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Abstract—Modern vehicles are required to comply with a
range of environmental regulations limiting the level of emissions
for various greenhouse gases, toxins and particulate matter. To
ensure compliance, regulators test vehicles in controlled settings
and empirically measure their emissions at the tailpipe. However,
the black box nature of this testing and the standardization
of its forms have created an opportunity for evasion. Using
modern electronic engine controllers, manufacturers can pro-
grammatically infer when a car is undergoing an emission test
and alter the behavior of the vehicle to comply with emission
standards, while exceeding them during normal driving in favor
of improved performance. While the use of such a defeat device
by Volkswagen has brought the issue of emissions cheating to the
public’s attention, there have been few details about the precise
nature of the defeat device, how it came to be, and its effect on
vehicle behavior.

In this paper, we present our analysis of two families of
software defeat devices for diesel engines: one used by the
Volkswagen Group to pass emissions tests in the US and Europe,
and a second that we have found in Fiat Chrysler Automobiles. To
carry out this analysis, we developed new static analysis firmware
forensics techniques necessary to automatically identify known
defeat devices and confirm their function. We tested about 900
firmware images and were able to detect a potential defeat device
in more than 400 firmware images spanning eight years. We
describe the precise conditions used by the firmware to detect a
test cycle and how it affects engine behavior. This work frames
the technical challenges faced by regulators going forward and
highlights the important research agenda in providing focused
software assurance in the presence of adversarial manufacturers.

I. INTRODUCTION

On September 18, 2015, the US Environmental Protection
Agency (EPA) issued a notice of violation to the Volkswagen
Group, accusing one of the world’s largest automakers of
circumventing the EPA’s emissions tests [18], setting into
motion the most expensive emissions scandal in history.

At the heart of the scandal is Volkswagen’s use of a defeat
device, defined by the EPA as any device that “reduces the
effectiveness of the emission control system under conditions
which may reasonably be expected to be encountered in
normal vehicle operation and use,” with exceptions for starting
the engine, emergency vehicles, and to prevent accidents [19].

The defeat device in Volkswagen vehicles used environ-
mental parameters, including time and distance traveled, to
detect a standard emissions test cycle: if the engine control unit

determined that the vehicle was not under test, it would disable
certain emission control measures, in some cases leading the
vehicle to emit up to 40 times the allowed nitrogen oxides [15].
Defeat devices like Volkswagen’s are possible because of
how regulatory agencies test vehicles for compliance before
they can be offered for sale. In most jurisdictions, including
the US and Europe, emissions tests are performed on a chassis
dynamometer, a fixture that holds the vehicle in place while
allowing its tires to rotate freely. During the test, a vehicle
is made to follow a precisely defined speed profile (i.e.,
vehicle speed as a function of time) that attempts to imitate
real driving conditions. The conditions of the test, including
the speed profile, are both standardized and public, ensuring
that the testing can be performed in a transparent and fair
way by an independent party. However, knowing the precise
conditions of the test also makes it possible for manufacturers
to intentionally alter the behavior of their vehicles during the
test cycle, a practice colloquially called “cycle beating.”
While Volkswagen’s cheating was breathtaking in scope
(a dozen vehicle models spanning at least six years), it has
also highlighted the difficulty of monitoring manufacturers’
emission compliance. Meeting modern emissions standards
is one of the main challenges faced by car manufactur-
ers as emission standards become more stringent. In many
cases, technological limitations put compliance in conflict
with consumer demands for performance, efficiency, or cost—
creating a powerful incentive for car makers to evade the
regulatory burden. At the same time, automobiles have grown
in complexity: the modern automobile is a complex cyber-
physical system made up of many electronic components,
making it as much a software system as a mechanical one.
A premium-class automobile, for example, can contain more
than 70 electronic control units and 100 million lines of
code [4]. As a part of this trend, nearly all aspects of engine
operation are controlled by an Engine Control Unit (ECU),
an embedded system creating a closed control loop between
engine sensors and actuators. This allows manufacturers to
precisely control all aspects of engine operation and thus drive
significant improvements in performance, reliability, and fuel
economy. The ECU is also responsible for ensuring that the
vehicle complies with the emissions requirements imposed by
governmental regulatory bodies. Indeed, while some emission



control measures, like the catalytic converter or particulate
filters, are passive, many others require active control by
the ECU, which must sometimes sacrifice performance or
efficiency for compliance. These tradeoffs are particularly
challenging for diesel engines, which in their simplest form are
noisier and emit more particulates and nitrogen oxides (NOy)
than gasoline engines [3].

Electronic engine control has also made it easier to cir-
cumvent emissions testing by implementing a defeat device
in software. The black box nature of emissions testing makes
it nearly impossible to discover such a software-based defeat
device during a test, forcing regulators to rely on heavy fines
to discourage cheating. Unfortunately, as the Volkswagen case
illustrates, it can take many years to discover such a defeat
device. Given the ultimate limitations of testing, we are led
to consider whether we can detect defeat devices using soft-
ware verification techniques. Unfortunately, verifying complex
software systems is a difficult problem in its own right, more
so for a cyber-physical system like a modern automobile. In
our case, the setting is also adversarial—rather than trying
to find bugs, we are looking for intentional attempts to alter
a system’s behavior under test conditions. This paper aims
to be a first step in cyber-physical system verification in an
adversarial setting with two case studies of automobile defeat
devices and binary analysis techniques to identify verification-
critical code elements across multiple software revisions.

We begin with two case studies of software defeat de-
vices found in light diesel vehicles. The first set belongs
to automobiles produced by the Volkswagen Group, which
has publicly admitted to their use. The Volkswagen defeat
device is arguably the most complex in automotive history.
Unfortunately, there are few technical details available to the
public about its operation, its effect on engine behavior, and
how its design evolved over time; our paper closes this gap and
we believe helps highlight the key challenges for regulators
going forward. Unfortunately, Volkswagen is not alone in
evading emissions testing. Fiat Chrysler Automobiles (FCA) is
currently being investigated in Europe because recent road test
data showed significantly higher emissions than in regulatory
compliance tests [17]. In this paper, we identify and describe
a timer-based defeat device used in the Fiat 500X automobile.
We believe we are the first to publicly identify this defeat
device.

Both the Volkswagen and Fiat vehicles use the EDC17
diesel ECU manufactured by Bosch. Using a combination
of manual reverse engineering of binary firmware images
and insights obtained from manufacturer technical documen-
tation traded in the performance tuner community (i.e., car
enthusiasts who modify their software systems to improve
performance), we identify the defeat devices used, how they
inferred when the vehicle was under test, and how that
inference was used to change engine behavior. Notably, we
find strong evidence that both defeat devices were created
by Bosch and then enabled by Volkswagen and Fiat for their
respective vehicles.

To conduct a larger study, we used static code analysis

techniques to track the evolution of the defeat device across
hundreds of versions of vehicle firmware. More precisely,
we developed a static analysis system, called CURVEDIFF,
to automatically discover the Volkswagen defeat device in a
given firmware image and extract the parameters determining
its operation. Overall, we analyzed 926 firmware images and
successfully identified 406 potential defeat devices inside these
images. Further, we automatically verified the effects on one
particular subsystem.

In summary, our contributions are as follows:

% We provide a detailed technical analysis of defeat devices
present in vehicles marketed by two independent automo-
bile manufactures, Volkswagen Group and Fiat Chrysler
Automobiles, whose effect is to circumvent emission tests
in the US and Europe.

% We design and implement a static binary analysis tool
called CURVEDIFF for identifying such defeat devices in
a given firmware image, which enables us to track the
evolution and behavior of circumvention code across a
large number of firmware images.

« We use our tool to study the evolution of the defeat devices
and its effect on engine behavior across eight years and
over a dozen vehicle models.

However, more than these detailed technical contributions,
we believe the broader impact of our work is to articulate the
challenge of certifying regulatory compliance in the cyber-
physical environment. Today’s black box testing is costly and
time consuming and, as these cases show, can be easily cir-
cumvented by defeat device software that “tests for the tester.”
The gap between black box testing and modern software
assurance approaches drives a critical research agenda going
forward that will only become more important as regulators are
asked to oversee and evaluate increasingly complex vehicular
systems (e. g., autonomous driving). We believe that concrete
examples, such as those we describe in this paper, are key to
ground this discussion and make clear the realistic difficulties
faced by regulators.

The remainder of this paper is organized as follows. Sec-
tion II provides the necessary technical background for the rest
of the paper, followed by a discussion of the available data sets
in Section III, and a detailed description of the defeat devices
we found in Section IV. We explain how we implement this
detection at scale in Section V followed by a summary of
the results we find using this tool. Finally, we discuss the
implications of our finding in Section VII and then conclude
with Section VIIIL.

