
Automatic Synthesis of Control Alphabet Policies
Anastasia Mavrommati and Todd D. Murphey

Abstract— This paper presents a method for synthesis of
control alphabet policies, given continuum descriptions of
physical systems and tasks. First, we describe a model predic-
tive control scheme, called switched sequential action control
(sSAC), that generates global state-feedback control policies
with low computational cost, given a control alphabet. During
synthesis, sSAC alphabet policies are directly encoded into finite
state machines using a cell subdivision approach. As opposed
to existing automata synthesis methods, controller synthesis is
based entirely on the original nonlinear system dynamics and
thus does not rely on but rather results in a lower-complexity
symbolic representation. The method is validated for the cart-
pendulum inversion problem and the double-tank system. The
approach presents an opportunity for real-time task-oriented
control of complex robotic platforms using exclusively sensor
data with no online computation involved.

I. INTRODUCTION

This paper constructs control alphabet policies (CAP) that
achieve desired performance objectives, given a (nonlinear)
system and finite set of constant control symbols (denoted as
the control alphabet). A CAP can be understood as a mapping
that uniquely assigns a control symbol from the alphabet U to
a state space partition in a set L (see Definition 2). Symbolic
control has been popular in the areas of robot control and
motion planning [1] as a means to provide solutions for
control on embedded systems with limited computational
power [2]. Common symbolic control approaches include
linear temporal logic (LTL) [3] and motion description
languages (MDLs) [4]. Here, as in MDLs, we synthesize
symbolic policies considering discretization at the controls
level, i.e., symbols denote control modes forming a control
alphabet. For example, in a helicopter-like vehicle, tasks like
“land”, “ascend”, and “hover” might correspond to alphabet
policies composed of constant control modes.

Our objective is to synthesize simple control alphabet
policies for otherwise complex dynamic tasks, that can be
stored in finite state machines and realized with digital
computer tools (e.g. hardware accelerators [5]) inexpensively,
i.e. without requiring online control calculation. The solution
to the problem of CAP synthesis for a wide range of systems
and control objectives will benefit automation systems in
terms of computing power allocation and compactness by

Anastasia Mavrommati and Todd D. Murphey are
with the Department of Mechanical Engineering, North-
western University, 2145 Sheridan Road Evanston, IL
60208, USA Email: stacymav@u.northwestern.edu;
t-murphey@northwestern.edu

This material is based upon work supported by the National Science
Foundation under awards CMMI-1200321 and IIS-1426961. Any opinions,
findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

boosting their multi-tasking capacity (power allocation) and
promoting miniaturization (compactness), in the fields of
aviation [6], manufacturing [7], and robotic locomotion [8]
among others.

The proposed process of CAP synthesis extracts state
space partitions L to generate compact state policies de-
scribed as a mapping L → U that assigns one control
symbol from U to each state space partition in L instead
of each state in X. With this partitioning, control alphabet
policies are structured as finite state machines during the
synthesis process. Figure 1 shows how our approach (in red)
compares to common methodologies for controller automata
synthesis (in blue). The latter [2], [9]–[11] generate lower-
complexity symbolic representations of continuous systems
(i.e. bisimulation [11] or symbolic model [2]) and compute
the policy on the system abstraction. On the contrary, this
paper proposes that CAP synthesis (illustrated in blue) is
entirely based on the original continuous nonlinear system
dynamics instead of their lower-complexity abstractions. As
a result, our objective is to provide solutions even for cases
where a discrete system approximation is hard or impossible
to obtain to aid in the controller synthesis. Subsequently,
state-space abstractions are extracted based on the numerical
global control policy. However, note that these state partitions
do not aim to be a bisimulation of the actual system (as
is formally defined in [11]) but a method for inexpensive
representation of state-feedback controls and fast policy
execution.

In order to achieve this alternative scheme, we formulate a
method for state-feedback global control with a finite number
of control symbols1 that is computationally inexpensive and
can be encoded in finite states machines. Common numerical
approaches in hybrid control [12]–[14] output open-loop
time-dependent control trajectories that do not favor the
synthesis of global state-feedback control alphabet policies2

while they exhibit high execution times. To overcome these
issues, we propose a numerical algorithm for global symbolic
control which we call switched sequential action control
(sSAC). The algorithm is based on sequential action con-
trol (SAC), a recent model-based optimal control scheme
described in detail in [15]–[18] and relies on hybrid systems
theory to select the next symbol that optimally improves the
task objective instead of optimizing it. While SAC outputs
continuous control signals (unless saturated), sSAC outputs
controls that switch among a finite number of control modes
i.e. symbols.

1This type of control is also known as mode scheduling where control
symbols denote control modes.

2In other words, common mode scheduling algorithms do not naturally
assign a symbol u at any state x.

The final step of the proposed synthesis process generates

state-space partitions based on an sSAC control policy, using

a cell subdivision approach, typically used for computation of

invariant sets [19]. As opposed to [2], the approach employs

a multi-resolution grid, so that the distribution of state space

partitions is non-uniform. As a result, the number of discrete

state partitions doesn’t grow exponentially with respect to the

dimension of the state space. Furthermore, since the non-

uniform partitions are hyper-rectangles that agree with the

control policy (see Definition 2 and 3), the guard equations

of the finite state machines can be directly represented as

nested state inequalities for fast controller execution.

For method validation, we construct control alphabet

policies for cart-pendulum inversion, and double-tank fluid

levels control. When used for cart-pendulum inversion, we

show that this automated numerical process—with sSAC and

two symbols—generates structurally identical results to the

bang-bang analytical control law published in [20]. The last

example illustrates CAP synthesis in systems with hybrid

dynamics. Finally, we discuss alternative uses of the CAP

policies as embedded “background” controllers around which

online controllers (e.g. sSAC or SAC) work to achieve high-

level objectives.

