
7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 1/19

Sign Out

Access provided by:
Drexel University

IEEE.org IEEE Xplore Digital Library| IEEE-SA| IEEE Spectrum| More Sites| Cart (0) Create Account|

Browse Conferences > Big Data (Big Data), 2016 IEE... < Previous | Back to Results

Parallel top-k subgraph query in massive graphs: Computing
from the perspective of single vertex

View Document
52
Full
Text Views

Related Articles

Joint trajectory generation for redundant robots

Asynchronous leasing

Dictionary design algorithms for vector map
compression

6
Author(s)

 Jianliang Gao ; Bo Song ; Ping Liu ; Weimao Ke ; Jianxin Wang ; Xiaohua Hu

View All Authors

Abstract:
In the real world, many problems on massive graphs can be mapped to an underlying critical problem of discovering top-k subgraphs. For massive
graphs, subgraph queries may have enormous number of matches, and so it is inefficient to compute all matches when only top-k matches are
desired. Meanwhile, parallel algorithm is urgent for the scalability of massive graph computing. In this paper, we address the challenges of top-k
subgraph query in massive graph. Firstly, we present a new graph matching notion: “approximate graph simulation”. With approximate graph
simulation, top-k subgraph query can be customized by appointing a weighted query graph, which provides good flexibility for different application
scenarios. Secondly, we propose a parallel top-k subgraph query algorithm at the level of vertex. With such algorithm, each vertex in massive graph
obtains its matching state separately without requiring global graph information. In the algorithm, we also design a filter mechanism to speed up the
the computation and a aggregation mechanism to obtain top-k vertices for query focus. Using real-life datasets, we experimentally verify that our
approach of parallel top-k subgraph query are efficient.

Published in: Big Data (Big Data), 2016 IEEE International Conference on

Date of Conference: 5-8 Dec. 2016

Date Added to IEEE Xplore: 06 February 2017

 ISBN Information:

 INSPEC Accession Number: 16652832

DOI: 10.1109/BigData.2016.7840656

Publisher: IEEE

Conference Location: Washington, DC, USA

Advertisement

 Contents

Abstract Authors Figures References Citations Keywords Metrics Media

BROWSE MY SETTINGS GET HELP WHAT CAN I ACCESS?

http://ieeexplore.ieee.org/Xplore/home.jsp
http://ieeexplore.ieee.org/servlet/Login?logout=/Xplore/guesthome.jsp
http://www.ieee.org/
http://standards.ieee.org/
http://spectrum.ieee.org/
http://www.ieee.org/sitemap.html
https://www.ieee.org/cart/public/myCart/page.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
http://ieeexplore.ieee.org/browse/conferences/title/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7818133
http://ieeexplore.ieee.org/document/7931649/?searchWithin=p_Authors:.QT.Weimao%20Ke.QT.
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Weimao%20Ke.QT.
http://ieeexplore.ieee.org/document/100001
http://ieeexplore.ieee.org/document/1000051
http://ieeexplore.ieee.org/document/1000014
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jianliang%20Gao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bo%20Song.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ping%20Liu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Weimao%20Ke.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jianxin%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xiaohua%20Hu.QT.&newsearch=true
http://ieeexplore.ieee.org/document/7840656/authors?ctx=authors
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7818133
https://doi.org/10.1109/BigData.2016.7840656
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvQwUSskiWd87HKUTuQr2nXuelNZF6wEJS02uN0EP-i0868OPKLGDbV5jIm-7J83fgIawmcvvEv8xXE3NNlQ1fgXmOBlCqwBz--PpjV1QzBd1_S0Qlj2tkGAMkt4Ii2Ng01uL_7w986JbFRsYxh_HLVR3tB102WP6D_0rSUppGTRi9Zt3GP454T0Qxv6P3HJVdccnUAb3OBFXdEiomRYXBdVPdEtKIheH36ie_SzGzSA1Jswh68B2qwnK94bKE5Y-3bu4He0N5YQQ4yow&sig=Cg0ArKJSzCwZKytBXAIQ&adurl=http://ieeexplore.ieee.org/Xplorehelp/Learn_More_Citation_Alerts.html
http://ieeexplore.ieee.org/Xplorehelp/#/ieee-xplore-training/working-with-documents#interactive-html
http://ieeexplore.ieee.org/document/7840656/?part=1
http://ieeexplore.ieee.org/document/7840656/authors
http://ieeexplore.ieee.org/document/7840656/figures
http://ieeexplore.ieee.org/document/7840656/references
http://ieeexplore.ieee.org/document/7840656/citations
http://ieeexplore.ieee.org/document/7840656/keywords
http://ieeexplore.ieee.org/document/7840656/metrics
http://ieeexplore.ieee.org/document/7840656/media
http://ieeexplore.ieee.org/Xplore/accessinfo.jsp

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 2/19

 Download PDF

 Download Citations

View References

 Email

 Print

 Request Permissions

 Alerts

Export to Collabratec

SECTION 1.
Introduction

Research of massive graph has attracted renewed interest in recent years due to increased interests
in a number of network applications such as biological networks, social networks, communication
networks [14]. Network data are often represented as graphs, where nodes are labeled entities and
edges represent relations among these entities [1] An important processing for graph data
application is that of sub graph query.

Subgraph query is to find out the subgraphs of data graph which match a given query graph . It
is essential for a wide range of emerging applications such as community discovery and neighbor
query in social networks, biological data analysis [13], classification of web documents [16],
software plagiarism [19] and so on. A number of matching algorithms have been developed to
compute the set of matches of in . In real world applications, query graph is usually small, but
data graph is typically large, even including billions of nodes [3] The large scale graphs such as
social graphs and protein-protein interactive networks (PPI) give rise to the following problems
with the subgraph query algorithms.

