IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.28, NO.7, JULY 2016

1635

Aspect-Level Influence Discovery from Graphs

Chuan Hu and Huiping Cao

Abstract—Graphs have been widely used to represent objects and object connections in applications such as the web, social
networks, and citation networks. Mining influence relationships from graphs has gained increasing interests in recent years because
providing information on how graph objects influence each other can facilitate graph exploration, graph search, and connection
recommendations. In this paper, we study the problem of detecting influence aspects, on which objects are connected, and influence
degree (or influence strength), with which one graph node influences another graph node on a given aspect. Existing techniques focus
on inferring either the overall influence degrees or the influence types from graphs. In this paper, we propose a systematic approach to

extract influence aspects and learn aspect-level influence strength. In particular, we first present a novel instance-merging based
method to extract influence aspects from the context of object connections. We then introduce two generative models, Observed
Aspect Influence Model (OAIM) and Latent Aspect Influence Model (LAIM), to model the topological structure of graphs, the text
content associated with graph objects, and the context in which the objects are connected. To learn OAIM and LAIM, we design both
non-parallel and parallel Gibbs sampling algorithms. We conduct extensive experiments on synthetic and real data sets to show the
effectiveness and efficiency of our methods. The experimental results show that our models can discover more effective results than
existing approaches. Our learning algorithms also scale well on large data sets.

Index Terms—Graph mining, machine learning, Gibbs sampling, knowledge extraction

1 INTRODUCTION

RAPHS have been used to represent objects and interac-

tions between objects in many applications. The con-
nections among objects (i.e., edges between graph nodes)
in graphs can represent the information that one object
influences other objects. However, these connections are
not equally important. For instance, strong and weak ties
often exist in social networks [30]. Most existing graphs do
not explicitly represent how strong the influence relation-
ships happen in specific aspects.

Let us use influence aspect to denote the area (or con-
text) in which one object influences another object, and
use the influence degree to denote how strong the influence
is. Mining and providing influence relationships with
influence aspects and influence degrees to describe object
connections can greatly improve the use of graphs in the
process of graph exploration (e.g., [20], [32], [36]), graph
search (e.g., [21]), and connection recommendations
which are based on object relationships in graphs (e.g.,
[28], [33]). We give three examples to show the need of
mining influence aspects and aspect-level influence
degrees from graphs.

Motivating Example 1. The citation relationships among
articles can provide researchers helpful information to
find articles related to what (s)he is interested in. How-
ever, given a research article, there may be hundreds or
thousands of research papers citing it. Although all these
articles are influenced by the given article, only very few
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of them are strongly influenced by it regarding one
aspect (e.g., methodology). Being able to discover on
which aspect and how strong one article influences the
others can greatly help a researcher explore or search
publication collections.

Motivating Example 2. People in a social network are
connected with and have influence to each other. How-
ever, even for directly connected people, their influence to
each other is different. Discovering the strength of connec-
tions and the connection types can help identify strong
ties (i.e., people with high influence relationship). Stron-
ger influence relationships can provide more information
for product recommendations. For instance, if a user
named Alice is influenced by her friend Sarah more on
entertainment aspect and influenced more by her friend
Bob on study aspect, then Sarah’s movie preference is
more useful (than Bob’s) when we make movie recom-
mendations to Alice.

Motivating Example 3. In biological pathway databases
(e.g., Kyoto Encyclopedia of Genes and Genomes
(KEGG) [17], Reactome [16]), molecules (e.g., genes, pro-
teins) are treated as graph objects whose content describes
their functionalities, and interactions between molecules are
modeled as graph edges. The molecule interactions (edges)
are annotated with different contexts, which are experimen-
tal settings or conditions under which interactions happen.
Discovering the influence relationships among molecules in
different contexts (i.e., on different aspects) can greatly
improve the understanding of biological pathways.

