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ABSTRACT
We study decentralized searches in a large service-oriented agent
network and investigate the in�uences of multiple factors on search
e�ciency. In this study we focus on overall system robustness
and examine search performance in unstable environments where
individual agents may fail or a system-wide a�ack may occur. Ex-
perimental results show that searches continue to be e�cient when
a large number of service agents become unavailable. Surprisingly,
overall system performance in terms of a search path length metric
improves with an increasing number of unavailable agents. Service
unavailability also has an impact on the load balance of service
agents. We plan to conduct further research to verify observed pat-
terns and to understand related implications on system architecture
design.
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1 INTRODUCTION
Digital information is distributed in many large networked environ-
ments, in which it is increasingly di�cult to collect all information
in advance for centralized retrieval operations. �e growing magni-
tude, dynamics, and heterogeneity of today’s digital environments
such as the Web pose great challenges for �nding information in
them. While classic information retrieval systems provide search
operations by collecting and indexing information in advance, this
centralized model has su�ered from the increasing decentralization
of information and systems [6].
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We live in a distributed networked space, where information and
intelligence are highly distributed. In reality, people have di�erent
expertise, share information with one another, and ask trusted
peers for advice/opinions on various issues. �e World Wide Web
is a good example of information distribution, where web sites
serve narrow information topics and tend to form communities
through hyperlink connections [19, 20, 37]. Likewise, individual
digital libraries maintain independent document collections and
none claims to be all encompassing or comprehensive. �ere is no
single global information repository.

Because of the distributed nature of information and its size,
dynamics, and heterogeneity, it is extremely challenging, if not
impossible, to collect, store, and process all information in one
place for retrieval purposes. Centralized solutions will su�er from
its vulnerability to scalability demands [6]. It has become critical to
investigate alternative models beyond the state-of-the-art retrieval
systems, particularly for searching a large, highly decentralized
environment such as the Web. A potential candidate is to take
advantage of existing distributed computing powers and design
a new search architecture in which all systems can participate to
help one another �nd information.

Research in areas such as distributed IR, peer-to-peer search,
cloud/parallel computing, and multi- agent systems have addressed
some related problems. Nonetheless, basic principles and funda-
mental theories about the �ndability of information and scalability
of decentralized search in these environments remain to be stud-
ied and understood. Without a be�er understanding, solutions for
the next generation web searching and browsing will remain ad
hoc. �e proposed research aims to investigate guiding theories
and alternative models related to e�ective and e�cient searches in
large-scale, decentralized, and dynamic environments. �e ultimate
goal is to be able to connect people and desired information in a
timely fashion regardless of their digital locality.

Our research studies the general problem of search and retrieval
in a fully distributed/decentralized environment, where no global
information is available nor can a centralized index be built. Specif-
ically, it focuses on query routing for decentralized search and
addresses the scalability challenge by integrating perspectives from
information retrieval as well as complex network research. In this
study, we aim to be�er understand how distributed service agents
can continue to function e�ciently in unstable environments. In
particular, we are interested to know whether the system as a whole
can stand and how well it performs when a signi�cant number of
members become unavailable and unresponsive due to individual
failures or a�acks.
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2 RELATED WORK
State-of-the-art search engines, relying on information collection
and data pre-processing in advance, face great scalability challenges
because of the dynamics (too di�cult to collect information) and the
tremendous, growing amount (too expensive to pre-process data) of
distributed information. Related challenges for distributed search
have been studied in areas of distributed (federated) information
retrieval, peer-to-peer networks, multi-agent systems, and complex
networks [12, 16, 29, 49].

2.1 Distributed P2P Search
Recent distributed IR research has focused on distributed data-
base content (and characteristics) discovery [42], database selection
[23, 41], and result fusion [5, 32, 43]. Research has studied the e�ec-
tiveness of database selection and result fusion given a relatively
small number of distributed, persistent information collections [40].
�eir scalability to larger, unstable environments remains an im-
portant question.

A peer-to-peer network o�en involves more than thousands,
sometimes millions, of distributed peers who dynamically join and
leave the community. Distributed hashing tables (DHTs) have been
used in structured P2P environments for unique identi�er lookup.
Some studies applied DHTs for partitioning an indexing space
across redundant peers for e�cient location of popular information
items [36, 46]. Others proposed the use of this technique for search
in the presence of information overlap [10].