This paper is structured as follows: Section II introduces

the problem, and is followed by Section III where switched

sequential action control (sSAC) is presented. Section IV

extracts state partitions from the policy using cell subdi-

vision. In Sections V, VI, we synthesize policies for the

cart-pendulum system and the double-tank system. Finally,

a discussion on algorithm benefits, possible applications and

future work is provided in Section VII.

II. Problem formulation

We consider continuous-time nonlinear systems with n
states x : R → X ⊆ Rn and m inputs u : R → U ⊂ Rm

following equations of the general form

ẋ = f (x, u). (1)

At any time t, input u(t) can be one of the N constant-value

control vectors from the set U = {u1, ..., uN} ⊂ Rm. The state

B
is

im
ul

at
io

n
/

Sy
m

bo
lic

 m
od

el

System
Abstraction

Compute policy
on system abstraction Controller FSM

System

Extract state
abtractions from

 policy

State policy with

Compute policy
on original system

Fig. 1. A diagram showing how our approach (in red) compares to common
automata synthesis methodologies [2], [9]–[11] (in blue).

is sometimes denoted as t �→ x(t; t0, x0, u) when we want to

make explicit the dependence on the initial time, initial state,

and corresponding control signal.

Assumption 1: The elements of dynamics vector (1) are

real, bounded, continuously differentiable in x, and continu-

ous in t and u.

Definition 1: A symbol is a constant-value control vector

ui ∈ Rm that belongs in the system’s alphabet, i.e. control

set U.

Our objective is to formulate a state-feedback control

alphabet policy that satisfies a performance objective with

low to no online computational cost. In contrast to e.g. [9],

we do not assume any partition of the state space, so that

controls are calculated for the original continuous system

(1). However, during the synthesis process we will group

sets of states to generate a multi-resolution partition L of

a compact set Ω in the state space X consisting of finitely

many connected and disjoint subsets Li with the properties⋃
Li∈L

Li = Ω and Li ∩ Lj = ∅ ∀Li, Lj ∈ L, i � j. (2)

Partition L will be generated to intrinsically satisfy a nu-

merical optimal control scheme, called switched sequential

action control (sSAC), presented in the next section.

III. Switched sequential action control

In this section, we present switched sequential action con-

trol (sSAC), a variation of sequential action control (SAC) in

[15], that performs global closed-loop symbolic control using

the symbols in U. The algorithm follows a receding-horizon

approach; controls are obtained by repeatedly solving online

an open-loop symbolic control problem P every ts seconds

(with sampling frequency 1
ts

), every time using the current

measure of the system state xcurr. However, it differs from

common receding-horizon schemes in two major points:

a) P does not search for a control trajectory over the full

time horizon T but rather selects a single symbolic control

action uk∗ ∈ U to be applied for a short amount of time λ, and

b) open-loop solution optimally improves the performance

objective (3) instead of optimizing it. P improves general

tracking objectives of the form

J(x(·)) =
∫ t0+T

t0
l(x(t)) dt + m̄(x(t0 + T)) , (3)

with incremental cost l(x(t)), terminal cost m̄(x(t0+T)), initial

time t0 and time horizon T . The open-loop problem P is

P(t0, x0,T, J) : (4)

Find k∗ ∈ {1, 2, ...,N} and τ, λ ∈ R such that

J(x(t; t0, x0, usS AC)) < J(x(t; t0, x0, ude f ault))

with usS AC(t) =

⎧⎪⎪⎨⎪⎪⎩
uk∗ τ ≤ t ≤ τ + λ
ude f ault else

subject to (1) with t ∈ [t0, t0 + T] and x(t0) = x0.

The term ude f ault refers to a default (nominal) control symbol.

It is often ude f ault = 0 so that problem P outputs the

optimal symbolic action relative to doing nothing (allowing

the system to drift for a horizon into the future). Alterna-

tively, ude f ault may be an optimized feedforward controller

providing a nominal trajectory around which sSAC would

provide feedback.

The solution usS AC(t) of problem P generates a switch

of duration λ in the dynamics (1) from f (x, ude f ault) to

f (x, uk∗). The triplet (k∗, τ, λ)—i.e. a single symbol uk∗ , k∗ ∈
{1, 2, ...,N} along with its associated application time τ and

duration λ—defines a symbolic sSAC control action. As

the receding horizon strategy progresses, P(t0, x0,T, J) is

solved for the current time t0 using the measured state x0,

and the output control usS AC(t) is applied for ts seconds

with 0 < ts ≤ T . The process is then repeated at the next

sampling instance, i.e. t0 ← t0 + ts. This closed-loop receding

horizon strategy, illustrated in Fig. 2, results in a sequence

of symbolic actions, forming a piecewise constant control

signal ucl(t) with state response xcl(t). With regard to CAP

synthesis, note that in each cycle iteration and with ude f ault

determined, sSAC only takes as input the current state x0

and outputs a single control symbol uk∗ or ude f ault to be

applied for a finite duration at t0. We take advantage of this

natural state-dependence of sSAC controls in order to achieve

synthesis of control policies in Section IV.

A. Solving open-loop problem P

To make explicit the dependence on action duration

λ, application time τ and symbol k∗, we write inputs

u : R × R+ × R × {1, 2, ...,N} → U of the form of usS AC(t) in

(4) as

u(t; λ, τ, k∗) =

⎧⎪⎪⎨⎪⎪⎩
uk∗ τ ≤ t ≤ τ + λ
ude f ault else.

