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ABSTRACT

We present hybrid data-driven approach to model multi-physical process in
fluid-infiltrating porous media across length scales. Unlike single-physical
problems where data-driven model is often used as a replacement of the solid
constitutive law, a hydro-mechanical problem often leads to more complex hi-
erarchical relations among physical quantities which in return complicate the
design of the data-driven solver. When artificial neural network is used, ad-
ditional issues may arise when constraints and rules, such as material frame
indifference, cannot be explicitly enforced without artificially expanding the
training dataset. In this work, we introduce a component-based strategy in
which a multiphysical problem is viewed as a directed graph, a network con-
sisting of inter-connected vertices representing physical quantities. This strat-
egy enables modelers to couple data-driven model with conventional math-
ematical expression methods by considering different hierarchical relations
among data. Depending on the availability of data, hybridization of data-
driven and mathematical models may take different forms. To enforce material
frame indifference efficiently, we employ spectral decomposition to handle the
invariant and spin terms via Lie algebra.

1 Introduction

The emergence and growing importance of machine learning and data science
have altered the way prediction, forecasting and analysis are done across engi-
neering disciplines. In solid mechanics, previous work on data-driven model-
ing applied in computational mechanics has placed a significant emphasis on
the single-physics solid mechanics problems, where the information flow or
the hierarchy of the computational model is simply a sequence as illustrated in
Figure 1. In this small subset of engineering problems, the relationship between
strain and displacement, and between the balance of linear momentum and
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stress are considered “definition”, while the relationship between the stress
and strain ( material constitutive law ) is considered the most ad-hoc portion of
the model. These material laws are therefore replaced by data-driven constitu-
tive laws, obtained either through supervised machine learning (cf. Ghaboussi
et al. [1], Lefik et al. [6]) or, recently, through constrained variational principles
(cf. Kirchdoerfer and Ortiz [3]).

Data - driven

Balance of Linear Momemtum ———®»———Stress ———————®»————— Strain——————»—— Displacement

Figure 1. Hierarchy of single-physics solid mechanics problem. Black arrow rep-
resents a definition or a "universal principle''; red arrow represents either a phe-
nomenological relation or an operator that is defined not based on first principles.
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Figure 2. Hierarchy of a phase field or eigen-fracture hydraulic fracture model of
fully saturated porous media. Black arrow represents a definition or a '""universal
principle''; red arrow represents either a phenomenological relation or an operator
that is defined not based on first principles (cf. Wang and Sun [16]).

The underlying philosophy of this treatment is due to the assumptions
that (1) phenomenological law is always the most ad-hoc part of the numer-
ical boundary value problem mired in empiricism and arbitrariness and (2)
there exists a clean and binary cut between definitive governing equations
and ad-hoc constitutive laws. These assumptions, nevertheless, are invalid for
multi-physical problems in which the complex multi-physical coupling mecha-
nisms are interrelated and therefore hard to be replaced by a single data-driven
model. The lack of clear cut between phenomenological models and robust
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principles are further complicated by many subtle and hard-to-detect coupling
mechanisms that may affect the macroscopic outcomes in a variety of signifi-
cance across spatial and temporal scales, as shown in the example illustrated
in Figure 2. The objective of this work is to create an adaptive graph-based
framework to introduce data-driven models for multi-physical poromechanics
problems, with special emphasis on the prediction of path-dependent behav-
iors. Our specific contributions are:

e Graph-based hybrid meta-modeling: We introduce a meta-modeling
approach that instills different forms of knowledge as building blocks
for complex multi-physical systems in a directed graph. This directed
graph represents the hierarchy of information processed in a computa-
tional model that utilizes a combination of classical and data-driven mod-
els. The relations among physical quantities are considered as edges that
link those building blocks together to form a computational model.