While DHT-based techniques are applicable in structured P2P
environments, their resilience to transient populations and adapt-
ability to content and topology changes remain open questions
[35]. More important, when diverse information needs are to be
served, it is extremely challenging for such techniques to create
and maintain (update) a distributed index structure in a space- and
tra�c-e�cient manner. Flooding is o�en the technique employed
for maintaining indexing currency, which has received critiques
for its computational costs.

DHTs, based on document-key-level index partitioning, are not
the ideal technique for information retrieval in distributed envi-
ronments, particularly in unstructured peer-to-peer networks. Al-
ternative methods based on peer-level segmentation can be used
to support search e�ciency and e�ectiveness [8, 34]. Reorganiza-
tion of collections around content clusters/topics was proposed to
improve distributed retrieval e�ectiveness.

Semantic overlay networks (SONs), based on peer segmentation,
have been widely used for distributed IR operations in unstructured
networks [16, 18]. In SONs, peers with semantically similar content
are clustered together, which in turn form a global (hierarchical)
structure for e�cient query routing [16]. �ese techniques were
shown in experiments to improve retrieval performance.

One popular approach to SONs was to form a hierarchical net-
work structure through re-organization of distributed systems/peers,
in which super-peers assumed greater responsibilities for bridg-
ing/mediating across segments. However, some questioned the
reliability of such an architecture as a�acks on super peers (nodes
or agents) can lead to a large disconnected structure [3, 35]. In
addition, as Lu and Callan [34] observed, updating super-peers for

changes in distributed collections is tra�c intensive and may cause
problems in environments where bandwidth is limited.

2.2 Search in Complex Networks
Regardless of various approaches to peer re-organization and seg-
mentation, the underlying network structure appears to play an
important role in conducting e�ective and e�cient retrieval oper-
ations in distributed se�ings. As individual systems interconnect
to form a global structure, �nding relevant information in decen-
tralized environments transforms into a problem concerning not
only information retrieval but also complex networks. Understand-
ing network structure or system interconnectivity will provide
guidance on how decentralized search and retrieval methods can
function in these information spaces.

In a variety of large interconnected environments, it is well
known that any pair of individual nodes are separated by a very
small number of others. In other words, small diameters are a com-
mon feature of many naturally, socially, or technically developed
communities – a phenomenon known as small world or six degrees
of separation [38, 47]. �e small world phenomenon also appears
in various types of large-scale digital information networks such
as the World Wide Web [3, 4] and the network for email commu-
nications [17]. �e small degree of separation shows promises on
e�cient traversal of such a network to reach any desired targets.
Nonetheless, it remains challenging to identify shortcuts to rele-
vant targets in the information retrieval context, where relevant as
well as non-relevant information collections are all within short
distances.

Network clustering represents one approach to understanding
how network characteristics can be taken advantage of for e�-
cient traversal of relevant paths. One level of clustering, in P2P
research, is the identi�cation of similar peers and segmentation of
them based on topical relevance. As we discussed, semantic overlay
networks (SONs) have been widely used for retrieval e�ectiveness
and e�ciency [8, 16, 18, 33]. Clustering enables similar peers to
connect to each other and sometimes allows super peers to coor-
dinate local reconstruction and to update remote connections for
e�cient query routing. �ery propagation in local segments o�en
leads to improved recall [8, 33].

Research on complex networks studies the problem in its basic
form and shows promises as well. Particularly, studies showed
that, with local intelligence and basic information about targets,
members of a very large network are able to �nd very short paths
(if not the shortest) to destinations collectively [11, 17, 30, 31, 38,
48]. �e implication in IR is that relevant information, in various
networked environments, is not only a few degrees (connections)
away from the one who needs it but potentially �ndable. �is
provides the potential for distributed algorithms to traverse such a
network to �nd relevant information e�ciently.

In this respect, Kleinberg [30] conducted one of the key studies
on decentralized search in small world networks. �e research,
based on an abstract la�ice model and a clustering exponent α to
control network clustering, discovered that some critical value of α
enables optimal search e�ciency. Particularly, in a d dimensional
space, search time (or the number of hops required to reach a tar-
get) is bounded by c log2 N only when α = d , where N is network
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size. When α becomes either larger or smaller, search performance

is greatly degraded. In other words, neither weak clustering nor

strong clustering is desirable. A specific, balanced level of cluster-

ing must be maintained for search efficiency. Related studies on

complex network search provided results consistent to this finding

[11, 17, 29, 31, 48].