II. TECHNICAL BACKGROUND
In the following, we provide a brief overview of the
technical concepts needed to understand the rest of this paper.
A. Diesel Engines

The distinguishing difference between a gasoline and diesel
engine is the manner in which combustion is initiated. In
a gasoline engine, a mixture of air and fuel is drawn into



the combustion cylinder and ignited by a spark. In a diesel
engine, air is drawn into the combustion cylinder and, at a
critical point in the compression cycle, fuel is injected into the
cylinder, igniting in the compressed air. Thus, in a gasoline
engine, fuel and air are mixed before being drawn into the
cylinder and ignited, whereas in a diesel engine, fuel and air
are mixed at the time of ignition, resulting in an imperfect and
inhomogeneous mixture. This is responsible for many of the
diesel engine’s distinctive characteristics, including the black
smoke and heavy knocking sound known as “diesel knock.”
The black smoke, made up of particulate matter, also called
soot, results from the incomplete combustion of the fuel and
is subject to strict limits in light-duty diesel vehicles. The
second major pollutant in diesel exhaust are nitrogen oxides
(NO and NOs, abbreviated NO, ). Current emission standards
impose tight limits on the amount of particulate matter and
NOy emitted and require special steps to limit their levels. The
vehicles that are the subject of this work rely on the following
emission control devices to achieve regulatory conformance.

EGR. Exhaust Gas Recirculation (EGR) is an emission control
scheme where exhaust gas is recirculated back into the engine
intake. EGR significantly reduces the amount of NOy in the
exhaust [12], [16]. Unfortunately, EGR also increases the
amount of particulate matter in the exhaust, leading to a trade-
off between NO and particulate matter.

NSC. A NOy Storage Catalyst (NSC), also called a Lean
NO Trap (LNT), works by oxidizing NO to NO, and then
storing NO; in the catalyst itself. The storage capacity of
the catalyst is limited, lasting from 30 to 300 seconds, after
which it must be regenerated. To regenerate the catalyst, the
engine switches to a rich fuel-air mixture for 2 to 10 seconds.
During regeneration, the engine is less efficient, decreasing
fuel economy [16]. A rich fuel-air mixture also increases
particulate matter production, again trading off NO, emissions
for particulate emissions.

SCR. Selective Catalyst Reduction (SCR) is an alternative
to NSC for reducing NO, emissions that works by injecting
urea into the exhaust stream. SCR is more effective than NSC
(described above) and is usually used in 3-liter diesel engines
and larger. The drawback of SCR is its increased complexity
and the need to carry and replenish the urea fluid (als known
by its trademark name AdBlue). Several Volkswagen vehicles
implicated in the emission cheating scandal are reported to
limit urea injection levels outside of a test cycle. Except for
results reported in Table II, this paper does not cover defeat
devices that manipulate SCR.

DPF. A Diesel Particulate Filter (DPF) traps particulates
(soot), greatly reducing the amount of black smoke leaving
the tailpipe. While the DPF is highly effective at trapping
particulates, as the amount of particulates accumulates, the
resistance to air flow increases also, increasing the load on
the engine. To purge the DPF of accumulated deposits, it
must undergo a regeneration cycle approximately every 500
km, lasting 10 to 15 minutes. DPF regeneration requires high
exhaust temperatures that are usually only achieved at full
load. If the vehicle is operated at full load, the DPF will
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Fig. 1: FTP-75 (Federal Test Procedure) driving cycle depicting the speed
over time. Image taken from EPA [20].

regenerate on its own. Unfortunately, these conditions may not
arise in normal urban driving, requiring the ECU to perform
active regeneration. In this mode, the ECU adjusts engine
operation to increase exhaust temperature to regenerate the
DPF; however, if the vehicle is only driven for short distances,
such a temperature may never be reached. At sufficiently high
soot load, the vehicle will illuminate a special warning lamp,
prompting the driver to drive the vehicle at increased speed
to allow active regeneration to take place. If this does not
happen, the DPF will require service [21]. Thus, while the
DPF is highly effective at reducing particulate emissions, it
imposes a performance penalty and can become a hassle for
the owner who drives the vehicle for short distances. Moreover,
according to the New York Attorney General’s complaint [15],
at normal load Volkswagen’s DPF could only last 50,000
miles before needing replacement, far short of the 120,000
mile standard Volkswagen was required to meet, compelling
Volkswagen to reduce wear on the DPF.

B. Emission Test Cycles and Emission Standards

An emission test cycle defines a protocol that enables
repeatable and comparable measurements of exhaust emissions
to evaluate emission compliance. The protocol specifies all
conditions under which the engine is tested, including lab
temperature and vehicle conditions. Most importantly, the test
cycle defines the speed and load over time that is used to
simulate a typical driving scenario. An example of a driving
cycle is shown in Figure 1. This graph represents the FTP-75
(Federal Test Procedure) cycle that has been created by the
EPA and is used for emission certification and fuel economy
testing of light-duty vehicles in the US [7]. The cycle simulates
an urban route with frequent stops, combined with both a cold
and a hot start transient phase. The cycle lasts 1,877 seconds
(about 31 min) and covers a distance of 11.04 miles (17.77
km) at an average speed of 21.2 mph (34.12 km/h).

Table IV in the Appendix lists the main test cycles used
for exhaust emission tests of light-duty vehicles in different



regions of the world. Besides urban test cycles such as FTP-
75, there are also cycles that simulate driving patterns under
different conditions.

To assess conformance, several of these tests are carried out
on a chassis dynamometer, a fixture that holds a car in place
while allowing its drive wheel to turn with varying resistance.
Emissions are measured during the test and compared to an
emission standard that defines the maximum pollutant levels
that can be released during such a test. In the US, emissions
standards are managed on a national level by the EPA. In
addition, California has its own emissions standards defined
and enforced by the California Air Resources Board (CARB).
California standards are also used by a number of other states,
together with California covering a significant fraction of the
US market, making them a de facto second national standard.
In Europe, the emission standards are called Euro 1 through
Euro 6, where Euro 6 is the most recent standard in effect
since September 2014.

C. Electronic Engine Control

In a typical modern car, there are 70-100 electronic control
units [4], [8] that are responsible for tasks such as the human-
machine interface as part of the infotainment system, a speed
control unit, a telematic control unit, or brake control modules.
Among these is the Engine Control Unit (ECU), which is
responsible for the operation of the engine. The subject of
this work is the Bosch EDC17 ECU used in many diesel
light passenger vehicles, and in all of the vehicles implicated
in the Volkswagen diesel emissions scandal. At its core, the
ECU implements a closed control loop by periodically reading
sensor values, evaluating a control function, and controlling
actuators based on the control signal.

Sensors. To control engine behavior, the ECU relies on a
multitude of sensors readings, including crankshaft position;
air pressure and temperature at several points in the intake;
intake air mass; fuel, oil, and coolant temperature; vehicle
speed; exhaust oxygen content (lambda probe); as well as
driver inputs such as the accelerator pedal position, brake pedal
position, cruise control setting, and selected gear.

Control functions. Based on the sensor inputs, the ECU
implements different functions to control and influence the
combustion process by interpreting the input data. In a diesel
engine, one of the most important control values is the fuel
injection timing that defines when and for how long the fuel
injectors remain open in the engine cycle. As noted earlier,
injection timing affects engine power, fuel consumption, and
the composition of the exhaust gas. The ECU also determines
how much of the exhaust gas should be recirculated and how
much urea should be injected into the exhaust to catalyze
nitrogen oxides.

Actuators. The ECU uses the computer control signals to
directly control several actuators, most notably the fuel injector
valves and air system valves, including the EGR valve.
Communication. The ECU also communicates with other sys-
tems inside the car, for example to display the current engine
speed RPM signal or light up diagnosis lamps. Furthermore,

status information about the ECU is sent via an interface such
as the On-Board-Diagnostics (OBD-II) system and the ECU
can also communicate with other control units via the CAN
bus.

D. Business Relationships

The EDC17 ECU is manufactured by Bosch and bought by
automakers, including Volkswagen and Fiat, to control their
diesel engines. The exact details of the business relationship
between Bosch and its customers is not public; however, media
reports, court filings [15], and the documentation we have
obtained indicates the following basic structure: Bosch builds
the ECU hardware and develops the software running on the
ECU. Manufacturers then specialize an ECU for each vehicle
model by calibrating characteristic firmware constants whose
semantics are explained in the ECU documentation. We have
found no evidence that automobile manufacturers write any of
the code running on the ECU. All code we analyzed in this
work was documented in documents copyrighted by Bosch
and identified automakers as the intended customers.

E. Related Work

Unfortunately, there is little technical documentation about
defeat devices that is publicly available. Domke and Lange
were the first to present several technical insights into the
defeat device used in a Volkswagen Sharan [9], [10]. We lever-
age these analysis results and adopted a similar methodology
to identify defeat devices. The New York Attorney General’s
compaint against Volkswagen AG [15] contains several general
insights into defeat devices, but does not provide any technical
details. Fiat Chrysler Automobiles (FCA) is currently being
investigated in Europe [17] and to the best of our knowledge,
we are the first to document how this defeat device is imple-
mented.