Much effort has been put to discover influence on differ-
ent types of graphs. But most of these techniques [7], [20],
[32], [36] focus on detecting influence degrees.

Our work is different in that we detect both influence
aspects and influence degrees at the aspect level from graphs by
utilizing the topological structure of graphs, the text content
associated with graph nodes, and the context in which
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graph nodes are connected. Influence aspects denote how
two nodes are connected and influence degrees at the aspect
level describe how strongly two graph nodes are connected
on the given aspect. In many graphs, aspect labels are not
explicitly available. For example, in citation networks, sec-
tion labels in articles can help us identify the aspects (con-
text) of the content. However, in social networks, not every
follow relation has explicit connection labels (aspects).

To discover the aspect-level influence relationships from
graphs, we need to address several major challenges.

e Influence aspects and the aspect-level influence
degrees need to be properly defined, represented,
and modeled.

e Influence aspects need to be automatically extracted
from the contexts of graph connections, which are
short sentences.

e Strategies are needed to evaluate the effectiveness of
the discovered aspects and the aspect-level influence
degrees.

e Both the text and structure information of graphs
need to be utilized in the process of influence discov-
ery because both graph nodes and edges carry infor-
mative knowledge.

e The proposed solution should scale on large data
sets in the real world.

To address the above challenges, we first propose a new
semi-supervised method to automatically extract context
labels, which act as influence aspects, from graph connec-
tions. Then, we propose two novel aspect influence models
to capture the influence aspects and the influence degrees
at the aspect level by utilizing both the text and structure
information in a graph. In particular, we model the text
information of graph nodes using latent topic states, which
are introduced in topic models [4]. We model the graph
edges (structure) by associating them with influence
aspects (which can be observed, or extracted, or latent) and
aspect-level degrees.

The contributions of this work are as follows.

e We formally define the problem of discovering
aspect-level influence relationships, which consist of
influence aspects and influence degrees on specific
aspects from graphs.

e We propose a semi-supervised aspect extraction
algorithm. This algorithm utilizes a very few number
of context sentences with labeled aspects to learn a
classifier and uses the classifier to predict the aspects
for the unlabeled contexts.

e We propose two generative probabilistic models,
Latent Aspect Influence Model (LAIM) and
Observed Aspect Influence Model (OAIM). These
two models capture the generative process of the
contents of graph nodes by considering both the text
and structure information in graphs.

e We design a blocking Gibbs sampling algorithm to
learn both LAIM and OAIM.

e We design a parallel Gibbs sampling algorithm by
utilizing a property of our problem and a lazy count
updating strategy to further improve the efficiency
of the algorithm.
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e We conduct extensive experiments on synthetic
and real data sets to show the effectiveness and
efficiency of the proposed approaches. Quantita-
tive comparisons of LAIM and OAIM with base-
line approaches show that introducing influence
aspects can discover more comprehensive influ-
ence relationships from graphs. The efficiency
studies show that our Gibbs sampling algorithms
scale well in the graph size and the complexity of
the models.

This paper is organized as follows. Section 2 formally
defines the problem and related notations. Section 3
reviews the related work in this area. Section 4 presents
the solution framework. Section 5 presents the algorithm
to extract influence aspects. Sections 6 and 7 explain in
detail the two aspect influence models and the Gibbs
sampling algorithms to learn the models. Section 8 shows
the experimental results of the proposed approaches.
Finally, Section 9 concludes this paper and shows future
directions.

2 PROBLEM FORMULATION

Our study takes a graph G = (V, E) as input, where V is
the set of graph objects (or graph nodes) o and £ is a set
of directed edges o' — o. Each graph object o is associ-
ated with descriptive information. For instance, in a cita-
tion network of research articles, one research article is a
graph object o and it contains a list of words; In social
networks, a user is a graph object, which is associated
with descriptive data capturing user activities. We use
object profile to denote the descriptive information associ-
ated with each graph object and formally define it as
follows.