3 SEARCH SCALABILITY & ROBUSTNESS

Finding relevant information in distributed environments is a prob-

lem concerning complex networks and information retrieval. We

know from the small world phenomenon, common in many real

networks, that every piece of information is within a short radius

from any location in a network. However, relevant information is

only a tiny fraction of all densely packed information in the “small

world.”

If we allow queries to traverse the edges of a network to find

relevant information, there has to be some association between the

network space and the relevance space in order to orient searches.

Random networks could never provide such guidance because edges

are so independent of content that they have little semantic mean-

ing. Fortunately, research has discovered that development of a

wide range of networks follows not a random process but some

preferential mechanism that captures “meanings.”

3.1 Network Clustering and Searches

Distributed information retrieval, particularly unstructured peer-

to-peer IR, relied on peer-level clustering for better decentralized

search efficiency. Topical segmentation based techniques such as se-

mantic overlay networks (SONs) have been widely used for efficient

query propagation and high recall [8, 16, 18, 34]. Hence, overall,

clustering was often regarded as beneficial whereas the potential

negative impact of clustering (or over-clustering) on retrieval has

often been overlooked.

Research on complex networks has found that a proper level of

network clustering with some presence of remote connections has

to be maintained for efficient searches [11, 30, 31, 44, 48]. Cluster-

ing reduces the number of “irrelevant” links and aids in creating

topical segments useful for orienting searches. Without sufficient

clustering, the network has too much randomness to guide effi-

cient traversals because weak ties dominate. While searches may

jump quickly from one place to another (hops) in the network space,

there is no “gradient” to lead them toward targets. With very strong

clustering, on the other hand, a network tends to be fragmented

into local communities with abundant strong ties but few weak

ties to bridge remote parts [21, 45]. Although searches might be

able to move gradually toward targets, necessary “hops” become

unavailable.

In other words, trade-off is required between strong ties for search

orientation and weak ties for efficient traversal. In Granovetter’s

terms, whereas strong ties deal with local connections within small,

well-defined groups, weak ties capture between-group relations and

serve as bridges of social segments [21].

One key parameter widely used in complex network research

for studying the impact of clustering is the clustering exponent α .
Kleinberg [30] studied decentralized search in small world using

a two dimensional model, in which peers had rich connections

with immediate neighbors and sparse associations with remote

ones. The probability pr of connecting to a neighbor beyond the
immediate neighborhood was proportional to r−α , where r was the
search distance between the two in the dimensional space and α a

constant called clustering exponent1. It was shown that only when

clustering exponent α = 2, search time (i.e., search path length) was

optimal and bounded by c (logN )2, where N was the network size

and c was some constant [29]. More generally, when α = d on a

d-dimension space, decentralized search is optimal. Further studies
conducted on small world networks as well as in distributed IR

have shown consistent results [11, 25–27, 31, 44, 48].

3.2 Verified Scalability Model

Previous studies in distributed IR have found significant impacts

of network clustering on search efficiency, that optimal search

performance was supported by a specific, balanced level of network

clustering (e.g., α = 2 in several experiments). Further investigation

is needed to understand the influences of other network structure

variables and the scalability of searches in related settings.

Our research has focused on search efficiency and scalability with

growing network sizes N and varied (distributed system) neighbor-

hood size d distributions (degree distributions). We have proposed

and validated a scalability function which we discuss below.

Let L denote search path length, the number of hops (distributed
systems) a search has to traverse the network to reach a desired

target. According to [29] and several studies in distributed IR, when

network clustering is optimal, a reasonable relationship between

L̂ (expected value of L based on relevance/similarity searches) and
network size N (the number of distributed systems in the network)

is:

L̂ = β ′ · (logb N )λ (1)

where β ′ is a constant and b is the logarithmic base. λ is an

exponent parameter to be identified with empirical data.

Assume the majority of distributed systems (hops) have a neigh-

borhood size (number of interconnected systems) dm . Let Lд de-

notes the ideal search path length given a (imagined) perfect, global

index of all distributed systems2. It can be shown that Lд ∝ logb N
as well as N ≈ dLдm :

Lд ∝ logb N (2)

≈ logdm N (3)

Hence, we can replace logb N with logdm N (i.e. using dm as the

logarithmic base) in Equation 1, which becomes:

L̂ = β · (logdm N )λ (4)

= β · (logN / logdm )λ (5)

where β is a constant and dm the neighborhood size (degree) of

majority distributed systems. To simulate real networks, a power-

law function will be used for degree distribution d ∈ [dm ,dx ],
where dm is the min degree (which the vast majority have in a

1The clustering exponent α is also known as the homophily exponent [44, 48].
2For example, when degree dm = 2, Lд can be seen as the number of steps needed to

perform a binary search (traversal of a binary tree) on N nodes.
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power law) and dx is the maximum value (which only a small

number of nodes have).

