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Abstract

This paper describes the R package OptimaRegion for the computation of confidence re-
gions on the location of the optima (global maxima or minima) of response surface models.
Both parametric (quadratic and cubic polynomials in up to 5 covariates) and nonparamet-
ric models (thin plate splines in 2 covariates) are supported. The methods are based on
bootstrapping and Tukey’s data depth, and therefore their performance does not rely on
any distributional assumption about the response. A coverage analysis is presented demon-
strating the quality of the regions found. The package also contains an R implementation
of the Gloptipoly algorithm for the global optimization of polynomial responses subject to
bounds.

Keywords: Nonparametric regression, Response Surface Methodology, Optimization, Data-
depth .

Introduction

The goal of many experiments in engineering and science is to find either the maximum, or
“peak”, or the minimum, or “deepest valley”, of some response of interest. How to design and
analyze optimization experiments are problems that pertain to the classical field of Response
Surface Methodology (RSM) (Box and Draper 1987; Del Castillo 2007). The classical approach
in RSM consists in optimizing a fitted model obtained from experimental data, treating it as
if it were the true input/output description of the system under study, neglecting the inherent
uncertainty of the fitted model. From a frequentist point of view, any property or characteristic
of a response surface fitted from experimental data is subject to sampling variability, and hence it
should be possible, in principle, to conduct statistical inference on it. Solutions to the problem of
statistical inference in RSM have been proposed, usually assuming a polynomial response surface
model fitted with ordinary least squares under a normality assumption (Myers and Montgomery
1995; Del Castillo 2007).

One of the most useful inferences in RSM is that of finding a confidence region (CR) on the
location of the global maximum or minimum of a response surface. These CRs have found several
applications in engineering and science. For instance, Carter, Wampler, Stablein, and Campbell
(1982) proposed the idea of using a CR for the optimal dose combination of an anti-Cancer
drug as a way to test for therapeutic synergism. If the CR for the optimal dose combination
excludes all zero-dose treatment combinations, then there is statistically significant evidence
that all of the components are therapeutically synergistic. Otherwise, there are components
that can be eliminated from the formulation, a possibility of interest to companies wishing to
reduce costs. Also related to pharmaceuticals, a CR on the optima of a response is useful for
finding a “design space” in drug development (Peterson 2008). In general, a CR on the optimal
settings of a production process is useful in industrial experiments as their size provides a measure
of robustness. It also provides a set of solutions within which the engineer can “tweak” the
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optimal recipe without jeopardizing the expected optimal response of the system (Del Castillo
2007). A quite different application comes from evolutionary biology. Brooks, Hunt, Blows,
Smith, Bussiere, and Jennions (2005) use a CR on the maxima of experimentally observed fitness
responses to test whether field crickets produce an acoustic call that optimizes fitness, as expected
for a population evolving under stabilizing selection. Also, Rapkin, Jensen, Archer, House,
Sakaluk, Del Castillo, and Hunt (2018) use a CR on the maxima of experimentally observed
fitness responses to nutrient intake to test whether crickets choose an intake of nutrients (protein,
carbohydrates) that maximizes lifespan and reproduction.

Previous work on CRs for the location of response surface optima assume normal-distributed
errors and a quadratic polynomial form (Peterson, Cahya, and del Castillo 2002; Cahya, del
Castillo, and Peterson 2004; Wan, Liu, Bretz, and Han 2016), with the first authors providing
MATLAB code for up to 3 experimental factors. Early work on confidence regions (Box and
Hunter 1954) focused on regions for stationary points of response surfaces, not necessarily on
optimum points, and hence are of limited value (Del Castillo and Cahya 2001). We make special
emphasis in solving the underlying global optimization problem of a response surface that is
not necessarily convex or concave, a problem that has plagued this topic since its inception, the
possibility of non-gaussian errors, and the use of either polynomial models of higher order and in
higher dimensions or more flexible spline models. In this paper, we discuss and illustrate methods
implemented in the R package OptimaRegion for the computation and display of distribution-free
CRs on the location of global optima of both polynomial and thin plate spline models. The
CRs are data-depth based, and follow recent results on the computation of confidence regions of
parametric functions using bootstrapping.

Description of the problem

We wish to find a confidence region (CR) for the (global) optima of a function in k variables
fitted from observed experimental data without relying in multivariate normality or any other
distributional assumption of the data. We assume in this paper a maximization goal without
loss of generality. In this paper, bootstrapping methods and their software implementation are
presented that provide valid and unbiased confidence regions for the optima of a function fitted
either using a linear regression (polynomial) model or a thin plate spline model. A valid 1 — «
CR for a parameter 0, C{__, is a set such that P(§ € CY_,) > 1 — a. Interest is of course in
CR’s that are smallest in size and still have confidence level of at least 1 — «, and hence we
will consider not only the coverage but the area of the CR’s. Also, a 1 — a CR is unbiased
if P(¢ € CY_ ) <1—aforall @ # 6 (Casella and Berger 2002). That is, the probability of
covering any wrong parameter should always be less than the probability of covering the true
parameter.

More specifically, we wish to find a CR for the function:

< — h(X;B) — argmaxf(xﬂé)

where f(x,3) is either a polynomial regression model in x or a Thin Plate Spline model in x. In
both cases, the maximum is subject to lie in a region defined by linear bounds on the regressors.
In the polynomial model case, x* € R* is a random vector with a sampling distribution that
depends on the sampling distribution of the p x 1 least squares estimator B inY =XB+e¢
where X is a n X p design matrix with columns corresponding to the terms in the quadratic
polynomial model f(x, B), and the random errors ¢; in € are i.i.d. with zero mean, constant
variance and with an unknown and unspecified distribution.
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Figure 1: A direct bootstrapping approach to compute the CR on the optima of a response surface f(z,3), Cf(@

fitted to experimental data. Response Surface functions f * are fitted repeatedly to bootstrapped data and directly
optimized.

Direct bootstrapping approach

A direct application of the idea of bootstrapping consists in fitting many response surface models,
globally optimizing each and trimming the outmost « percent x* = h(3) vectors using some
method that orders interior and exterior multivariate data (see Figure 1). Even assuming the
sequence of global optimization problems can be solved exactly, this method does not provide
valid confidence regions (see Table 1 below), i.e., the coverage provided is smaller than the
advertised confidence level. The reason, as discussed by Woutersen and Ham (2013), is that by
trimming the h(3) values we are eliminating extreme observations of h that occurred because
either a) 3 was very extreme or b) because (3 is not very extreme but h(3) is extreme. A CR on
h(3) should exclude instances where h, and not 3, are extreme. This is achieved with the method
implemented in the OptimaRegion package, based on Rao’s confidence region approach (Rao
1973) but not with the direct approach. As mentioned by Wan et al. (2016), Rao’s projection
method is the only confidence set construction method available that guarantees the (1 — «)
confidence level and hence it is the basis of our bootstrapping method.

