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SECTION 1.
Introduction

Research of massive graph has attracted renewed interest in recent years due to increased interests
in a number of network applications such as biological networks, social networks, communication
networks [14]. Network data are often represented as graphs, where nodes are labeled entities and
edges represent relations among these entities [1] An important processing for graph data
application is that of sub graph query.

Subgraph query is to find out the subgraphs of data graph G which match a given query graph Q. It
is essential for a wide range of emerging applications such as community discovery and neighbor
query in social networks, biological data analysis [13], classification of web documents [16],
software plagiarism [19] and so on. A number of matching algorithms have been developed to
compute the set of matches of Q in G. In real world applications, query graph is usually small, but
data graph is typically large, even including billions of nodes [3] The large scale graphs such as
social graphs and protein-protein interactive networks (PPI) give rise to the following problems
with the subgraph query algorithms.

1. The large size of data graphs makes matching costly. For matching defined by simulation, it
takes O(IGIIQ| + IGI?) time to compute graph match set [4]. It can be seen that the size of
data graphs could greatly affect the computational complexity. Furthermore, the matching
algorithms often return an excessive number of sub graphs. It could be a difficult task for the
users to inspect such a large number of matching subgraphs and select the most desirable
solution.

2. The top-k subgraph query is needed to filter unwanted matching subgraphs. Exiting top-k
subgraph query approaches include two phases: 1) computing all matching subgraphs which
satisfy the query in a sequential way; 2) ranking such results based on given metrics.
However, previous works on the matching problem could face difficulty due to the lack of
scalability for the increasing scale of graphs.

3. Subgraph query should take the weighted graph into consideration. With the ever-increasing
popularity of entity-centric applications, it becomes very important to study the interactions
between entities, which are captured using edges in entity-relationship networks [8]. Entity-
relationships usually have different importance in various applications. For example, the
entity-relationship in social network might be different according to various personal
influence. In protein-protein interaction networks, the probability value to present the
interaction existing in practice is an important parameter. The values between entities of a
network can be mapped to the weights on edges of a graph. Therefore, subgraph query
according to weighted graphs becomes important in massive graph computing.

Some researches aim to solve the above problems in subgraph query. For example, diversified top-k
subgraph query is proposed recently [5] [6]. To simplify the subgraph query, “query focus” is
introduced as an substitution of finding the entire set of matches [6]. By appointing a focus in query
graph, sub graph query returns only those vertices which match the query focus, rather than the
entire matching subgraph set. Query focus based subgraph query is widely needed in e.g. expert
recommendation [20] and egocentric search [21]. In fact, 15% of social queries are to find matches
of specific nodes [22]. In this paper, we also take the “query focus” as the subgraph query.
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Figure 1:
Querying collaboration network

1.
Example 1

Fig. 1 illustrates an example of subgraph query with query focus. A fraction of a collaboration
network could be represented by a data graph G in Fig. 1b, where each vertex represents a persona,
with a label for the job title of the persona such as project manager (PM), software architect (SA),
business analyst (BA), user interface developer (UD), software developer (SD), software tester (ST)
and software user (SU). These vertices are assigned IDs from v1 to v15. Each edge indicates a
supervision relationship, e.g. edge (v1, v4) indicates that v1 can supervise v4. A company may issue
a requirement of finding some PMs who can supervise SA, BA and UD directly. Moreover, (1) the
BA can supervise the UD; (2) the SA can supervise a SD; (3) there is a ST who works under the SD,
and vice versa. Such requirements could be expressed as a graph Q shown in Fig. 1a. Here PM is the
“focus” of query which is denoted with “*’, i.e., only the top-k matches of PM are required to return.
When graph matching is defined in terms of subgraph isomorphism [5] or subgraph simulation [6],
only one subgraph with v2 (i.e., v2, v5,v6,v7,v11.v12) can be identified in G. However if two
matches Of Q are required, there are no enough matches in this example in terms of graph
isomorphism or graph simulation. It is too restrictive in many applications. We relax the limitation
of graph simulation to permit lack of vertex or edge, named approximate graph simulation. Given
query graph with edge weights, approximate graph simulation identifies the top- k matching
subgraphs in G. For example, when k = 2, two top-ranked PMS (v1 and v2) are returned that
match the query focus PMin Q. o

For top-k sub graph query, there are two key problems: (1) how to quantify the scores of matching
subgraphs; (2) how to design parallel algorithm for massive graph. We present approximate graph
simulation in this paper. Different from traditional graph isomorphism or graph simulation,
approximate graph simulation processes weighted query graph. Edges of query graphs have weights
which denote various meanings in real applications. For example, in team selection applications, a
larger weight implies higher importance [8]. In biological networks, the weight could be defined as
the probability of the interaction between entities [13]. As the weights are related to various
applications, we assume in this paper that weights have been given and we will not discuss how to
weight the edges. Meanwhile, the proposed approach can be applied to unweighted sub graph query
when all weights are set as the same value.