1. The large size of data graphs makes matching costly. For matching defined by simulation, it
takes time to compute graph match set [4]. It can be seen that the size of
data graphs could greatly affect the computational complexity. Furthermore, the matching
algorithms often return an excessive number of sub graphs. It could be a difficult task for the
users to inspect such a large number of matching subgraphs and select the most desirable
solution.

2. The top-k subgraph query is needed to filter unwanted matching subgraphs. Exiting top-k
subgraph query approaches include two phases: 1) computing all matching subgraphs which
satisfy the query in a sequential way; 2) ranking such results based on given metrics.
However, previous works on the matching problem could face difficulty due to the lack of
scalability for the increasing scale of graphs.

3. Subgraph query should take the weighted graph into consideration. With the ever-increasing
popularity of entity-centric applications, it becomes very important to study the interactions
between entities, which are captured using edges in entity-relationship networks [8]. Entity-
relationships usually have different importance in various applications. For example, the
entity-relationship in social network might be different according to various personal
influence. In protein-protein interaction networks, the probability value to present the
interaction existing in practice is an important parameter. The values between entities of a
network can be mapped to the weights on edges of a graph. Therefore, subgraph query
according to weighted graphs becomes important in massive graph computing.

Some researches aim to solve the above problems in subgraph query. For example, diversified top-k
subgraph query is proposed recently [5] [6]. To simplify the subgraph query, “query focus” is
introduced as an substitution of finding the entire set of matches [6]. By appointing a focus in query
graph, sub graph query returns only those vertices which match the query focus, rather than the
entire matching subgraph set. Query focus based subgraph query is widely needed in e.g. expert
recommendation [20] and egocentric search [21]. In fact, 15% of social queries are to find matches
of specific nodes [22]. In this paper, we also take the “query focus” as the subgraph query.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7840656
http://ieeexplore.ieee.org/xpl/dwnldReferences?arnumber=7840656
http://ieeexplore.ieee.org/document/7840656/?section=abstract
http://ieeexplore.ieee.org/document/7840656/authors
http://ieeexplore.ieee.org/document/7840656/figures
http://ieeexplore.ieee.org/document/7840656/references
http://ieeexplore.ieee.org/document/7840656/citations
http://ieeexplore.ieee.org/document/7840656/keywords
http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-fig-1-large.gif

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 3/19

1.

Example 1

Fig. 1 illustrates an example of subgraph query with query focus. A fraction of a collaboration

network could be represented by a data graph in Fig. 1b, where each vertex represents a persona,

with a label for the job title of the persona such as project manager (PM), software architect (SA),

business analyst (BA), user interface developer (UD), software developer (SD), software tester (ST)

and software user (SU). These vertices are assigned IDs from to . Each edge indicates a

supervision relationship, e.g. edge () indicates that can supervise . A company may issue

a requirement of finding some PMs who can supervise SA, BA and UD directly. Moreover, (1) the

BA can supervise the UD; (2) the SA can supervise a SD; (3) there is a ST who works under the SD,

and vice versa. Such requirements could be expressed as a graph shown in Fig. 1a. Here PM is the

“focus” of query which is denoted with ‘*’, i.e., only the top-k matches of PM are required to return.

When graph matching is defined in terms of subgraph isomorphism [5] or subgraph simulation [6],

only one subgraph with (i.e.,) can be identified in . However if two

matches Of are required, there are no enough matches in this example in terms of graph

isomorphism or graph simulation. It is too restrictive in many applications. We relax the limitation

of graph simulation to permit lack of vertex or edge, named approximate graph simulation. Given

query graph with edge weights, approximate graph simulation identifies the top- k matching

subgraphs in . For example, when , two top-ranked PMS (and) are returned that

match the query focus PM in . □

For top-k sub graph query, there are two key problems: (1) how to quantify the scores of matching

subgraphs; (2) how to design parallel algorithm for massive graph. We present approximate graph

simulation in this paper. Different from traditional graph isomorphism or graph simulation,

approximate graph simulation processes weighted query graph. Edges of query graphs have weights

which denote various meanings in real applications. For example, in team selection applications, a

larger weight implies higher importance [8]. In biological networks, the weight could be defined as

the probability of the interaction between entities [13]. As the weights are related to various

applications, we assume in this paper that weights have been given and we will not discuss how to

weight the edges. Meanwhile, the proposed approach can be applied to unweighted sub graph query

when all weights are set as the same value.

In this paper, we study the top-k weighted subgraph query problem and propose a parallel

algorithm for it. Our contributions are summarized as follows.

We revise the traditional notion of graph matching by relaxing the requirements for vertices

Figure 1:

Querying collaboration network

G

v1 v15

v1,v4 v1 v4

Q

v2 v2,v5,v6,v7,v11.v12 G

Q

G k=2 v1 v2

Q

http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-fig-1-large.gif

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 4/19

We revise the traditional notion of graph matching by relaxing the requirements for vertices

and edges, which is named approximate graph simulation in this paper. By appointing

weighted query graphs, top-k subgraph query can be customized, which increases the

flexibility and usability of subgraph matching. We present the top-k subgraph query problem

in terms of approximate graph simulation and then propose a method to rank the matching

subgraphs.

We propose a parallel algorithm for top-k subgraph query. The algorithm is designed at the

level of single vertex and all vertices obtain their matching state separately without requiring

global graph information. Therefore, it can be easily deployed in distributed systems.