Definition 2.1 (Object profile). The profile of an object o is a
sequence of tokens: t,1,to2, . . ., to1(0), Where T(o) is the num-
ber of tokens in the profile of o and t, s is the token of this
object at position pos.

We use D and T to represent the total number of objects
in graph G and the total number of distinct tokens in all the
object profiles respectively. We also use D to denote the set
of distinct tokens in the profiles of all the graph objects. A
directed edge o' —o € E implicitly denotes that object o’
exists before and influences o.

2.1 Influence Aspects and Degrees

One object may influence another object with different
degrees in different areas (or contexts) as described in the
motivating examples in Section 1. These areas or contexts
are denoted as influence aspects, which are formally
defined as follows.

Definition 2.2 (Influence aspect). Influence aspects are text
labels representing specific semantic areas (or contexts) on
which graph objects are connected.

Structurally, influence aspects are different from
topics [4] in their roles because influence aspects are associ-
ated with graph edges and topics are extracted from graph
nodes.
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Fig. 1. Comparison of aspect-level influence and topic-level influence [20] (use the abstract of LDA [4] as an example).

Semantically, influence aspects are more general than
topics. Influence aspects are user defined and application
specific. In some situations, aspects capture the context in
which influence happens. For example, if researchers
exploring articles are interested in whether one article influ-
ences the other on methodology, then researchers can denote
methodology as one influence aspect. In this case, topics can-
not represent aspects. In other situations, aspects may cap-
ture the theme (or topic) on which influence happens. We
still use the article exploration application as an example.
When a researcher is interested in whether one article influ-
ences another article on the sampling methodology, which can
be learned as a topic, this researcher can denote sampling
methodology as one aspect. There are also situations that
users denote the specific reason for influence, while this spe-
cific reason can be interpreted as either context or topic.
Social network applications can lend us many examples on
this. A user may denote that he follows (and is influenced
by) another user on aspect president election, which can be
interpreted as either a context or a topic.

We illustrate the specific differences in the content
semantic between the aspect (-level influence) and the topic
(-level influence) [20] in Fig. 1 by using the abstract of
LDA [4] as an example. Directly applying topic-level influ-
ence discovery method (e.g., [20]) cannot find aspect-level
influence because aspects are explicit labels associated with
graph edges and existing topic-level influence discovery
models do not capture such edge labels.

In some graph mining problems, topics discovered from
graph nodes cannot capture the connection contexts. In Moti-
vating example 3, directly applying topic models on molecules
(i.e., graph objects) in Reactome [16] cannot find meaningful
aspects because the topics are about molecule functions, while
the context information (e.g., annotated labels provided by
researchers) is more about interaction conditions (experimen-
tal settings, temperature requirements) on graph edges.

Influence aspects can be observed or be latent. For the
aspects that are explicit on graphs, we denote them as
observed aspects. When the number of observed aspects is
large, it is hard to visualize the influence at the aspect-level.
Then, latent aspects are introduced to summarize the large
number of observed aspects. Let t* be an observed influence
aspect and A be the set of ts.

A latent influence aspect a is a probabilistic distribution
among all the distinct observed aspects in A. The definition
of the latent influence aspect is similar to the topic definition
in topic modeling [4], where each latent topic is a distribu-
tion over the observed profile tokens. However, they are dif-
ferent. The observed aspects for a latent aspect are from the
context set A while the tokens for a latent topic are from the
distinct token set D.

Definition 2.3 (Aspect-level influence degree). When an
object o' influences another object o on a latent aspect a or an

.. ¢
extractedfexplicit aspect t*, we use I(o' L0) or I(d =0),

which is a number in the range of [0, 1], to denote the influence
degree that o has over o on the aspect a or t".

Influence degree captures the strength of the influence.
Note that the influence is directional, and influence degrees

are not symmetric, ie., I(d Lo)#£I(0%0) and
a

I(o’t—a>0) #I(Ot—w’).

