved Euler (i.e. two-stage Runge Kutta) maintains
simplicity but with reduced approximation errors. It applies
the following approximation:

x(th+1) =
[
I +
Δt
2

A(th) +
Δt
2

A(th+1)(I + Δt · A(th))
]
x(th), x(t0) = x0

ρ(th) =
[
I +
Δt
2

A(th+1)T +
Δt
2

A(th)T (I + Δt · A(th+1)T )
]
ρ(th+1)

+Δt(I +
Δt
2

A(th)T )Qx(th+1), ρ(tN ) = P1 x(tN )

(36)

where I is the n × n identity matrix and th+1 = th + Δt
with Δt the step size. It is assumed for notational simplicity

that A(· ) := A(· , Σ,T ) defined in (3). Notice that both

approximation methods for the state and co-state, (35) and

(36), depend on the step size Δt as opposed to SIOMS state

and co-state expressions (15) and (21) that are independent of

a step size.

In the following example, the execution time and error of

approximation are measured against the selected number of

samples N . The step size Δt is constant so that the samples are

evenly-spaced. For the Forward and Improved Euler methods,

the number of samples N determines the fixed step size

Δt used for online integration of (1) and (10) resulting in

the approximations (35) and (36). However, in SIOMS the

number of samples N does not determine the step size used

in the offline numerical integration—instead, the STM and

ATM equations, (14) and (20), are numerically solved4 and

the resulting trajectories are sub-sampled with the desired

sampling frequency 1/Δt to create the final stored data points.

Note that we are only able to perform this additional sub-

sampling interpolation because it does not affect the total

execution time of the online algorithm portion. The fact that

the sub-sampling process is applied on smooth trajectories

produced by the continuous vector fields in (14) and (20)—

along with the fact that the expressions for evaluating the state

and co-state, (15) and (21), do not depend on any discretization

step size—guarantees that approximation accuracy of each

sample does not drop as the number of samples decreases.5

Regardless of the particular choice of Δt, the role of Δt has

the same impact on all three representations of state and co-

state evolution (SIOMS, Forward and Improved Euler)—in

each case, Δt determines the number of samples N (that can

be) available (without interpolation) during each iteration. All

methods were implemented in MATLAB, on a laptop with an

Intel Core i7 chipset.

The results are summarized in Fig. 3. Figure 3a illustrates

the variation of online execution time with respect to the se-

lected number of samples. Execution time refers to the number

of seconds required for 10 algorithm iterations—no significant

change in cost is observed in subsequent iterations as seen in

Fig. 2b. In all cases, the final optimal cost was found to be

in the range 0.45-0.5. Both Euler methods exhibit a similar

rising trend with the execution time reaching a maximum of

13 seconds when 20,001 samples are used (i.e. step size of

0.0001 secs). With SIOMS, however, a significantly lower

increase rate is observed with a maximum online execution

time at only approximately 1.3 seconds. The reasoning for this

observed difference is that with Euler methods, all samples of

the state and co-state trajectories must be calculated in every

iteration whereas in SIOMS one only needs to calculate the

state and co-state values necessary for the procedures of the

algorithm (e.g. computation of new switching times) using the

expressions (15) and (26) respectively.

The variation of approximation error with respect to the

number of samples is depicted in Fig. 3b. Here, by approxi-

mation error we refer to the 2-norm of the root-mean-squared

(RMS) differences between the analytic and computed state

4For this example, equations (14) and (20) are solved by a fixed-step
Improved Euler’s method (i.e. two-stage Runge Kutta) with step size equal
to 10−4.