3.3 Research Focus on Robustness

In a previous study, we validated the scalability model with large-

scale experiments, identified the exponent λ, estimated the β co-

efficient with varied N and dm settings, and predicted potential

search efficiency in real-scale environments with millions to billions

distributed systems [28].

In this study, we aim to better understand how distributed service

agents can continue to function efficiently in unstable environments.

In particular, we are interested to know whether the system as

a whole can stand and how well it performs when a significant

number of members become unavailable and unresponsive due to

individual failures or attacks.

4 SIMULATION FRAMEWORK

We use multi-agent systems for a bottom-up investigation of de-

centralized IR functions [24]. We have developed a decentralized

search platform for finding relevant information in distributed set-

tings. Each agent represents an IR system, which has its document

collection and can connect to others to route queries. We empha-

size the societal view of agents who have local intelligence and can

collaborate with one another to perform global search tasks. We

illustrate the conceptual model in Figure 1 and elaborate on major

components shown in Figure 2.

Figure 1: (a) Global view of the conceptual framework show-

ing agents working together to route a query in the network

space.

Figure 1 visualizes a 2D circle (1-sphere) representation of the

information space. Let agentAu be the one who has an information

need whereas agent Av has the relevant information. The problem

becomes how agents in the connected society, without global in-

formation, can collectively construct a short path to Av . When an

agent receives a query, it first runs a local search operation to iden-

tify potential relevant information from its individual document

collection. If local results are unsatisfactory, the agent will send

Figure 2: (b) Local view of the conceptual framework show-

ing how components function within an agent’s neighbor-

hood.

the query to neighbors based on a predicting function using the

query representation and information about neighbors. In Figure 1,

the query traverses a search path Au → Ab → Ac → Ad → Av
to reach the target. While agents Ab and Ad help move the query

toward the target gradually (through strong ties), agent Ac has a
remote connection (weak tie) for the query to “jump.” The entire

network topology is self-organized by agents using an intercon-

nectivity probability function supervised by clustering exponent α ,
which we discuss in Section 5.

4.1 Service-oriented Prototype

In addition to the simulation framework, we also plan to develop a

prototype system for distributed web searching and browsing, by

integrating major components illustrated in Figure 3. Essentially

the software will be a set of modules and RESTful web services

which can be deployed to different web sites to provide the follow-

ing functions: indexing (updated) local documents, parsing query

requests (through http), searching the local document collection

(site pages), communicating with other agents (sites), and provid-

ing search results, etc. Once the prototype has been installed on

multiple web servers, web sites hosted by these servers can work

together in the described decentralized manner for information

retrieval.

4.1.1 System Design, Modules and APIs. The prototype will first

be implemented in node.js, which has gained increased support on

the web. The implementation can certainly be replicated in other

languages and web frameworks such as Ruby on Rails, Play frame-

work, Python, PHP, and Perl. All exposed APIs will be implemented

as RESTful web services with JSON. As shown in Figure 3, here are

major modules and APIs:

• Indexing module which builds the inverted index for

pages on the file system and in database;

• Searching API which receives a query from a user or

directed from another node/site and identifies relevant

information/documents from the local site;
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Figure 3: Service-oriented Architecture Prototype

• �ery routing module which forwards queries to neigh-
bors for further searching, with a call-back API to be
contacted when results are ready.

• Learning and adaptation module which analyzes the
site’s interaction with other sites (e.g. from the history of
responses and associated topics) and learns how to proceed
with queries in the future.

�e prototype system will have a built-in mechanism for self
organization through distributed discovery of other nodes. When
one node/site installs related APIs locally and joins the search
network, the node which takes in the new one will introduce a list
of other nodes to connect. �e new node then decides which else
to connect based on the build-in selection algorithm (see notes in
section 5.3).

5 ALGORITHMS
�e simulation framework for experiments was implemented in
Java, based on two well-known open-source platforms: 1) JADE,
a multi-agent system/middle-ware that complies with the FIPA
(the Foundation for Intelligent Physical Agents) speci�cations [9],
and 2) Lucene, a high-performance library for full-text search [22].
�is section elaborates on speci�c algorithms implemented in the
framework and used in the research.

