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Abstract
In this paper, we investigate the feasibility of keystroke infer-
ence attacks on handheld numeric touchpads by using smart-
watch motion sensors as a side-channel. The proposed at-
tack approach employs supervised learning techniques to ac-
curately map the uniqueness in the captured wrist movements
to each individual keystroke. Experimental evaluation shows
that keystroke inference using smartwatch motion sensors is
not only fairly accurate, but also better than similar attacks
previously demonstrated using smartphone motion sensors.
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INTRODUCTION
The popularity of wearable devices such as smartwatches is
soaring as they enable a plethora of novel context-based ap-
plications. However, the presence of a diverse set of on-board
sensors also provides an additional attack surface to malicious
applications on these devices. Security and privacy threats on
handheld smartphones that take advantage of such sensors as
side-channels have received significant attention in the liter-
ature. Notable examples include keystroke inference [3, 7,
9], activity identification [5] and location inference [4] at-
tacks. As most modern mobile operating systems introduced
stringent access controls on front end sensors, such as mi-
crophones, cameras and GPS, adversaries shifted attention to
sensors which cannot be actively disengaged by users (e.g.,
accelerometer and gyroscope). Typically, handheld device
usage is highly intermittent and such devices spend a ma-
jority of time in a constrained (e.g., in users’ dress pocket)
or activity-less (e.g., on a table) setting where most on-board
sensors are partially or completely non-functional. Contrary
to this, wearable device usage is much more persistent as they
are constantly carried by the users on their body. This makes
wearable devices a more desirable target for a variety of side-
channel attacks. We hypothesize that, if access to wearable
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sensor data is not appropriately regulated, it can be used as a
side-channel to infer sensitive user information.

Side-channel security vulnerabilities in smart wearables have
not received much (if any) attention. We make one of the first
contributions in this direction. Our first contribution is a com-
prehensive evaluation of the feasibility and effectiveness of
keystroke inference attacks on handheld numeric touchpads
by using smartwatch motion sensors as a side-channel. Nu-
meric touchpads are typically targeted by adversaries for ob-
taining sensitive information such as security pins and credit
card numbers. Our proposed attack comprises of first training
(using supervised learning) appropriate classification models
to learn the uniqueness in wrist motion caused during each
individual keystroke, and then using the trained classifiers
to infer unlabeled test keystrokes. During preliminary ex-
periments, we observed that keystroke induced motion data
captured by smartwatch and smartphone sensors differ sig-
nificantly. Consequently, our second contribution is to thor-
oughly assess how significantly smartwatch motion sensors
elevate the threat of keystroke inference, compared to similar
attacks using only smartphone motion data [3, 7, 9].

RELATED WORK
Keystroke inference attacks using electromagnetic [8] and
acoustic emanations [2] have already been investigated.
While the requirement of sophisticated hardware prevents ca-
sual adversaries from carrying out electromagnetic emanation
based attacks, the presence of microphones on most mod-
ern mobile devices makes acoustic attacks much more prac-
tical than previously thought. However, as touchscreen key-
pads emanate very weak acoustic signals, inference attacks
using them is very difficult. Additionally, requirement of
undisturbed eavesdropping is another major obstacle in us-
ing electromagnetic and acoustic emanations for such attacks.
As a workaround to the above limitations, smartphone mo-
tion detection sensors have been used to recover keystroke
events on the device. For instance, TouchLogger [3] uti-
lizes change in orientation angles of the smartphone, as cap-
tured by its accelerometer, to extract appropriate features for
keystroke inference. Similarly, ACCessory [7] also attempts
to infer keystrokes using the smartphone accelerometer data
by employing multiple supervised learning techniques. Al-
ternatively, TapLogger [9] automates the training and logging
phases and attempts to work stealthily on the smartphone.