Implementation of the bootstrapping methods in OptimaRegion

OptimaRegion implements a bootstrapping approach for confidence regions of response surface
optima based on the projection idea in Rao (1973) (p. 473), mapping the confidence set of
response parameters to the confidence set of optima in a discrete or pointwise manner. The
method is based on the following steps:

1 Obtain a 100(1 — a)% CR for g3, C’lﬁ_a, from the asymptotic distribution of 3.

2 For each B € CP__, evaluate h(3).

1—a?
3 Let Cﬁ@ ={r € RFjr = h(B) for all B € Clﬁ_a}
To estimate this confidence region, we use bootstrapping in steps 1 and 3:

1 Obtain an estimate of the 100(1 — a)% CR for 3 by bootstrapping B instances of ,3 These
B

instances make C}_;

2p For cach 3 € CP__, evaluate h(83).

1—a
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Figure 2: Overview of the projection bootstrapping approach implemented in OptimaRegion for finding a CR on
the global optima of a function f(z,3), Cﬂ@ from experimental data. First a CR on the response parameters,

CP__, is obtained.

3g Let C'®) = {7 € Rk|7 = h(B) for all B € CP__}

Note that in order to implement this method for h(x;3) = argmax f(x,3), we need a means
to define the “innermost” 3 parameters in step 1g, and an optimization method that finds
the global maxima of each h(3) in step 2. In step 1, OptimaRegion uses Tukey’s data
depth (Tukey 1975) as implemented in the DepthProc package, and in step 2p it uses either a
nonlinear programming algorithm with multiple restarts as implemented in the nloptr package
(for thin plate spline and quadratic polynomials subject to linear constraints in two regressors)
or if modeling the response with a higher polynomial model subject to bounds, it uses instead
our R implementation of the GloptiPoly global optimization algorithm (Lasserre 2001), to our
knowledge not previously available in the R language. Tukey’s data depth is used to sort the B
instances 3 and trim the a % outermost (the o % with lowest Dp value; for instance, points
such that Dp(x) = 0 define the convex hull of F'). This yields 6{{ ., in step 1.

Furthermore, since we are computing 51'3_ ., bointwise for a finite number of B vectors 3, our
final confidence region for h(3) will also be a set of points. This means that to end up with a
region we need some additional rule that defines the boundary of the region. Woutersen and
Ham (2013) propose to use an arbitrary quantity 7 > 0 and define the CR for h(3) to be the
set of all 3 that are no farther than the euclidean distance 7 from each of the B values h(3).
If this is done, in R? the CR will then be composed of the union of B balls around each x*.
While this step was specified in order to be able to proof the validity of the resulting CR, in
practice it is not clear how to select the radius 7 to make the resulting CR as small as possible
and avoid overly conservative CR’s. Instead, OptimaRegion displays the CRs by simply plotting
the convex hull of all the points x* generated. The coordinates of all the generated points inside
the CR are returned, and the average or centroid estimate of the optimal points x*, a “bagging”
(bootstrapped aggregated) estimate, is also plotted.

In what follows, we concentrate on the computational methods for obtaining CR’s for h(x; ,6') =
arg max f(x, BA) subject to linear bounds. The underlying global optimization process of a non-
convex function makes finding the desired confidence regions a very difficult problem for k£ > 2.
Therefore, OptimaRegion contains separate functions for £ = 2 where a nonlinear programming
method is called from a lattice of initial points, and for polynomial functions with 2 < k < 5 using
the aforementioned GloptiPoly global optimization method which guarantees finding the location
of the global optima in polynomial models. Both ordinary least-squares-fitted polynomial models
and regularized thin plate spline models are considered. The package assumes these models are
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to be fit from experimental data, so the user only needs to enter the response (y), covariate (z)
data and the bounds limiting the experimental region where the optima are to be found.

Types of response surface models considered in package OptimaRegion
The package finds the CR of optima of two classes of response surface models:

e Polynomial response surface models.- These are linear parametric models of the form:

y:f(X,,B)—f—E

where f(x,3) = Z?;é Bi¢j(x) where ¢;(x) : RK — R is a polynomial basis, typically with
¢o(x) = 1. Most common in response surface methodology is the quadratic polynomial
case in k numeric factors, where p = k(k —1)/2 4+ 2k + 1 (Myers and Montgomery 1995).
Also common in mixture experiments are cubic polynomial models. OptimaRegion fits and
determines the CR of the optima of up to cubic polynomials in up to k = 5 experimental
factors. The fitting is based on ordinary least squares using the 1m function in package

~

stats. Bootstrapping is based on the ordinary residuals y; — f(x;).

e Thin Plate Spline models.- Low order polynomials as in used in Response Surface method-
ology are not usually flexible enough to model widely variable functions over a larger
experimental region. For an instance in evolutionary biology, Rapkin et al. (2018) used as
a more flexible alternative Thin Plate Splines (T'SP) to model trade-offs between immune
response and reproductive effort in nutrition experiments in insects (crickets), and computed
CRs on the maxima of the fitted functions. TSPs are nonparametric models that have the
form y = f(x) + ¢ where f(x) is fitted by solving the penalized sum of squares:

: . 1 2

f = argmin S(f) = argmin - ;(yz F(x0))* + A (f)
where \ > 0 is a quantity that penalizes the total variation of f, Jp,(f). The minimization
is done over a Hilbert space H decomposed as H = Ho ® H; where Ho = span{¢;(x)}r_; is
the so-called null space of functions ¢(x) that are not penalized and H; is a reproducible
kernel Hilbert space of functions whose smoothness determines the smoothness of the fitted
function, which results in f (x) being equal to the sum of specific instances of these two
types of functions. Remarkably, the Kimeldorf-Wahba representer theorem shows how the
solution to this infinite dimensional optimization problem is given by a finite number of
parameters:

f=TB+ Kb

where T is an n X p matrix of polynomial functions of order m and K is an n x n matrix,
K = {R(xi,x;)}{;_1, where the R(x;,x;) are radial basis functions that depend on the
distance r only, i.e., R(r) = al|r||*™ %log(r) if d is even and R(r) = al|r||"*™ if d is
odd (a is a constant that depends on m and d). The vectors of parameters § and §
are obtained from minimizing S(f) (for a proof and details, see Wahba (1990)). This
formulation shows the relation between a thin plate spline model and an universal kriging
model with a parameter-free spatial covariance model (Nychka 2000). Thus, despite being a
nonparametric model, the prediction at a new point xg is given by the parametric expression

f(zo) = THB + Ko

where Ty and K are 1 X p and Ky are 1 x n vectors analogous to matrices T" and K.
Bootstrapping is based on the residuals y — T8 — K. OptimaRegion fits and computes
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residuals for this model using the fields package (Douglas Nychka, Reinhard Furrer, John
Paige, and Stephan Sain 2017). The aforementioned projection method is then based on
building first a bootstrapped joint CR on parameters (3, d).