e Adaptability: Through a series of forward and backward propagation,
the configuration of the directed graph may evolve until it yields the op-
timal prediction ability measured by the objective function that compares
the forward predictions with the available data. In this work, the machine
learning process is not only used to generate the data-driven constitutive
laws, but is also used to generate the optimal directed graph and select
proper edges (data-driven laws obtained, phenomenological laws, hier-
archical RVE models) across different length scales.

o Extended Database: We employ data-fusion process to combine exper-
imental data of different scales (e.g. stress-strain curve, micro-CT im-
ages, digital image correlation) and micro-mechanical simulations cali-
brated from experimental data to enhance forward prediction capacity
[7, 8,14, 15, 17]. In the case where macroscopic experimental data are ei-
ther limited or do not provide sufficient constraints for training neural
networks (e.g. using tensile test results for torsion predictions), micro-
mechanical models are first calibrated and then extend the training set
via virtual experiments.

2 Supervised Learning with Constraints

For multi-physical poromechanics problems, the computer models can be gen-
erated from a mixture of first-principle constraints supplemented by constitu-
tive laws in a complex hierarchical coupling relations [11, 12, 13]. While some
of the rules or constraints such as balance of linear momentum can be enforced
explicitly in the computational framework, other important rules such as ther-
modynamic laws and material indifference are often not obeyed by a data-
driven model as pointed out in Lefik and Schrefler [5]. For instance, the pre-
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vious data-driven models may not obey the principle of objectivity due to the
fact that components of the second-order tensors written in terms of a particu-
lar basis (e.g. stress, strain, permeability) are mistakenly treated as individual
inputs by the artificial neural network. As an example of the model selection
process, we consider two different configurations of the directed graph and
use the machine learning to evolve the directed graph until the principle of
objectivity is fulfilled. In the original case, we use the classical artificial neural
network model in Ghaboussi et al. [1], Lefik and Schrefler [5] where strain com-
ponents are used as input and stress components as output. In the second case,
we modify the direct graph such that we use the invariants and parameterized
rotations as vertices to form the directed graph. For instance, the spectral de-
composition is applied on strain and stress tensors, and the the principal values
and principal directions are used to preserve the tensor properties.

3 3
o= Z UAnt(fA) ® n((TA), €= Z eAnE;A) ® ngA) (1)
A=1 A=1

(4)

where 04 and n,; ' are eigenvalues and eigenvectors of the stress tensor o, re-
spectively. €4 and ngA) are eigenvalues and eigenvectors of the strain tensor
€, respectively. The data-driven model computes the stress and strain using an
incremental update. Given the change in principal strains and the change of
Euler angles, the neural network, after the proper supervised machine learn-
ing procedure, predicts the incremental changes of principal stresses and the
infinitesimal rotation of principal stress direction at the tangent space of the
special orthogonal group SO(3) where the rotation tensor R belongs. Thus the
rotation tensors are parameterized using the following expansion [4, 9]. In the
incremental form, the rotation matrix at time ¢, is updated by
B 4 -
R=exp[¥] =) o R, = R;,_1 exp[AY,] (2)
k=0 "

where ¥ is a skew-symmetric matrix that is defined by three components %73,
Y13, ¥1o. As the data of the input and output of the neural network are both
stored in coordinate-free form, the data-driven model is inherently objective.
In the following sections, we showcase a number of numerical examples where
this model selection is used to create hybrid models to predict path-dependent
behaviors (e.g. elasto-plastic responses, fracture) of fluid-infiltrating porous
media.

2.1 Data-driven Eigen-fracture Model

In this study, a material element is allowed to be simultaneously in crack set
C and compaction band CB in the proposed model, i.e., CNCB # ©@. A com-
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paction band zone could become crack, as observed in borehole breakout ex-
periments that anti-dilatant failure zone occurs at the tip of fracture-like break-
out in sandstone with high porosity. The regularized energy-dissipation func-
tional in the context of fluid-saturated brittle porous media reads (cf. Wang and
Sun [16]),