System

Feedback
Open LoopPredict

sSAC Process

Problem

Compute optimal
symbol schedule

Determine

Determine control
duration

symbol
time

and

applied
not applied

Open-loop solution
y

Fig. 2. The sSAC process takes as input the current state x0 and repeatedly
solves an open-loop problem P to synthesize piecewise constant control
trajectories using the symbols in U.

When λ = 0, it is u(t; 0, ·, ·) ≡ ude f ault, i.e. no ac-

tion is applied. Accordingly, we define J̄(λ, τ, k∗) :=

J(x(t; t0, x0, u(t; λ, τ, k∗))) so that the performance cost de-

pends directly on the application parameters of a sSAC ac-

tion. Using this notation, the open-loop problem P searches

for the triplet (k∗, τ, λ) such that J̄(λ, τ, k∗) < J̄(0, ·, ·). There

exists an open, non-zero neighborhood, V = N(λ → 0),

where the change in cost ΔJ := J̄(λ, τ, k∗)− J̄(0, ·, ·) is locally

modeled by Taylor expansion as

ΔJ ≈
dJ̄(·, τ, k∗)

dλ+
λ (5)

for finite durations λ ∈ V . The quantity dJ̄(·,τ,k∗)
dλ+ —called mode

insertion gradient and written dJ
dλ+

∣∣∣
τ,k∗ for brevity—measures

the first-order sensitivity of cost function (3) to application
of symbol uk∗ for infinitesimal duration λ→ 0+ at time τ. It
is calculated as ([21], [22])

dJ
dλ+

∣∣∣∣∣
t,k
= ρ(t)T (f (x(t), uk) − f (x(t), ude f ault)) ∀t ∈ [t0, t0 + T]. (6)

The adjoint variable ρ : R → R
n provides the sensitiv-

ity of (3) to state variations along a predicted trajectory

x(t) ∀ t ∈ [t0, t0 + T]. The adjoint satisfies3

ρ̇ = −Dxl(x)T − Dx f (x, ude f ault)
Tρ

subject to ρ(t0 + T) = Dxm̄(x(t0 + T))T . (7)

Expression (5) indicates that the difference ΔJ depends on

the value of the mode insertion gradient dJ̄(·,τ,k∗)
dλ+ in (6) and

is parameterized by the application time τ and duration λ.
This relationship allows us to solve problem P by following

the following four steps.

1) Predict: The sSAC process begins by predicting the

evolution of a system model from current state feedback. In

this step, the algorithm simulates system (1) from the current

state x0 and time t0, for the finite horizon [t0, t0 + T], under

the default (nominal) control mode ude f ault. The prediction

phase completes upon simulation of the adjoint system (7).

2) Compute optimal symbol schedule u∗: In this step,

sSAC computes a schedule, u∗ : {t | t ∈ [t0, t0 + T]} → U,

corresponding to the symbols that would optimally improve

performance if applied for some duration at an arbitrary

time t ∈ [t0, t0 + T]. To achieve optimal cost improvement,

i.e. ΔJ < 0 in (5) or equivalently J(x(t; t0, x0, usS AC)) <
J(x(t; t0, x0, ude f ault)) in P, the schedule selects at each time t
the symbol number k that drives (6) the closest to a specified

negative value, αd ∈ R−. Therefore, based on the simulation

of (1) and (7) completed in the prediction step (Section III-

A.1), the control schedule is calculated as

u∗(t) = argmin
uk ,k=1,...,N

{[dJ
dλ+

∣∣∣∣∣
t,k
− αd

]2
+ ‖uk‖2R

}
, t ∈ [t0, t0 + T]. (8)

The matrix R > 0 ∈ Rm×m provides an optional4 metric

on control effort. Parameter αd determines how smooth or

aggressive the sSAC response will be, which is particularly

3Dx f (·) denotes the partial derivative
∂ f (·)
∂x .

4The weight on ui is optional because there is only a finite number of
control symbols.

useful when we have a large number of symbols and the
controller is used in human-in-the-loop applications (e.g. see
[16]). In any other situation, αd can be eliminated with no
change on the controller’s effect.

3) Determine application time τ and symbol k∗: As
mentioned before, the quantity dJ

dλ parameterizes an action by
its application time τ. As a result, sSAC optimizes a decision
variable not normally included in control calculations – the
choice of when to act. In particular, sSAC searches u∗ for a
time that optimizes the trade-off between the cost of waiting
and the efficacy of control at that time. For more details, see
[15]. Note that this step is optional, and is mostly employed
when ude f ault = 0, i.e. when “doing nothing” is an option.
In any other case, the application time is the “current” time
t0. Once τ is determined, the symbolic output of P in (4) is
immediately specified as k∗ ∈ {1, ...,N} such that u∗(τ) = uk∗ .
In words, this step extracts from schedule u∗(t) the single
symbol uk∗ that corresponds to time τ.

4) Determine control duration λ: The final step in syn-
thesizing a sSAC action is to determine how long to act
(select control duration λ). For this purpose, we use a line
search with a simple descent condition to select a λ that
provides a minimum acceptable change in cost (3). In short,
starting with a (short) initial duration, λ = λ0, the effect of the
control action is simulated from (1) and (3). If the simulated
action improves cost (3) by a desired amount, the duration is
selected. Otherwise, the duration is reduced and the process
repeated. For a detailed description of this step, see [15].

After computing the duration, λ, the sSAC action is fully
specified (it has a value, an application time and a duration)
and the solution to open-loop problem P is complete.

IV. Control alphabet policies

The objective of this paper is to generate control policies
for inexpensive symbolic control. The resulting control laws
are essentially hybrid automata, known to describe (discrete)
switching conditions across a finite number of (continuous)
dynamic modes [23]. Here, to stress the importance of
the control alphabet policies (CAP) as standalone symbolic
controllers relying on sensor data only, we use the following
definition.