Functions in package OptimaRegion

There are 5 main functions in the OptimaRegion package:

Function Objective
OptRegionQuad Computes distribution-free bootstrapped confidence regions

for the location of the optima of a quadratic polynomial model in 2 regressors
OptRegionTps Computes distribution-free bootstrapped confidence regions

for the location of the optima of a Thin Plate Spline model in 2 regressors
GloptiPolyRegion Computes distribution-free bootstrapped CRs for the location

of global optima for polynomial models up to cubic order in up to 5 regressors
CRcompare Computes bootstrapped confidence intervals for the distance

between the optima of two different response surface models, either quadratic

polynomials or thin plate spline models
GloptipolyR R implementation of the “Gloptipoly” algorithm (Lasserre 2001)

for global optimization of polynomial equations subject to bounds

Examples

Example 1. CR on the maximum of a fitted quadratic polynomial using OptRegionQuad.-
Consider a mixture-amount experiment in two components (Drug dataset) where the effectiveness
of the drug (a percentage) is the response, which in many cases has value zero. Hence, the data
cannot be considered normal and classic approaches to find a CR, cannot be used. Thus, we try
using OptRegionQuad as it does not rely on any normality assumption. The experimental points
on R? form a triangular region, typical of a mixture-amount experiment, where not only the
proportions of two components of a drug are varied but also their amounts are varied. Points
with different proportions of component 1/component 2 correspond to the different “rails” the
experimental points fall on, and the different total amounts (doses) for the same proportion
ration correspond to the different points along a given rail. Peterson and Novick (2007) pointed
out how mixture-amount experiments in 2 components have such a triangular region of interest.
Given the shape of the experimental region, the triangularRegion switch is set to on, with
upper and right vertices as specified for vertex1 and vertex2 (the third vertex is the origin).
This indicates the limits of the experimental region, and therefore, the region where the maxima
of the response surface should be sought. The R command is:

out <- OptRegionQuad(X = Drugl,1:2], y = Drug[3], nosim = 500, LB = c(0,0),
UB = c(0.08,11), xlab = "Component 1 (mg.)", ylab = "Component 2 (mg.)",
triangularRegion = TRUE, vertexl = c(0.02,11), vertex2 = c(0.08,1.8),
outputPDFFile = "Mixture_plot.pdf")

The resulting 95% confidence region generated in the PDF file is shown in Figure 3, which also
shows smoothed contours of the response. Note these are not the quadratic polynomial contours.
Also, note how the CR is “pushed” against the constraint and results in a “thin line”. The red
dot is the centroid of all the generated maxima, the bagging estimate of x*.
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Figure 3: Example 1: a 95% CR on the maximum of a quadratic polynomial function fitted to data from a two
component mixture amount experiment, Drugs datafile. Plot generated with the OptRegionQuad function.

Example 2. CR on the global maximum of a fitted Thin Plate Spline model for a
mixture-amount experiment using OptRegionTps.- Consider next the same mixture-amount
experiments as before (Drug dataset) but suppose we think the quadratic polynomial model
provides is not flexible enough to represent the true surface. Instead, we can try fitting and
optimizing a Thin Plate Spline (TPS) model using function OptRegionTps.

out <- OptRegionTps(X = Drug[,1:2], y = Drugl,3], nosim = 500, lambda = 0.05,

LB = ¢(0,0), UB = ¢(0.08,11), xlab = "Component 1 (mg.)", ylab = "Component 2 (mg.)",
triangularRegion = TRUE, vertexl = c(0.02,11), vertex2 = c(0.08,1.8),

outputPDFFile = "Mixture_plot.pdf")

In contrast with example 1, OptRegionTps will take a few minutes to complete the computations
in a fast PC. Note the parameter 1ambda=0.05; this is the penalization parameter when fitting
a TPS model. Larger values of lambda make the fitted model less “wiggly”. The confidence
levels obtained are conditional on the pre-selected value of 1ambda which can be obtained via
crossvalidation using the package fields. The PDF output file showing the CR. plot is shown in
Figure 4. In this case, the CR contains area in the interior of the triangular experimental region.
The linear boundaries of the shaded CR. are the result of using the convex hull of the optima
generated by the bootstrapping algorithm. Increasing the number of bootstraps may smooth
the boundaries somewhat (i.e., shorter linear segments) but the computation time will increase
accordingly. Despite being a better model for this dataset, the more flexible character of the TPS
model contains a good deal of uncertainty about the location of the maximum drug components
that maximizes the efficacy.

Example 3. CR on the global maximum of a fitted Thin Plate Spline model for a
factorial experiment using OptRegionTps. We now illustrate the use of the OptRegionTps
function for an experiment where the factors are centered around zero and the experimental
region is a square. Suppose we generate some dummy "X’ and 'y’ data by means of Monte Carlo
simulation:

X <- cbind(runif(100,-2,2), runif(100,-2,2))

y <- as.matrix(72 - 11.78*X[,1] + 0.74xX[,2] - 7.25%X[,1]°2 - 7.55%X[,2]"2 -
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Figure 4: Example 2: a 95% CR on the maximum of a Thin Plate Spline function fitted to the data from a two
component mixture amount experiment, Drugs datafile. Plot generated with the OptRegionTps function.
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Figure 5: Example 2: a 95% CR on the maximum of a 2 factor randomly generated factorial experiment over a
squared region. Plot generated with the OptRegionTps function.

4.85%X[,1]*X[,2] + rnorm(100,0,8))
Next we compute a 95% CR on the maxima of a fitted TPS model:

out <- OptRegionTps(X = X, y = y, nosim = 200, LB = c(-2,-2), UB = c(2,2),
xlab = "X1", ylab = "xam)

Note we did not specify a triangular region. The PDF file created on completion is shown in
Figure 5 and displays the corresponding region, together with the contours of the fitted TPS model.