5.1 Basic Functions
5.1.1 TF*IDF Information Representation. We use the Vector-

Space Model (VSM) for information (document and query) repre-
sentation [7]. Given that information is highly distributed, a global
term space is not assumed. Instead, each agent processes informa-
tion it individually has and produces a local term space, which is
used to represent each information item using the TF*IDF (Term
Frequency * Inverse Document Frequency) weighting scheme. An
information item is then converted to a numerical vector where an
item t is computed by:

W (t ) = t f (t ) · loд(
N

d f (t )
) (6)

where t f (t ) is the frequency of the term t of the term space in
the information item, N is the total number of information items
(e.g., documents) in an agent’s local collection, and d f (t ) is the
number of information items in the set containing the term t of
the term space. IDF values (loд( N

df (t ) )) are computed within the
information space of an agent given no global information.

5.1.2 DF*INF Agent Representation. For neighbor (agent) rep-
resentation, we use a similar mechanism. Speci�cally, we assume
agents are able to collect their direct neighbors’ document fre-
quency (DF) information and use it to represent each neighbor us-
ing a meta-document of terms. Distributed IR research has shown
DF information useful for collection selection [13, 14, 39]. Treating
each meta-document as a normal document, it becomes straightfor-
ward to calculate neighbor frequency (NF) values of terms, i.e., the
number of meta-documents (neighbors) that contains a particular
term. A meta-document (neighbor) is then represented as a vector
where term t is computed by:

W ′(t ) = d f ′(t ) · loд(
N ′

nf ′(t )
) (7)

where d f ′(t ) is the frequency of the term t of the term space in
the meta-document, N ′ is the total number of an agent’s neighbors
(meta-documents), and nf ′(t ) is the number of neighbors contain-
ing the term t . We refer to this function as DF*INF, or document
frequency * inverse neighbor frequency.

5.1.3 Similarity Scoring Function. Based on the term vectors
produced by the TF*IDF (or DF*INF) representation scheme de-
scribed above, pair-wise similarity values can be computed. Given
a query q, the similarity score of a document d matching the query
is computed by :∑

t ∈q
W (t ) · coord (q,d ) · queryNorm(q) (8)

where W (t ) is the weight of term t given by equation 6 or 7,
coord (q,d ) a coordination factor based on the number of terms
shared by q and d , and queryNorm(q) a normalization value for
query q given the sum of squared weights of query terms. �e
function is a variation of the well-known cosine similarity measure
adopted in Lucene [7, 22]. Given a query, an agent will use this
scoring function to rank its local documents and determine whether
it has relevant information. In addition, when an agent has to
forward the query to a neighbor, similarity-based neighbor selection
methods will use this to evaluate the relevance of each neighbor.

5.2 Neighbor Selection (Search) Methods
�e similarity scoring function in Equation 8 can produce output
about each neighbor’s similarity/relevance to a query. Based on
this output, we further propose the following strategies to decide
which neighbors should be contacted for the query. Each search
will keep track of all agents on the search path. All strategies below
will ignore neighbors who have been contacted for a query to avoid
loops. �ese strategies will be tested and compared in experiments.

5.2.1 SIM Search: Similarity-based Greedy Routing. Let k be
the number of neighbors an agent has and S = [s1, ..,sk ] be the
similarity vector about each neighbor’s similarity/relevance to a



ICMSS ’17, January 14-16, 2017, Wuhan, China Weimao Ke

query. The SIM method sorts the vector and forwards the query to

the neighbor with the highest score. With greedy routing, only one

instance of the query will be forwarded from one agent to another

until relevant information is found or some predefined conditions

are met (e.g., the maximum search path length or Time to Live

(TTL) is reached).

5.2.2 DEG Search: Degree-based greedy routing. In the degree-

based strategy, we further assume that information about neighbors’

degrees, i.e., their numbers of neighbors, is known to the current

agent. Let D = [d1, ..,dk ] denote degrees of an agent’s neighbors.
The DEG method sorts the D vector and forwards the query to the

neighbor with the highest degree, regardless of what a query is

about. Related degree-based methods were found to be useful for

decentralized search in power-law networks [1, 2].