III. DATASET

In this paper, we focus on the EDC17 ECU manufactured by
Bosch. This diesel engine ECU was used in the cars implicated
in the Volkswagen emission scandal as well as the Fiat 500X.
We rely on three data sources for our analysis of ECUs and
affected vehicles which we describe below.

A. Function Sheets

Function sheets (called Funktionsrahmen in German) doc-
ument the functional behavior of a particular release of the
ECU firmware. The function sheets describe each software
functional unit of the ECU using a formal block diagram lan-
guage that precisely specifies its input/output behavior, along
with some additional explanatory text. The block diagram and
text documentation also names the variables and calibration
constants used by the functional unit. Car makers tune the
behavior of the ECU by changing these calibration constants.
In the Bosch function sheets, scalar calibration constants are
identified by the _C suffix, one-dimensional array constants
by the CA suffix, and higher-dimensional arrays by the _MAP
suffix. Further, curve definitions use the suffix _ CUR.



Function sheets are generally not available to the public,

however, many make their way into the automobile perfor-
mance tuning community. All of the function sheets used in
this work have been obtained from such tuner sites. All figures
throughout the paper are derived from these function sheets
that are already publicly available.
Authenticity. Since we did not obtain the function sheets
directly from the ECU manufacturer (Bosch), we cannot
be absolutely certain of their authenticity. Nevertheless, all
function sheets used in this work bear a “Robert Bosch GmbH”
copyright and show no evidence of alteration by a third party.
Indeed, we have not encountered any function sheets that
show any signs of content tampering in the wild. We have
also explicitly verified that key functional elements, like the
Volkswagen ‘“‘acoustic condition” described in Section IV-A,
match the code in the firmware.

B. A2L and OLS Files

The automotive industry uses the ASAM MCD-2 MC [1]
file format, commonly called A2L, to communicate elements
of a firmware image that a car manufacturer must modify in
the calibration process. Generally speaking, an .a21 file is
comparable to a .map or .pdb file used by developers on the
Linux or Windows platform, respectively. While all of these
file types map debugging symbols to concrete addresses, .a2l
files can also give contextual information beyond mere symbol
names. The format is developed to “support ... automotive-
specific processes and working methods” [1]. Consequently,
additional metadata used to describe an address (i.e., an ECU
variable) may include axis descriptions for lookup tables,
information about the byte order, or unit conversion formulas.
An example is given in Listing 1 in the Appendix.

Given that .a21 files contain lots of details and insights
into a given ECU, they are typically only available for people
working on engine development, calibration, and maintenance.
However, car tuning enthusiasts also regularly get hold of these
files and trade them at online forums. In order to understand
the inner workings of certain ECU firmware images in more
detail, we obtained access to such files. When we were not
able to obtain a .a2l file for a given firmware image, we
focused on binary code only and leveraged insights gained
from similar ECUs to bootstrap our analysis.

In some cases, we relied on OLS files, an application format
used by the WinOLS software used to change configuration
values in firmware. The OLS format contains both a firmware
image and elements of the A2L file annotating calibration
constants.

Authenticity. As with function sheets, we did not obtain A2L
files used in this work from Bosch or the car maker, and
so cannot guarantee their authenticity with absolute certainty.
Each A2L file is paired with a specific firmware image;
we confirmed their match before using the A2L to extract
values from the image. We used A2L to identify variables and
constants in code extracted from the firmware. Examining the
context in which a value thus served as a kind of sanity check.

C. Firmware images

We also obtained firmware images from various sources.
Similar to .a21 files, firmware images are also circulated
in the car tuning community. We obtained several images
from the tuner community. We also obtained images from the
erWin portal (“electronic repair and workshop information”),
a platform operated by Volkswagen that provides access to
official firmware images for car repair shops. The portal
provides archives containing firmware updates up to a certain
date. Every image is named after its software part number and
revision, allowing us to uniquely identify it. The timestamp is
roughly equivalent to the release date of the firmware.

Unfortunately, the images contain no additional metadata

such as the actual model in which the firmware is deployed.
We used online portals offered by aftermarket automobile part
vendors to determine which vehicles a firmware image was
used on.
Authenticity. Firmware data for VW, Audi, Seat and Skoda
is obtained from the erWin portal, operated by Volkswa-
gen. The newest image is dated October 11, 2016. We also
obtained Volkswagen group images dated 2009-2010 from
various online sources. We only included images for which
Freigabeschein (street release certification) documents allowed
us to obtain information about both release date and car model.
We obtained the Fiat 500X OLS file from a tuning site. It
was sold to us as an original (unmodified) image. Our main
findings based on this OLS file align with the test results of
the German KBA [22].

IV. DEFEAT DEVICES

A defeat device is a mechanism that causes a vehicle to
behave differently during an emission test than on the road.!
Conceptually, a defeat device has two components:

o Monitor. Determine if observed conditions rule out an
emission test, and
o Modify. Alter vehicle behavior when not under test.

Defeat devices rely on any number of external or internal
variables to detect that a test is taking place. From 1991
to 1995, for example, General Motors used the fact that air
conditioning was turned on in its Cadillac automobiles to rule
out a test cycle—at the time, emission testing was done with
air conditioning turned off—making the air-fuel mixture richer
to address an engine stalling problem, but also exceeding CO
emission limits [14]. General Motors was fined $11 million
and forced to recall all affected vehicles.

As the Cadillac example suggests, the monitoring element
of a defeat device does not need to be perfect, so long as

'More precisely, the US Code of Federal Regulations defines a defeat device
as “an auxiliary emission control device (AECD) that reduces the effectiveness
of the emission control system under conditions which may reasonably be
expected to be encountered in normal vehicle operation and use, unless:
(1) Such conditions are substantially included in the Federal emission test
procedure; (2) The need for the AECD is justified in terms of protecting the
vehicle against damage or accident; (3) The AECD does not go beyond the
requirements of engine starting; or (4) The AECD applies only for emergency
vehicles ...” (40 CFR § 86.1803-01). European regulations follow a very
similar definition.



Min Max Unit Signal Description

—50 140 °C InjCrv_tClntEngNs mp Coolant temperature

—50 140 °C FuelT_t Fuel temperature

—50 140 °C 0il tSwmp Oil temperature

795 — hPa EnvP_p Atmospheric pressure
true StSys_stStrt Engine starting

TABLE I: Initial conditions activating the acoustic condition in the EDC17C54
firmware. parameters taken from firmware part number 03L906012F. If all
conditions hold, the set signal to the outer (topmost) flip-flop in Figure 2 is
asserted.

its error is one-sided. Like the Cadillac device, the defeat
devices we found assume that the vehicle is under test unless
some internal or external variable allows it to rule out an
ongoing test. Then, when the monitoring element signals that
the observed variables are not consistent with any known test
cycle, the vehicle can switch to an operating regime favored by
the manufacturer for real driving rather than the clean regime
necessary to pass the emission test.

In the remainder of this section, we describe the defeat
devices used by Volkswagen and Fiat to circumvent emission
testing and their effect on vehicle behavior. Our description is
based on function sheets for the ECU, reverse engineering of
the firmware, and publicly available information, notably the
Complaint filed by the State of New York against Volkswagen
and its US subsidiaries [15].

A. The Volkswagen Device: Test Detection

The Volkswagen defeat device is a continually evolving
family of devices. All instances are organized around a single
condition monitoring block that determines if the vehicle
is undergoing testing and points throughout emission-related
ECU modules where the result of this determination can affect
the behavior of the module. The monitoring element of the
Volkswagen defeat device is encapsulated in a function block
that computes the status of the kundenspezifische Akustikbe-
dingung, which translates to “customer-specific acoustic con-
dition.” (Here, customer refers to the automaker, namely,
Volkswagen.) The outcome of the computation is represented
by the signal/variable InjCrv_stNsCharCor (stNsCharCor
for short). This signal is then used at many points in the
ECU to alter the behavior of the engine. Figure 2 shows the
logic block responsible for computing the acoustic condition.
(The Figure is taken from the function reference sheet created
by Bosch.) The value stNsCharCor = 0 means that the
ECU considers itself to be in normal driving mode, while
stNsCharCor = 1 indicates testing (emmissions-compliant)
mode.

Activating conditions. The state of the acoustic condition is
stored in the top flip-flop in the figure @. The set signal to the
flip-flop is true if all of a set of five conditions are true. These
conditions are shown in Table I. Note that the last condition,
engine starting, is only true when the engine is starting and is
false during normal operations. If the engine runs in normal
mode (i.e., has not recently been started), has exceeded a
velocity of, e.g., 9.5 km/h at some point, and pressure

and temperature match the aforementioned boundaries, the
function proceeds with the actual cycle checking. Otherwise,
the engine stays in the same mode. The effect of this is that
the acoustic condition can only be set if coolant temperature,
fuel temperature, oil temperature, and atmospheric pressure are
within the prescribed limits when the car starts @. If any of
the four parameters is outside the required range, an ongoing
emissions test is ruled out and the acoustic condition is never
activated. However, we note that these conditions are easily
satisfied in both testing and real-world scenarios.