Example 4. Computing confidence intervals on the distance between the optima of
two response surfaces using CRcompare.- Suppose we have experimental data from which
we can fit a quadratic polynomial model to each of two different responses. We now wish to
investigate if the “peaks” of each response are significantly close. A confidence interval on the
distance between the two maxima can be computing with the CRcompare function. To use this
function, we need to provide the X’ and 'y’ experimental data for each response. We first
generate some data for illustration purposes:
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X1 <- cbind(runif(100,-2,2), runif(100,-2,2))

yl <- as.matrix(72 - 11.78*X1[,1] + 0.74*X1[,2] - 7.25*%X1[,1]"2 - 7.55%X1[,2]"2 -
4.85%X1[,1]1*X1[,2] + rnorm(100,0,8))

X2 <- cbind(runif(100,-2,2), runif(100,-2,2))

y2 <- as.matrix(72 - 11.78+X2[,1] + 0.74*X2[,2] - 7.256%X2[,1]°2 - 7.55%X2[,2]"2 -
4.85%X2[,1]1*X2[,2] + rnorm(100,0,8))

We next run the CRcompare routine with this input-output data:

out <- CRcompare(X1 = X1, y1 = y1, X2 = X2, y2 = y2, responseType = 'Quad’,
nosimland2 = 200, alpha = 0.05, LBl = c(-2,-2), UB1 = c(2,2), LB2 = c(-2,-2),
UB2 = c(2,2) )

Note we specified a quadratic ('Quad’) response model for both responses and 200 bootstrap iter-
ations. Also note that the lower and upper bounds within which each response may have its max-
imum can differ ('maximization’ is TRUE by default). CRcompare will run either OptRegionQuad
or OptRegionTps for each response and compute all the pairwise distances from the two CR’s. It
will then bootstrap the distances and will output the corresponding bootstrap confidence interval
on the mean and median distance:

> out$mean
[1] 0.3643884

> out$median
[1] 0.305715

> out$ciMean
conf
[1,] 0.95 36.43 984.66 0.3324372 0.406087

> out$ciMedian
conf
[1,] 0.95 18 966.76 0.2833316 0.3490922

Hence, a 95% confidence interval on the mean distance is (0.3324,0.4060) and a 95% confidence
interval on the median distance is (0.2833,0.3490).

Example 5. Computing a CR on the global optimum of a polynomial model in 3
factors using GloptiPolyRegion. Box and Draper (1987) (p. 305) analyze a 3-factor experiment
using classical response surface techniques, in particular, canonical analysis, to determine the
nature of the optimum of a quadratic polynomial model. In this experiment , the goal is to find
the percentage concentration of two constituents (x; and z2, in coded units) and the temperature
(z3, coded) that maximize the elasticity of certain polymer (y). The data for this experiment can
be found in file quad_3D:

> str(quad_3D)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 16 obs. of 4 variables:
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$x1:num -11-11-11-11-22 ...
$x2: num -1-111-1-11100 ...
$x3: num -1 -1-1-1111100 ...
$yv : num 25.7 49 42.8 35.9 41.5 ...

A second order polynomial model fitted using ordinary least squares is:

f(x) = 57.31 4+ 1.5z1 — 2.13x5 + 1.8123
— 7.13z129 — 3.27x 03 — 2.73x023 — 4.6927 — 6.2723 — 5.213,

and has an excellent fit with all terms statistically significant, no lack of fit, R? = 0.972, and
all usual diagnostics look adequate (see Del Castillo (2007), chapter 7). The fitted quadratic
polynomial has a maximum at (0.4603, —0.4644,0.1509). At the end of their analysis, Box and
Draper (1987) indicated, without showing the corresponding computations, that

“A more accurate picture about what is known at this stage of experimentation can
be gained by the confidence region calculation described in Box and Hunter, 1954”

Del Castillo and Cahya (2001) reanalyzed this experiment, showing how a confidence region
on stationary points, such as Box and Hunter’s, results in a disjoint region, since, despite the
excellent fit, there is a non-neglible probability the function is in reality a saddle function, whose
stationary point is located far away from the region where the other stationary point, which
corresponds to a maximum, occurs (Box and Hunter regions are CR on all the stationary points,
not on the global optima. In most engineering and science applications, a CR on true optima is
desired). To generate a 90% confidence region for the global maximum, we run the R command:

out <- GloptiPolyRegion/(
X = quad_3D[, 1:3], y = quad_3D[, 4], degree = 2,
1b = c¢(-2, -2, -2), ub = c(2, 2, 2), B = 500, alpha = 0.1,
maximization = TRUE, outputPDFFile = "CR_quad_3D.pdf", verbose = TRUE
)

and obtain the confidence region in Figure 6. Contrary to the CR on all stationary points,
the region obtained is not disjoint and corresponds only to points of maximum response. To
determine the resulting set of bootstrapped maxima and the bagging estimate of the global
maximum, enter:

> str(out)

List of 2
$ boot_optima : num [1:1800, 1:3] 0.396 0.561 0.406 0.926 0.29 ...
$ boost_optimum: num [1:3] 0.502 -0.499 0.149

Example 6. A CR on the global optimum of a 5-factor cubic polynomial model
using GloptiPolyRegion. Consider next the function:

fl@)=p@) +e=10— (v1 — 1.5)* — (32 — 2)® — (23 — 2.5)* — (v4 — 3)® — (25 — 3.5)?

4+0.123 — 0.123 — 0.1z — 0.123 — 0.123 + 29wy — 2324 + €

with € ~ N(0,0? = 22) (i.i.d), defined in the region R = {0 < z; <5 for i = 1,---5}. The mean
response has a global maximum at z* = (2.28, 2.44, 1.02, 2.65, 2.54). File cubic_5D contains
300 simulated realizations of the function above evaluated at points x € R generated using a
Latin Hypercube. To obtain a 95% CR on the location of the maximum response, we enter the
command:
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Figure 6: Pairwise projections of a 90% CR for the location of the global maximum in the example in Box and
Draper (1987) obtained using GloptiPolyRegion.

out <- GloptiPolyRegion(

X = cubic_b5D$design_matrix, y = cubic_bD$response, degree = 3,

1b = rep(0, 5), ub = rep(5, 5), B = 200, alpha = 0.05,

maximization = TRUE, outputPDFFile = "CR_cubic_5D.pdf", verbose = TRUE
)

11

Figure 7 shows a matrix scatter plot generated by this command, displaying the desired CR.