5.2.3 SimDeg: Similarity*Degree Greedy Routing. The SimDeg

method is to combine information about neighbors’ relevance to a

query and their degrees. Simsek and Jensen [44] reasoned that a

navigation decision relies on the estimate of a neighbor’s distance

from the target, or the probability that the neighbor links to the

target directly, and proposed a measure based on the product of a

degree term (d) and a similarity term (s) to approximate the expected
distance. Following the same formulation, the SimDeg method uses

a combinedmeasure SD = [s1 ·d1, ..,sk ·dk ] to rank neighbors, given
neighbor relevance vector S = [s1, ..,sk ] and neighbor degree vector
D = [d1, ..,dk ]. A query will be forwarded to the neighbor with

the highest s · d value. It was shown in studies that this combined

method is sensitive to the ratio of values between two neighbors,

not the actual values that might not be accurately measured [44].

5.3 Interconnectivity and Network Clustering

For network clustering, the first step is to determine how many

links (degree du ) each distributed system u should have. Once the

degree is determined, the system will interact with a large number

of other systems (from a random pool) and select only du systems

as neighbors based on a connectivity probability function guided

by the clustering exponent α .
In experiments on the ClueWeb09B collection, we collect infor-

mation about web sitess (treated as distributed agents/systems)

incoming hyperlinks and normalize the in-degrees as their du val-

ues. We control the range of degree distribution [dm ,dx ] and study
its impact on search performance with varied degree ranges. Given

the number of incoming hyperlinks d ′u of system u, the normalized
degree is computed by:

du = dm +
(dx − dm ) · (d ′u − d ′m )

d ′x − d ′m
(9)

where d ′x is the maximum degree value in the hyperlink in-

degree distribution and d ′m the minimum value in the same distri-

bution. Once degree du is determined from the degree distribution,

a number of random systems/agents will be added to its neigh-

borhood pool such that the total number of neighbors d̂u � du
(d̂u = 1,000 in this study). Then, the agent in question (u) queries

each of the d̂u neighbors (v) to determine their topical distance ruv .
Finally, the following connection probability function is used by

system u to decide who should remain as neighbors (to build the

interconnectivity overlay):

puv ∝ r−αuv (10)

where α is the clustering exponent and ruv the pairwise topical

(search) distance. The finalized neighborhood size will be the ex-

pected number of neighbors, i.e., du . With a positive α value, the

larger the topical distance, the less likely two systems/agents will

connect. Large α values lead to highly clustered networks while

small values produce random networks with many topically remote

connections.

6 EXPERIMENTAL DESIGN

6.1 Data Collection

We rely on the ClueWeb09 Category B collection created by the

Language Technologies Institute at Carnegie Mellon University

for IR experiments. The ClueWeb09 collection contains roughly 1

billion web pages and 8 billion outlinks crawled during January -

February 2009. The Category B is a smaller subset containing the

first crawl of 50 million English pages from 3 million sites with

454 million outlinks. The ClueWeb09 dataset has been adopted

by several TREC tracks including Web track and Million Query

track [15]. Additional details about the ClueWeb09 collection can

be found at http://boston.lti.cs.cmu.edu/Data/clueweb09/.

A hyperlink graph is provided for the entire collection and the

Category B subset. In the Category B subset, there are 428,136,613

nodes and 454,075,604 edges (hyperlinks). Nodes include the first

crawl of 50 million pages and additional pages that were linked to.

Only 18,607,029 nodes are the sources (starting pages) of the edges

(average 24 outlinks per node) whereas 409,529,584 nodes do not

have outgoing links captured in the subset.

6.2 Network Model and Sizes

Each agent represents an IR system serving a collection of pages

(documents). We assume that there is no global information about

all document collections. Nor is there centralized control over

individual agents. Agents have to represent themselves using lo-

cal information they have and evaluate relevance based on that.

Using the ClueWeb09 collection, we treat a web site/domain as

a distributed system/agent and use hyperlinks between sites to

construct the initial network.

We first construct a list of all web domains in the category B

subset with at least one in-link in the provided web graph. We take

the first 1000 web domains/sites to construct the initial network and

extend it to 10000 systems. Network clustering is performed using

the method described in Section 5.3 to establish individual system

neighborhoods. We use an observed optimal clustering exponent

α = 2 in the experiments.