In this paper, we study the top-k weighted subgraph query problem and propose a parallel
algorithm for it. Our contributions are summarized as follows.

a TWa rawica tha traditinnal natinn Af aranh mateahinag har ralaving tha ranmiramante far srartinac
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and edges, which is named approximate graph simulation in this paper. By appointing
weighted query graphs, top-k subgraph query can be customized, which increases the
flexibility and usability of subgraph matching. We present the top-k subgraph query problem
in terms of approximate graph simulation and then propose a method to rank the matching
subgraphs.

e We propose a parallel algorithm for top-k subgraph query. The algorithm is designed at the
level of single vertex and all vertices obtain their matching state separately without requiring
global graph information. Therefore, it can be easily deployed in distributed systems.

s To speed up the process, we propose a filter mechanism to reduce unnecessary computing.
Furthermore, we design a mechanism to implement the aggregation for top-k values in
distributed systems. These mechanisms aid to obtain top-k subgraphs in massive data
graphs.

o Experiments are conducted on a distributed Hadoop platform and the results from three real-
world datasets show the efficiency of our approach.

The rest of the paper is organized as follows. We introduce the problem definitions in Section 2. We
then present parallel top-k subgraph query algorithm in Section 3. Section 4 presents the
experimental study. Related work is shown in Section 5. Finally, Section 6 concludes this paper.

SECTION 2.
Problem Definition

In this section, we present some preliminary definitions and then formulate the problem of top-k
subgraph query. Subgraph isomorphism [5] is a classical graph matching which finds subgraphs
from data graph which are isomorphic to the query graph. Graph simulation [6] relaxes the
limitations by only requiring the matching of successive vertices. However, lack of vertices or edges
are not permitted in graph isomorphism and graph simulation, which is too restrictive in many real
applications. In this paper, we propose a new notion of graph matching named approximate graph
simulation. The symbols are summarized in Table 1.

2.
Data Graph

A data graph is a directed graph G = (V, E, f), where (1) V is a finite set of vertices; (2) EC VX V,
in which (v, v/) denotes an edge from vertex v to v/ and (3) f(-) is a function on V such that for each
vertex vin V, f(v) = a where a is a constant of the attribute. In this paper, the attribute of a node
carries the label of the vertex.

2.
Query Graph

A query graph is a directed graph Q = (V,, Ey, f, w, ug), where (1) V, and E, are the sets of vertices
and edges respectively; (2) f; is a function defined on V,, for each vertexu € V. f;(«) returns the
http://ieeexplore ieee org/document/7840656/7part=1 4/19
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label of u in this paper. (3) w is a function defined on each edge e € E,, and w(e) denotes the
weight on edge e. (4) up is the query fOCUS uy € V, and for anyu € V,, u # up, there is at least
one path from i to u.

The traditional graph simulation requires that all vertices and all edges of query graph G must exist
in the matching results. It is often too restrictive in many applications. Furthermore, weighted
query graph has not been considered. In this paper, we present a kind of new graph matching with
weighted query graph: approximate graph simulation.

2.
Apporoximate Matching Subgraph

Given a query graph Q = (Vy, Eq, fg, w, up) and a data graph G = (V, E, f), a graph G; = (V;, E;, f)
is an approximate matching subgraph, such that (1) Vs C V and E; C E; (2) foreachv,v € Vi,
there exists a vertex u, u € V, such that f,(u) = f(v), referred to as vertex matching between u and v
; (3)foreach edgee = (v, /), e € E;, there exists e, = (u, u!),eq € E,, such that [f;(u)] = f(v) and
Sfa(ur) = f(v1), referred to as edge matching between e and ¢;, denoted as A(e) = e4 ; (4) there
exists vy in V; such that f(vy) = f(up); for any v in V;, there exists at least one path from v tov

2.
Approximate Graph Simulation

Given a query graph Q and a data graph G, approximate graph simulation aims to find out all
approximate matching subgraphs G, in data graph G.

In a massive data graph, the number of approximate matching sub graphs is also very large. For
each approximate matching subgraph, matching degree can be quantified according to the matched
edges. Given a query graph Q = (V,, E,, f4, w. ug) and a matching subgraph G, = (V,, E;. f), the
matching degree D can be calculated as:

D(Gs, @) = ), wie), ()
ek

View Source

where Eg/ is the set of edge matching for each edge ein E,,i.e. E;f = {A(e)le € E, }.

e | Computation | P. .
| ]

Z :
2 |
=
v

Communication
o |Computation | o .
“ ’ £ Ps P; LeX Aggre
< x gator
[=% A
=3
2 .

http://ieeexplore ieee org/document/7840656/7part=1 5/19


http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-fig-2-large.gif

112212017 Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

Figure 2:

The parallel computing model from the perspective of single vertex.

Communication

2.
Top-k Subgraph Query

Given a query graph Q = (V,, Eg, fz, w, up) and a data graph G = (V, E, f), top-k subgraph query is
to find k approximate matching subgraphs which have the top-k highest matching degrees. The set
of top-k approximate matching subgraphs is denoted as M(G, Q, k) and formulated as:

k
M(G, Q. k) = {GlG, € arg max 2 IXG, (), O, 2)
=1

View Source

where G; is an approximate matching sub graph and G;(§) # G,{j)ifi # j.