To speed up the process, we propose a filter mechanism to reduce unnecessary computing.

Furthermore, we design a mechanism to implement the aggregation for top-k values in

distributed systems. These mechanisms aid to obtain top-k subgraphs in massive data

graphs.

Experiments are conducted on a distributed Hadoop platform and the results from three real-

world datasets show the efficiency of our approach.

The rest of the paper is organized as follows. We introduce the problem definitions in Section 2. We

then present parallel top-k subgraph query algorithm in Section 3. Section 4 presents the

experimental study. Related work is shown in Section 5. Finally, Section 6 concludes this paper.

SECTION 2.

Problem Definition

2.

Data Graph

2.

Query Graph

In this section, we present some preliminary definitions and then formulate the problem of top-k

subgraph query. Subgraph isomorphism [5] is a classical graph matching which finds subgraphs

from data graph which are isomorphic to the query graph. Graph simulation [6] relaxes the

limitations by only requiring the matching of successive vertices. However, lack of vertices or edges

are not permitted in graph isomorphism and graph simulation, which is too restrictive in many real

applications. In this paper, we propose a new notion of graph matching named approximate graph

simulation. The symbols are summarized in Table 1.

A data graph is a directed graph , where (1) V is a finite set of vertices; (2) ,

in which () denotes an edge from vertex to and (3) is a function on such that for each

vertex in where is a constant of the attribute. In this paper, the attribute of a node

carries the label of the vertex.

A query graph is a directed graph , where (1) and are the sets of vertices

and edges respectively; (2) is a function defined on for each vertex returns the

label of in this paper. (3) is a function defined on each edge , and denotes the

G=(V,E,f) E⊆V×V

v,v′ v v′ f(⋅) V

v V,f(v)=a a

Q=(, ,,w,)VqEqfq u0 Vq Eq
fq Vq u∈ .(u)Vqfq

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 5/19

2.

Apporoximate Matching Subgraph

2.

Approximate Graph Simulation

label of in this paper. (3) is a function defined on each edge , and denotes the

weight on edge . (4) is the query fOCUS and for any , there is at least

one path from to .

The traditional graph simulation requires that all vertices and all edges of query graph must exist

in the matching results. It is often too restrictive in many applications. Furthermore, weighted

query graph has not been considered. In this paper, we present a kind of new graph matching with

weighted query graph: approximate graph simulation.

Given a query graph and a data graph , a graph

is an approximate matching subgraph, such that (1) and ; (2) for each ,

there exists a vertex such that , referred to as vertex matching between and

; (3) for each edge , there exists , such that and

, referred to as edge matching between and , denoted as ; (4) there

exists in such that ; for any in , there exists at least one path from to

Given a query graph and a data graph , approximate graph simulation aims to find out all

approximate matching subgraphs in data graph .

In a massive data graph, the number of approximate matching sub graphs is also very large. For

each approximate matching subgraph, matching degree can be quantified according to the matched

edges. Given a query graph and a matching subgraph , the

matching degree can be calculated as:

View Source

where is the set of edge matching for each edge in , i.e. .

u w e∈Eq w(e)

e u0 ∈u0 Vq u∈ ,u≠Vq u0
u0 u

G

Q=(, ,,w,)VqEqfq u0 G=(V,E,f) =(, ,f)Gs VsEs
⊂VVs ⊂EEs v,v∈Vs

u,u∈Vq (u)=f(v)fq u v

e=(v,v′),e∈Es =(u,u′), ∈eq eq Eq [(u)]=f(v)fq
(u′)=f(v′)fq e eq Λ(e)=eq
v0 Vs f()=f()v0 u0 v Vs v0 v

Q G

Gs G

Q=(, ,,w,)VqEqfq u0 =(, ,f)Gs VsEs
D

D(, Q)= w(e),Gs ∑
e∈E′q

(1)

′Eq e Es ′={Λ(e)|e∈ }Eq Es

http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-fig-2-large.gif

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 6/19

2.

Top­k Subgraph Query

Given a query graph and a data graph , top-k subgraph query is

to find approximate matching subgraphs which have the top-k highest matching degrees. The set

of top-k approximate matching subgraphs is denoted as and formulated as:

View Source

where is an approximate matching sub graph and if .

For query focus based approximate graph simulation, the top-k subgraph query can be simplified as

finding the corresponding vertices of query focus in top- k approximate matching subgraphs.

Matching subgraphs can then be extended from the top-k corresponding vertices of query focus.

Therefore, this paper discusses the problem of finding top- k matching query focuses in the

following.

Figure 2:

The parallel computing model from the perspective of single vertex.

Q=(, ,,w,)VqEqfq u0 G=(V,E,f)

k

M(G,Q,k)

M(G,Q,k)={ | ∈arg max D((i),Q)},GsGs ∑
i=1

k

Gs (2)

Gs (i)≠ (j)Gs Gs i≠j

SECTION 3.

Parallel Top­k Subgraph Query
Algorithm

The proposed approach consists of a sequence of iterations called supersteps. In each superstep,

vertices take local computation and supersteps finish with synchronization. As shown in Fig. 2,

vertices are assigned to four processors (3 vertices in P1, 4 in P2, 4 in P3 and 4 in P4 as an

example). These processors run in parallel model. Each vertex takes local computation in the

assigned processor. In the same processor, the computation can be taken in parallel or serial way

according to the computation resource. The data exchange is implemented by messages scheme.

There are two kinds of messages in this approach. One is messages between vertices, and the other

is from vertex to aggregator. The aggregator collects global top-k matching focuses in a distributed

environment. Between two consequent superstep-s, there is a synchronization to exchange

information among vertices. A vertex quits the execution if it is set as inactive. For example in Fig.