5Choosing to use interpolating methods might be concerning with regard to
approximation accuracy of the full state and co-state trajectories. Regardless,
there are two ways to keep approximation errors low: i) by using higher-
order interpolating methods and ii) by using a larger number of samples.
With SIOMS, we can select a large number of samples without dramatically
increasing the execution time (Fig. 3).
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values for all states at sample points. As explained earlier,
the error with SIOMS remains approximately zero (≈ 0.0002)
regardless of the sample size. The trade-off between computa-
tion time and approximation error is particularly obvious with
the Forward Euler’s method, where the error only approaches
zero when a maximum number of samples is employed by
which time the corresponding execution time is prohibitive.
Interestingly, Improved Euler’s method starts with a lower
error (≈ 0.07) and drops to its minimum value of ≈ 0.0002
when 1600 samples and above are used. With the lowest
approximation error (≈ 0.0002), Improved Euler can achieve
a minimum execution time of approximately 3 seconds com-
pared to 0.2 seconds achieved by SIOMS. With low execution
time (≈ 0.2 with 100 samples used), Improved Euler can
achieve a minimum error close to 0.1 compared to 0.0002
achieved by SIOMS.

B. Computational Complexity

In Section III, we showed that all the state and co-state
information needed in Algorithms 1 and 2, is encoded in the
STM, Φ j(t,T0), and ATM, Ψ j(t,TM), ∀ j ∈ {1, ...,N} which are
solved for all t ∈ [T0,TM] prior to the optimization routine.
Therefore, the calculation of xk(t) and Pk(t) and consequently
the optimality condition θk relies simply on memory calls and
matrix algebra. No additional differential equations need to be
solved for during optimization.

The algorithm complexity can be discussed in terms of the
number of matrix multiplications involved in each iteration.
Recall that at each iteration, x(t) is given by (15) and P(t)
by (21), but the total number of state and co-state evaluations
depends on the number of time instances the descent direction
(28) must be evaluated (e.g. for the calculation of θk in (31)).
Taking this into consideration, we will look at the algebraic
calculations required for the evaluation of the state, co-state
and descent direction at a single time instance t.

First, for executional efficiency, one may calculate all the
state and co-state values at the switching times, x(Ti) and
P(Ti), given the current mode schedule (Σ(uk),T (uk)) at the
beginning of each iteration. To compute the state, begin with
x(T0) = x0 and then recursively calculate

x(Ti) = Φσi (Ti,Ti−1)x(Ti−1)∀i ∈ {1, ...,M − 1}. (37)

Using STM property 2 and following a similar approach as in
the derivation of (15), this computation comes down to 2(M−
1) matrix multiplications, assuming that all Φ j(t,T0)−1 for all
j ∈ {1, ...,N} have also been stored in memory. Similarly, begin
with P(TM) = P1 and then recursively calculate

P(Ti) =Ψσi+1 (Ti,TM) + Φσi+1 (Ti+1,Ti)T

[P(Ti+1) − Ψσi+1 (Ti+1,TM)]Φσi+1 (Ti+1,Ti)
(38)

for all i ∈ {1, ...,M − 1}. Note that the derivation of the above
expression is identical to the derivation of (21). Knowing that
all Φσi+1 (Ti+1,Ti) have already been calculated in (37), another
2(M − 1) multiplications are required for the calculation of
P(t). To summarize, the standard computational cost of the
algorithm comes down to a total of 4(M − 1) multiplications
per iteration.

Magnetic wheel

Ball of mass m

String of length h(t)

ζ(t)

y(t)

Gravity, g

Fig. 4. The experimental setup consists of an one-dimensional differential
drive mobile robot with magnetic wheels (i.e. cart) and a ball suspended by
a string. The string changes length by means of an actuated reeling system
attached on the robot. The system configuration is measured by a Microsoft
Kinect at ≈ 30 Hz. The full state is estimated using an Extended Kalman
Filter. The Robot Operating System (ROS) is used for collecting sensed data
and transmitting control signals (i.e. robot acceleration values). See more in
[56], [57].

Now, to evaluate equation (15) and (21) at any random time
t during the optimization process, we only need 6 additional
multiplications, 2 for the state x(t) and 4 for the relation P(t).
Therefore, to evaluate the descent direction at any random
time, 9 multiplications are required in total, including the
algebra involved in (28).