Definition 2: A control alphabet policy (CAP) is a 3-tuple
〈U, L,T〉 where5:

— U is the alphabet i.e a set of N symbols;
— L is a finite set of state space partitions that satisfy

the sSAC control policy6, i.e. L = {Li ⊂ X, i = {1, 2, ...} :
usS AC(0)

∣∣∣
P(·,xm,·,·)

= usS AC(0)
∣∣∣
P(·,xn,·,·)

∀xm, xn ∈ Li};
— T : U × L → U is a (deterministic) transition

function encoding a state-feedback control policy. This can
be illustrated as a finite directed multigraph (U, L), with
elements in U being the vertices and elements in L the edges.

In this section, we describe a cell subdivision method that
utilizes a non-uniform grid to extract state abstractions based

5From automata literature, control alphabet policies are similar in struc-
ture to labeled transition systems (LTS).

6That is, each state space partition in L maps uniquely to one control
symbol in U, such that the performance objective is satisfied.

on the symbolic sSAC policy7.
Note here that sSAC sampling frequency 1

ts
in Fig. 2 has

no practical meaning in the realization of the controller as a
finite state machine (as in Definition 2). One way to think
about it, is that the policy aims to capture the performance
of sSAC when ts → 0. In practice during CAP application,
sensor feedback rate is the primary limiting factor that
determines frequency of state updates—not to be confused
with sSAC frequency 1

ts
.

Algorithm 1 Compute Control Alphabet Policy

Initialize layer k = 0, desired maximum level kmax, time horizon T ,
number of test points p ∈ N, set of state space partitions L = ∅,
and set of compact sets to be divided Σ(0) = {Ω} with Ω ⊆ X ⊆ Rn

and Σ(k) = ∅ ∀ k > 0.

1) For all compact sets Σ(k, j) ⊂ Rn, j = 1, ... in Σ(k):
a) Define a hyper-grid C(k, j) on Σ(k, j) with P(k, j) ∈ N cells

and initialize labels `(C(k, j)
i) = Null, i = 1, ..., P(k, j)

(unlabeled grid cells).
b) For every grid cell C(k, j)

i ⊂ Ω, i = 1, ..., P(k, j):
• Select p test points x∗ from the cell interior or

boundary.
• For each point x(s)

∗ ∈ Rn, s = 1, ..., p, solve
P(0, x(s)

∗ ,T, J) in (4). Then, u(s) = usS AC(0) ∈ U.
• If u(s1) = u(s2) ∀ s1, s2 ∈ {1, 2, ..., p} or k = kmax,

label grid cell C(k, j)
i such that `(C(k, j)

i) =
mode({u(s) ∈ U : s = 1, ..., p});

add C(k, j)
i to set L;

else
add C(k, j)

i to set Σ(k+1).
2) k ← k + 1
3) Repeat from (1) until Σ(k) = ∅ and

⋃
Li∈L Li = Ω.

A. State abstractions using cell subdivision

Definition 3: Consider a compact set Ω ⊂ Rn to a be
a subset on the state space X ⊆ Rn. A hyper-grid C
on Ω divides Ω in a family of equally-sized n-orthotopes
or hyper-rectangles8 Ci, i = 1, ..., P, P ∈ N called cells,
such that

⋃
Ci∈C Ci = Ω and Ci ∩C j = ∅ ∀Ci,C j ∈ C, i , j.

Each hyper-grid C is fully defined by n sets of values
x̄i = {xmin

i , xmin
i + δi, xmin

i + 2δi, ..., xmax
i } that in turn define the

partitioning of each state with δi the size of the ith cell
dimension, so that each state i has qi =

xmax
i −xmin

i
δi

partitions. It
is then P = {qi}

n. To each cell Ci, associate a label `(Ci) ∈ Rm

which can take values in U or be Null (i.e. cell is unlabeled).
Using the above definition, the complete process is given

in Algorithm 1. The algorithm9 takes as input a subset
of the state space Ω ⊆ X and outputs a partition L of
Ω, i.e.

⋃
Li∈L Li = Ω and Li ∩ L j = ∅ ∀Li, L j ∈ L, i , j. It is

structured in layers starting from layer 0, with each new
cell subdivision corresponding to a new layer. Initially, a

7Note that the approach of this section can be applied without modifi-
cation using any other global policy that outputs state-dependent controls
based on a finite control alphabet.

8A n-orthotope or hyper-rectangle is the generalization of a rectangle for
n dimensions.

9In Algorithm 1, step b, mode(A) denotes the value that appears most
often in the set A.

standard—coarse—grid is applied on a state-space subset
(layer 0). For each cell in the grid, if the labeling criterion is
not satisfied, the cell is further subdivided to a finer grid
of cells (e.g. layer 1) and the process repeats with finer
layers until all cells are labeled whereafter partition L has
been fully specified. The p test points in Step b can be the
vertices, middle point and edge middle points of the cell as
well as random interior points drawn from a distribution. A
lower limit at the number of test points is pmin = 2n + 1, i.e.
the vertices and center point of the n-orthotope. Selection
of number of test points p is determined by the trade-off

between desired accuracy level i.e. resolution (p ↑) and
computational cost i.e. sSAC runs (p ↓).

The algorithm terminates when a maximum layer k = kmax

is reached, wherein the set of compact sets to be divided
(unlabeled cells) is empty i.e., Σ(k) = ∅. The algorithm must
be terminated when k = kmax < ∞, so that all cells lying on
sSAC switching manifolds are labeled and the boundaries
of state partitions are resolved. The selected maximum level
kmax determines the lowest possible cell size of the resulting
multi-resolution grid, which denotes the policy precision.
The following proposition provides a method for selecting
kmax when the desired precision is known.