For query focus based approximate graph simulation, the top-k subgraph query can be simplified as
finding the corresponding vertices of query focus in top- k approximate matching subgraphs.
Matching subgraphs can then be extended from the top-k corresponding vertices of query focus.
Therefore, this paper discusses the problem of finding top- k matching query focuses in the
following.

SECTION 3.

Parallel Top-k Subgraph Query
Algorithm

The proposed approach consists of a sequence of iterations called supersteps. In each superstep,
vertices take local computation and supersteps finish with synchronization. As shown in Fig. 2,
vertices are assigned to four processors (3 vertices in P1, 4 in P2, 4 in P3and 4 in P4 asan
example). These processors run in parallel model. Each vertex takes local computation in the
assigned processor. In the same processor, the computation can be taken in parallel or serial way
according to the computation resource. The data exchange is implemented by messages scheme.
There are two kinds of messages in this approach. One is messages between vertices, and the other
is from vertex to aggregator. The aggregator collects global top-k matching focuses in a distributed
environment. Between two consequent superstep-s, there is a synchronization to exchange
information among vertices. A vertex quits the execution if it is set as inactive. For example in Fig.
2, the processing P is terminated in the second superstep as the vertices become inactive. To
implement top-k subgraph query, the key points are design parallel algorithm for vertex, which
includes how to deal with the messages.

Table 1: Symbol definition

http://ieeexplore ieee org/document/7840656/7part=1 6/19
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Name Meaning

Q= (Vg,Eq, fg.w,uo0) | Query graph

G=(V.E,f) Data graph

M(G,Q, k) the set of top-k matching subgraphs
wo Query focus

u Vertex of Q. u €V,

v Vertex of G, v €V

N(v) v/ € N(v) iff (v,v") € E

r mapping function from e in G to ¢’ in Q
S function of node influence

D function of matched score

W function of lost score

state of current vertex v, three state values:
“T: v e M(G,Q,k) and f(v) = fg(uo)

state “F v g M(G,Q, k)

“H™: to be decided
pList List of parent nodes (direct predecessors)
cList List of child nodes (direct successors)
mList List of matched edges
1List List of lost edges

3.1. Quantifying the Matching Degree
To quantify the matching degree of vertices in data graph, we first show the following definitions.

Reachable Edge

For vertex vinV , edge (vi, vj) € E is said to be a reachable edge of v in graph G(V, E) if there exists
at least one path from v to v;.

Node Influence

Given a query graph Q = (V,, Eg, fz, w, tp), the node influence of a vertex u(u € V) is Theta(u)

8w = Y we) 3)

o
eEEq

View Source

where E/(ElN C E,) is the set of reachable edges of u.

We then define “matched score” and “lost score” for vertices of data graph. In large-scale
applications, data graph is large and it is infeasible to compute and save all reachable edges.
Therefore, it is a iteration procedure to obtain the final “matched score” and “lost score”.

Matched Score

Given a query graph Q = (V,, E,, fz, w, up) and a data graph G = (V, E, d), matched score of vertex
v € V is defined as the sum of edges weights by mapping the reachable edges of v in a matching
subgraph to Q. In a distributed model, the reachable edges need iterative computation as following:

() = Cuir(v) + ., V)= Y wie), @)
veN(v) eER(v)
View Source
P ) [P s WL SIS VPG iy PR R 1 SR O P Y- DO Ny [ SN i [ S - S
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N(v) = {v/} such that (v, ) € E; @inisgy) = 3. ecE, w(e) here E,, is the set of edges by mapping the
outing edges of v to Q; R(v) is the set of the edges in Q which are repeated in

@i (v) + ZwsV@mw) . Note that the maximum ®(v) will be selected if there are more than one
direct successor whose labels are the same.

Lost Score
Given query graph Q = (V,, Ey, f4, w. up) and data graph G = (V, E, f), for vertex v € V, its lost

score is defined as:

Yo=Y wwd)+ )

u' E(N;(u)—N, ‘;(u))

Y, P - Y we),

u"eN,(w) eeR(u)
View Source

where u € V, is the mapping vertex of v, i.e., f(v) = f,(u); Ng(u) is the set of child vertices of
u; Ny/(u) is the set of vertices in Q by mapping the vertices in N(v); R(v) is the repeated edges set in
Q which are repeated in ), 1E, @ -Nrw(wun) T Y € Noty(urr).

For example, in Fig. 1, @iy = w(AW1, v4)) + w(AWL,v5)) = 15wy = w((PM,UD)) = 09.
The change of matched value and lost value in iteration supersteps can be seen in Example 2.

In an iteration computing procedure, a vertex of data graph can get increasing knowledge about its
matched edges and lost edges. Therefore, matched score and lost score are monotonically
nondecreasing.

Lemma 1

Given a query graph Q = (Vy, Eg, fz, W, up) and a data graph G = (V, E, f), it can be drawn that,

Ov) +¥Y(v) < O(u), (6)

View Source

wherev € V,and f(v) = f,(u), (u € V,).