2, the processing is terminated in the second superstep as the vertices become inactive. To

implement top-k subgraph query, the key points are design parallel algorithm for vertex, which

includes how to deal with the messages.

P1

Table 1: Symbol definition

http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-fig-2-large.gif
http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-table-1-large.gif

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 7/19

3.1. Quantifying the Matching Degree

To quantify the matching degree of vertices in data graph, we first show the following definitions.

Reachable Edge

For vertex , edge is said to be a reachable edge of in graph if there exists

at least one path from to .

Node Influence

Given a query graph , the node influence of a vertex is

View Source

where is the set of reachable edges of .

We then define “matched score” and “lost score” for vertices of data graph. In large-scale

applications, data graph is large and it is infeasible to compute and save all reachable edges.

Therefore, it is a iteration procedure to obtain the final “matched score” and “lost score”.

Matched Score

Given a query graph and a data graph , matched score of vertex

 is defined as the sum of edges weights by mapping the reachable edges of in a matching

subgraph to . In a distributed model, the reachable edges need iterative computation as following:

View Source

where is the initial matched score of vertex is the set of direct successors of , i.e.,

vinV (,)∈Evivj v G(V,E)

v vi

Q=(, ,,w,)VqEqfq u0 u(u∈)Vq Theta(u)

Θ(u)= w(e)
∑
e∈E′′q

(3)

E′′(E′′⊂)Eq u

Q=(, ,,w,)VqEqfq u0 G=(V,E,d)

v∈V v

Q

Φ(v)= (v)+ Φ()− w(e),Φinit ∑
∈N(v)v′

v′
∑
e∈R(v)

(4)

Φinit(v) v;N(v) v

http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-table-1-large.gif

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 8/19

where is the initial matched score of vertex is the set of direct successors of , i.e.,

 such that here , is the set of edges by mapping the

outing edges of to is the set of the edges in which are repeated in

. Note that the maximum will be selected if there are more than one

direct successor whose labels are the same.

Lost Score

Given query graph and data graph , for vertex , its lost

score is defined as:

View Source

where is the mapping vertex of , i.e., is the set of child vertices of

 is the set of vertices in by mapping the vertices in is the repeated edges set in

 which are repeated in .

For example, in Fig. 1, .

The change of matched value and lost value in iteration supersteps can be seen in Example 2.

In an iteration computing procedure, a vertex of data graph can get increasing knowledge about its

matched edges and lost edges. Therefore, matched score and lost score are monotonically

nondecreasing.

Lemma 1

Given a query graph and a data graph , it can be drawn that,

View Source

where , and .

3.2. Filter Mechanism

In the iteration processing, it is not necessary to compute the final scores for each vertex. We draw

some filter rules that can terminate the computing earlier. Firstly, we can filter the vertices whose

labels are not in the set of labels of query graph vertices.

Filter Rule 1

For if then , where is the label set of query graph .

Secondly, as Lemma 1 shows a upper boundary for lost score, a filter rule can be found for the lost

score. To draw the filter rule, we derive the following theorem.

Theorem 1

Given a query graph a data graph and , for , if

 then , where is the set of such that

 and .

Φinit(v) v;N(v) v

N(v)={v′} (v,v′)∈E; = w(e)Φinit(v) ∑e∈Eo Eo

v Q;R(v) Q

(v)+Φinit ∑v′∈V(v)Φ(v′) Φ(v)

Q=(, ,,w,)VqEqfq u0 G=(V,E,f) v∈V

Ψ(v)= w((u,))+
∑

∈((u)− (u))u′ Nq N′q

u′

Ψ()− w(e),
∑
∈ (u)u′′N′q

u′′
∑
e∈R(u)

(5)

u∈Vq v f(v)= (u); (u)fq Nq
u; ′(u)Nq Q N(v);R(v)

Q + ∈ ′(u)ψ(u′′)∑u′∈((u)− ′(u))w((u,u′))Nq Nq
∑u′′ Nq

=w(Λ(v1,v4))+w(Λ(v1,v5))=1.5 =w((PM,UD))=0.9Φinit(v) ψinit(v)

Q=(, ,,w,)VqEqfq u0 G=(V,E,f)

Φ(v)+Ψ(v)≤Θ(u), (6)

v∈V f(v)= (u),(u∈)fq Vq

∀v∈V f(v)∉L(Q) v∉M(G,Q,k) L(Q) Q

Q=(, ,,w,)VqEqfq u0 G=(V,E,f) k v∈V

ψ(v)>Θ()−mi (Φ(u))u0 nu∈Vk v∉M(G,Q,k) Vk vk
f()= ()f ∈M(G,Q,k)

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 9/19

 and .

Proof

Assuming there exists a path from a vertex to according to the

definition of approximate matching subgraph. Therefore

View Source

For , then according to Lemma 1, there is

View Source

Combining the inequalities (7) and (8), it can be drawn:

View Source

Furthermore, , so . Put it into inequality (9), it becomes

View Source

Obviously, inequality (10) contradicts the given condition .

Therefore , □

From this theorem, we can obtain the second filter rule:

Filter Rule 2

For , if if , then , where such that

 and .

Theorem 2

Given a query graph a data graph and , for

, if all which satisfies and , then

.

Proof

Assuming , denote the cor- responding matched focus as .

According to the definition of approximate matching sub graph, there exists a path from to

since the given condition shows . Denote parent vertex of in this path as (i.e.,

. It contradicts the given condition “all which satisfies

 and ”.□

According to Theorem 2, the third filter rule can be obtained.