To determine the resulting set of bootstrapped maxima and the bagging estimate of the global
maximum, enter:

> str(out)

List of 2
$ boot_optima : num [1:1900, 1:5] 5 2.37 2.44 2.89 5 ...
$ bagged_optimum: num [1:5] 3.85 2.38 1 2.62 2.49

Numerical evaluation of coverage probability

For a given point x (equal to x* or any other point), the coverage is defined as the proportion of

times x € 6{@ in Nj trials from simulated data. Wei and Lee (2012) show how a data-depth
confidence region is second order accurate, that is, its coverage error (the difference between the

actual coverage and the nominal confidence level) is of order n~! where n denotes the sample size.
They showed this result holds for different depth measures, including Tukey’s data depth measure.

Here we evaluate the performance of the functions OptRegionQuad, GloptiPolyRegion and
OptRegionTps in package OptimaRegion via Monte Carlo simulation, focusing on the coverage
and size of the resulting confidence regions.

1) Coverage of CR on the optima of a quadratic polynomial model in two
covariates—general nonlinear optimization.

A CR for the optima of a quadratic polynomial model using the method described above
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0 1 2 3 4 5

x5

Figure 7: Pairwise projections of a 95% CR on the maximum of f(z) = 10 — (z; — 1.5)® — (z2 — 2)* — (z3 — 2.5)% —
(£4 —3)* — (x5 — 3.5)> + 0.1zF — 0.123 — 0.1z3 — 0.1z — 0.1z + @ozy — x324.

is obtained using the OptRegionQuad function. Table 1 shows some coverage levels for the
global maximum of the simulated response surface f(x) compared with the direct bootstrapping
approach referred earlier. Here

F(x) =90.79 — 1.09521 — 1.045z5 — 0.775z1 29 — 2.7812% — 2.52423

to which i.i.d. N(0,02%) noise was added. This function has a single maximum at x* =
(—0.1716,—0.1806)". The points x at which the function was simulated were the 11 runs in a
rotatable Central Composite Design with a domain of radius v/2 around the origin (Box and
Draper 1987; Del Castillo 2007) with 11 runs, in addition to sets of 11 runs randomly generated
according to a uniform distribution on the square that goes from (—+/2, —/2) in its lower left
corner to (v/2,v/2) in the upper right corner, giving a total of n observations.

The results on Table 1 show how, compared with the direct bootstrapping approach, the
projection approach implemented in the OptRegionQuad function generates valid confidence
regions, although always achieving higher than advertised coverages'. A reason for this behavior
is that the final CR contour is obtained from the convex hull of the optima x* which will tend to
provide conservative coverage regardless of n and o (see Table 2). The direct bootstrap method,

!The estimated standard error of the estimated coverage p is given by V/P(1 —p)/n, so all the estimated
coverages presented in this paper are very precise.
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in contrast, does not achieve the nominal coverage and cannot be recommended (and hence the
OptimaRegion package does not implement it).

CR type N, B a n (reps.)  coverage
Direct 1000 1000 0.10 55 (5) 0.843
Direct 1000 1000 0.10 1100 (100) 0.868

OptRegionQuad 1000 1000 0.05 1100 (100) 0.981
OptRegionQuad 1000 1000 0.10 1100 (100)  0.979
OptRegionQuad 1000 1000 0.20 1100 (100) 0.930

Table 1: Estimated coverages of bootstrapped (1 — «)100% CRs for the maximum of a quadratic polynomial
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regression model. N, is the number of simulations, B is the number of bootstrapped samples, n is the sample size.

Simulated noise was N (0, 2?).

n(reps.) coverage o  area sd.(area) —2B_ Ei(:;iz;
1100(100)  0.981 2 0.007 0.00087 0.00088  0.0001
2200(200) 0.978 2 0.0036 0.00036 0.00045 0.000045
5500(500)  0.987 2 0.0014 0.00013 0.00018 0.000016
1100(100) 0.988 5  0.052 0.012 0.0065 0.0015
2200(200) 0.984 5 0.023 0.0037 0.0029  0.00046
5500(500) 0.985 5 0.009 0.0011 0.0012  0.00014
1100(100) 0.983 10 0.475 0.4004 0.059 0.0501
2200(200) 0.981 10 0.137 0.068 0.0172 0.0085
5500(500) 0.987 10 0.041 0.0083 0.0052  0.00104

Table 2: Estimated coverages of the optimal point of a 95% bootstrapped CR as obtained by OptRegionQuad

for the maximum of a quadratic polynomial regression model. In all cases, N; = 1000, and B = 1000 were used.

Maximum area in the search region is 8 = (—v/2,v/2) x (—v/2,v/2).

The areas of the CRs computed by OptRegionQuad are quite small, rapidly decreasing in size as
n increases (Table 2), a very desirable property. Finally, Table 3 shows that the CRs obtained
by OptRegionQuad are unbiased, since the coverage of non-optimal points is always lower than
1 — o, with lower coverages the farther the non-optimal point is from x*. As shown below, the
behavior of all CR computed by the package share these properties.



14 The OptimaRegion Package

coverage o a b
0.760 5 1.20 1.00
0.047 5 1.50 1.00
0.008 5 0.50 1.00
0.000 5 0.20 1.00
0.000 5 2.00 1.00
0.795 5 1.00 1.20
0.083 5 1.00 1.50
0.001 5 1.00 0.50
0.000 5 1.00 0.20
0.000 5 1.00 2.00
0.985 5 1.00 1.00

Table 3: Estimated coverages of non-optimal points (a - z1,b - x5) using 95% bootstrapped CRs as obtained by
OptRegionQuad for the maximum of a quadratic polynomial regression model. In all cases, n(reps.) = 5500(500),
N, = 1000, and B = 1000. The last case (a = b = 1) corresponds to the coverage of the true optimum point.

2) Coverage of CRs for optima of higher order polynomial models in higher
number of variables using the GloptiPoly algorithm

Since in experimental data the fitted polynomial model cannot be expected (or should not be
forced) to be convex or concave, it is necessary to use some general nonlinear optimization
techniques and run them from multiple initial solutions to obtain the best possible estimate
of the location of the global optima. This method, however, requires the initial solutions to
be dense enough in the experimental region, which is feasible only for functions of one or two
regressors, becoming unrealistic when the dimension of the experimental region is higher. For
this reason, OptimaRegion provides separate functions for quadratic polynomials in 2 regressors
and for higher oder polynomials in more regressors.