3.2. Filter Mechanism

In the iteration processing, it is not necessary to compute the final scores for each vertex. We draw
some filter rules that can terminate the computing earlier. Firstly, we can filter the vertices whose
labels are not in the set of labels of query graph vertices.

Filter Rule 1
ForVv € Viff(v) &€ L(Q) thenv & M(G, Q, k), where L(Q) is the label set of query graph Q.

Secondly, as Lemma 1 shows a upper boundary for lost score, a filter rule can be found for the lost
score. To draw the filter rule, we derive the following theorem.

Theorem 1

Given a query graph Q = (Vy, Eq, fg, w, up) adata graph G = (V, E,f) and k, forv € V, if
w(v) > O(up) — minyey, (P(u)) then v € M(G, Q, k), where V; is the set of v; such that

http://ieeexplore ieee org/document/7840656/7part=1 8/19
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i) = fy(uo) and v, € M(G, Q. k).

Proof

Assuming vinM (G, Q, k) there exists a path from a vertex vy (vi € Vi) to v according to the
definition of approximate matching subgraph. Therefore

D) > D). Q)
View Source

For f(v) = f4(up), then according to Lemma 1, there is

D(vi) + ¥ (i) < B(uo). @®)

View Source

Combining the inequalities (7) and (8), it can be drawn:

P(v) + (i) < O(uo). €)

View Source

Furthermore, vy € Vi, so ®(vi) = minev, (®(u)). Put it into inequality (9), it becomes

YY) + ﬂi‘p(d)(u)) < O(uo). (10)
View Source

Obviously, inequality (10) contradicts the given condition y(v) > ®(uy) — min,ey, (P(u))-
Therefore v & M(G, Q. k), o

From this theorem, we can obtain the second filter rule:

Filter Rule 2

ForVv € V,ifify(v) > O(up) — minyey, (®(u)), thenv & M(G, Q, k), where Vi = {v;} such that
S = faue) and v € M(G, Q,k).

Theorem 2

Given a query graph Q = (Vy, Eq, fy, w, uo) adata graph G = (V, E, f) and k, for

v € V,(f(v) # fq(up)),if all v/ € V which satisfies (v/,v) € E and v/ € M(G, Q, k), then
v & MG, Q. k).

Proof

Assuming v € M(G, Q, k), denote the cor- responding matched focus as vy, (f(vg) == f(ug)).
According to the definition of approximate matching sub graph, there exists a path from y, to v
since the given condition shows f(v) # f, (ug) . Denote parent vertex of v in this path as v// (i.e.,
(v11,v) € E), vt € M(G, Q, k). It contradicts the given condition “all v/ € V which satisfies
(vt,v) € Eand v & M(G,Q,k)".a

According to Theorem 2, the third filter rule can be obtained.

Filtar Dula o
http://ieeexplore ieee org/document/7840656/7part=1 9/19
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For WvinV, if f(v) # f4(uo) and V(v/,v) € E satisfies v & M(G, O, k), thenv & M(G, Q. k).

3.3. Parallel Algorithm of Subgraph Query

From the perspective of a single vertex, we design a parallel algorithm and all vertices execute these

supersteps separately. When one superstep finishes, all vertices must stop and wait for a
synchronization before next superstep as shown in Fig. 2.

The detailed algorithm is shown in Algorithm 1. It consists of three basic supersteps and the
following repetitive supersteps. For each vertex, it keeps four lists: pList, cList, mList and IList.
pList and cList keep the parent nodes and child nodes respectively, which are important
information for communication. mList and 1List are the lists of the matched edges and the lost
edges, which will be used to compute matched scores and lost scores. In the initial stage, the four
lists (pList, cList, mList and IList) are set as empty and the state of v is set as “F”. In Superstep o,

filter rule 1 is adopted to exclude some vertices according to their labels. If there is the same label in

query graph, the current vertex sends its id and label ([v, f(v)]) to its child vertices (which are the
input parameters). At the same time, it sets the state as “H” to denote further processing.
Otherwise, the match state is kept as “F”. “F” indicates that the vertex will not participate the
following calculation any more. In Superstep 1, if a vertex receives messages, it saves the source
vertex of the message to pList, as shown in Line 13 of Algorithm 1. To simplify the expression,
“pList U msg” is used to show that “save the source vertex of the message to pList ”. Then it replies
id and label to the corresponding parent vertex. After the first two supersteps, every “H” vertex has
the information of its matched parent vertices.