Filter Rule 3

f()= ()vk fqu0 ∈M(G,Q,k)vk

vinM(G,Q,k) (∈)vkvk Vk v

Φ()≥Φ(v).vk (7)

f()= ()vk fqu0

Φ()+Ψ()≤Θ().vk vk u0 (8)

Ψ(v)+Φ()≤Θ().vk u0 (9)

∈vk Vk Φ()≥mi (Φ(u))vk nu∈Vk

Ψ(v)+ (Φ(u))≤Θ().min
u∈Vk

u0 (10)

ψ(v)>Θ()−mi (Φ(u))u0 nu∈Vk
v∉M(G,Q,k)

∀v∈V ψ(v)>Θ()−mi (Φ(u))u0 nu∈Vk v∉M(G,Q,k) ={ }Vk vk
f()=vk fq()u0 ∈M(G,Q,k)vk

Q=(, ,,w,)VqEqfq u0 G=(V,E,f) k

v∈V,(f(v)≠ ())fqu0 v′∈V (v′,v)∈E v′∉M(G,Q,k)

v∉M(G,Q,k)

v∈M(G,Q,k) ,(f()==f())v0 v0 u0
v0 v

f(v)≠ ()fqu0 v v′′

(v′′,v)∈E),v′′∈M(G,Q,k) v′∈V

(v′,v)∈E v′∉M(G,Q,k)

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 10/19

Filter Rule 3

For , if and satisfies , then .

3.3. Parallel Algorithm of Subgraph Query

From the perspective of a single vertex, we design a parallel algorithm and all vertices execute these

supersteps separately. When one superstep finishes, all vertices must stop and wait for a

synchronization before next superstep as shown in Fig. 2.

The detailed algorithm is shown in Algorithm 1. It consists of three basic supersteps and the

following repetitive supersteps. For each vertex, it keeps four lists: pList, cList, mList and lList.

pList and cList keep the parent nodes and child nodes respectively, which are important

information for communication. mList and 1List are the lists of the matched edges and the lost

edges, which will be used to compute matched scores and lost scores. In the initial stage, the four

lists (pList, cList, mList and lList) are set as empty and the state of is set as “F”. In Superstep 0,

filter rule 1 is adopted to exclude some vertices according to their labels. If there is the same label in

query graph, the current vertex sends its id and label to its child vertices (which are the

input parameters). At the same time, it sets the state as “H” to denote further processing.

Otherwise, the match state is kept as “F”. “F” indicates that the vertex will not participate the

following calculation any more. In Superstep 1, if a vertex receives messages, it saves the source

vertex of the message to pList, as shown in Line 13 of Algorithm 1. To simplify the expression,

“pList U msg” is used to show that “save the source vertex of the message to pList ”. Then it replies

id and label to the corresponding parent vertex. After the first two supersteps, every “H” vertex has

the information of its matched parent vertices.

Algorithm 1 Parallel Algorithm for a Vertex

∀vinV f(v)≠ ()fqu0 ∀(v′,v)∈E v′∉M(G,Q,k) v∉M(G,Q,k)

v

([v,f(v)])

http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-alg-1-large.gif

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 11/19

In Superstep 2, if a vertex receives messages, it updates cList according to the source vertex of the

message (Line 17). With cList, current vertex obtains its initial matched list (mList) and lost list

(lList) as the following steps: (1) mapping edges and , to query graph;

(2) obtaining the mapped edges set . Then the initial mList is the set of the

edges ; and the lList are the edges and . After that, The

current vertex sends its mList and lList to the parent vertices. If its label is the same with query

focus, i.e. , its matched value is send to global top-k aggregator.

In the following supersteps, vertex calculates matched score and lost score according to

the updated mList and lList. The calculation is triggered once it receives messages. If there is no

message, vertex checks whether it belongs to the top- k list. If belongs to, the state of is set as “T”

and it sends message to the vertex which are moved out the top-k list (Line 38).

Algorithm 2 describes the detail of processing messages in repetitive supersteps. Once receiving

message from child vertex, current vertex updates cList and pList. If the message comes from

parent vertex, updates the state of the corresponding parent vertex in pList. It is a preparing work

of filter rule 3. After updating the pList and cList, rule 2 and rule 3 are used to filter current vertex.

If it satisfies the conditions of rule 2 or rule 3, the state of is set as “F” and it becomes inactive.

Especially, has been moved out from the top-k list if the message came from the other top- k

vertex. Because it is possible for to be included in top- k list again, the moved vertex state is set as

“H”. In a superstep, if or changes, the vertex sends the updated matched list mList and

lost list lList to the vertices in pList. At last, if it is the mapping vertex of focus node , its matched

score is sent to the aggregator to update the top-k list.

In these supersteps, vertex obtains information by messages between vertices. Taking vertex as

example, Fig. 3 shows main messages between and its parent vertex and child vertex • In

Superstep 0, sends it id and label to vertex while receiving from vertex . In Superstep 1, the

direction of message transport becomes converse compared to Superstep 0. In Superstep 3, sends

its mList and lList to vertex and receives them from child vertex. This kind of message is repeated

in the following supersteps. Note that, if is the mapping of query focus, it should send matched

score to the aggregator.

The parallel program terminates when all vertices become inactive. The vertices in top-k list (whose

states are all “T”) are the results of top- k subgraph query based on query focuses. With these

vertices in top-k list, it can be further traced to top-k match subgraph .