ATTACK DESCRIPTION
In this paper, we focus on two popular typing (or tapping)
scenarios for our inference attack. We consider a user typing
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on a smartphone’s numeric touchscreen keypad while wear-
ing a smartwatch on one of his/her hand. In the first case,
smartwatch and smartphone are on the same hand and the
user types with the hand not holding the smartphone (see Fig-
ure 1(a)). In the second case, smartwatch and smartphone are
again on the same hand and the user types with a finger (gen-
erally, thumb) of the smartphone holding hand (see Figure
1(b)). In the chosen scenarios, the action of tapping a key
results in a unique motion of the wrist (on the smartphone
holding hand) for each keystroke, which can be captured by
the motion sensors (e.g., accelerometer and gyroscope) of the
smartwatch on the user’s wrist. While there exist several other
typing or tapping scenarios [1], the chosen cases allow us to
make an equitable comparison when the attack uses data from
the smartphone’s on-board motion sensors.

(a) (b) (c)

Figure 1: Smartwatch and smartphone on same hand and (a)
Non-Holding Hand Typing (NHHT), or (b) Holding Hand
Typing (HHT) (c) numeric keypad used in our experiments.

We assume an adversary whose goal is to infer a target’s
keystrokes on a generic smartphone numeric keypad or touch-
pad (as shown in Figure 1(c)), based on the wrist movements
perceptible by the target’s smartwatch motion sensors. The
adversary may gain access to the target’s smartwatch by in-
stalling a malicious application on it which records the ac-
tivity of the on-board accelerometer and gyroscope sensors.
This step can be achieved by exploiting known software vul-
nerabilities or by tricking the victim into installing malicious
code, e.g., using a Trojan horse. Based on the fact that most
common smartwatch operating systems (e.g., Google’s An-
droid Wear, Apple’s watchOS, etc.) do not implement ac-
cess control and/or user notification for motion sensor usage,
the malicious application may have unrestricted and unde-
tected access to the on-board accelerometer and gyroscope.
As a result, the infected smartwatch can act as an eavesdrop-
ping device that the targets themselves may place on their
wrist, and unsuspectingly have it on their wrist while typing
on a smartphone. The malicious application also maintains
a covert communication channel with the adversary, and up-
loads the collected wrist motion data using this channel. We
assume that the adversary also has sufficient off-site storage
and computational resources to download the raw sensor data,
extract keystroke events, and classify the keystrokes using
trained classifiers (as explained next). For comparison with
the smartphone data based attacks, we assume similar adver-
sarial capabilities and actions for the smartphone.

ATTACK EXPERIMENT
Our attack experiment consists of a learning phase followed
by an attack phase. Both phases go through similar steps, as

outlined below (Figure 2), with the learning phase culminat-
ing in training while the attack phase in classification.

Data Collection: We begin our experiments by collecting
keystroke associated motion data from 12 voluntary partic-
ipants1. Participants in our experiments were instructed to
type on a numeric keypad (Figure 1(c)) of a smartphone while
wearing a smartwatch. Each participant typed 400 keys in
NHHT and 400 keys in the HHT setting. An audio stream of
uniformly distributed random numbers between 0 to 9 guided
the participants in typing. Participants were also given op-
tional breaks, during which they were allowed to set down
the phone on the table and some participants even went out
of the room. However, they returned to approximately the
same holding position after the break. A custom data collec-
tion application that continuously samples linear accelerom-
eter measurements is installed on both the smartwatch and
the smartphone, and is running in the background during the
experiments. In the learning phase, the data collection ap-
plication also records the keystroke ground truth for labeling
purposes.

Pre-processing: A careful analysis of the sampled linear
accelerometer readings reveals that the data samples corre-
sponding to the keystroke events are clearly separated from
one another with small but clear inactive time regions, in
both typing cases. It is observed that movement due to a
keystroke subsides after approximately 350 msecs, thus eigh-
teen samples (at 50 Hz sampling frequency) sufficiently cap-
tures all motion features related to a keystroke. During pre-
processing, the collected sequence of linear acceleration sam-
ples from both the smartphone and the smartwatch are dis-
sected into individual keystrokes, based on peaks in linear
acceleration on each axis individually, and then the sample
with highest magnitude is mapped as the fourth time sam-
ple in each keystroke segment. After removing erroneous2

and double-tapped3 keystrokes by using an automated script,
an equal number (30) of keystroke data per key were used
in the experiments, with each keystroke consisting of 18 lin-
ear accelerometer samples. It should be noted that we do not
always have 100 erroneous keystrokes; after removing erro-
neous data, we equalize the remaining data to select exactly
30 keystrokes per key (i.e., a total of 300 for 10 numeric
keys). Out of a total of 300 keystrokes, 67% (200, 20 per
key) are randomly chosen as the training set, and the remain-
ing 33% (100, 10 per key) as the test set.