Three factor coverage analysis. For higher dimensional polynomial models, we utilize the
GloptiPoly algorithm (Lasserre 2001; Henrion and Lasserre 2003) to search for the global optima.
This algorithm reduces a generally non-convex polynomial optimization problem to a sequence of
convex linear matrix inequality problems, which in turn generates a sequence of lower bounds
monotonically converging to the global optimum of the original problem (see Appendix for a
fuller description of this method). For the small-scale response surface problems described in the
literature, the global optima can be reached at low computational cost using this method.

The GloptiPoly algorithm is incorporated into the GloptiPolyRegion function to compute
confidence regions on optima. OptimaRegion also includes a stand alone R implementation
of this algorithm for simpler global optimization problems (see Appendix). To determine the
coverage of the CR obtained by GloptiPolyRegion we consider the cubic model in 3 variables:

flx)=p(x) +e=10— (1 — 1)* = (22 — 2)* — (z3 — 3)® + 0.12F — 0.123 — 0.123 + ¢

defined in the region R = {0 < x; <5 for i = 1,2, 3}, which, assuming we wish to maximize has a
maximum at z* = (1.23,1.61,2.24). We simulated realizations of this function with ¢ ~ N(0,42).
The CRs are computed from a noisy sample of size N = nm = 1500, where n = 100 is the number
of unique x— locations generated via a Hyper Latin Square (HLS) design within R and m = 15
is the number of replicates at each location. Table 4 shows the coverage analysis under different
sample sizes n = 100, 150, 200, 500, while m = 15 is fixed. For each value of n, we computed 200
CRs each based on B = 1000 bootstrapped replications. Under the chosen n values, all simulated
coverage probabilities are higher than the advertised confidence level 95%. As n increases, both
the mean and the standard deviation of the volumes of the CRs decrease, providing a more
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accurate estimate on the location of the optimal point. Table 5 shows the coverages of some
non-optimal points for n = 500, which indicate that the CRs obtained are unbiased.

volume (%) sd(volume) (%)

n  coverage volume sd.(volume) e — T

100 0.980 0.33 0.25 0.264 0.200
150 0.960 0.09 0.04 0.072 0.032
200 0.970 0.04 0.02 0.032 0.016
500 0.955 0.01 ~0 0.008 ~0

Table 4: Estimated coverages of the optimal point of a 95% bootstrapped CR as obtained by GloptiPolyRegion
for the maximum of a cubic polynomial regression model. In all cases, Ns = 200, B = 1000, m = 15, and 0 =4
were used.

coverage a b c
0.000 1.2 1.0 0.9
0.000 0.2 1.0 0.8
0.000 14 1.0 0.7
0.000 0.0 1.0 1.0
0.000 1.0 137 1.0
0.000 1.0 0.68 0.3
0.000 1.0 034 0.2
0.000 1.0 171 1.0
0.955 1.00 1.00 1.00

Table 5: Estimated coverages of non-optimal points (a-z7,b- x5, c-z3) using 95% bootstrapped CRs as obtainted
by GloptiPolyRegion for the maximum of a cubic polynomial regression model. In all cases, Ny = 200, B = 1000,
n = 500, m = 15, and o = 4 were used. The last case (a = b = ¢ = 1) corresponds to the coverage of the true
optimum point.

Five factor coverage analysis. Consider again the 5-covariate function in example 6 and
Figure 7:

fl@)=p(@) +e=10— (v1 — 1.5)* — (32 — 2)® — (v3 — 2.5)* — (v4 — 3)? — (25 — 3.5)?

+0.123 — 0.123 — O.ng —0.1z5 — O.l:rg + Xoxy — T3T4 + €

defined in the region R = {0 < x; < 5 for i = 1,---5}, which has a global maximum at z* =
(2.28, 2.44, 1.02, 2.65, 2.54). We simulated realizations of this function with e ~ N(0,62). The
CR is computed from a sample of size N = nm, where n is the number of unique locations
generated via a HLS design within R and m = 15 is the number of replicates at each location.
Table 6 shows the coverage analysis under different n = 300, 400, 500 values while m = 15 is fixed.
For each value of n, we computed 200 CRs each based on B = 10000 bootstrapped replications.
As n increases, the estimated coverage converges above the advertised confidence level 95%, while
again, both the mean and the standard deviation of the CR volumes decrease. Table 7 shows
the coverages of some non-optimal points for n = 500, which indicates how the CRs obtained by
GloptiPolyRegion are unbiased as well.

3) Coverage analysis of the CR on optima from Thin Plate Spline models.

Finally, to examine the coverage provided in the case a Thin-Plate Spline model is fitted, the
simulated function was:

flar,x2) = ((21 = 2)* + (22 = 2)* = (21— 2) + 2(21 — 2)(22 — 2)) exp(—(z1 — 2)* — (22 — 2)?)

15
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volume ((7 ) sd(volume) (%)

n  coverage volume sd.(volume) e — T

300 0.950 3.286e-1 1.679e-1 1.052¢-2 5.373e-3
400 0.965 1.337e-1 5.684e-2 4.278e-3 1.819e-3
500 0.970 8.788e-2 4.067e-2 2.812¢-3 1.301e-3

Table 6: Estimated coverages of the optimal point of a 95% bootstrapped CR as obtained by GloptiPolyRegion
for the maximum of a cubic polynomial regression model in 5 regressors. In all cases, N; = 200, B = 10000,
m = 15, and o = 6 were used.

coverage a b c d e
0.000 1.2 1.0 0.9 1.0 0.7
0.000 0.2 1.0 0.8 0.9 0.8
0.000 1.4 1.0 0.7 0.8 0.9
0.000 0.0 1.0 1.0 0.7 1.0
0.000 1.0 137 1.0 0.7 1.0
0.000 1.0 068 0.3 0.8 0.9
0.000 1.0 034 0.2 0.9 0.8
0.000 1.0 171 1.0 1.0 0.7
0.970 1.00 1.00 1.00 1.00 1.00

Table 7: Estimated coverages of non-optimal points (a - x1,b- x5, c- x3,d - x4, e - x5) using 95% bootstrapped
CRs as obtainted by GloptiPolyRegion for the maximum of a cubic polynomial regression model in 5 factors. In
all cases, N, = 200, B = 10000, n = 500, m = 15, and o = 6 were used. The last case (a =b=c=d=e=1)
corresponds to the coverage of the true optimum point.

defined in the region R = {0 < 1 < 5,0 < 9 < 5}, which has a global maximum in this region at
(x7,25) = (1.2542,1.4634) (note it has another local maxima and a deep minimum as well within
the region of interest). In each Monte Carlo simulation we generate n uniformly distributed
random x values over R with observations f(x) + ¢ where € ~ N(0,02) are i.i.d.