If the acoustic condition is set at startup, it may be canceled
by meeting several conditions that rule out a test. We call
these the deactivating conditions. If any of these conditions
are met, the inner flip-flop is set ®. The output of the inner
flip-flop asserts the reset signal of the outer flip-flop, setting
the acoustic condition variable stNsCharCor to zero. There
are four deactivating conditions any one of which, if true,
sets the inner flip-flop that in turn sets stNsCharCor to zero,
indicating the vehicle is in normal driving mode.
Deactivating conditions. There are four deactivating con-
ditions @. The first deactivates the acoustic condition if
the engine has started and a configurable time period
InjCrv_tiNsAppVal C has elapsed since the accelera-
tor pedal position first exceeded a configurable threshold
InjCrv_rNsAppVal C. The second deactivates the acoustic
condition if the engine revolution counter exceeds a config-
urable threshold InjCrv_ctNsStrtExtd C. The third de-
activation condition, if the acoustic condition is inhibited, is
never triggered.

Until about May 2007, there were only three deactiva-

tion conditions, as described above. Of the firmware im-
ages available to us, the fourth condition first appears in a
firmware image dated May 2007 for EDC17CP04 P 617. It
starts by computing a time and distance measurement. The
time measurement, call it ¢, is computed by measuring the
time since the vehicle first exceeded a configurable velocity
InjCrv_vThres C. The distance measurement is the dis-
tance in the current driving cycle, call it d.
Test cycle curves. The acoustic condition logic computes a
pair of points djgwer and dypper using two linearly interpolated
curves. These curves, which define a function of ¢ using a
small number of points, are configurable by the manufacturer.
In this case, there are seven pairs of curves, giving seven pairs
of values diower and dypper computed for the current value ¢.
If d is ever less than diower Or greater than dypper, the flip-
flop corresponding to the pair of curves is set and remains set
indefinitely ®.

The output of this flip-flop indicates that the vehicle has
strayed outside the prescribed time-distance profile defined by
the pair of curves. Hence, the curves describe an upper and
lower bound on the covered distance. The flip-flop allows the
logic to remember this, and at any given time, the state of
the flip-flops indicate whether the vehicle has so far stayed
within the prescribed time-distance profile defined by the pair
of curves. If all seven flip-flops are set, then the vehicle has
strayed outside the profile of each of the curves at least once
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Fig. 2: Acoustic condition activation logic from function sheet EDC17C54 P 874 for, e.g., VW Passat, dated December 2009. The portion shaded light blue
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since start. If this happens, the acoustic condition is canceled.

In the firmware we examined, these curves are used to
define the precise time-distance profile of known emission
tests. In general, we note that the number of profiles has been
increasing with time. As shown in Table II, the number of
curves checked has increased from 0 in EDC17CP04 P 531
to 7 in EDC17CP44 P 859.

Figure 3 shows several curve pairs found in the firmware
of an EDC17C54 ECU (software part number 031906012,
revision 7444; remaining curves found in Figure 14 in the
Appendix). The area outside of the upper and lower boundaries

iower and dypper as defined by curves is shaded. If the com-
puted time and distance value (¢, d) ever enters this gray area,
the test is considered to be ruled out, and the corresponding
flip-flop is set. In addition to the boundaries, we have plotted
the test cycles of known emission tests given in Table I'V. Test
cycles matching the profile are shown using heavy lines; all
others using light lines. As our results show, several of the
configured boundaries match a known test cycle quite closely.
In particular, profile 1 matches the FTP-75 test cycle to within
4.2 km and profile 5 the HWFET test cycle to within 16.1 km
(not fully shown in the figure).
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Appendix depicts the remaining curves.

Steering wheel checks. Starting 2009, the EDC firmware used
in Volkswagen automobiles increased the number of profiles
check from 7 to 10. As noted, the profiles shown in Figure 3
were extracted from an EDC17C54 firmware image, VW part
number 03L906012, that has 10 profiles, four of which are
shown in the figure. (The acoustic condition illustrated in
Figure 2, from an older EDC17C54 function sheet, shows only
7 profiles.)

Note that profiles 8 and 9 are considerably less precise than
profiles 1 and 7. In fact, profile 9 matches a total of 10 known
emissions test cycles. In addition to checking the time-distance
relation shown in Figure 3, profiles 8, 9, and 10 also included
a steering wheel angle check: in addition to deviating from
a prescribed time-distance profile, the flip-flop corresponding
to profiles 8, 9, and 10 would be reset if the steering wheel
angle deviated by more than 20° from the neutral position.

Unfortunately, we could not obtain a function sheet containing
this improved acoustic condition. The following code is our
reconstruction of the logic used to determine if a steering
wheel angle deviation should cancel the acoustic condition.

if (-20 /* deg */ < steeringWheelAngle &&
steeringWheelAngle < 20 /* deg */) {
lastCheckTime 0;
cancelCondition =
} else {
if (lastCheckTime < 1000000 /* microsec */) {

false;

lastCheckTime = lastCheckTime + dT;
cancelCondition = false;

} else
cancelCondition = true;

}

In the updated firmware, the signal cancelCondition
computed as above is applied as a third input to the > 1 gates
that lead into the flip-flops corresponding to each profile.



idxEOM = INJCRV_EOMO

IniCrv_stNsCharCor —
STSYS_STRTDONE E )
L

qCor
InjCrv_stInjCharActVal.INJCRV_PII2 == 1

ik hthe Sl bl E I B

IniCrv_gNsPil1AddCor2_C,

T

IniCrv_gNsPil1AddCor1_(]
[ |

Epm_nEng

InjCrv_gNsPil1AddCor2_MAP

=

InjCrv_gNsPil1AddCor1_MAP

INJSYS_LEADPARSET
B—

Epm_nEng

INJSYS_LEADPARSET
o

IniCrv_gNsPil2AddCor_C
[ —

Epm_nEng

INJSYS_LEADPARSET
D

InjCrv_gNsPil2AddCor_MAP

qCor >

Fig. 4: Acoustic condition (signal InjCrv_stNsCharCor) used to modify
the desired injection quantity correction qCor. From the EDC17C54 P 874
function sheet. Copyright Robert Bosch GmbH.

If the sophisticated test cycle detection logic encoded above
sets the acoustic condition to one, a number of behavior
changes take place in the vehicle. These changes are ef-
fected by using the value of the acoustic condition variable
stNsCharCor to switch between configurable variables or
parameters, allowing the vehicle to operate with one set of
calibration values in the normal driving mode and using
another set in testing mode, as if two distinct personalities
took turns controlling the vehicle. Next, we describe the two
contrasting personalities that emerge depending on the state
of the acoustic condition.

B. The Volkswagen Device: Effect on Injection

As described in Section II-A, the operation of a diesel
engine is controlled through fuel injection timing. The start
and duration of injections not only affects engine power output
but also exhaust emissions. Based on its naming and first use,
the acoustic condition was introduced to alter engine injection
behavior [15]. We identified several points in the firmware we
analyzed manually where the acoustic condition can modify
fuel injection behavior. Here, we describe how the acoustic
condition can be used to adjust the quantity of injection.

Figure 4 shows how the fuel injection quantity (additive)
correction (qCor) is modified by the acoustic condition. If
the acoustic condition is true (under test), qCor is modi-
fied by adding a constant (InjCrv_gNsPiI1AddCor{1,2} C
or InjCrv_gNsPiI2AddCor C). Otherwise, qCor is mod-
ified by adding a value computed based on engine speed
(Epm_nEng). The function sheet describes this logic block as

“Berechnung zusdtzlicher (kundenspezifischer) Korrekturen fiir
die Voreinspritzungen” (Calculation of additional (customer-
specific) corrections for the pilot injections.).

C. The Volkswagen Device: Effect on EGR

As noted earlier, Exhaust Gas Recirculation (EGR) is a very
effective means of reducing NOy levels in the exhaust gas.
Unfortunately, the beneficial effect on NOy has the opposite
effect on particulate matter: decreasing NO, emissions by
increasing the amount of exhaust gas recirculated increases
the amount of soot in the exhaust. This, in turn, increases
load on the Diesel Particulate Filter (DPF) used to reduce
soot emissions. The acoustic condition can also be used to
alter the amount of exhaust gas recirculated (see Figure 11
in the Appendix). The logic block shown in the figure is
used to compute mDesVallCor, a correction value to the total
desired air mass. The correction may be applied additively or
multiplicatively, based on a configurable parameter, to the base
amount to arrive at the desired air mass value (this calculation
is not shown in the figure).