Algorithm 2 Process Messages in Iteration Supersteps

v

(v,v′),v′∈cList (v,v′)∈E

{(u,u′)},(u,u′)∈Eq
{(u,u′)} (u,u′′),(u,u′′)∈Eq u′′∉{u′}

v

f(v)== ()fqu0 Φ(v)

v Φ(v) ψ(v)

v v

v

v

v

v

v

Φ(v) ψ(v)

u0

v

v p c

v c p

v

p

v

Φ(v)

Figure 3:

The message illustration.

M=(G,Q,k)

http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-fig-3-large.gif
http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-alg-2-large.gif

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 12/19

Example 2

We use the query graph and data graph in Fig. 1 as an example to illustrate the proposed approach.

Fig.1a shows a weighted query graph. In this example, query focus is set as “PM” and the parameter

 is set as 2. To distinguish the vertices of data graph, we denote a sequence number for each vertex

such as .

Algorithm 3 Preprocess node influence

k

(i∈[1⋯15])vi

Table 2: Matched scores and lost scores Φ(v) ψ(v)

Θ(u)

http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-alg-2-large.gif
http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-table-2-large.gif
http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-alg-3-large.gif

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 13/19

In query graph, node influence can be obtained by a breadth- first search algorithm shown in

Algorithm 3. For each child node of current node , the weight of is added to and

the flag of node is set as true. Then, call the processing recursively (Line 6 in Algorithm 3). In this

example, node influences in Fig. 1a are as follows: 8(A)=4.5, 8(B)=1.6, 8(C)=0.5, 8(D)=0, 8(E)=1,

and 8(F)=1.

The first two supersteps (Superstep 0 and Superstep 1 in Algorithm 1) are used to exchange

information between vertices. The initial matched scores and lost scores are calculated in

Superstep 2. So and are shown in Table 2 since Superstep 2. According to filter rule 1,

keeps inactive with a match state of “F” because there is no “SU” label in query graph. Therefore,

 has not been listed in Table 2.

In Superstep 2, the top-2 focus vertices of M(G,Q,2) are and . But in Superstep 3, has larger

matched score than . So is moved out from the top-2 focus list. In our approach, . sends a

message to and will change its state from “T” to “H”. When the lost score of becomes 2.3,

its state is set as “F” according to filter rule 2 (2.3>4.5-2.6). In Superstep 4, gets the lost

information of and update its lost value from 0.9 to 1.9. In Superstep 5, reaches the

maximum matched scores (4.5). So and are selected as the final top-k focus vertices of

M(G,Q,2). □

u′ u (u,u′) Theta(u)

u

Φ(v) ψ(v)

Φ(v) ψ(v) v15

v15

v2 v3 v1

v3 v3 v1

v3 v3 v3

v1

v10 v2

v2 v1

Table 3: Basic statistics on experimental datasets,

SECTION 4.

Experiments

4.

Platform

The goal of this experimental study is to evaluate the proposed algorithms, including the number of

superstep, the number of messages and the run time.

http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-alg-3-large.gif
http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-table-3-large.gif

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 14/19

4.

Data Sets

4.

Supersteps

The experiments are conducted on a cloud platform, which consists of five instances. Each node has

16GB RAM, 4 VCPUs. Hadoop [12] and HAMA [15] are deployed on the platform. In our

experimental cluster, one instance plays the role of master node, and the others are workers (data

node).

Three real world datasets are used in the experiments [18]. The information of data graph is listed

in Table 3. Twitter data graph is with 81,306 vertices and 1,768,149 edges; Amazon data graph is

with 403,394 vertices and 3,387,388 edges; and Google data graph is with 875,713 vertices and

5,105,039 edges. For each data graph, twelve labels are randomly assigned to the vertices of data

graphs. We generate query graphs with various sizes. Denote the size of query graph as , then

include 6, 8,10 and 12 in the experiments, respectively.

Fig. 4 shows the results of supersteps. From these results, we have several observations as follows.

1. The number of supersteps is limited to an upper bound, which is related to the size of query

graph. As the sizes of query graphs increase, the numbers of supersteps keep the same or

increase in all situations. The more vertices in query graph, the longer path to transmit

matched lists and lost lists to the top-k vertices. One interesting observation is that the

numbers of supersteps sometimes keep the same with various sizes of query graphs, e.g. the

top-10(filter) results in Fig 4c. It is because there is no increased path in data graphs which is

caused by the increased vertices in query graphs. Another important observation is that the

numbers of supersteps are bounded in all situations. For example, in Fig. 4b, the numbers of

supersteps are at most 13. The reasons is that, for acyclic query graph, the number of

supersteps is related to the longest path in query graph. In our algorithm, there are two

preprocess supersteps and one additional superstep to update the state of top-k vertices.

2. The filter mechanism reduces the number of super-steps. The filter rules are used to

terminate the computation of the vertices which are impossible to be included in the final

top-k subgraph matches. Once vertices are terminated, they will not send messages in the

following supersteps. Therefore, the numbers of supersteps are reduced compared to the

method without filter mechanism. For example, in Fig. 4b, the superstep numbers of filter

top-10 query are 8, 8, 10, 11 for four sizes of query graph, while they are 9, 11, 12, and 13 for

top-10 query without filter.

|Q| |Q|

http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-fig-4-large.gif

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 15/19

4.

Messages

4.

Running Time

Fig. 5 shows the results of communication messages between vertices. It can be seen that messages

are correlated to the sizes of query graphs. The bigger query graph generates the more temporary

matched vertices, which means larger communication cost. In the experiments, we only compare

the total number of messages between vertices. If a vertex sends one message, we increases the

number of messages with 1.