2.2 Problem Definition
Our research problem is formally defined as follow.

Definition 2.4 (Learning aspect-level influence). Given a
graph G = (V, E), the problem of learning aspect-level influ-
ence is (i) to extract influence aspects t, and (ii) to learn

t* .
1(0' = 0) or I(o' % 0) for each directed edge o — o € E.

For example, given a graph G, in Fig. 2a, the discovery
algorithm is to output another graph G, in Fig. 2b which is
associated with vectors of influence aspects and influence
degrees on the corresponding aspects in Fig. 2c.

3 RELATED WORK

Topic models such as PLSI [13] and Latent Dirichlet Alloca-
tion (LDA) model [4] are designed to model single docu-
ment sets. In topic models, every object is associated with a
multinomial distribution over latent topics, which generates
a latent topic for each token. There is a corpus level topic to
token mixture, each of which is a distribution over the
observed tokens.
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(a) G
I I I3
b:0.6 p:0.5 | p:0.6
p:0.3 | b:0.26 | e:0.3 :0.
m:0.95 | e:0.14 | b:0.1 :0.
e:0.05 | m0.1 | m:0.0 | m:0.0 | e:0.0

(c) Influence vectors for G¢

Fig. 2. Input graphs G, (without influence relationships) and output graph
G, (with influence relationships): the influence aspects that can be
observed/extracted on the edges are: b (ackground), e (xperiment), m
(ethodology), and p (roblem).

Much effort has been put to discover connections
among graph nodes. The first group of works that are
highly related to our research targets to discover influ-
ence degrees among objects. Dietz et al. [7] proposed one
of the first few articles that leverage both the text and
links in a citation graph into a probabilistic model to infer
influence strength between articles by utilizing the topic
model. In [7] a graphical model is proposed to capture
the overall influence among graph objects. A further step
from [7], our work can discover the influence among
graph objects on different aspects. Liu et al. [20] proposed
a similar generative graphical model to infer both direct
and indirect topic-level influence strengths between
objects from heterogeneous graphs. Our work is different
in that we discover aspect-level influence, which is more
general than topic-level influence [20] as we have dis-
cussed in Section 2.1.

The second group of works is to identify the relation-
ship types among objects in graphs. Diehl et al. [6] intro-
duced the problem of identifying the types of
relationships between communication parties from their
communication content (e.g., messages), where relation-
ship types are predefined. The focus of the analysis is on
the communication content associated with graph edges.
Our work is different in that we leverage the structure of
graphs. Wang et al. [36] discussed techniques to detect one
specific type of influence relationships, adviser-advisee
relationship, from publication networks. Tang et al. [30]
presented a framework to learn the social relationship
types across heterogeneous graphs. Barbieri et al. [3] pre-
sented a model to predict links and explain the links on
social networks using predefined relationship types. The
relationship types in [3], [30] are similar to influence
aspects in our work. However, our work differs from [3],
[30] in that we do not assume the existence of known rela-
tionships from any graphs.

There are other works that discover different types of
influence relationships in graphs. Kataria et al. [18] stud-
ied the problem of predicting the existence of citation
relationships among documents. Shen and Jin [28] and
Tang et al. [33] introduced generative process approaches
to do social recommendations for the possible creation of
new graph edges. Miao et al. [22] presented Latent Asso-
ciation Analysis (LAA) model to discover the potential
links in bipartite graphs. Iwata et al. [15] utilized cascade
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Poisson processes to learn the influence strength among
users by analyzing special event sequences which consist
of information about when wusers adopt products.
Kutzkov et al. [19] designed online algorithms to calcu-
late influence strength among users by using a continu-
ous stream of tweets.

Several commonly recognized influence factors in social
sciences include homophily, contagion, and causality [27],
[29] where homophily captures the similarities among social
users, contagion represents the temporal order of user
behavior, and causality finds the reason behind user behav-
ior. In this work, we consider the homophily and contagion
factors by utilizing object-profile similarities (homophily)
and the directed edges representing the sequential order of
object behavior (contagion).