D. The Fiat 500X Device

The Volkswagen emission scandal brought attention not
only to Volkswagen itself, but also to other automakers of
diesel vehicles. Among them was Fiat Chrysler Automobiles
(FCA), which on February 2, 2016 issued a press release
stating: “FCA diesel vehicles do not have a mechanism to
either detect that they are undergoing a bench test in a
laboratory or to activate a function to operate emission controls
only under laboratory testing. [...] [W]hen tested following
the only testing cycle prescribed by European law (NEDC)
[FCA diesel vehicles] perform within the regulatory limits and
comply with the relevant regulatory requirements.” [11]. On
February 9, 2016, a week after FCA issued the press release, it
was accused by German environmental protection organization
Deutsche Umwelthilfe (DUH) of exceeding emission limits on
their Fiat 500X cross-over SUV equipped with a 2-liter Fiat
MultiJet II diesel engine. DUH used a chassis dynamometer
for testing. As of this writing, FCA has not acknowledged that
its car has a defeat device.

Like other vehicles in this study, the diesel engine of the Fiat
500X uses the Bosch EDC17 ECU. Its exhaust after-treatment
system includes an NO, Storage Catalyst (NSC) and a Diesel
Particulate Filter (DPF). To investigate the claim, we obtained
a Fiat 500X function sheet (EDC17C69 P 1264) and firmware
image (55265162). We examined both for the presence of the
Volkswagen defeat device, but found neither mention of the
acoustic condition in the function sheet nor any evidence of
curve-checking logic in the firmware image.

However, we found that Fiat 500X contained what amounts
to a defeat device in the logic governing NSC regeneration.
Unlike the Volkswagen defeat device, the FCA mechanism
relies on time only, reducing the frequency of NSC regener-
ations 26 minutes 40 seconds after engine start. Recall that
the primary role of the NSC (Section II-A) is to reduce NOy
emissions by trapping NOs in the catalyst during the loading
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phase (lasting from 30 to 300 seconds) and purging it during
the regeneration phase (lasting 2 to 10 seconds). Regeneration
reduces fuel economy and increases the load on the DPF. By
reducing the frequency of NSC regeneration, a manufacturer
can improve fuel economy and increase DPF service life, at
the cost of increased NO, emissions.

In the Fiat 500X ECU, the logic controlling NSC regenera-
tion is divided into demand logic and release logic. The former
determines when NSC regeneration should take place, while
the latter imposes constraints on when regeneration is allowed
to start. For regeneration to start, the demand logic must re-
quest regeneration, asserting the NSCRgn stDNOxStrt signal
while the release signal NSCRgn stR1sDNOx must be asserted
by the release logic. (DNOx refers to NSC regeneration, which
purges stored NOy from the catalyst.) In the EDC17C69 func-
tion sheet we examined, both the demand and release logic was
duplicated into two parallel blocks. The first pair of demand
and release blocks applies to a “homologation cycle” while
the second pair to “real driving.” (Homologation refers to the
process or act of granting approval by an official body, for
example, of a vehicle for sale in a particular jurisdiction. The
terms ‘“homologation” and “real driving” are taken from the
EDC17C69 function sheet.) Names of signals and logic blocks
used in the homologation logic contain Hmlg in their name,
while those used in the real driving logic contain Rd in the their
name. The demand logic for the homologation and real driving
blocks are very similar, using the total estimated NO, load,
catalyst temperature, and other variables to determine when to
trigger regeneration. The homologation and real driving logic,
however, uses different calibration parameters, allowing the
manufacturer to supply completely different models for the
test cycle and real driving.

Both homologation and real driving logic blocks can request
a regeneration. Similarly, the release signal is also controlled
by two parallel logic blocks. Figure 5 shows how the signals
are joined. The homologation release signal is AND-combined
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with the homologation demand signal, and likewise the real
driving signal demand and release signals (marked @ in
Figure 5). The homologation release signal is delayed by
NSCRgn tiD1yR1sDNOxHmlg C, which is set to 300 seconds
in the 55265162 firmware image. The resulting release signal
out of the block is asserted if either the homologation or the
real driving signal is true.

The logic controlling the homologation regeneration release
signal is shown in Figure 12, and the corresponding logic
block for real driving in Figure 13 in the Appendix. The
important feature of the homologation release block is that
all conditions defined by the blocks shown in the figure must
be met, because their outputs are AND-combined to produce
the output signal stDNOxHmlg. In particular, this means that
the stTiCoEngHmlg output of the first sub-block must be
true. The bottom of Figure 12 shows how this signal is
computed: stTiCoEngHmlg is set if the running time since
engine start, tiSnceFrstRunngRed, is less than or equal to
the constant NSCRgn tiCoEngMaxHmlg C. In the Fiat 500X
firmware image we examined, this constant was calibrated to
1600 seconds. Thus, the homologation regeneration release
signal stDNOxHmlg will be inhibited if the engine has been
running longer than 1600 seconds. In addition, stDNOxHmlg
also requires that the total driving cycle fuel consumption be
at most NSCRgn volF1lConsMaxHmlg C, which is configured
to 1.3 liters in our firmware image.



This means that regeneration requested by the homologation
demand block will only be allowed to start a regeneration
during the first 1600 seconds (26 minutes 40 seconds) of
engine operation. After that, only NSC regeneration requested
by the “real driving” logic will be allowed to start regeneration.
We note that this coincides with the runtime of standardized
emissions test cycles.

The logic blocks described above include several switches
that may disable this dual path behavior. In the Fiat 500X
firmware image we examined, we found that both paths were
enabled (NSCRgn _swt{Hmlg,Rd}HmlgActv_C = true). The
homologation release delay NSCRgn tiD1yR1sDNOxHmlg C
was set to 300 seconds, which limited the frequency of
homologation-requested regeneration to once every five min-
utes. We also examined the demand logic for homologation
and real driving.

V. DETECTING DEFEAT DEVICES

Based on the insights obtained in our case studies, we
designed a static analysis tool that helps us to identify a defeat
device in a given firmware image. We implemented a prototype
of this approach in a tool called CURVEDIFF for EDC17 ECUs
that enables us to track the evolution and behavior of such
a device across a large number of firmware images. In the
following, we discuss design considerations and the general
workflow together with implementation details.

A. Design Considerations

Our method aims to automatically identify potential defeat
devices which actively try to detect an ongoing emissions test
based on the car’s driving profile during the test cycle. More
specifically, we try to identify code regions in a given firmware
image that attempt to determine if the car currently follows one
of the standardized test cycles and whose behavior influence
the operation of the engine. We thus focus on the type of defeat
devices implemented by Volkswagen since they represent more
sophisticated defeat devices compared to the time-based ones
implemented by FCA.

Our design decision to focus on test cycle detection is due to
two important factors. First, this approach requires relatively
little previous domain knowledge about firmware specifics and
is thus rather unlikely to be subject to syntactical changes in
the checking logic. In turn, this also means that we do not
have to rely on additional data such as .a21 files, which may
be hard to obtain for a given firmware image (even though
it would significantly simplify the analysis). Second, this
approach provides higher means of non-repudiation: Because
we do not rely on accurately determining ECU variables but
try to generically detect matches against well-known emissions
test cycles, the fact that the software actively checks against
the latter is hard to refute in general.

B. General Workflow

We use static code analysis to implement our approach
because we cannot easily execute a given ECU firmware image
in an emulator to perform a dynamic analysis. Furthermore,
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static analysis enables us to obtain high code coverage by
analyzing each function individually. Our analysis framework
called CURVEDIFF is based on the IDA Pro 6.9 [13] dis-
assembler, which includes support for the Infineon TriCore
processor used in Bosch’s EDC17 ECU. The framework is
fully automated and takes a binary firmware image as input.
When analyzing a firmware image, we perform the following
steps:

1) Generate and pre-process the IDA database,

2) Build core structures and lift to static single assignment

(SSA) form,
3) Analyze curve function invocations,
4) Match curve checks against test cycles.

In the following sections, we describe each step in more detail
and provide information about implementation details.

C. Preliminaries

The curve function SrvX IpoCurveS16 is a vital part of
the defeat device used by Volkswagen. It is also a core function
provided by the operating system itself and thus present in all
firmware images using the same OS. Further, we found that
it is widely used throughout the code of a firmware image.
Basically, it returns the y coordinate for a given = coordinate
on curve ¢, i.e., y < SrvX IpoCurveS16(c,z). Since ¢
might be represented by a few data points only, the function
interpolates linearly.

Matching the current driving profile against predefined
emissions test cycles is performed by posing two curve queries
using SrvX IpoCurveS16: one yields the upper boundary on
y corresponding to the given x value, whereas the other yields
the lower boundary. Specifically, the boundaries fit a known
test cycle that the real driving profile (seconds since engine
startup = and covered distance y) is checked against.

D. Pre-Processing

For our analysis, in order to resolve memory accesses, we
need to obtain the small data regions (for global variables,
via TriCore’s system global register a0) and literal data
regions (for read-only data, via register al) as well as the
function vector table (accessed via register a9), which stores
data associated with a certain function. The system global
registers are architecture and OS dependent and initialized
during startup, as all functions operate on them to access
the specific memory regions. Further, we need to obtain the
address of the curve function, which can be easily detected by
matching on parts of the function semantics (namely, linear
interpolation of two curve points) and verifying the result using
its call graph. Since this function is not customer-dependent
but provided by the OS, it does not change significantly.