Feature Extraction: Our attack infers keystrokes based on
features captured from the wrist motion (and palm for smart-
phone). A good feature vector should be similar with other
feature vectors of the same key, simultaneously being distin-
guishable between feature vectors of other keys. Based on
the location of a key on the screen, the degree of movement
caused by a tap varies on each of the X , Y , and Z axis of
the linear accelerometer. However, this movement remains

1Our data collection experiments have been approved by the Institu-
tional Review Board (IRB) at Wichita State University.
2Mismatch between the ground truth logged on the phone and the
audio stream logged on the PC.
3Tap very close to an erroneous tap.
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consistent for the same key tap. Thus, in this initial work we
only use the eighteen linear accelerometer samples of each
keystroke event to build a 54-dimensional (18 accelerometer
magnitudes over 3 axes) feature vector. Additionally, in the
learning phase, the feature vectors are also labeled, using the
ground truth recorded by the data collection application.

Training and Classification: A total of 2400 labeled
keystroke feature vectors (200 per participant) were used as
the training set, and 1200 unlabeled keystroke feature vec-
tors (100 per participant) as the test set, each for smartwatch
and smartphone. We model the keystroke inference problem
as a multi-class classification problem. Labeled feature vec-
tors are used to train classifiers in the learning phase, whereas
unlabeled feature vectors are mapped to the “closest” match-
ing class by the already trained classifiers in the attack phase.
To train our classifiers, we employ three different classifica-
tion algorithms that are appropriate given the properties of
our features: (i) simple linear regression (SLR), (ii) random
forest (RF) and (iii) k-nearest neighbors (k-NN). We observe
the presence of such interactions in our dataset that makes
it highly likely that each of the feature (in the vector) may
contribute independently to the output. As a result, we feel
that linear or distance-based classification algorithms (such
as, SLR, RF and k-NN) may perform better in our case. How-
ever, other classification algorithms can also be used by tak-
ing precautions to avoid over-fitting. The SLR training pro-
cess is optimized using the LogitBoost algorithm. For k-NN,
we set k = 1 (based on the observed distribution of features)
and we use a linear search algorithm with distance and weight
inversely proportional to each other. In RF, the depth of the
trees is left unrestricted, number of random trees is set to 100,
and number of features in each tree is chosen to be 6.

Figure 2: Overview of our attack framework.

Experimental Setup
Our data collection experiments involve 12 participants, aged
between 19-32 years. The identity of these participants are
anonymized as P1, P2, . . . , P12. We employ a Samsung Gear
Live smartwatch equipped with an InvenSense MP92M 9-
axis Gyro + Accelerometer + Compass sensor. Smartwatch
was worn on left hand for NHHT (Figure 1(a)) and on right
hand for HHT (Figure 1(b)). For the smartphone, we use a
Motorola XT1028. Linear accelerometer of both the watch
and phone was sampled at 50 Hz and the smartphone was held
in the same hand on which smartwatch was worn. We used

the Weka 3.7.12 [6] libraries for both training and testing the
classifiers. As our goal in this work is to show the feasibility
of the proposed attacks, we employ only a single state-of-the-
art smartwatch and smartphone in our experiments. However,
different hardware may have sensors operating at different
sensitivities, which may affect the accuracy of the sampled
data slightly. This will obviously positively or negatively af-
fect the accuracy of the proposed attacks, but we do not an-
ticipate its impact to be too significant. We plan to investigate
our attacks on additional hardware in the future.

EVALUATION AND RESULTS
We comparatively evaluate the classification accuracy of our
classifiers for the following three types of training datasets:

• One vs. One: Here we measure the percentage of success-
ful inferences on an individual participant, with classifiers
trained from the training set of the same participant. Tar-
get set size is 100 (10 per key) and training set size is 200
(20 per key), each for smartphone and smartwatch. One
vs. One is not only a best case scenario, but also repre-
sents how the attack will perform if the adversary is able to
collect target-specific training data.