Finally, each iteration of Algorithm 1 involves 4(M − 1)
multiplications for the calculation of x(Ti) and P(Ti), and 9λ
additional multiplications where λ is the number of evaluations
of the expression (28) for the descent direction.

V. Closed-Loop Simulation and Experimental Implementation

In this section, SIOMS is implemented in a closed-loop
manner (see Algorithm 2) and is tested on a cart and suspended
mass system in simulation and on an experimental setup.

The system model under concern is linear time-varying with
two configuration variables, q(t) = [y(t), ζ(t)]T , where y(t) is
the horizontal displacement of the cart and ζ(t) is the rotational
angle of the string as seen in Fig. 4. The length of the string
varies with time. Denoting by h(t) the time-varying string
length, g the gravity acceleration and by m and c the mass and
damping coefficient, the linearized system equations around
the equilibrium x = 0, take the form in (2) with

Ai(t) =


0 1 0 0 0
0 0 0 0 −αi

0 0 0 1 0
0 0 −

g
h(t) − c

mh(t)2 − 1
h(t)αi

0 0 0 0 0

 , (39)
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Fig. 5. Open-loop SIOMS (Algorithm 1 with TM = 40 s) vs Closed-loop SIOMS (Algorithm 2 with δ = 0.5 and T = 3 s) in simulation.

h(t) = sin(t) + 2 (40)

and N = 3 i.e. three possible modes. The cart’s horizontal

acceleration α is directly controlled and can switch between

the values α1 = 0, α2 = −0.5 and α3 = 0.5. Notice we

have augmented the state-space from R4 to R5 in order to

transform the originally affine model to the linear form in (2).

The augmented state vector is x = [y, ẏ, ζ, ζ̇, ũ] where ũ is

the auxiliary state variable. System parameters are defined as

m = 0.124 kg, c = 0.05 and g = 9.8 m/s2.

Our objective is to find the mode schedule that minimizes

the angle oscillation while the cart remains in a neighbor-

hood near the origin and is accordingly characterized by the

quadratic cost functional (4) with Q = diag[0, 0, 10, 1, 0] and

P1 = diag[0.1, 0.01, 10, 1, 0]. The system starts at an initial

condition x0 = [0.5, 0, 0.1, 0, 1]T .

A. Simulation Results

We apply Algorithm 2 to the optimal control problem stated

previously and compare its performance with Algorithm 1 in

terms of (1) disturbance rejection and (2) robustness to system

parameter uncertainties. For real-time SIOMS execution, both

algorithms were implemented in Python.

f) Disturbance rejection: We ran Algorithm 2 with pa-

rameters δ = 0.5 and T = 3 s for a total of 40 seconds. A

disturbance is applied at time ≈ 14 s. Each run of Algorithm

1 (i.e. 5 SIOMS iterations) lasted on average 0.04 s of CPU

time. Note that the algorithm was implemented in a real-

time manner—starting the system simulation/integration from

t = 0 s, a new switching control is calculated and applied every

δ = 0.5 seconds using information about the current system

state. For comparison, we additionally ran a one-time open-

loop SIOMS (Algorithm 1) with T0 = 0 s and TM = 40 s.

The cost is reduced from J0 ≈ 1.96 to J ≈ 0.58 after 15

iterations; the optimal switching control was pre-calculated

and later applied to the system.
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Fig. 6. Robustness to uncertainty in the damping coefficient through Monte-
Carlo analysis. Angle trajectories bundle and optimal cost distribution for (a)
open-loop SIOMS (Algorithm 1 with T0 = 0 and TM = 6) and (b) closed-loop
SIOMS (Algorithm 2 with δ = 0.2 and T = 3).

The results are illustrated in Fig. 5. Starting at an initial

value of 0.1 rad, the angle has a settle time6 of about 2.5 s
with closed-loop control compared to 5 s when open-loop

SIOMS is applied. As expected, the disturbance triggers a

high angle oscillation with a settle time > 20 s, as the effect

is not taken into account by the open-loop controller. The

receding-horizon SIOMS, however, results in a much lower

settle time of 2.5 s, providing an efficient real-time response

to the random disturbance. The last 2 diagrams in Fig. 5

show the switched cart acceleration α with respect to time as

6Settle time is defined here as the time from the arrival of the disturbance
until the angle reaches and stays within the settle boundary from −0.025 rad
to 0.025 rad surrounding the origin.