Algorithm 1 Parallel Algorithm for a Vertex

http://ieeexplore ieee org/document/7840656/7part=1

Input: Current vertex v, direct successors of o, query
graph )

Output: The matched stmte of vy

Initial:

pList=cList=0 ; mList=IList=3 ; stats ol

Super Step 0:

1 foreach u £ Q do

v | W flel==f,(u) then

'] state “H"

wmdMessageToChildrend|e, fv)])

. end
7 end
8 i srawe # “H" then
@ inactivestrue
" |
n end

Super Step 1:
12 foreach msg & receivedMessuges do
plast = pList U msg;

relum stale

(L]

7] sendMessagedmsg.getFirsthiem, [, fe)l)
15 end
Super Step 2:
s foreach msg € receivedMessages do
" | cList = cList U msg
w end
1 [mList, IList|=initValues(cList);
m foreach v = plise do
n | sendMessage(v, [v", mList. IList]);
2z oend
2 il fiv) Sylug) then
2| agpregate(v, ®(v));
= end
Super Step 3 and after:
5% If stte=="F" then

n inactivestrue;

- refum stale
= end

= If Recetved messages then

mEEk

end
chse if (f(v) Falta)) then
- o ApgregatedTopk then
= sl .
- wmndMessagemovedVenex, ||
» inactive=truc;
" end

a1 ond

a2 refum stale
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In Superstep 2, if a vertex receives messages, it updates cList according to the source vertex of the
message (Line 17). With cList, current vertex v obtains its initial matched list (mList) and lost list
(IList) as the following steps: (1) mapping edges (v, v/), v/ € cList and (v, v/) € E, to query graph;
(2) obtaining the mapped edges set { (u, u/)}, (u, u/) € E,. Then the initial mList is the set of the
edges {(u,u/)}; and the [List are the edges (u, u/?), (u, utt) € E; and utt & {ut}. After that, The
current vertex v sends its mList and [List to the parent vertices. If its label is the same with query
focus, i.e. f(v) == f,(up), its matched value ®(v) is send to global top-k aggregator.

In the following supersteps, vertex v calculates matched score ®(v) and lost score y(v) according to
the updated mList and [List. The calculation is triggered once it receives messages. If there is no
message, vertex v checks whether it belongs to the top- k list. If belongs to, the state of v is set as “T”
and it sends message to the vertex which are moved out the top-k list (Line 38).

Algorithm 2 describes the detail of processing messages in repetitive supersteps. Once receiving
message from child vertex, current vertex v updates cList and pList. If the message comes from
parent vertex, v updates the state of the corresponding parent vertex in pList. It is a preparing work
of filter rule 3. After updating the pList and cList, rule 2 and rule 3 are used to filter current vertex.
If it satisfies the conditions of rule 2 or rule 3, the state of v is set as “F” and it becomes inactive.
Especially, v has been moved out from the top-k list if the message came from the other top- k
vertex. Because it is possible for v to be included in top- k list again, the moved vertex state is set as
“H”. In a superstep, if ®(v) or y(v) changes, the vertex sends the updated matched list mList and
lost list IList to the vertices in pList. At last, if it is the mapping vertex of focus node up, its matched
score is sent to the aggregator to update the top-k list.

In these supersteps, vertex obtains information by messages between vertices. Taking vertex v as
example, Fig. 3 shows main messages between v and its parent vertex p and child vertex ¢ « In
Superstep 0, v sends it id and label to vertex ¢ while receiving from vertex p. In Superstep 1, the
direction of message transport becomes converse compared to Superstep 0. In Superstep 3, v sends
its mList and [List to vertex p and receives them from child vertex. This kind of message is repeated
in the following supersteps. Note that, if v is the mapping of query focus, it should send matched
score ®(v) to the aggregator.

(p) (P~ P (p)s
[p.f()] [v.£(V)] [mList,IList] [miList, IL.ist]
; Aggregator
Vo (v \' -‘. [L'._(I’(U]]
[v.f(v)] [c.f(c)] [mList,IList)] [mList.IList)
N ™ N N
(o) ©) () )
Superstep 0 Superstep 1 Superstep 2 Superstep 3 and after
Figure 3:

The message illustration.

The parallel program terminates when all vertices become inactive. The vertices in top-k list (whose
states are all “T”) are the results of top- k subgraph query based on query focuses. With these
vertices in top-k list, it can be further traced to top-k match subgraph M = (G, Q, k).

Algorithm 2 Process Messages in [teration Supersteps

http://ieeexplore ieee org/document/7840656/7part=1
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Example 2

We use the query graph and data graph in Fig. 1 as an example to illustrate the proposed approach.
Fig.1a shows a weighted query graph. In this example, query focus is set as “PM” and the parameter
k is set as 2. To distinguish the vertices of data graph, we denote a sequence number for each vertex
such as y;(i € [1--- 15]).