Note that there are a few things we need to consider.
As the curve function may be wrapped, we need to detect
such instances to avoid having to perform inter-procedural
analyses later. In practice, wrappers can easily be detected
using the function’s call graph. In addition, we need to take
peculiarities of the architecture into account: TriCore supports
scratch pad RAM (SPRAM for short), which mirrors parts



of the firmware’s code in faster memory. As this is done on
startup (i.e., at runtime), we need to extract the mapping of
mirrored regions, as we otherwise might miss calls targeting
this memory area.

E. Lifting to Static Single Assignment Form and Optimization

In order to facilitate a robust static analysis suitable for
our task, we operate on an intermediate language (IL) in
Static Single Assignment (SSA) form. SSA was introduced
by Cytron et al. in 1991 [6] and describes the property of an
IL in which there is only one single definition for each variable
and each definition dominates its uses. This, in turn, enables
the design of efficient data-flow analysis algorithms.

The TriCore assembly language is expressive enough to
diminish the need for a full-fledged IL, e. g., side effects are
rare and nearly all data flow is explicit. Hence, rather than
developing a new IL from scratch, we modify the assembly
representation slightly in order to conform with requirements
assumed when transforming to SSA form. More precisely,
for instructions containing an operand that is both read and
written, we duplicate the operand such that use and definition
are properly distinguished. Similarly, for instructions defining
more than one variable, we add one single definition (a tem-
porary register), and insert helper instructions that extract the
correct definition from the temporary register, and store them
into the target variable. For example, calls may, amongst
others, return results in both registers a2 and d2. As SSA
form does not allow multiple definitions for one instructions,
we introduce the temporary register re that stores the return
values of the call. Right after the call instruction, we add
artificial cconv.w instructions that read from re and store
the corresponding part of the return value into a2 and d2,
respectively. Further, we encode other particularities of the
TriCore calling convention explicitly. For example, we add
uses of parameter-passing registers a4 and d4 to calls and,
in a similar vein, uses of a2 and d2 to return instructions. We
transform the resulting assembly into pruned SSA form [5]
using liveness analysis. Finally, in order to coalesce memory
access via system global registers a0, a1, and a9, we optimize
each function using constant propagation.

F. Relating Curve Queries

Having transformed all functions into an intermediate rep-
resentation, each function is analyzed separately in order to
construct a list of candidates potentially checking against
emissions test cycles. To this end, we extract all invocations
of the curve function and try to group them into pairs of two,
where each call queries either the upper or lower boundary for
a given data point. This allows us to programmatically extract
the curves defining both boundaries and match them to well-
known cycles in a later step. We define two such calls to the
curve function as being related.

Section V-C explained how two calls to the curve function
SrvX IpoCurveS16 are made in order to match the current
driving profile against predefined emissions test cycles. This
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observation allows us to identify several important properties
that must hold for two related curve queries:

P-1 Both curve queries in a related check have to take the
same variable as query point z (parameter d4). This
requirement follows from the fact that both curves use
the same axis. Concretely, x corresponds to the time since
engine start.

Both curve queries have to operate on distinct curves (pa-
rameter a4). This is because both curves encode multiple
possible driving profiles and allow for some deviation
from the exact test cycles due to potential imprecisions
during the emission testing.

The results Yiow, Ynign (register d2) of both curves have
to be related in the sense that they implement a range
check on the actual y value (i. e., the distance driven since
engine start).

P-2

P-3

Properties P-1 and P-2. Effectively, property P-1 allows us to
group several calls to the curve function together, based on the
value provided for parameter x. In order to achieve this, for
each call, we backtrack register d4 and build a data-flow graph,
where nodes are instructions and edges connect a variable’s
(necessarily unique) definition and its uses. An example for
the resulting graph can be seen in Figure 7. Evidently, all
curve calls take dils; as parameter x. Similarly, we can
backtrack register a4 in order to find out the actual curves
the functions operate on. Figure 8 visualizes this approach.
Note that both leave nodes are connected via al5ig;, which
is the function vector entry holding all data associated with the
current function. However, both calls still operate on different
curves with offsets 0x368 and 0x3a6, respectively.

Property P-3. Property P-3 effectively states that the resulting
ys of two distinct curve calls are related if they end up in the
same ‘“‘meaningful” expression; an expression is meaningful,
for example, if it implements an interval check by comparing
a given value with upper and lower boundaries as specified by
the curves.

In order to check P-3, we begin by building a forest



of data-flow graphs by tracking forwards the return values
of all curve calls that lie in the same group, according to
property P-2. Note that in the data-flow graphs, not all uses
of an instruction are considered. Each connected component
then either corresponds to the data-flow graph arising from one
single curve call or it connects data-flow graphs of multiple
curve calls together. While the first case does not provide any
useful information, the latter case tells us that both curve calls
are in fact related. Even though this fact already is useful as-is,
we can further inspect how two calls are related.

Intuitively, the type of relation between two curve calls
is described by the node where the data flows for each
return value meet. We call these nodes (forward) join nodes.
They can be computed by calculating the lowest common
ancestor (LCA) [2] of the vertex-induced subgraph of every
possible pair of curve calls. Figure 10 in the Appendix depicts
a part of the (single) connected component that reveals the
relations of all curve calls in the acoustic function. This
statement implements an interval check that could further be
confirmed by, e. g., symbolically executing the path up to the
join node. Similarly, we can define (backward) join nodes as
the LCAs in the reverse data-flow graph (more precisely, in the
subgraphs induced by all pairs of leafs). Figure 10 contains an
example for a backward join node, the phi node defining d9s.
Unsurprisingly, this definition equals to the distance covered
so far.

In order to cover cases where, e.g., the lower boundary
check is control-dependent on the upper boundary check (i.e.,
might not be executed based on the result of the other check)
but not directly data-dependent, we enrich the data-flow graphs
by control-dependency edges, i.e., build a reduced program
dependency graph. The introduced concepts, however, apply
to this extension as well.

G. Matching Test Cycles

Given two related curve calls, we can extract the curves
they operate on by backtracking the parameter register a4.
Thus, we obtain a curve representing the upper boundary
of matched driving profiles ct and the lower boundary c; .
Roughly speaking, a specific driving profile is matched if its
data points lie within said boundaries.

Note that we can perform a sanity check of the extracted
curves before processing them further. Namely, we want a
curve to be monotonically increasing because the covered dis-
tance obviously cannot decrease. This requirement is relaxed
for the last data points of a boundary, as there are cases where
ct drops below c; to effectively reject all driving profiles
after this point. In a similar vein, we can detect what we call
invalidated checks. These are characterized by having all y
values set to a constant value (0x7fff for ¢, and O for ¢7 in
the firmware images we analyzed) such that the check rejects
any driving profile. Using this method, the manufacturer can
parameterize a profile check such that it is not actually used.

The reference test cycles as used for emissions testing
are available either free of charge [20] or tied to a small
subscription fee [7]. In most cases, the cycles are given in the
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Fig. 9: Coverage of profiles in all firmware images in which a defeat device
has been found. Matched profiles are highlighted using backward diagonal
lines, unmatched ones use forward diagonal lines and invalidated curves are
shaded gray.

form of two-dimensional data points, containing information
about the elapsed time in seconds and the speed at this point
(given either in mph or km /h). In order to actually match test
cycles to the boundaries extracted from the firmware images,
both representations need to be normalized first. For the latter,
we scale the y axis by factor 0.1 to obtain the distance in
kilometers, and the x axis by 6.25 to obtain the engine run-
time since startup in seconds (corresponding to unit TimeRed
in the A2L file). As the test curves provide speed instead of the
covered distance, we integrate them and convert from mph to
km/h, if applicable. Finally, to match a curve, each data point
has to lie in the interval as defined by ct and c_ , respectively.

Still, some checks cut off the driving profile near the end of
a particular test cycle, where the emissions effects would most
likely not be picked up by an ongoing emissions test any more.
The corresponding test cycle would not match by comparing
all its data points due to the premature mode switch. To
account for this, we do not check the interval for the last
10% of a given test cycle.

VI. EVALUATION

Based on the prototype implementation of CURVEDIFF,
we performed a larger study of Volkswagen firmware images
to investigate which of them contain a defeat device. In the
following, we present the evaluation results together with some
highlights we found.

We analyzed 963 firmware images and configured the
analysis system with a timeout of seven minutes to avoid long-
running analysis tasks. 924 images were successfully analyzed
according to the steps outlined in the previous section, while
20 tasks timed out and 19 tasks failed to be processed by
IDA. In total, we found that 406 (44%) of the analyzed images
contained a defeat device, out of which 333 contained at least
one active (i.e., non-invalidated) profile.

Performance. The static analysis is fully automated and the
fastest analysis task finished after 55 seconds, while several
tasks also timed out (see above). The geometric mean for the
analysis of all successful tasks is 105 seconds, hence we can
analyze a given image on average in less than two minutes.