11

calculated by each algorithm. In close-loop control where the
most reliable performance is observed, a total of 65 switches
occur with an average mode duration of ≈ 0.42 s and a
minimum mode duration (i.e. period during which the mode
remain fixed) of ≈ 0.02 s.

g) Robustness to model uncertainties: In a subsequent
comparison, we examine the robustness of Algorithm 2 to
model uncertainties and compare its performance to Algorithm
1. In particular, we perform a Monte-Carlo analysis where
both algorithms are run 100 times in the following scheme:
the optimal switching control is calculated using the system
model in (39) and is subsequently applied to an equivalent
system with randomly added noise in the damping parameter,
i.e. cactual = 0.05 +ω where ω is a random real number in the
range [−0.05, 3.0] so that cactual ∈ [0, 3.05].

We demonstrate the results in Fig. 6. The diagrams on
the left show the resulting angle trajectories for t ∈ [0, 6]
of all algorithm runs. It can be observed that open-loop
SIOMS is more sensitive to changes in the damping coefficient
compared to closed-loop SIOMS that exhibits a more robust
performance. The distribution of optimal costs across all runs
is given in the remaining diagrams of Fig. 6. For both open-
loop and closed-loop SIOMS, the optimal cost is calculated
as in (4) over the resulting trajectories x(t) for all t ∈ [0, 6].
The mean optimal cost in open-loop SIOMS is ≈ 0.0037
compared to ≈ 0.0027 in the closed-loop implementation.
In addition, with receding-horizon SIOMS (Algorithm 2) the
standard deviation is 0.08 · 10−3 which is significantly lower
than the standard deviation 0.51 · 10−3 observed in open-loop
SIOMS (Algorithm 1).
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Fig. 7. An example trial of Experiment 1. First, the robot follows a
sinusoidal trajectory perturbing the string angle. Approximately 6.6 seconds
later, receding-horizon SIOMS is applied in real time and drives the angle
back to the origin in approximately 4.8 seconds. Without control, the angle
exhibits high oscillations with minimal decay.

B. Experimental Results

In this section, the performance of the closed-loop hybrid
controller (Algorithm 2) is evaluated experimentally on a real
cart and suspended mass system (Fig. 4). More information
about this experimental platform can be found in [56], [57].
Due to geometric constraints and model discrepancies, a few
changes in the parameters were made as follows: h(t) =

0.4sin(t) + 1 in (40), c = 0.001 in (39), δ = 0.4 and T = 5 s
in Algorithm 2. The same objective as in simulation was
pursued i.e. real-time angle regulation with the robot position
maintained close to the origin. The weight matrices in (4) were
set as Q = diag[0, 0, 1000, 0, 0] and P1 = diag[1, 0, 100, 0, 0].
We ran 2 sets of experiments to illustrate the features of the
hybrid controller based on Algorithm 2.

In Experiment 1, the SIOMS controller is initially inactive
and we perturb the string angle by setting a predefined
oscillatory trajectory to the cart/robot7. After approximately
6.6 seconds, the controller is activated to optimally drive
the angle to zero using Algorithm 2. One example trial of
Experiment 1 is illustrated in Fig. 7. During the perturbation,
the angle exhibits an oscillatory response with peak amplitude
at 0.25 rad. Once receding-horizon SIOMS is applied, the
string angle starts approaching the origin with a settle time
of 4.8 seconds and the robot moves slightly to the left before
returning to the origin. For comparison purposes, Fig. 7 also
shows the angle trajectory for the case when no control was
applied following the perturbation (i.e. α(t) = 0). One may
observe that the uncontrolled system is highly underdamped
with no settle time achieved in a time horizon of ≈ 14
seconds. Note that the sinusoidal change in peak amplitude
and frequency is a result of the time-varying string length.