Last but not the least, the influence relationship we
study in this work is different from influence measure-
ments such as impact factor [8] or H-index [12]. These
existing measurements measure the overall influence of a
researcher (H-index) or a journal (impact factor) in a global
manner. They do not measure the localized influence
between researchers or between journals (e.g., the influence
of one researcher/journal over another researcher/journal).
These measurements are calculated at a coarse granularity.
Our work discovers the localized influence at user-defined
finer granularities.

4 PROPOSED FRAMEWORK

The first problem is to extract aspects from the profile of
graph objects if aspects are not available on graphs.

Given a graph G = (V,E) and profiles of each object
o € V, the problem of aspect extraction is to find a labeling
function f: Dy, — (D x A)T(O), which takes the tokens
(t1,t2,...) of the context for an directed edge o' — o as input,
and outputs (({1,t]), (t2,15), . ..). Context tokens can be from
the profiles of o where o mentions or references o, or are
input from users. After extracting aspect labels from graphs,
we design probabilistic models to discover aspect-level
influence degrees from graphs where the aspect can be
explicit/extracted or be latent.

5 SEMI-SUPERVISED ASPECT EXTRACTION

Aspects may explicitly exist in the graph (edges). E.g., on
social networks, the observed aspects are the tags people put
for connections. However, such aspects may not be explicitly
available and they need to be learned on some graphs.

In this section, we present a semi-supervised method to
annotate the profiles of graph objects with aspects. Existing
text annotation techniques generally provide Post-of-Speech
tags [35], sentiment polarity [24], or topic labels [4]. How-
ever, the labels generated by those techniques are different
from the aspects that this work targets to discover, which
represent the context that the graph objects are connected on.

Intuitively, the profile tokens within a certain context
share the same aspect. This intuition comes from the obser-
vation that one sentence generally represent one major
point. Based on this intuition, we treat one sentence (instead
of one token) as an instance when we label the objects’ pro-
files with aspects.
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Merging-based Aspect Extraction Algorithm
Input: a classification algorithm, window size W, training instances X with their
aspect labels y

1) Initialize augmented instance matrix X’ and new instance label vector y’ = O

2) Group instances in X by their aspect labels and get 7%, groups: X1, Xo, ... X7,
3) For each observed aspect ¢ (i € {1,2,...T4})
a) while | X;| > W
i) Randomly select W distinct instances Xiq Xigs -« Xiyy, from X;

i) Create a new instance x’ = g Xi; and assign t{ as its aspect

=1
iii) Append x’ and t¢ to X’ and y” respectively
iv) Remove XipsXigy -+ Xiyy from X;

4) Train a classifier using the given classification algorithm and training data
X 3
x’ and ;/

5) Return the trained classifier

Fig. 3. Merging-based aspect extraction algorithm.

Recall that D contains 7" distinct tokens in all the object
profiles. For each short sentence, let the ith token occur z;
times. A zero x; means that the ith token does not occur in
this sentence. Then, each short sentence can be represented
as a vector x = (21,29, ..., x7). The vectors of all the N short

X1
sentences form a sentence-token matrix X = . The
XN
matrix X is extremely sparse because the number of tokens in
a sentence is much smaller than the number of distinct
tokens 7" in all the object profiles. Each short sentence is man-
ually labeled with an aspect y. All the manually labeled
aspects form the set of observed aspects A.

The aspect extraction problem is modeled as a classifica-
tion problem, where the training instances are N labeled
sentences represented with X and their corresponding
aspect labels are y = (y1, 42, .- ., yn)-

Many classification algorithms were proposed to classify
long articles [1]. However, such algorithms may not work
well to classify X because the text features of short sentences
are not significant for linear and kernel methods [37]. Exist-
ing classification methods classify short sentences by using
extra external knowledge, such as knowledge graph [37],
latent topic features [26] to fill the sentence-term matrix and
make the training data denser. Utilizing extra external
knowledge in such classification algorithms requires more
workload from users.