* 1 * e * 3
Flceen (&€ p/ )= [ 5(e=) 1% (e—e)av — | T-uds

M o s 7 pf
+/Q 11— b)e, - £ dV+/O[/Qsp dV—/rqq pf dS|dt

’C€CB‘ * f
C 2€C +GCBE+DJI(S,S ,p )

)
where TI'; is the boundary on which the traction T is applied, I'; is the bound-
ary on which the flux g is prescribed, and 5 is the source flux. Here, we intro-
duce the data-driven algorithm for the last three energy functionals that rep-
resent the energy required to create crack surface, compaction band surface
and the fluid dissipation energy. Instead of providing explicit mathematical
expressions for these three energy functional, they are determined from the
experimental data provided to us.

3 Numerical Example 1: Data-driven FEM model for shear band behaviors

We employ a hybrid FEM-ANN (Artificial Neural Network) coupled frame-
work to model strong discontinuity interface as illustrated in 3. The data-
driven constitutive law is used in the assumed strain elements to embed strong
discontinuity in finite elements. In this idealized system, the overall macro-
scopic responses are often dominated by the frictional responses of the inter-
faces. Yet, proposing a constitutive law that adequately incorporates the com-
plex mechanisms, such as wearing, particle re-arrangements, fragmentation
and fracturing of grains, and the effect of moisture and pore pressure remains
a difficult task. Here our goal is to test the capability of the data-driven model
by using experimental data as the training set to predict the results of a biaxial
compression test of an unsaturated specimen. While a subset of stress-strain,
fluid pressure and water retention curve of data is used as the training set, the
forward prediction is compared against experimental data that is not included
in the calibration process such that an assessment on the accuracy of the pre-
dictions can be made. Micro-scale information of unsaturated porous media
are also available from micro-CT technology [2, 17]. Here, we will consider a
data-fusion strategy in which experimental data is used to construct a small-
scale discrete element model. This model is in return used as a surrogate to
extend database so that the original data can be used to predict deformation
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modes that are not directly observed from the original database.
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Figure 3. Machine learning in meta-modeling. The experimental data consists of
macroscopic data and micro-scale information [2]. Micro-mechanical models are
calibrated and additional simulations are performed to extend the data set. The
ensemble of data is divided into training data and verification data. The configu-
ration of directed graph of model is determined by supervised machine learning.
Predictions are made by the current model and they are compared against the
verification data.

4 Numerical Example 2: Data-driven nonlocal eigen-fracture model for hy-
draulic fracture problems

This example aims at illustrating the application of machine learning in devel-
oping robust data-driven model for modeling fractures. The starting point is a
non-local eigen-erosion model [10, 16]. While there exist multiple possibilities
of introducing artificial neural networks in replacing the phenomenological re-
lations. Among the alternatives, a data-driven model based on strain energy
and its gradient, and another crack-tracking model based on principal stresses
are compared. The training data of the neural networks in each models consist
of simulation results from eigen-erosion model and may be extended by ex-
perimental data. According to the simulation results on dynamic fracture com-
pared in Fig. 4, the nonlocal strain energy based data-driven model is more
accurate and robust, and thus is superior than the principal stress model. Ma-
chine learning techniques can be introduced to provide help in deciding the
best data-driven model design among all possibilities, if sufficient data can be
used as training set for model selection. Note that the metrics of the model se-
lected is not limited to quantitative measurements of error, but also constraints.
For instance, in the case of the Kalthoff-Winkler tests, one may simply filter out
all configurations that lead to non-physical branching as shown in Figure 4(b).
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Figure 4. Comparison of strain energy and principal stress based data-driven
fracture models. The results consist of crack-path evolution in Kalthoff-Winkler
test with impact velocity of 50 m/s.

5 Conclusion

We employ a data-fusion process to combine experimental data and micro-
mechanical simulations as training set. By providing a new methodology that
systematically compares, analyzes and produces data-driven computational
models, the research will provide a thought-provoking way not just to deepen
understanding of multi-physics processes, but an effective way to compare for-
ward prediction power of data-driven and classical models.
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