Computing a projection bootstrap confidence region for a Thin Plate Spline (TPS) model also
provides higher than advertised coverages of the optimum point, almost always close to 100 %,
but, again, with sizes (areas) that decrease rapidly as more experiments are performed (Table 8).
These results were obtained with the OptRegionTps function.

As it can be seen in Table 9, the coverage percentage of mon-optimal points is less than the
confidence level 1 — a, with coverage that decays as we consider non-optimum points farther than
the optimum (7, z%). This indicates the projection bootstrapped confidence regions obtained by
OptRegionTps are also unbiased.

n  coverage area sd.(area) —ER_ (%) ff;j;i; (%)
100 0.988 12.92 6.00 51.68 24.01
150 0.998 11.76 4.75 47.04 19.00
200 1.000 7.14 2.89 28.56 11.56
250 1.000 6.35 2.42 25.40 9.68
300 0.992 5.25 2.26 21.02 9.05
500 0.998 3.90 1.59 15.61 6.36

Table 8: Estimated coverages of the optimal point of 95% bootstrapped CRs as obtained by OptRegionTPS for
the global maximum of a Thin Plate Spline model. In all cases, Ns = 500, B = 200, A = 0.04, and o = 0.5 were
used. Maximum area in the search region is 25 = (0,5) x (0, 5).
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coverage a b
0.860 1.20 1.00
0.950 0.20 1.00
0.780 1.40 1.00
0.518 0.00 1.00
0.922 1.00 1.37
0.914 1.00 0.68
0.690 1.00 0.34
0.554 1.00 1.71
0.992 1.00 1.00

Table 9: Estimated coverages of non-optimal points (a - 27,b - 3) using 95% bootstrapped CRs as obtained by
OptRegionTps for the maximum of a Thin Plate Spline model. In all cases, n = 300, Ns = 500, B = 200, A = 0.04,
and o = 0.5. The last case (a = b = 1) corresponds to the coverage of the true optimum point.

Conclusions

The OptimaRegion R package implements efficient distribution-free methods for the computation
and display of confidence regions on the location of the global optima of a fitted response surface
subject to linear bounds, either based on a polynomial or a Thin Plate Spline response surface
model. The functions for 2-covariates include the option of specifying linear constraints that can
define a mixture-amount experiment. The methods are particularly valuable for experimenters
who need to fit and optimize response surface models and guarantee that only global optima are
considered in the confidence regions, a problem that has plagued this field in the past. Given the
inherent difficulties of the underlying global optimization problems, problem size limitations are
up to a cubic polynomial in up to 5 variables/regressors, and up to two regressors for a Thin Plate
Spline. The methods are based on Tukey’s data depth and bootstrapping. Coverage analysis
demonstrates that the resulting confidence regions are valid and unbiased, and while the coverage
is conservative, the regions are of rapidly diminishing size in the number of observations. A stand
alone implementation in R of the GloptiPoly algorithm for global optimization of polynomial
functions subject to bounds is also provided in the package, a function not previously available
in R.

17
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Appendix. The GloptiPoly algorithm and the GloptiPolyR function for the
global optimization of polynomial equations subject to bounds

The package OptimaRegion includes an R implementation of the GloptiPoly algorithm for the
global optimization of polynomial models as a stand-alone function. Under certain conditions
discussed next (which hold for the cases allowed by OptimaRegion) the GloptiPoly method
guarantees convergence to a global optimum of a polynomial equation subject to polynomial
constraints.

Let go(z) : R™ — R be a polynomial of degree dy. The function “gloptipoly” solves the following
optimization problem:

(P) Iwrélﬁ go(z),

where K = {x € R" : g;(x) > 0,i=1,...,m}, and d; is the degree of g;, i =1, ..., m.

Lasserre (2001) provided a method for solving (P). First, it can be shown that (P) is equivalent
to

@ min [ go(e) dufa)
sit. w(K) =1,

where the minimum is taken over all probability measures @ on K. Then, instead of solving
(Q) directly, we can solve a semidefinite relaxation of (Q) of order N, denoted by (Q%), and
increase the order of relaxation until we obtain the solution to (@) and hence the solution to
(P). Under a particular assumption, the optimal solutions to (Q") are guaranteed to converge
monotonically to the optimal solution to (P). The assumption happens to be satisfied when the
feasible region K is a convex polytope, which is always the case for the problems considered in
OptimaRegion.?

Before we state (QV), we must first give some preliminaries. If go is the coefficient vector
associated with go(z), then we may write

go(@) = 3 (g0,
«
where « is an index such that 2® = z{'z5% ... 29" and > ;| a; < dy. Substituting () into the
objective function in (@) yields a sum of moments. We denote these moments as the variables y,;
that is, yo = [(g0)az® dp(z). Instead of using a probability measure p as the decision variable,
the relaxed problem uses the moment vector y = {y,}. The theory of moments states that a
necessary, but not sufficient, condition for the components of a vector y to correspond to the
values of the moments of some probability measure p is for certain moment matrices (made up
of the components in y) to be positive semidefinite. Because these conditions are necessary but

not sufficient, the relaxed problem (Q%) will admit more feasible solutions than (Q) itself.

We now describe these moment matrices. Let
2 2 2 N
{1, 21,2, ..., Tp, TF, T1T2, T1T3,y «ooy 1Ty, Ty LTy eey Ty vey T

be a basis for the space of polynomials up to degree N, which has dimension s(N). The moment
matrix My (y) of order N is a square matrix of dimension s(/N) and is formed as follows. Label
the rows and columns of My (y) with the terms in (). The (i, j)™ entry of My (y) is the moment
Y corresponding to the product of the i*" and ;' terms in (). For instance, if n = N = 2, then

2See Lasserre (2001) for the statement of the assumption.
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1 T x9 x% Tr1T2 :E%
1 1 w10 ¥Y,1 Y20 Y11 Yo2
x1 Y1,0 Y20 Y1,1 Y30 Y21 Y1,2
My (y) = w; Yo,1 Y11 Yo2 Y2,1 Y12 Yo3
5 Y2,0 Y30 Y2,1 Y40 Y31 Y22
172 Y1 Y21 Y12 Y31 Y22 Yi,3
a3 Yo2 Y12 Y03 Y22 Y1,3 Vo4

The requirement that My (y) be positive semidefinite is always a constraint in the relaxed problem
(i.e., even when K = R™). Each additional constraint (i.e., each g;, i = 1,...,m) warrants that an

additional moment matrix My_,,(g;y) be positive semidefinite, where v; = [%], i=1,...,m. As
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an example to see how these matrices are formed, again take N =n =2 and g1(x) =2 —x1 > 0.