Proposition 1: In Algorithm 1, let the initial 0-level
hyper-grid C(0) comprise P(0) = Pinit cells with qinit

i ≥ 2
partitions for each state i. In addition, let δ(kmax)

i denote the
desired ith cell dimension at maximum level kmax for all
i ∈ {1, ..., n}. Then, the maximum layer kmax can be calculated
as

kmax = max
i∈{1,...,n}

{
min

j

{
k j ∈ N : k j ≥ logqinter

i

xmax
i − xmin

i

qinit
i δ(kmax)

i

}}
.

(9)
Proof: At a specified level k, the size of the ith cell

dimension is computed as δi =
xmax

i −xmin
i

qinit
i (qinter

i)kmax (this result follows
directly from the practice of subdivision in Algorithm 1).
Solving for k gives us a lower limit for the level k with
respect to desired precision δi as in (9). Then for each state
i, we select the minimum natural number k j that satisfies the
lower limit. Finally, kmax is the maximum k j across all states
i = 1, ..., n.

The computational cost of the algorithm primarily depends
on the number of required sSAC runs, i.e. how many times
we need to solve the open loop problem P(·, ·, ·, ·) in Step 1b
of Algorithm 1. If a fine uniform grid was used for state
space discretization, the number of sSAC runs would be
equal to the total number of grid points. However, here
we use a multi-resolution grid, that is constructed starting
from a coarse uniform grid at level 0 with each cell further
subdivided to smaller cells until labeled. This can signifi-
cantly reduce the number of grid points that require sSAC
calculation. The more cells are labeled at level k < kmax, the
less sSAC runs are executed. In this case, the exact number of
sSAC runs is not known a priori and depends on how many
cells will be labeled at each level (according to the labeling
criterion). As a reference point, the following proposition
provides an upper limit for the number of executed sSAC

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−2

2

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−2

2

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−2

2

x1

x2

un
la
be
le
d

0 1 2 3 4 5 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−2

2

A2

A1 A1

A1

A1

A1
A1

A2

A2

A2

A2

A2

A2

A2 A1

A1

Fig. 3. Control alphabet policy for cart-pendulum inversion. Phase plane
plots show consecutive layers of the cell subdivision strategy described in
Algorithm 1 (layer 0 to layer 4) for synthesis of a two-symbol CAP with
U = {u1, u2} = {5,−5}. The CAP finite state machine is also visualized.
Vertices are the control symbols in U and each edge label Ai corresponds
to the union of grid cells labeled with the symbol ui.

runs that is only reached in the worst case scenario when all
cells are labeled at the maximum level kmax.

Proposition 2: In Algorithm 1, let the initial 0-level
hyper-grid C(0) comprise P(0) = Pinit cells with qinit

i ≥ 2
partitions for each state i, and each lower-level hyper-grid
C(k, j) comprise P(k, j) = Pinter cells with qinter

i ≥ 2 partitions
for each state, for all j ∈ N and k > 0. Then, if p = 2n + r
test points (i.e. 2n n-orthotope vertices and r additional
points from the cell interior) are selected for each cell
C(k, j)

i ∀ k, j, i, then the maximum possible number of sSAC
runs in Algorithm 1 (i.e. worst-case scenario if all cells are
labeled at level kmax) is

runs =

n∏
i=1

[
qinit

i (qinter
i)kmax + 1

]
+ (1 + (Pinter)kmax)Pinitr. (10)

Proof: The first term computes the number of vertices
of the hyper-grid C(kmax) with qi = qinit

i (qinter
i)kmax partitions

for each state i at maximum level k = kmax. As C(kmax)

consists of P(kmax) = (1 + (Pinter)kmax)Pinit cells, the second
term quantifies the additional number of sSAC runs due to
interior test points r.

So if the test points are p = 2n + 1, (i.e. the vertices
and center point of each n-orthotope cell), and the number
of inner cells is Pinter = 2n with qinter

i = 2 partitions for each
state i at each level k, the maximum number of sSAC runs is
equal to

∏n
i=1

[
qinit

i 2kmax + 1
]

+ (1 + 2nkmax)Pinitr. This number
increases exponentially with both the number of levels kmax

and the number of dimensions n. However, since we are
using a multiple-level non-uniform grid, the actual number of
sSAC runs is expected to be significantly lower as more cells
are labeled at levels k < kmax. Whether the methodology is
scalable to higher dimensions largely depends on the sparsity
of controls over the system’s state space and differs among
choice of systems and symbols.

Angle

A
ng

le
 v

el
oc

ity

0 2-5

5

A1 A1

A1A1

A2A2

A2 A2

A3

A3 A3

A3

A4

A4

A4

A4

a.

>0

<0

=0

Angle

A
ng

le
 v

el
oc

ity

0 2
-5

5

b. c.

Fig. 4. Control alphabet policies for cart-pendulum inversion. (a) Phase
plane plot and finite state machine showing the sSAC-generated four-symbol
CAP with U = {u1, u2, u3, u4} = {−5,−2, 2, 5}. (b) Numerical evaluation
of the Lyapunov derivative on the control policies. Derivative is negative
(stable) except for the gray lines θ̇ = 0 and cosθ = 0, where it is zero. These
lines correspond to system singularities and are not concerning with regard
to stability, as it happens that the vector field always drives the system out
of these regions (non-invariant sets). (c) The cart-pendulum system.