TABLE II: Acoustic condition logic and affected systems, based on function
sheets. The Model column shows the ECU model (prefix EDC omitted). The
Version column shows the ECU version for which the function sheet was
generated. The Date column gives the date given in the function sheet. Column
N shows the number of profiles checked by the acoustic condition or “—”
if the acoustic condition logic block was not included in the function sheet.
The Affected Subsystems column shows the subsystems where the acoustic
condition was referenced, extracted from the variable cross-reference table in
the function sheet.

Model Version Date N Affected Subsystems
16CP  P_397 A.V.0 2005-06-24 0 InjCrv, Rail
17CP04 P_531 2.F.0 2005-10-28 0 1InjCrv
16CP  P_397 A.V.9 2006-03-02 0 InjCrv, Rail
17CP04 P_617 3.K.0 2006-11-06 0 InjCrv
17CP04 P_617 3.N.0 2006-12-22 0 InjCrv
17CP24 P_628 3.K.1 2007-03-29 —
17CP24 P_628 3.U.0 2007-05-02 —
17CP24 P_703 3.V.5 2007-07-12 — Inic
17CP04 P_617 3.U.0 2007-05-14 5 nybev
17CP14 P_531 3.U.0 2007-05-24 5
17CP14 P_617 3.U.5 2007-08-30 5
17CP24 P_628 3.W.5 2007-09-18 — AirCtl, InjCrv
17CP14 P_714 3.U.A 2007-10-12 5 InjCrv
17CP24 P_703 3.W.A 2007-11-05 — AirCtl, InjCrv
17CP24 P_628 3.W.G 2008-02-12 5 AirCtl, PF1lt, InjCrv
17CP24 P_703 3.W.G 2008-02-14 5 AirCtl, PF1lt, InjCrv
17CP24 P_628 3.W.H 2008-03-04 5 AirCtl, PFlt, InjCrv
17CP14 P_804 4F.0 2008-03-26 5 1InjCrv, Rail
17CP24 P_703 3.W.K 2008-04-23 5 AirCtl, PF1t, InjCrv
17CP24 P_628 3.W.L 2008-05-17 5 AirCtl, SCRFFC, PFlt,
InjCrv
17CP24 P_859 4F.0 2008-05-30 5 AirCtl, PF1lt, InjCrv, Rail
17CP24 P_628 3.W.M 2008-06-27 5 AirCtl, SCRFFC, PF1t,
InjCrv
17CP44 P_804 4P.0  2008-08-05 — AFS, AirCtl, ASMod, InjCrv,
PCR, Rail
17CP24 P_859 4P.0 2008-09-18 — AFS, AirCtl, ASMod, InjCrv,
PCR, PF1t, Rail
17CP44 P_930 4.P.5 2008-11-13 — AFS, AirCtl, ASMod, InjCrv,
PCR, PF1t, PF1tPOp, Rail
AFS, AirCtl, ASMod,
17CP44 P_804 5.A.0 2009-01-22 7 InjCrv, InjSys,
17CP44 P_804 5.A.5 2009-02-04 7 PCR, PF1tP0Op,
Rail, SmkLim
AFS, AirCtl, ASMod,
17CP44 P_859 5.A.0 2009-03-16 7 InjCrv, InjSys,
17CP44 P_859 5.F5 2009-07-13 7 PCR, PF1t, PF1tPOp,
Rail, SmkLim

Compared to an analysis with a chassis dynamometer, such an
approach is at least two orders of magnitude faster.

Results. Table III shows the results of our analysis. Results
above the double line contain firmware from the dump ob-
tained from the chiptuning scene (years 2009 and 2010). Dates
and software part numbers are taken from the street release
certification next to the firmware images. Results below the
double line are based on firmware obtained via the erWin
portal, which provides official firmware images for car shops
(years 2012 to 2016). Dates are taken from the firmware’s
time stamp. For both data sources, the models have been
matched by querying an online database for spare parts, which
yields metadata for a given part number (in this case, the part
numbers specify the ECU). This mapping may not be 100%
accurate, as disclaimed by said sites as well. For part numbers
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where multiple model names were returned (due to varying
model naming schemes in different regions), we chose the
European name, as most firmware images check for European
emissions test cycles. In cases where multiple firmware images
in a month matched the same model, we denoted the number
of images analyzed for a specific model in parentheses. Finally,
for all the images released in the same month, we took the
union of test cycles they check for to give an impression of
the number and variety of matched cycles. Figure 9 depicts
our coverage in terms of identified test cycles. For firmware
images with 5 profiles, we were able to match a test cycle
to each profile. However, for later images checking 5 and 7
profiles, respectively, we were unable to find a matching test
cycle for some of the profiles.

Effects on EGR. Based on the results in Table III, we
automatically identified a lower bound of firmware images in
which the acoustic condition affects the AirCtl subsystem,
responsible for calculating the amount of recirculated exhaust
gas (EGR). We did not use A2L files for this, as we do not
have matching files for all firmware images. We found that in
at least 268 images (66%), the acoustic condition can affect
EGR. Based on the parameters we extracted, we can confirm
that in 247 (92%) of these images, the acoustic condition
actually influences the choice of parameters. Note that the
AirCt1 detection can be improved upon as well as extended to
other subsystems as listed in Table II to fully confirm further
defeat devices in Table III.

We also manually analyzed some of the defeat devices detected
by CURVEDIFF to verify our results, and in the following we
highlight some of the findings.

Steering wheel check. We found that the 2014’s EDC17C54
P1169 firmware image with part number 03L906012DE and
revision 8401 has started checking the steering wheel angle
in addition to the time-distance profiles, as described in
Section IV-A. An automatic scan for the steering wheel check
yielded three more images, namely 031906012, revision 7444
(depicted in Figure 3); 03L906012DD, revision 8400; and
03L906012BP, revision 7445. The images seemingly have
been released on December 3, 2014, 22:55 and are used in VW
Passat cars according to an online database. This refinement
of the defeat device is noteworthy given that at that point in
time, the CARB had already started to investigate emission
abnormalities in Volkswagen cars [15] (cf. facts 140, 141).
As evident from Table III, these images are responsible for
the largest set of test cycle matches across nearly 400 images,
further highlighting the necessity of the check. Other firmware
images released the same month (for Audi A4 and A6) do not
contain this additional logic and only match a subset of the
listed test cycles.

VII. DISCUSSION

Our empirical evaluation results demonstrate that our ap-
proach to detect Volkswagen-style defeat devices is viable
across a large number of firmware images. Nevertheless, there
are certain open challenges and potential limitations of our
approach that we discuss in the following.



TABLE III: Results for 363 of 406 firmware images in which CURVEDIFF detected a potential Volkswagen-style defeat device. For firmwares not listed in
this table either the release date or the model are unknown. The number in parentheses depicts the number of firmware images analyzed for this model. The
lower part of the table, below the double line, shows the result based on erWin data; the upper part is drawn from a chip tuning dump.

Matched emissions test cycles are listed as the union of matched cycles in all firmware images in that row. The last column shows whether firmware images
in this row were found to contain additional steering wheel checks that guard individual curves. The affected models in that row are printed in bold. Note
that model data in this table is retrieved from external (non-VW) sources. Further conditions may affect the defeat device’s operation.

Rls. Date  Models (number of images) Matched Cycles (upper bound) St.W.

2009-01 Golf, Passat (2) ECE-15, EUDC(L), NEDC

2009-07 A3 ECE-15, FTP-75, HWFET, LA92, NEDC, SC03, US06

2009-08 Passat Blue Motion ECE-15, EUDC(L), NEDC

2009-09 Golf (2), Passat (3) ECE-15, EUDC(L), NEDC

2009-10 Golf+, Passat ECE-15, EUDC(L), NEDC

2009-11 A3 (8), Golf Blue Motion, Golf (2), Passat ECE-15, EUDC(L), NEDC

2009-12 A3 (5), Golf Variant (2), Golf+ (2), Golf (7), Jetta (3), Passat (4) ECE-15, EUDC(L), FTP-75, HWFET, LA92, NEDC, SCO03,
US06

2010-01 Jetta, Passat (2) ECE-15, EUDC(L), NEDC

2010-03 A3 (2), Golf (3), Jetta, Passat (3), Q5 (4) ECE-15, EUDC(L), FTP-75, HWFET, LA92, NEDC, SCO03,
US06

2010-04 Jetta (2), Passat, Passat Coupe (4), Q5 ECE-15, EUDC(L), NEDC

2012-05 A3 (19), A4, A6, Alhambra (4), Altea, Eos (2), Golf, Ibiza (4), Leon, ECE-15, EUDC(L), FTP-75, HWFET, LA92, NEDC, SC03,

Octavia (6), Q5 (2), Superb (2), TT, Tiguan, Yeti (4) US06
2012-06 Amarok (8), CC, Eos (2), Golf (2), Jetta (2), Octavia (3), Q5 (2), ECE-15, EUDC(L), NEDC
Sharan (7), Tiguan, Touran (2)