I

2
3
4
5

'TEEEXEEE

&

]
- -

Ex]

Input: Current vertex v, query graph ¢, messages
Output: cList, pList
foreach msg € messages do
switch msg came from do
case child vertex
| update cList:
case p;m'u.' verex
| update pList:
case others
state = “H™;
inactive = true:
exit;
endsw
endsw
end
if satisfv(filter rule 2 or rule 3) then
state="F";
foreach o' € cList do
| sendMessage(v', |v, state]);
end
inactive=true;
exit;
end
if received message from child vertex then
calculate ®(v) and ¥(v):
if there is change of ®(v) or W(v) then
foreach v’ € pList do
| sendMessage(v’, [v, mList, [List]);
end
if f(v) == fy(uo) then
aggregate(v, P(v)):
end
end
end
return newmatchValue, newloseValue:

Table 2: Matched scores ®(v) and lost scores y(v)

Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

vI [ v [ w3 [ vl [ w3 [wve | vi | vB [ vO [ vID [ vIT [ vIZ [ vI3 | vI4

- F(o;) | 15 | 24 | L7 [ 06 |05 | 0 |06 | O35 [ 0 | 0 |06 | 04 | 06 | O
Superstep 2 g SO0 T 0 T23 T 0 T 0 TO0 T 0 10 T 0 T 1010101
Suverston 3 | ®(i) | 26 [ 38 [ 22 [06 |03 [ 0 [10 |05 0| © 1 T [06] 0
RSP Y T 09 [ 0 1 23] 1T ] 0 0 0] 00 1T ] 0 0] 01
Suerstond | Fi) | 26 [ 39 [ 717 |06 (05 [0 |16 | 03| 0 | O T [ 06 0
WP Ty 19 [0 (23 T [0 oo o 0] 1T a0 0] 01
S 5 $oy) | 26 (45 [ 22|06 |05 [ O [16 |05 D 0 1 1 0.6 [
UpeTSIep S e ST 1o 0 123 [ T 0 1o 0 10 0] 1 o0 0 1

Algorithm 3 Preprocess node influence ®(u)

-

h

http://ieeexplore ieee org/document/7840656/?part=1

Input: Q = (V. E,,w). u (u €V,). flags
Output: O(u)

1 O(u) =0;
2 foreach v’ € {u'} where (u,u') € E, do

O(u) = O(u) + w((u,u’));
flags(u)=true;
if not flags(u’) then

12/19


http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-alg-2-large.gif
http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-table-2-large.gif
http://ieeexplore.ieee.org/mediastore/IEEE/content/media/7818133/7840573/7840656/7840656-alg-3-large.gif

712272017

Parallel top-k subgraph query in massive graphs: Computing from the perspective of single vertex - IEEE Xplore Document

6 | ©(u) = O(u) +recursion(Q, v’, flags) :
7 end

s end

9 return O(u);

In query graph, node influence can be obtained by a breadth- first search algorithm shown in
Algorithm 3. For each child node u/ of current node u, the weight of (u, u’) is added to Theta(u) and
the flag of node u is set as true. Then, call the processing recursively (Line 6 in Algorithm 3). In this
example, node influences in Fig. 1a are as follows: 8(A)=4.5, 8(B)=1.6, 8(C)=0.5, 8(D)=0, 8(E)=1,
and 8(F)=1.

The first two supersteps (Superstep 0 and Superstep 1 in Algorithm 1) are used to exchange
information between vertices. The initial matched scores ®(v) and lost scores y(v) are calculated in
Superstep 2. So ®(v) and y(v) are shown in Table 2 since Superstep 2. According to filter rule 1, v15
keeps inactive with a match state of “F” because there is no “SU” label in query graph. Therefore,
v15 has not been listed in Table 2.

In Superstep 2, the top-2 focus vertices of M(G,Q,2) are v2 and v3. But in Superstep 3, v1 has larger
matched score than v3. So v3 is moved out from the top-2 focus list. In our approach, v1. sends a
message to v3 and v3 will change its state from “T” to “H”. When the lost score of v3 becomes 2.3,
its state is set as “F” according to filter rule 2 (2.3>4.5-2.6). In Superstep 4, v1 gets the lost
information of v10 and update its lost value from 0.9 to 1.9. In Superstep 5, v2 reaches the
maximum matched scores (4.5). So v2 and v1 are selected as the final top-k focus vertices of
M(G,Q,2). o

Table 3: Basic statistics on experimental datasets,

# Vertices # Edges
Twitter 81,306 1,768,149
Amazon 403,394 3,387,388
Google 875,713 5,105,039

SECTION 4.
Experiments

The goal of this experimental study is to evaluate the proposed algorithms, including the number of
superstep, the number of messages and the run time.

4.
Platform

http://ieeexplore ieee org/document/7840656/7part=1
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The experiments are conducted on a cloud platform, which consists of five instances. Each node has
16GB RAM, 4 VCPUs. Hadoop [12] and HAMA [15] are deployed on the platform. In our
experimental cluster, one instance plays the role of master node, and the others are workers (data
node).

4.
Data Sets

Three real world datasets are used in the experiments [18]. The information of data graph is listed
in Table 3. Twitter data graph is with 81,306 vertices and 1,768,140 edges; Amazon data graph is
with 403,394 vertices and 3,387,388 edges; and Google data graph is with 875,713 vertices and
5,105,039 edges. For each data graph, twelve labels are randomly assigned to the vertices of data
graphs. We generate query graphs with various sizes. Denote the size of query graph as |QI, then |Ql
include 6, 8,10 and 12 in the experiments, respectively.

4.
Supersteps

Fig. 4 shows the results of supersteps. From these results, we have several observations as follows.