V. Example: cart-pendulum inversion

This section demonstrates how to numerically synthesize

control alphabet policies that globally lead to pendulum

swing-up using full state feedback and a specified finite

number of symbols. The reduced cart-pendulum system,

shown in Fig. 4c, has n = 2 state variables, the angle between

the vertical and the pendulum θ and the rate of change of the

angle θ̇. Denoting by h the pendulum length, g the gravity

acceleration and μ the mass, the system equations take the

form in (1) with

f (x, u) =

(
θ̇

g
h sinθ + u

h cosθ

)
, x = [θ, θ̇] (11)

where u ∈ R is the acceleration of the cart (i.e. m = 1).

The pendulum is inverted when (θ, θ̇) = (0, 0). The system

parameters take values h = 2, μ = 1 and g = 9.81. Using this

model, we synthesize control alphabet policies for symbolic

cart-pendulum inversion by tracking the energy of the pen-

dulum at the upright position. The energy of the uncontrolled

pendulum (u = 0) is E(θ, θ̇) = 1
2
μh2θ̇2 +μgh(cosθ−1) so that

E0 = 0 at the upright unstable equilibrium. For sSAC controls

computation, we use the cost function (3) with t0 = 0,

l(x(t)) = 0 and m̄(x(t f)) =
1

2
(E(θ(t f), θ̇(t f) − E0)2. (12)

In addition, for the open-loop problem P, we used the

parameters: T = 1.2, ude f ault = 0, αd = −5J, R = 0.3.

Figure 3 and Fig. 4a illustrate the resulting control al-

phabet policies for energy tracking using two symbols U =

{−5, 5} and four symbols U = {−5,−2, 2, 5}, respectively. It is

noteworthy that the two-symbol control policy is structurally

identical to the analytical bang-bang solution provided in10

[20], albeit a result of a completely automated numerical

procedure. In addition, we now extend these analytical con-

trol laws and derive symbolic policies for a larger, arbitrary

number of symbols.

The computation was done on the compact set Ω =

[0, 2π] × [−5, 5] with a starting grid (layer 0) consisting

of P(0) = 81 grid cells and q(0)
i = 9 partitions in each

state i. In finer layers, cells were subdivided in grids of

P(k, j) = 4 ∀ k > 0, j ∈ N cells. With p = 5 test points per

cell and maximum level kmax = 4, a total of 3428 sSAC runs

for the two-symbol policy and 8981 runs for the four-symbol

policy were performed, compared to 41842 runs that would

be required if all cells were labeled at maximum level 4

(computed using the expression in (10)). The resulting CAP

are verified for Lyapunov stability next.

a) Lyapunov stability: For stability verification of the

control laws, we use the Lyapunov function from [20],

V = |E − E0| with dV
dt = sign(E)Ė and Ė = μ ·h ·u ·cosθ · θ̇. We

numerically verified the value of the Lyapunov derivative for

all states x ∈ [0, 2π][−5, 5] (using a state-space discretization

of grid size 0.01), and for both control policies u in Fig. 3

and Fig. 4a. The result (i.e. sign(dV
dt)∀x) is identical for both

policies and is illustrated in Fig. 4b. The Lyapunov function

decreases (i.e. dV
dt < 0) as long as θ̇ � 0 and cosθ � 0 (gray

lines). Implementation-wise, these lines (where dV
dt = 0) are

not concerning with regard to stability, as it happens that the

vector field always drives the system out of these regions

(non-invariant sets). Scattered black points (dV
dt > 0) on the

switching manifold are due to numerical noise generated by

the grid discretization and numerical integration in sSAC.

VI. Example: Two-tank system

This section synthesizes control alphabet policies that

track desired fluid levels at a double-tank system. Figure 5

shows the configuration of the system that consists of two

tanks T1 and T2, with T1 elevated at a height h with respect

to T2. This tank configuration is a common laboratory setting

and variants of it have been extensively used for evaluation

of control methodologies [13], [24]. The inflow and outflow

rates to the tanks are controlled by the valves V1, V2, and

V3, that can only be open with flow rate Vi = 1 or closed

10The bang-bang control law in [20] is u = |ui |sign((E − E0)θ̇cosθ).

Fig. 5. The two-tank system configuration.

In
iti

al
 st

at
es

Fi
na

l s
ta

te
s

In
iti

al
 st

at
es

Fi
na

l s
ta

te
s

a. b.

Fig. 6. Control alphabet policies for tracking desired fluid levels in a double-tank system. (a) Case A: Phase plane plot showing the CAP policy with
u = [V1,V2,V3] and N = 8 symbols. Desired state is xd = [0.8, 0.2]. Figures on the right show Monte Carlo results with tolerance ε = 0.1 (depicted as a
circle). A 100% rate of success was achieved. Blue trajectories at the bottom right figure show reduction of open-loop cost J in (3) over time for a sample
of 100 trials. Note that J was only calculated for verification purposes and was not part of the control calculation. Top right figure shows a phase plane
plot with the initial trial states in green and the final states in red for 500 trials. (b) Case B: Phase plane plot showing the CAP policy with u = [V1,V3],
V2 = 0.2 and N = 4 symbols. Desired state is xd = [0.4, 0.6]. Monte Carlo test was performed with tolerance ε = 0.05. A 100% rate of success was
achieved. In all trials, open-loop cost J in (3) was decreased over time.

so that Vi = 0. The states x1 and x2 are the fluid levels of

tanks T1 and T2 respectively. According to Toricelli’s law,

a simplified model of the system consists of the nonlinear

vector field

f (x, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣ V1 − V2

√
x1 − x2 + h

V2

√
x1 − x2 + h − V3

√
x2

⎤⎥⎥⎥⎥⎥⎦ , if x2 > h
⎡⎢⎢⎢⎢⎢⎣ V1 − V2

√
x1

V2
√

x1 − V3
√

x2

⎤⎥⎥⎥⎥⎥⎦ , else.