6.3 Search Task - Rare Item Search

Given the size of the web (and likewise the ClueWeb09 collection),

it is nearly impossible to manually judge the relevance of every

document and establish a complete relevance base. Hence, we pri-

marily rely on existing evidence in data to do automatic relevance

judgment. We use documents (with title and content) as queries

http://boston.lti.cs.cmu.edu/Data/clueweb09/
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for decentralized searches. From the �rst 1000 web domains con-
structed above, we select as queries 12 random web pages with
at least 3 in-links. �e �nal set of query documents include (all
trecids with pre�x clueweb09-en000): 1-42-03978, 1-73-04287, 1-90-
26216, 2-73-04700, 2-91-14776, 3-27-30577, 3-30-28328, 3-51-10345,
3-55-31539, 4-61-19060, 4-72-24215, 4-92-04942.

�e search task is to �nd the exact copy of a given document
(query). Speci�cally, when a query document is assigned to an
agent, the task involves �nding the site or author who created it
and therefore hosts it. In other words, in order to satisfy a query,
an agent must have the exact document in its local collection. �e
strength of this task is that relevance judgment is well established
provided the relative objectiveness and unambiguity of creatorship
or a “hosting” relationship. �e extreme rarity will pose a great
challenge on the proposed decentralized search methods.

6.4 Degree Distribution: [dm ,dx ]
We will use the degree (in-degree) distribution of the ClueWeb09B
hyperlink graph and normalize the distribution to fall within a range
[dm ,dx ]. With di�erent dm and dx values, the degree distribution
will continue to follow a power-law pa�ern in which the majority
of nodes have the degree of dm . We use various degree ranges du ∈
[4,8], [16,64], [64,128], and [256,512], to examine the impact of
degree distribution (neighborhood size) on decentralized searches.

6.5 Maximum Search Path Length Lmax

�e maximum search path length Lmax speci�es the longest path
each search (TTL) allowed for query traversal. If a search reaches
the maximum value, even when the query has not been answered,
the task will be terminated and returned to its originator. With
our focus on search e�ciency/scalability, we set Lmax as the to-
tal number of systems N in experiments to achieve best possible
e�ectiveness.

6.6 Evaluation
6.6.1 E�ectiveness. We use a classic IR e�ectiveness metric

based on precision and recall: F1 = 2PR/(P + R). Given that the
task is to �nd an exact match for each (document) query, we only
retrieve a document when an exact copy of the document is identi-
�ed; otherwise, no document is retrieved. By de�nition, precision
is 1 in either case whereas recall (and hence F1) is either 0 (none
retrieved) or 1 (1 retrieved and relevant) for a query. Reported F1
scores are based on the average score (of 0s and 1s) of all queries.

6.6.2 E�iciency. For e�ciency, actual search path length are
recorded in experiments. �e average search length of all tasks
can therefore be calculated to measure e�ciency: L̄ = ∑Nq

i=1 Li/Nq ,
where Li is the search path length of the ith query and Nq the total
number of queries. With shorter path lengths, the entire distributed
system is considered more e�cient given fewer systems/agents
involved in searches.

6.6.3 Robustness. To understand overall system robustness, we
simulate the number of agents that become unavailable and cannot
provide routing services to help route any query. Combined with
di�erent system con�gurations, we measure search performance
(e�ciency in terms of search path length) and individual agent loads

(the frequency of query visits). In the experiments, we randomly
select a number of service agents (from 10% to 80% of the entire
network) and make them unresponsive. However, we keep those
particular agents that are relevant to search queries so that all
searches will ultimately be able to identify relevant information.

6.7 Parameter Settings
�e list below summarizes major variables discussed above. We use
full combinations of these parameters in experiments, i.e., 1 (net-
work size) × 2 (degree ranges) × 2 (search methods) × 5 (simulations
of agent unavailability).

• Network sizes N = 10,000 and max search path lengths
Lmax = N ;

• Degree ranges d ∈: [16,64] and [64,128];
• Search methods: Similarity (SIM) search and similarity*degree

(SimDeg) search.
• Fraction of unavailable agents: we vary the portion of

unavailable agents from 0 (all available), to 10%, 20%, 40%,
and 80%.

6.8 Hardwre and So�ware
Experiments are conducted on a Linux cluster of 5 PC nodes, each
has Dual Intel Xeon E5620 4C (2.4 Ghz) �ad Core Processors (8
processors), 24 GB fully bu�ered system memory, and a REHL 6
installation. �e nodes are connected internally through a dedicated
1Gb network switch. �e Java Runtime Environment version for
this study is OpenJDK 1.6.0 22.