• One vs. Rest: Here we measure the percentage of success-
ful inferences on an individual participant, with classifiers
trained from the training set of the rest of the participants.
Target set size is 100 (10 per key) and training set size is
2200 (220 per key), each for smartphone and smartwatch.
One vs. Rest is a typical scenario where the adversary has
a target, but is unable to obtain labeled training data from
the target.

• All vs. All: Here we measure the percentage of successful
inferences on all participants, with classifiers trained from
training set of all participants. Target set size is 1200 (120
per key) and training set size is 2400 (240 per key), each
for smartphone and smartwatch. All vs. All is helpful in
understanding how our attack framework will perform if
the adversary constructs a heterogeneous training data set
to infer keystrokes from multiple non-specific targets.

Results: Consolidated classification results are shown in Fig-
ure 3(a). For inference using smartwatch data, SLR has high
One vs. One classification accuracy of more than 90%, but
was relatively less accurate in One vs. Rest (still with a clas-
sification accuracy of around 70%). Similarly, classification
accuracy of RF in One vs. One and One vs. Rest was around
70%, but achieved higher classification accuracy in All vs.
All (more than 80%). One vs. One and All vs. All accu-
racy of k-NN is high (close to 90%), while its One vs. Rest
classification accuracy is moderate (close to 80%). It is also
observed that the keystroke inference attacks in NHHT re-
sulted in much better classification accuracy on the smart-
watch consistently, while in HHT classification accuracy re-
sults are mixed, and nearly equal, on both smartwatch and
smartphone. In summary, these results: (i) validate our hy-
pothesis that smartwatch motion sensors can be employed as
effective side-channels to infer private information, and (ii)
the threat of motion-based keystroke inference is moderately
amplified due to smartwatches.
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(a) (b)

Figure 3: (a) Classification accuracy for One vs. One, One vs. Rest, and All vs. All. (b) All vs. All SLR classification accuracy
for individual keys in HHT using smartphone data.

An interesting pattern for classification accuracy can be ob-
served for inference using only smartphone data in HHT. We
observe that the classification accuracy of certain keys is dis-
tinctly higher than others (see Fig. 3(b)). Interestingly, this
occurrence is not recognizable for the smartwatch dataset.
This may be due to the fact that keys farther away from the
thumb impels the user to bend the phone towards the thumb.
As a result, significantly greater movement of the phone oc-
curs, compared to keys that are near the thumb.

Reduced Sampling Frequency: We also briefly investigate
how our attack will perform with half the sampling rate
(25 Hz), a more realistic scenario for low-cost wearables,
equipped with less precise sensors. We repeat the experi-
ments with smartwatch data sampled at a reduced frequency,
and Table 1 shows the accuracy of our attacks for both the
NHHT and HHT scenarios. Results indicate that classifica-
tion accuracy drops with reduction in sampling frequency,
but percentage of successful classification is fairly substan-
tial even at a sampling frequency of 25 Hz.

NHHT HHT

SLR RF k-
NN SLR RF k-

NN
Pi vs. Pi 78% 66% 81% 81% 66% 83%
Pi vs. Rest 62% 52% 71% 63% 59% 77%
All vs. All 80% 78% 81% 79% 75% 82%

Table 1: Classification accuracy when sampling rate was
halved to 25 Hz, results averaged over all 12 participants.

CONCLUSION AND FUTURE WORK
Our results indicate that keystroke inference attacks using
typing-induced motion data captured by smartwatch sensors
is highly effective. As part of future work, we will investigate
the effects of posture, fatigue and other disturbances on the
effectiveness of our attack. We will also study other typing
styles (e.g., two-handed), which may require completely dif-
ferent attack strategies. Our current attack approach can also
be easily extended to an alphabetic or qwerty soft keyboard.
However, due to the size and close positioning of keys in such
keyboards, we expect a much larger classification error in this

case. As in this preliminary work we focus only on side-
channel attacks due to malicious eavesdropping applications
installed on smartwatches, we assume that the adversary will
not have access to the sensors on the smartphone (on which
the user is typing). Thus, we do not train our classifiers by
fusing data from both the watch and the phone. Intuitively,
the fusion of watch and phone data will likely lead to better
inference results for the adversary. We will investigate this as
part of future work.
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