Since d; = 1 = vy, the order of the corresponding moment matrix is N — v; = 1, and we have

I vi0 %Yo
Mi(y) = |y10 Y20 Y11
Yol Yi1 Yo2

To get Mi(¢g1y), we multiply the corresponding basis terms in M;(y) (e.g., y1,1 corresponds to
r122) by g1(x) = 2 — 21 and convert back to the corresponding moments 7>

2—1y10 2010 — Y20 2Y0,1 — Y11
Mi(y) = [2y10 — Y20 220 —¥30 2¥1,1 — Y21
2901 — Y11 2y11 —Yy2,1 2y02 —y1.2

The complete relaxed problem of order N is thus
(QN) Hlyin Z(QO)aya
«

s.t. MN(y) =0
My_y;(giy) =0, i=1,..,m.

The R package Rdsdp is used to solve (Q7). This package uses a dual-scaling algorithm to solve
semidefinite optimization problems whose dual takes the form (Zhu and Ye (2016)):

sup bly
st. C—Ay = 0.

The “gloptipoly” function reshapes (Q) to have the form of () and then calls Rdsdp to solve
(). The solution is in the form of a vector of moments y* = {y*} which has length s(2N).
Recall that our goal is to solve (P) and thus we need the solution in the form of the vector
x. Ordinarily then, we would need a procedure for extracting x from y*. However, because
the domain considered in OptimaRegion always consists of linear constraints, the n compo-
nents of y* corresponding to the terms 1, ..., x, (i.e., Y1,0,..0,%0,1,....05 - Y0,....0,1) Will together
always form a feasible solution to (P) (Henrion and Lasserre (2003)). Let y* be the vector
y* truncated to only these n components, and let ¢* be the optimal objective value of (Q™).
If y* is feasible (which it always will be in our case) and if go(y*) — ¢* < €, where € is some
tolerance, then the function “gloptipoly” reports that the optimum has been reached. Other-
wise, “gloptipoly” increases N by one and repeats the procedure until the tolerance level is satisfied.

3The reader is referred to Henrion and Lasserre (2003) for additional details.
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The gloptipoly algorithm has been implemented in function GloptiPolyR. To illustrate its use,
consider the following quadratic function in 3 variables:

f(x) = —1.521 + 21329 — 1.81x3 + 7.132122 + 3.27T2123 + 2.732073 + 4.692% + 6.2723 + 5.2173.

The minimum of f(z) over the region R = {-2 < z; <2,i=1,2,3} is 2* = (0.46, -0.46, 0.15).
The optimization problem can be formally written as:

min  f(z)

subject to: gi(x) =21 +2>0
g@(r)=21—-2<0
g3(x) =22+2>0
ga(z) =22 —2<0
gs(x) =23+2>0
ge(x) =23 —2<0

For this problem, the input for GloptiPolyR is the specification of problem (P), which needs to
be a list of 7 sub-lists, corresponding to f(z), g1(z), g2(x), ..., ge(x), respectively:

P <- 1ist()

p_f <= 1ist()

p_g_1 <= list(); p_g_2 <- list(); p_g_3 <- list()
p_g_4 <- list(); p_g_5 <- list(); p_g_6 <- list()

Each of these 7 sub-lists has two elements: (1) a multi-dimensional array, denoted by ’c’, and
(2) an attribute, denoted by ’t’. The multi-dimensional array is generated from the monomial
coefficients of the corresponding polynomial function. The rule is to put the coefficient of the
x’lx;xlg term in the [i + 1,7 4+ 1,k + 1] position of the array, and place zeroes in other positions:

p_f$c <- array(0, dim = c(3, 3, 3))

p_f$cl2, 1, 1] <- -1.5; p_f$cl1, 2, 1] <- 2.13; p_f$clt, 1, 2] <- -1.81
p_f$cl[2, 2, 1] <= 7.13; p_£f$c[2, 1, 2] <- 3.27; p_£f$cl1, 2, 2] <- 2.73
p_f$cl3, 1, 1] <- 4.69; p_£f$cl1l, 3, 1] <- 6.27; p_£f$c[1, 1, 3] <- 5.21

p-g_1$c <- array(0, dim = c(3, 3, 3))
p_g_1$cll, 1, 1] <- 2; p_g_1$cl2, 1, 1] <- 1

p_g_2%c <- array(0, dim = c(3, 3, 3))
p_g_2%cl1, 1, 1] <- -2; p_g_2%c[2, 1, 1] <=1

p_g_3%c <- array(0, dim = c(3, 3, 3))
p-g_3%cl1, 1, 1] <- 2; p_g_3%c[1, 2, 1] <- 1

p-g_4%c <- array(0, dim = c(3, 3, 3))
p_g_4$cl1, 1, 1] <- -2; p_g_4$cl1, 2, 1] <- 1

p_g_5%c <- array(0, dim = c(3, 3, 3))
p_g_5%cl1, 1, 1] <- 2; p_g 5%c[1, 1, 2] <- 1

p_g_6%c <- array(0, dim = c(3, 3, 3))
p_g_6%cl1l, 1, 1] <- -2; p_g_6%cl1, 1, 2] <- 1
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Next set the attribute for the objective function as either “min” or “max”:
p_f$t <~ "min"
Then set the attributes for the constraint functions as either “>=" or “<=":

p_g_1$t <= ">="; p_g 2§t <~ "<="
P_g_3$t <= ">=ry p_g_4$t <= Mgt
p_g_5%t <- ">="; p_g_6%t <- "<="

Finally, we construct problem (P) from the 7 sub-lists and use it to call GloptiPolyR:

P <- list(p_f, p_g_1, p_g_2, p_g_3, p_g_4, p_g_5, p_g_6)
result <- GloptiPolyR(P)

GloptiPolyR returns the global optimal solution and corresponding objective value:

> result
$solution
[1] 0.4603 -0.4645 0.1509

$objective
[1] -0.9765
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