7 RESULTS
Experimental results show that searches are e�cient and scalable
in large networks, especially with large neighborhood sizes (de-
grees). �e distributed network of service agents shows a high
degree of robustness. When a signi�cant portion of agents become
unavailable to provide routing services, search queries are able to
take alternative paths to �nd relevant information.

7.1 Search E�ectiveness
While our focus in this study is not on search e�ectiveness, we
shall brie�y report that SIM and SIM*DEG methods achieve per-
fect or nearly perfect e�ectiveness scores F1 = 1.0. �e superior
e�ectiveness is due to the fact that maximum search path length
(TTL) is set to be the total number of service agents in the network,
allowing searches to traverse the network more thoroughly.

7.2 Search E�ciency
Figures 4 and 5 show the impact of agent unavailability (failure)
on search e�ciency where x denotes the percentage of unavailable
service agents andy is the average search path length for all queries.
Surprisingly with an increase in the number of failed or unavailable
agents, searches become more e�cient in the number of hops they
have to traverse.

Closer examination reveals that when certain neighbor agents
become unavailable, the other agents are able to �nd alternative
routes to reach the target. When many agents are down and other
agents are forced to change their connectivity, this in e�ect causes
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Figure 4: Search e�ciency vs. percentage of unavailable ser-
vice agents (with neighborhood size range [16, 32])
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Figure 5: Search e�ciency vs. percentage of unavailable ser-
vice agents (with neighborhood size range [64, 128])

available agents to form a smaller network – a smaller community
where searches can be done more quickly.

Note that in this study we assume the target agents with relevant
information are always available and searches are always possible
to reach their targets. �e experiment is setup this way so that
searches can be completed and measured. However in real networks
there is no such guarantee and other factors should be considered
as well.

7.3 Load Balance
In �gures 6 7, we measure the maximum load (most highly loaded
agents in search paths) and examine how this is impacted by other
agents that failed. It appears that, except in the case of SIM search
in the 16-32 neighborhood con�guration, there is a in�ecting pat-
tern where the max agent load peaks at a certain unavailability
level around 20%. Either decreasing the unavailability percentage
or increasing it reduces the maximum load (of the most frequently
contacted service agents). When the network is very stable (e.g.
with zero unavailability), the overall system is healthy with a re-
duced load; when the network becomes more fragile, for those who
remain in the network, they seem to be able to �nd a way to be�er
balance their loads.
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Figure 6: Max agent load (# queries per agent) vs. percentage
of unavailable service agents (with neighborhood size range
[16, 32])

In order to understand this and the load balance among service
agents, we examine the gap (di�erence) between the load of the
most highly loaded agent and the average. Figures 8 and 9 show
the impact of unavailable agents on the gap load (i.e. max load
- average load). From the �gures, we continue to observe the in-
�ecting pa�ern we discussed early, that the greatest gap (greatest
di�erence between the most highly loaded and the average) occurs
with a particular percentage of agent unavailability.

8 CONCLUSION
Our research studies decentralized searches in a large service-
oriented agent network and investigate the in�uences of multiple
factors on search e�ciency. We focus on overall system robustness
and examine search performance in unstable environments where
individual agents may fail or a system-wide a�ack may occur.

Experimental results show that searches continue to be e�cient
when a large number of service agents become unavailable. Surpris-
ingly, overall system performance in terms of a search path length
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Figure 7: Max agent load (# queries per agent) vs. percentage
of unavailable service agents (with neighborhood size range
[64, 128])
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Figure 8: Gap agent load (# queries per agent) vs. percentage
of unavailable service agents (with neighborhood size range
[16, 32])

metric improves with an increasing number of unavailable agents.
Analysis of agent load balance reveals a in�ecting pa�ern where the
greatest imbalance occurs at a certain level of agent unavailability.
Interestingly, decreasing or increasing the number of unavailable
agents leads to reduced imbalance (be�er load balance).

While our �ndings are to be con�rmed in other se�ings, the
result does suggests fault tolerance of distributed searches based
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Figure 9: Gap agent load (# queries per agent) vs. percentage
of unavailable service agents (with neighborhood size range
[64, 128])

on service agents. It remains unclear why the in�ection exists and
how we should interpret it for the design of a service-oriented
architecture for be�er load balance. We plan to conduct further
research experiments to verify whether what we have observed
here is something accidental in our speci�c experimental se�ings
or of broader generalizability.
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