(13)

There is a (continuous) switch at the dynamics when

Φ = x2 − h crosses zero. The height takes value h = 0.5.

For sSAC controls computation, we use the cost function

(3) with t0 = 0,

l(x(t)) = ‖x(t) − xd‖2Q and m̄(x(t f)) = ‖x(t f) − xd‖2P (14)

where xd is the desired state. The weight matrices are Q =
Diag({1, 1}) and P = Diag({100, 100}). In addition, for the

open-loop problem P, we used the parameters: T = 0.5,

ude f ault = 0m×1, αd = −5J.

To explore the potential of CAP synthesis using sSAC,

we synthesized policies for two different cases of control

authority: A. with u = [V1,V2,V3], so that all valves are

controlled and B. with u = [V1,V3], so that only two valves

are controlled and the middle valve has a constant flow rate

V2 = 0.2. The resulting policies and more details on each

example case are given in Fig. 6b,c.

For both control scenarios, we ran Monte Carlo tests

with 1000 trials simulating system dynamics (13) from

random initial states in the set [0.1, 0.9] × [0.1, 0.9]. During

simulation, control u is generated by the CAP at 1000 Hz

using the current state xcurr and the CAP transition function

T (see Definition 2). A trial terminates when the system is

sufficiently close to the desired state as specified by tolerance

ε i.e. |xcurr − xd | < ε (successful trial), or when a time limit

is exceeded i.e. t > tmax (failed trial). Specifying a tolerance

is consistent with previous results about quantized systems

[25], stating that one can only implement feedback strategies

that bring closed-loop trajectories arbitrarily close to the

desired state. For both cases A and B, the rate of success

was 100% in 1000 trials.

Furthermore, notice that CAP performance in case B is

improved compared to case A (a 100% rate of success

was achieved with lower tolerance around the desired state),

because in case B, CAP is capable of exploiting the system’s

free dynamics (in case B, the system exhibits no free dynam-

ics since all valves are controlled). This example shows how

policies based on sSAC are generated to intrinsically exploit

rather than cancel complex dynamical behaviors.

Computation of both policies (Algorithm 1) was done on

the compact set Ω = [0, 1]×[0, 1] with a starting grid (layer 0)

consisting of P(0) = 81 grid cells and q(0)
i = 8 partitions in

each state i. In finer layers, cells were subdivided in grids of

P(k, j) = 4 ∀ k > 0, j ∈ N cells. With p = 5 test points per cell

and maximum level kmax = 4, a total of 7, 621 sSAC runs for

case A and 3, 965 runs for case B were performed, compared

to 41, 842 runs that would be required if all cells were

labeled at maximum level 4 (computed using the expression

(10)). Interestingly, we repeated the calculation for kmax = 5,

wherein a total of 17, 125 sSAC runs for case A and 9, 474

runs for case B were performed, compared to 166, 546 runs

that would be required if all cells were labeled at maximum

level 5. Therefore, although the worst-case scenario sSAC

calculations increased exponentially, the actual number of

calculations only almost doubled compared to the case with

kmax = 4.

VII. Discussion and FutureWork

In this paper, we introduced an approach for compact con-

troller synthesis that combines elements from two common

methodologies for optimal nonlinear control: a) generation

of optimal state policies that utilize a state-space discretiza-

tion (e.g. Markov Decision Processes [26]) and b) model

predictive control algorithms that apply open-loop finite-

horizon control in a receding-horizon format [27]. The first

generates a mapping X → U but suffers from the curse

of dimensionality while the second requires knowledge of
future state trajectories in a specified time window in order
to generate an equivalent mapping. We addressed the first
drawback by restricting control to a finite number of control
symbols and extracting state-space partitions L so that a
mapping L→ U is achieved. Secondly, we introduced sSAC,
a model predictive control approach that naturally assigns
a symbol u at any state x by outputting a single control
action instead of a full control trajectory. Notice that although
sSAC does not calculate the optimal control trajectory (i.e.
the trajectory that minimizes cost (3)), it still calculates the
control action that optimally improves the cost, in the sense
that it optimizes the change in cost dJ

dλ+ in (8).
Our next step is to verify scalability of the method to high-

dimensional systems both in simulation and experiment. As
mentioned previously in the paper, computational cost will
largely depend on the sparsity of control symbols over the
system’s state space. One method to maximize sparsity is to
utilize a control alphabet that best serves the purposes of the
performance objective. Therefore, future work will focus on
establishing scalability guarantees by optimally “extracting”
control symbols based on the system dynamics and the task
to be performed.

The two examples (on the cart-pendulum and two-
tank systems) demonstrated the CAP synthesis process and
showed that sSAC can be efficiently encoded in a finite state
machine as a state control policy. One thing to notice is
that in both cases, the resulting state space partitions are
reasonably sparse (i.e. a large number of cells are labeled at
the lower levels). This result suggests that we can employ this
method to generate simple and compact controllers that per-
form complicated dynamic tasks using nonlinear models. The
benefits of compactness and power allocation promote alter-
native uses of the CAP policies as embedded “background”
controllers around which online controllers (e.g. sSAC or
SAC) work to achieve high-level objectives. For example,
a CAP finite state machine embedded in a robotic biped
can be used to inexpensively coordinate walking, while high-
level controllers complete more complex tasks (similar to the
hypothesis that spinal cord circuitry coordinates locomotion
in humans and other vertebrates [28]). This application will
be further explored through experimentation.

References
[1] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.

Pappas, “Symbolic planning and control of robot motion [grand
challenges of robotics],” IEEE Robotics & Automation Magazine,
vol. 14, no. 1, pp. 61–70, 2007.