Fig. 5 shows that the number of messages is related to not only query graph, but also datasets. For

instance, in Fig. 5c, the numbers of messages with google dataset are larger than that of the other

two datasets. In Fig. 5b, twitter graph is denser than amazon graph which also causes more

messages.

Compared to top-k query without filter, the top-k query with filter needs less numbers of messages.

It is because a filtered vertex will not send message any more. In our filter mechanism, filter rule 2

causes additional messages as a vertex informs its child vertices, which lowers the benefit of

reducing messages in some degree. However the messages are still reduced in all experimental

situations. Another observation is that the numbers of messages are close for various and

. The reason is that, the larger means more match results and more messages, on the other

hand, the larger means the smallest matched score in current top-k list may become smaller,

which causes less filtered vertices.

The running time includes the time of local computation, global communication and

synchronization time. Fig. 6 shows the results of the total running time on three datasets. It can be

seen that running time increases for all datasets as query graph size increases. This is consistent

with the analysis of the proposed algorithms. For a given dataset, the increase size means more

labels in query graph during the first two supersteps. In these supersteps, local computation and

global communication time increase.

Compared to the results of top-k query without filter, the runtime of top-k query with filter are

always less with the same value. It demonstrates the effectiveness of the proposed filter

mechanism. However, it is possible that the run time is very close for multiple situations. For

example, in Fig. 6c, the queries with filter and without filter are of the close run time when query

graph size is 6. It is because the number of perfect matches is close to , e.g. most top-50 matches

have been founded when looking for top-10 matches.

Figure 4:

Numbers of supersteps with and without filter mechanism

k=10

k=50 k

k

|Q|

|Q|

k

k

SECTION 5.

Related Work

http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-fig-4-large.gif

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 16/19

Related Work

5.1. Graph Matching

Graph matching has been studied in the graph query processing literature with respect to graph
isomorphism and graph simulation [31] [32].

The graph isomorphism problem consists in deciding whether two given graphs are isomorphic,
i.e., whether there is a bijective mapping from the vertices of one graph to the vertices of the second
graph such that the edge connections are respected. Many proposals have been presented on graph
isomorphism [27] [28]. For example, a serial algorithm is proposed in [27], which tries to reduce
spatial complexity and to achieve a better performance on large graphs. When applied to find
isomorphic subgraphs in a massive graph, one challenge is that the time complexity is too costly.
Recently, a study focuses on top-k diversified subgraph querying that asks for a set of up to k
subgraphs isomorphic to a given query graph [5]. However, subgraph isomorphism problem is an
NP-complete problem [29]. It becomes especially hard as the sizes of graphs increase since exact
subgraph isomorphism associated with expensive time complexity has limited its efficacy.

Graph simulation provides a practical alternative to subgraph isomorphism by relaxing its stringent
matching conditions. It allows matches to be found in polynomial time. Therefore, subgraph
simulation techniques have received much attention due to their pragmatic applicability [13].
Several subgraph simulation models are introduced like bounded simulation[23], strong
simulation[24] and relaxation simulation [30]. Bounded simulation extends graph simulation for
graph pattern matching by allowing bounds on the number of hops. To extend [23], a proposal
incorporated regular expressions as edge constraints is proposed [26]. These graph simulation
models may modify the matching conditions in different ways. As a basic condition, all child
vertices need to be matched if two vertices are matched. Recently, the simulation of permitting the

Figure 5:
Numbers of messages with and without filter mechanism

Figure 6:
Running time of the parallel algorithm with and without filter mechanism

http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-fig-5-large.gif
http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-fig-6-large.gif

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 17/19

Keywords

IEEE Keywords
Computational modeling, Algorithm design and analysis, Parallel algorithms, Approximation
algorithms, Synchronization, Program processors

absence of one hop node is taken into consideration [30]. However, it is crucial to return
approximate query sub graph for a given query graph, which permits any absence of vertices and
edges. But the results include the rank information.

5.2. Top­k Query
Some prior works have proposed solutions in top-k vertex query [9], top-k path-based relevance
query [10], top-k maximal clique query [11] and top-k similarity join, etc. Yan et al. deal with the
problem of finding top-k highest aggregate values over a h-hop neighbors [9] Furthermore top-k
aggregation queries are proposed that involves identifying top-k vertices with highest aggregate
values over their h-hop neighbors [7]. With path-based metrics, the solution obtain the top-k most
relevant items for a give query item set [10]. But these algorithms don't take subgraph queries into
consideration.

The top-k subgraph match problem has attracted great attention recently. It can be solved by first
finding all matches for the query using the existing graph matching methods and then ranking the
matches. But the cost of exhaustive enumeration for all the matches can be prohibitive for large
graphs. Some works propose more efficient approaches for top-k sub graph query. To find top-k
subgraphs, Gupta et al. propose index-based approach [8]. Their solution exploits two low-cost
index structures (a graph topology index and a maximum metapath weight index) to perform top-k
ranking. But their approach considers the weighted data graph, while not query graph. Recently,
diversified top-k subgraph query has attract some research interest [6] [5]. Subgraph isomorphism
[5] and subgraph simulation [6] are used as the matching metrics for top-k sub graph query.

For edge-weight graph computation, some prior works consider weights in data graphs. They aim
to find top-k matches in an uncertain graph. For example, Zou. et. al investigate the problem of
finding top-k maximal cliques in an uncertain graph [11] [25]. The weight of each edge is denoted as
a probability value such as the probability presenting the chance of the interaction existing in
practice protein-protein interaction networks. However, they have considered the weights in data
graph, but not in query graph.