We repeated Experiment 1 for four different perturba-
tion levels, each characterized by the peak angle amplitude
achieved. Three trials per perturbation were run i.e. twelve
trials in total. As performance metrics, we used a) the number
of switches per second, b) the average mode duration and c)
the settle time for the string angle. Our goal was to verify the
reliability and efficacy of the controller in noisy conditions
induced by sensor and model deficiencies. The results are
given in Table I. Throughout the trials, the number of switches
per second ranges from 2.3 to 3.8. The average mode duration
also exhibits low variation among different trials with a range
from 0.27 to 0.38 seconds. As expected, settle times increase
with higher perturbation levels but remain fairly close among
trials of the same perturbation.

In Experiment 2, we sought to evaluate the performance of
the hybrid controller when random disturbances occur in real
time. To achieve this, the experiment is initialized at y = 0,
ζ = 0, α = 0 and zero velocities. With the receding-horizon
SIOMS controller activated, a person pushes the suspended
mass to create real-time disturbances. The controller responds
to the disturbance to regulate the angle and drive it back to
zero8. An example trial of Experiment 2 is presented in Fig. 8
where four consecutive disturbances of varied amplitudes are
applied. One may observe that the controller regulates the

7A video of the experiment is available in https://vimeo.com/nxrlab/sioms1.
8A video of the experiment is available in https://vimeo.com/nxrlab/sioms2.
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TABLE I
We ran 12 trials of Experiment 1 with 4 different perturbation levels.

Perturbation 1 Perturbation 2 Perturbation 3 Perturbation 4
peak angle = 0.18rad peak angle = 0.25rad peak angle = 0.33rad peak angle = 0.4rad

Trial 1 2 3 1 2 3 1 2 3 1 2 3
switches / second 2.80 3.20 2.60 2.36 2.61 2.80 3.88 2.77 2.46 2.89 2.59 2.66

average mode duration (s) 0.34 0.27 0.32 0.31 0.35 0.32 0.38 0.33 0.35 0.31 0.32 0.34
settle time (s) 2.9 3.6 4.2 3.4 4.2 4.8 7.2 7.5 6.9 9.4 8.6 9.1

angle with settle times of approximately 6 seconds in all four
cases. Furthermore, as a result of the terminal cost applied at
y(t), the robot does not deviate significantly from the origin.

VI. Conclusions

Our objective in this paper is to achieve fast and consistent,
real-time mode scheduling by taking advantage of linearity of
a switched system. In general, mode scheduling is challenging
due to the fact that both the mode sequence and the set of
switching times must be optimized jointly. Thus, execution
time of an optimization is often prohibitive for real-time
applications and can only be reduced at the expense of approx-
imation accuracy. In addition, the numerical implementation
of optimal mode scheduling algorithms requires consistent
solution approximations that are prone to numerical errors due
to discontinuities of the switched system under concern.

We addressed these issues by introducing an algorithm
(SIOMS) for scheduling the modes of linear time-varying
switched systems subject to a quadratic cost functional. By
solving a single set of differential equations offline, open-
loop SIOMS requires no online simulations while closed-
loop SIOMS only involves an integration over a limited
time interval rather than the full time horizon. The pro-
posed algorithm is fast and free of the trade-off between
execution time and approximation errors. Furthermore, in
practical implementation, the proposed solution of the state

and adjoint equations is independent of the selected step size.
For this reason, approximation accuracy and consistency in
SIOMS does not depend on the number of samples used for
approximation of the state and co-state trajectories. We verified
the aforementioned advantages using a numerical example
and comparing SIOMS to algorithms that include common
integration schemes. Finally, to verify the efficacy of receding-
horizon SIOMS in real-world applications, we performed
a real-time experiment using ROS. Our experimental work
demonstrated that a cart and suspended mass system can be
regulated in real time using closed-loop hybrid control signals.
Future work will focus on formally establishing stability of the
receding-horizon SIOMS controller, based on results in [53].
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