2012-07 Al (3), Alhambra (4), Caddy (2), Sharan (8) ECE-15, EUDC(L), NEDC

2012-09 Golf (2), Passat, Yeti (6) ECE-15, EUDC(L), FTP-75, HWFET, LA92, NEDC, SCO03,
US06

2012-10 A3, Alhambra (2), Tiguan, Yeti ECE-15, EUDC(L), FTP-75, HWFET, LA92, NEDC, SCO03,
US06

2012-12 Eos (2), Golf Cabriolet, Tiguan (7), Touran, Yeti ECE-15, NEDC

2013-01 Leon, Passat ECE-15, EUDC(L), FTP-75, HWFET, LA92, NEDC, SCO03,
US06

2013-04 Amarok (6) (deactivated)

2013-05 Amarok (4) ECE-15, EUDC(L), NEDC

2013-06 Amarok (5), Superb (3), Tiguan ECE-15, EUDC(L), NEDC

2013-07 Octavia ECE-15, EUDC(L), NEDC

2013-08 Yeti (3) ECE-15, NEDC

2013-11 Superb (3) ECE-15, EUDC(L), NEDC

2013-12 Superb (2), Yeti (4) ECE-15, EUDC(L), NEDC

2014-01 Caddy (4) ECE-15, NEDC

2014-03 Amarok (16), Eos, Tiguan, Yeti ECE-15, EUDC(L), NEDC

2014-04 Q5, Superb (2) ECE-15, EUDC(L), NEDC

2014-06 Amarok (6), Tiguan (4) ECE-15, EUDC(L), NEDC

2014-09 Alhambra ECE-15, EUDC(L), NEDC

2014-10 Sharan ECE-15, EUDC(L), NEDC

2014-12 A4 (3), A6, Passat (4) CADC-RURAL, CADC-URBAN, ECE-15, EUDC(L), FTP- v
75, HWFET, IM240, J1015, JP10, LA92, NEDC, RTS-95,
SCO03, US06, WLTP-1, WLTP-2, WLTP-3

2015-01 Superb ECE-15, NEDC

2015-02 A3 (3) ECE-15, FTP-75, HWFET, LA92, NEDC, SCO03, US06

2015-03 Alhambra (2) ECE-15, EUDC(L), NEDC

2015-05 Alhambra (6), Sharan (6) ECE-15, EUDC(L), NEDC

2015-07 Q3 (2) ECE-15, NEDC

2015-10 Altea (2), Yeti (3) ECE-15, EUDC(L), NEDC

2015-11 Superb ECE-15, EUDC(L), NEDC

2016-02 Altea ECE-15, NEDC

2016-03 A4, Exeo (4) ECE-15, NEDC

2016-04 A6, Exeo, Q3 ECE-15, NEDC

2016-06 Altea (3), CC (3), Jetta, Leon (2), Superb, Tiguan (2) ECE-15, EUDC(L), NEDC

2016-07 Amarok, CC, Golf, Superb ECE-15, NEDC

2016-08 CC (3), Golf Cabriolet, Golf (2), Passat (2), Scirocco, Touran (3) ECE-15, EUDC(L), NEDC

2016-09 CC (14), Octavia (2), Passat (2), Tiguan (7) ECE-15, EUDC(L), NEDC

2016-10 Eos ECE-15, NEDC
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Generally speaking, there are two approaches to distinguish
regular street driving conditions from those (rather special)
conditions exhibited during emission tests: active and passive
detection. Active detection techniques take characteristics of
the car during emission tests into account and hence are able
to target specific tests. Most notably, the Volkswagen defeat
device covered in this paper is able to detect an ongoing
emission test based on the car’s driving profile and comparing
it to well-known test curves. Our approach is based on this
insight and we propose a curve-agnostic method to detect
that the firmware attempts to match a certain driving profile.
CURVEDIFF can detect such defeat devices and we found
many instance of such devices. However, a car manufacturer
could also implement other active evasion approaches, for
example by matching on the profile of related parameters such
as speed or torque; another concrete example being the defeat
device found in the Opel Zafira [9].

On the other hand, passive detection techniques cover test-
agnostic methods that do not actively observe vehicle specifics
to detect an ongoing emission test, but rather target general
peculiarities of those tests. For example, emission tests are
comparably short, which opens up the possibility to simply
stay in a compliant mode for as long as the average emission
test is carried out and switch to a more harmful emissions
policy afterwards. The Fiat defeat device we discussed earlier
belongs to this category. In principle, an ECU can leverage
all available sensors in an attempt to fingerprint the testing
environment, for example by measuring the temperature or the
ambient pressure since both are also standardized. In addition
to software-based methods, hardware-based approaches such
as over-inflating tires for dynamometer tests also fall into
this category. Our coverage of such passive defeat devices is
limited since we focus on curve-based defeat devices. This is
mostly due to the fact that the latter approach provides higher
means of confidentiality. Still, tracking the data flow in the
code and analyzing whether certain sensor conditions influence
the Exhaust Gas Recirculation (EGR) or other subsystems
related to emission control might enable the detection of such
passive devices. As part of future work, we plan to study the
viability of such an approach and evaluate if we can detect
Fiat’s defeat device in an automated manner.

We implemented our approach in a tool called CURVEDIFF.
Given that we perform an intra-procedural analysis, we might
miss certain ways how a defeat device can be implemented
and an inter-procedural analysis could enhance the soundness
of our implementation. Furthermore, our analysis can be
extended to take more primitive building blocks such as timers
and multiplexers into account to deepen the knowledge about
the relation of various components in the detection logic.

VIII. CONCLUSION

As software control becomes a pervasive feature of complex
systems, regulators in the automotive domain (as well as many
others) will be faced with certifying software systems whose
manufacturers have an immense financial incentive to cheat.
In this paper, we described two families of defeat devices used
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in the Bosch EDC17 ECU to circumvent US emission tests.
The first family of defeat devices was used by Volkswagen and
lies at the heart of the Volkswagen diesel emissions scandal.
The second device appears in the diesel Fiat 500X automobile
sold in Europe, and has not beed documented previously. We
also presented and evaluated an automated approach to detect
defeat devices in a given firmware image based on the insights
we obtained from manually analyzing the Volkswagen defeat
device.
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Fig. 10: A part of a connected component in the data-flow forest of the defeat device. It can be seen how the boundaries obtained via two calls to the
SrvX_IpoCurveS16 (at 0x800b64£0) are compared against the covered distance (in d93). Specifically, following the two leftmost curve calls (at 0x8018763a
and 0x8018764a), we end up with the forward join node at 0x80187656 (and.ge d2, d2, d9, d15), implementing the interval check. Similarly, the ¢
node defining d93 is a backward join node, whose definition equals to the distance covered so far. Continuous lines represent data flow of the labeled variable,
whereas dotted lines show control dependencies.

TABLE IV: Overview of various test cycles used for emissions testing. The
first segment details tests following US EPA and CARB legislation, the second
segment is relevant to EU law, and the last segment shows international
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Fig. 11: Acoustic condition (signal InjCrv_ stNsCharCor) used to modify the desired air mass correction mDesVallCor, which modifies the desired air
mass from which the amount of air recirculated is computed. AirCtl numInjChar CA is a two-dimensional array. The acoustic condition is used to select
either row. From the EDC17C54 P 874 function sheet. Shading added by the authors. Copyright Robert Bosch GmbH.
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Figure 5444 NSCRgn_RIsLogic/NSCRgnRIsLogic/RegenerationReleaselLogic/ReleaseLogicDNOx/DNOx_during_ Homologation [NSCRgn_RIsLogic.NSCRgn-
RlsLogic.RegenerationReleaselogic.ReleaseLogicDNOx.DNOx_during_Homologation]
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Fig. 12: Part of the NOx regeneration release logic “during homologation cycle” from function sheet EDC17C69 P 1264 for Fiat 500X. The homologation
release signal requires multiple signals to be asserted, including stTiCoEngHmlg (Section IV-D). It is only asserted if engine running time does not exceed
NSCRgn_tiCoEngMaxHmlg C, set to 1600 seconds in the 55265162 Fiat 500X firmware image. Copyright Robert Bosch GmbH.

Figure 5456 NSCRgn_RIsLogic/NSCRgnRIsLogic/RegenerationReleaselogic/ReleaseLogicDNOx/DNOx_during_real_driving [NSCRgn_RIsLogic.NSCRgnRls-
Logic.RegenerationReleaselogic.ReleaseLogicDNOx.DNOx_during_real_driving]
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Fig. 13: Part of the NOx regeneration release logic “during_real_driving” from function sheet EDC17C69 P 1264 for Fiat 500X. First element controls release
based on engine running time. A parallel logic block controls release “during real driving.” Copyright Robert Bosch GmbH.
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Fig. 14: Remaining curve checks testing against various emissions test cycles in the firmware for a VW Passat, released 12/2014 (EDC17C54, software part
number 031906012, revision 7444), completing Figure 3. The area in which the software reports the driving profile to match is colored white. The legend
lists the known matching test cycles, ® indicates an additional steering wheel check.
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