SECTION 6.
Conclusion

We study the problem of top-k sub graph query in massive graph. Different from existing graph
isomorphism, we present a new graph matching notion: approximate graph simulation. For the
first time, sub graph query can be customized by weighting query graph, which provides good
flexibility for different application scenarios. Moreover, we propose a parallel algorithm at the level
of single vertex. Every single vertex can obtain its matching state separately without requiring
global graph information. Therefore, it is very suitable for massive graph computing due to the
strong scalability. Our experiments with real-life datasets show that the proposed algorithm is
efficient in distributed environment.

http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Computational%20modeling.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Algorithm%20design%20and%20analysis.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Parallel%20algorithms.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Approximation%20algorithms.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Synchronization.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.Program%20processors.QT.&newsearch=true

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 18/19

INSPEC: Controlled Indexing
query processing, approximation theory, graph theory, parallel algorithms

INSPEC: Non-Controlled Indexing
top-k vertices, parallel top-k subgraph query, massive graphs, parallel algorithm, graph matching,
approximate graph simulation, weighted query graph, vertex level, filter mechanism, computation
mechanism, aggregation mechanism

Authors

Jianliang Gao
School of Information Science and Engineering, Central South University,
Changsha, China

Bo Song
College of Computing & Informatics, Drexel University, Philadelphia, USA

Ping Liu
School of Information Science and Engineering, Central South University,
Changsha, China

Weimao Ke
College of Computing & Informatics, Drexel University, Philadelphia, USA

Jianxin Wang
School of Information Science and Engineering, Central South University,
Changsha, China

Xiaohua Hu
College of Computing & Informatics, Drexel University, Philadelphia, USA

Related Articles

Joint trajectory generation for redundant robots
T.C. Hsia; Z.Y. Guo

Asynchronous leasing
R. Boichat; P. Dutta; R. Guerraoui

Dictionary design algorithms for vector map compression
S. Shekhar; Yan Huang; J. Djugash

Schedulability in model-based software development for distributed real-time systems
S.S. Yau; Xiaoyong Zhou

Performance evaluation of a probabilistic replica selection algorithm
S. Krishnamurthy; W.H. Sanders; M. Cukier

http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.query%20processing.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.approximation%20theory.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.graph%20theory.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.parallel%20algorithms.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.top-k%20vertices.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.parallel%20top-k%20subgraph%20query.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.massive%20graphs.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.parallel%20algorithm.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.graph%20matching.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.approximate%20graph%20simulation.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.weighted%20query%20graph.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.vertex%20level.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.filter%20mechanism.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.computation%20mechanism.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?matchBoolean=true&queryText=%22Index%20Terms%22:.QT.aggregation%20mechanism.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jianliang%20Gao.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bo%20Song.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ping%20Liu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Weimao%20Ke.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jianxin%20Wang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xiaohua%20Hu.QT.&newsearch=true
http://ieeexplore.ieee.org/document/100001
http://ieeexplore.ieee.org/document/1000051
http://ieeexplore.ieee.org/document/1000014
http://ieeexplore.ieee.org/document/1000035
http://ieeexplore.ieee.org/document/1000044

7/22/2017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

http://ieeexplore.ieee.org/document/7840656/?part=1 19/19

Computational complexity management of motion estimation in video encoders
Yafan Zhao; I.E.G. Richardson

Distributed object-oriented real-time simulation of the multicast protocol RFRM
Y.S. Hong

Wavelet-based lossy compression of barotropic turbulence simulation data
J.P. Wilson

GUI approach to programming of TMO frames
K.H. Kim; Seok-Joong Kang; Yuqing Li

Implementation of a TMO-based real-time airplane landing simulator on a distributed computing
environment
Min-Gu Lee; Sunggu Lee

IEEE Account

» Change Username/Password

» Update Address

 Purchase Details

» Payment Options

» Order History

» View Purchased Documents

 Profile Information

» Communications Preferences

» Profession and Education

» Technical Interests

 Need Help?

» US & Canada: +1 800 678 4333

» Worldwide: +1 732 981 0060

» Contact & Support

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.
© Copyright 2017 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

About IEEE Xplore Contact Us| Help| Terms of Use| Nondiscrimination Policy| Sitemap| Privacy & Opting Out of Cookies|

http://ieeexplore.ieee.org/document/1000026
http://ieeexplore.ieee.org/document/1000055
http://ieeexplore.ieee.org/document/1000022
http://ieeexplore.ieee.org/document/1000032
http://ieeexplore.ieee.org/document/1000048
https://www.ieee.org/profile/changeusrpwd/showChangeUsrPwdPage.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
https://www.ieee.org/profile/address/getAddrInfoPage.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
https://www.ieee.org/profile/payment/showPaymentHome.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
https://www.ieee.org/profile/vieworder/showOrderHistory.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
http://ieeexplore.ieee.org/articleSale/purchaseHistory.jsp
https://www.ieee.org/profile/commprefs/showcommPrefpage.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
https://www.ieee.org/profile/profedu/getProfEduInformation.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
https://www.ieee.org/profile/tips/getTipsInfo.html?refSite=http://ieeexplore.ieee.org&refSiteName=IEEE%20Xplore
http://ieeexplore.ieee.org/xpl/techform.jsp
http://ieeexplore.ieee.org/Xplorehelp/about-ieee-xplore.html
http://ieeexplore.ieee.org/xpl/techform.jsp
http://ieeexplore.ieee.org/Xplorehelp/Help_start.html
http://ieeexplore.ieee.org/xpl/termsOfUse.jsp
http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html
http://ieeexplore.ieee.org/xpl/sitemap.jsp
http://www.ieee.org/about/help/security_privacy.html