[2] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic
models for nonlinear control systems,” Automatica, vol. 44, no. 10, pp.
2508 – 2516, 2008.

[3] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in IEEE Conference
on Decision and Control, 2009, pp. 5997–6004.

[4] P. Martin and M. B. Egerstedt, “Hybrid systems tools for compiling
controllers for cyber-physical systems,” Discrete Event Dynamic Sys-
tems, vol. 22, no. 1, pp. 101–119, 2012.

[5] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-
RTL, power-performance accelerator simulator enabling large design
space exploration of customized architectures,” in ACM/IEEE 41st
International Symposium on Computer Architecture. IEEE, 2014,
pp. 97–108.

[6] X. Deng, L. Schenato, and S. S. Sastry, “Flapping flight for biomimetic
robotic insects: Part II-flight control design,” IEEE Transactions on
Robotics, vol. 22, no. 4, pp. 789–803, 2006.

[7] Z. Sun and L. Li, “Opportunity estimation for real-time energy
control of sustainable manufacturing systems,” IEEE Transactions on
Automation Science and Engineering, vol. 10, no. 1, pp. 38–44, 2013.

[8] H.-W. Park, A. Ramezani, and J. Grizzle, “A finite-state machine for
accommodating unexpected large ground-height variations in bipedal
robot walking,” IEEE Transactions on Robotics, vol. 29, no. 2, pp.
331–345, 2013.

[9] M. Mazo and P. Tabuada, “Symbolic approximate time-optimal con-
trol,” Systems & Control Letters, vol. 60, no. 4, pp. 256–263, 2011.

[10] M. Broucke, M. D. Di Benedetto, S. Di Gennaro, and A. Sangiovanni-
Vincentelli, “Theory of optimal control using bisimulations,” in Hybrid
Systems: Computation and Control. Springer, 2000, pp. 89–102.

[11] A. Girard and G. Pappas, “Approximation metrics for discrete and con-
tinuous systems,” IEEE Transactions on Automatic Control, vol. 52,
no. 5, pp. 782–798, 2007.

[12] H. Gonzalez, R. Vasudevan, M. Kamgarpour, S. S. Sastry, R. Bajcsy,
and C. Tomlin, “A numerical method for the optimal control of
switched systems,” in IEEE Conference on Decision and Control,
2010, pp. 7519–7526.

[13] Y. Wardi and M. Egerstedt, “Algorithm for optimal mode scheduling
in switched systems,” in American Control Conference, 2012, 2012,
pp. 4546–4551.

[14] A. Mavrommati, J. Schultz, and T. D. Murphey, “Real-time dynamic
mode scheduling using single-integration hybrid optimization,” IEEE
Transactions on Automation Science and Engineering, vol. PP, no. 99,
pp. 1–14, 2016.

[15] A. Ansari and T. D. Murphey, “Sequential action
control: closed-form optimal control for nonlinear systems,”
IEEE Transactions on Robotics, Accepted, 2016. [Online].
Available: http://nxr.northwestern.edu/publications/sequential-action-
control-closed-form

[16] A. Mavrommati, A. Ansari, and T. D. Murphey, “Optimal control-
on-request: An application in real-time assistive balance control,” in
IEEE International Conference on Robotics and Automation, 2015,
pp. 5928–5934.

[17] A. Ansari, K. Flaßkamp, and T. D. Murphey, “Sequential action control
for tracking of free invariant manifolds,” in Conference on Analysis
and Design of Hybrid Systems, 2015.

[18] E. Tzorakoleftherakis, A. Ansari, A. Wilson, J. Schultz, and T. D. Mur-
phey, “Model-based reactive control for hybrid and high-dimensional
robotic systems,” IEEE Robotics and Automation Letters, vol. 1, no. 1,
pp. 431–438, 2016.

[19] M. Dellnitz, G. Froyland, and O. Junge, “The algorithms behind
GAIO—Set oriented numerical methods for dynamical systems,” in
Ergodic theory, analysis, and efficient simulation of dynamical systems.
Springer, 2001, pp. 145–174.

[20] K. J. Åström and K. Furuta, “Swinging up a pendulum by energy
control,” Automatica, vol. 36, no. 2, pp. 287–295, 2000.

[21] M. Egerstedt, Y. Wardi, and H. Axelsson, “Transition-time optimiza-
tion for switched-mode dynamical systems,” IEEE Transactions on
Automatic Control, vol. 51, no. 1, pp. 110–115, 2006.

[22] M. Egerstedt, Y. Wardi, and H. Axelsson, “Optimal control of switch-
ing times in hybrid systems,” in IEEE International Conference on
Methods and Models in Automation and Robotics, 2003.

[23] J. Lygeros, K. H. Johansson, S. N. Simić, J. Zhang, and S. S. Sastry,
“Dynamical properties of hybrid automata,” IEEE Transactions on
Automatic Control, vol. 48, no. 1, pp. 2–17, 2003.

[24] O. Stursberg and S. Engell, “Optimal control of switched continuous
systems using mixed-integer programming,” in 15th IFAC World
Congress of Automatic Control, 2002, p. 100.

[25] D. F. Delchamps, “Stabilizing a linear system with quantized state
feedback,” IEEE Transactions on Automatic Control, vol. 35, no. 8,
pp. 916–924, 1990.

[26] A. Gorodetsky, S. Karaman, and Y. Marzouk, “Efficient high-
dimensional stochastic optimal motion control using tensor-train de-
composition,” Robotics: Science and Systems XI, Sapienza University
of Rome, Italy, 2015.

[27] D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[28] A. J. Ijspeert, “Central pattern generators for locomotion control in
animals and robots: A review,” Neural Networks, vol. 21, no. 4, pp.
642–653, 2008.