1. The number of supersteps is limited to an upper bound, which is related to the size of query
graph. As the sizes of query graphs increase, the numbers of supersteps keep the same or
increase in all situations. The more vertices in query graph, the longer path to transmit
matched lists and lost lists to the top-k vertices. One interesting observation is that the
numbers of supersteps sometimes keep the same with various sizes of query graphs, e.g. the
top-10(filter) results in Fig 4c. It is because there is no increased path in data graphs which is
caused by the increased vertices in query graphs. Another important observation is that the
numbers of supersteps are bounded in all situations. For example, in Fig. 4b, the numbers of
supersteps are at most 13. The reasons is that, for acyclic query graph, the number of
supersteps is related to the longest path in query graph. In our algorithm, there are two
preprocess supersteps and one additional superstep to update the state of top-k vertices.

2. The filter mechanism reduces the number of super-steps. The filter rules are used to
terminate the computation of the vertices which are impossible to be included in the final
top-k subgraph matches. Once vertices are terminated, they will not send messages in the
following supersteps. Therefore, the numbers of supersteps are reduced compared to the
method without filter mechanism. For example, in Fig. 4b, the superstep numbers of filter
top-10 query are 8, 8, 10, 11 for four sizes of query graph, while they are 0, 11, 12, and 13 for

top-10 query without filter.
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Figure 4:
Numbers of supersteps with and without filter mechanism

4.
Messages

Fig. 5 shows the results of communication messages between vertices. It can be seen that messages
are correlated to the sizes of query graphs. The bigger query graph generates the more temporary
matched vertices, which means larger communication cost. In the experiments, we only compare
the total number of messages between vertices. If a vertex sends one message, we increases the
number of messages with 1.

Fig. 5 shows that the number of messages is related to not only query graph, but also datasets. For
instance, in Fig. 5¢, the numbers of messages with google dataset are larger than that of the other
two datasets. In Fig. 5b, twitter graph is denser than amazon graph which also causes more
messages.

Compared to top-k query without filter, the top-k query with filter needs less numbers of messages.
It is because a filtered vertex will not send message any more. In our filter mechanism, filter rule 2
causes additional messages as a vertex informs its child vertices, which lowers the benefit of
reducing messages in some degree. However the messages are still reduced in all experimental
situations. Another observation is that the numbers of messages are close for various £ = 10 and

k = 50. The reason is that, the larger £ means more match results and more messages, on the other
hand, the larger k means the smallest matched score in current top-k list may become smaller,
which causes less filtered vertices.

4.
Running Time

The running time includes the time of local computation, global communication and
synchronization time. Fig. 6 shows the results of the total running time on three datasets. It can be
seen that running time increases for all datasets as query graph size |Q| increases. This is consistent
with the analysis of the proposed algorithms. For a given dataset, the increase size |Q| means more
labels in query graph during the first two supersteps. In these supersteps, local computation and
global communication time increase.

Compared to the results of top-k query without filter, the runtime of top-k query with filter are
always less with the same k value. It demonstrates the effectiveness of the proposed filter
mechanism. However, it is possible that the run time is very close for multiple situations. For
example, in Fig. 6¢, the queries with filter and without filter are of the close run time when query
graph size is 6. It is because the number of perfect matches is close to , e.g. most top-50 matches
have been founded when looking for top-10 matches.

SECTION 5.
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Related Work

5.1. Graph Matching

Graph matching has been studied in the graph query processing literature with respect to graph
isomorphism and graph simulation [31] [32].

The graph isomorphism problem consists in deciding whether two given graphs are isomorphic,
i.e., whether there is a bijective mapping from the vertices of one graph to the vertices of the second
graph such that the edge connections are respected. Many proposals have been presented on graph
isomorphism [27] [28]. For example, a serial algorithm is proposed in [27], which tries to reduce
spatial complexity and to achieve a better performance on large graphs. When applied to find
isomorphic subgraphs in a massive graph, one challenge is that the time complexity is too costly.
Recently, a study focuses on top-k diversified subgraph querying that asks for a set of up to k
subgraphs isomorphic to a given query graph [5]. However, subgraph isomorphism problem is an
NP-complete problem [29]. It becomes especially hard as the sizes of graphs increase since exact
subgraph isomorphism associated with expensive time complexity has limited its efficacy.
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Running time of the parallel algorithm with and without filter mechanism

Graph simulation provides a practical alternative to subgraph isomorphism by relaxing its stringent

matching conditions. It allows matches to be found in polynomial time. Therefore, subgraph

simulation techniques have received much attention due to their pragmatic applicability [13].

Several subgraph simulation models are introduced like bounded simulation[23], strong

simulation[24] and relaxation simulation [30]. Bounded simulation extends graph simulation for

graph pattern matching by allowing bounds on the number of hops. To extend [23], a proposal

incorporated regular expressions as edge constraints is proposed [26]. These graph simulation

models may modify the matching conditions in different ways. As a basic condition, all child

vertices need to be matched if two vertices are matched. Recently, the simulation of permitting the
http://ieeexplore.ieee.org/document/7840656/?part=1 16/19
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absence of one hop node is taken into consideration [30]. However, it is crucial to return
approximate query sub graph for a given query graph, which permits any absence of vertices and
edges. But the results include the rank information.

5.2. Top-k Query

Some prior works have proposed solutions in top-k vertex query [9], top-k path-based relevance
query [10], top-k maximal clique query [11] and top-k similarity join, etc. Yan et al. deal with the
problem of finding top-k highest aggregate values over a h-hop neighbors [9] Furthermore top-k
aggregation queries are proposed that involves identifying top-k vertices with highest aggregate
values over their h-hop neighbors [7]. With path-based metrics, the solution obtain the top-k most
relevant items for a give query item set [10]. But these algorithms don't take subgraph queries into
consideration.

The top-k subgraph match problem has attracted great attention recently. It can be solved by first
finding all matches for the query using the existing graph matching methods and then ranking the
matches. But the cost of exhaustive enumeration for all the matches can be prohibitive for large
graphs. Some works propose more efficient approaches for top-k sub graph query. To find top-k
subgraphs, Gupta et al. propose index-based approach [8]. Their solution exploits two low-cost
index structures (a graph topology index and a maximum metapath weight index) to perform top-k
ranking. But their approach considers the weighted data graph, while not query graph. Recently,
diversified top-k subgraph query has attract some research interest [6] [5]. Subgraph isomorphism
[5] and subgraph simulation [6] are used as the matching metrics for top-k sub graph query.

For edge-weight graph computation, some prior works consider weights in data graphs. They aim
to find top-k matches in an uncertain graph. For example, Zou. et. al investigate the problem of
finding top-k maximal cliques in an uncertain graph [11] [25]. The weight of each edge is denoted as
a probability value such as the probability presenting the chance of the interaction existing in
practice protein-protein interaction networks. However, they have considered the weights in data
graph, but not in query graph.

SECTION 6.
Conclusion

We study the problem of top-k sub graph query in massive graph. Different from existing graph
isomorphism, we present a new graph matching notion: approximate graph simulation. For the
first time, sub graph query can be customized by weighting query graph, which provides good
flexibility for different application scenarios. Moreover, we propose a parallel algorithm at the level
of single vertex. Every single vertex can obtain its matching state separately without requiring
global graph information. Therefore, it is very suitable for massive graph computing due to the
strong scalability. Our experiments with real-life datasets show that the proposed algorithm is
efficient in distributed environment.
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SECTION 1.
Introduction

Research of massive graph has attracted renewed interest in recent years due to increased interests
in a number of network applications such as biological networks, social networks, communication
networks [14]. Network data are often represented as graphs, where nodes are labeled entities and
edges represent relations among these entities [1] An important processing for graph data
application is that of sub graph query.

Subgraph query is to find out the subgraphs of data graph G which match a given query graph Q. It
is essential for a wide range of emerging applications such as community discovery and neighbor
query in social networks, biological data analysis [13], classification of web documents [16],
software plagiarism [19] and so on. A number of matching algorithms have been developed to
compute the set of matches of Q in G. In real world applications, query graph is usually small, but
data graph is typically large, even including billions of nodes [3] The large scale graphs such as
social graphs and protein-protein interactive networks (PPI) give rise to the following problems
with the subgraph query algorithms.

1. The large size of data graphs makes matching costly. For matching defined by simulation, it
takes O(IGIIQ| + IGI?) time to compute graph match set [4]. It can be seen that the size of
data graphs could greatly affect the computational complexity. Furthermore, the matching
algorithms often return an excessive number of sub graphs. It could be a difficult task for the
users to inspect such a large number of matching subgraphs and select the most desirable
solution.

2. The top-k subgraph query is needed to filter unwanted matching subgraphs. Exiting top-k
subgraph query approaches include two phases: 1) computing all matching subgraphs which
satisfy the query in a sequential way; 2) ranking such results based on given metrics.
However, previous works on the matching problem could face difficulty due to the lack of
scalability for the increasing scale of graphs.

3. Subgraph query should take the weighted graph into consideration. With the ever-increasing
popularity of entity-centric applications, it becomes very important to study the interactions
between entities, which are captured using edges in entity-relationship networks [8]. Entity-
relationships usually have different importance in various applications. For example, the
entity-relationship in social network might be different according to various personal
influence. In protein-protein interaction networks, the probability value to present the
interaction existing in practice is an important parameter. The values between entities of a
network can be mapped to the weights on edges of a graph. Therefore, subgraph query
according to weighted graphs becomes important in massive graph computing.

Some researches aim to solve the above problems in subgraph query. For example, diversified top-k
subgraph query is proposed recently [5] [6]. To simplify the subgraph query, “query focus” is
introduced as an substitution of finding the entire set of matches [6]. By appointing a focus in query
graph, sub graph query returns only those vertices which match the query focus, rather than the
entire matching subgraph set. Query focus based subgraph query is widely needed in e.g. expert
recommendation [20] and egocentric search [21]. In fact, 15% of social queries are to find matches
of specific nodes [22]. In this paper, we also take the “query focus” as the subgraph query.
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