We propose a merging-based approach for short sen-
tence classification (or aspect extraction from short senten-
ces). This method does not require and utilize external
domain knowledge. Instead, it creates more training instan-
ces from existing training instances in X. Let the newly cre-
ated training instances be augmented instances. An
augmented instance x’ is created by merging W (> 2) instan-
Ces X;,, Xiy, - - - Xip;, that have the same aspects ¢. In particu-

lar, X' = ZELI x;;. It means that the frequency of a token in
the augmented instance is the summation of the frequencies
of this token in the W instances. The new augmented
instance X’ is assigned with aspect ¢°.

The merging-based aspect extraction algorithm is shown
in Fig. 3. It takes as input (i) a basic classification algorithm,
(ii) a window size W, and (iii) the training instances X
together with their labels y. It outputs a trained classifier.
This algorithm puts all the augmented instances to X'
(Step 1). For each observed aspect t{ (Step 3), that algorithm
creates augmented instances using W original training
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instances and assigns ¢! to be its aspect label. The merging
process generates an augmented data set X’ and aspect labels
y’. The original training instances and the augmented data
set are used to train a classifier using a specific classification
algorithm (e.g., Decision Tree). This trained classifier is then
used to predict the aspect labels of new coming instances.

6 ASPECT INFLUENCE MODELS

We design models to learn the influence degrees on
observed, extracted, or latent aspects. Objects’ profiles
and their influence relationships are governed by three
major factors. The first factor is the set of latent topic
states that are associated with each object. An object’s
latent topic states determine the internal theme of this
object. Two objects with similar internal themes tend to
influence each other more compared with objects that do
not share internal themes. E.g., an article with theme
“bioinformatics” is more likely influenced by articles
with “biology” theme than by articles with “politics”
theme. This factor has been taken into consideration in
research of topic modeling [4]. The second factor is the
set of links that connect to the objects (i.e., directed
edges) [7], [20]. The explicitly linked objects have natural
influence relationships, so the model should take the
explicit links into consideration. The third factor is the
context in which the objects link to each other [18]. Such
context reflects the influence aspect. For example, the
link connecting one article to another article appears in
the context of “experimental results” is more likely to
reflect influence aspect “experiment” than the aspect
“problem definition”. Our solution framework is to learn
these factors and derive the influence relationships from
these factors. In our approaches, we adopt the definition
of latent topic states which are probabilistic distributions
over tokens (or words). We define two types of influence
aspects in our models as discussed in Section 2.1. The
model parameters are listed in Table 1.

6.1 Latent Aspect Influence Model
The creation of an object profile can be envisioned as being
generated from several fundamental ideas. From the per-
spective of generating an object profile, when an object is not
influenced by any other objects, its tokens are generated by
its own latent topics. The Latent Aspect Influence Model is
introduced mainly to govern the generation of profile tokens
for objects that are influenced by other objects. When an
object o is influenced by another object o, part of o’s idea (i.e.,
topics) is new, but the other part of its idea is borrowed from
0. When o borrows idea from ¢, the tokens are affected by
both the major idea of o’ and the influence aspects from o’ to
o. Inspired by the generation of tokens in the topic model-
ing [4], where each profile token is assumed to be associated
with a latent topic and is drawn from a topic-token distribu-
tion, LAIM assumes that every profile token of o is not only
associated with latent topics from o, but also associated with
influencing aspects from its influencing objects. Thus, its
generation is controlled by both the influence aspects
(observed, latent) and the influencing object’s latent topics.
Fig. 4a shows the aspect influence model LAIM which
models the influence aspect as a latent state a. Fig. 5 shows
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TABLE 1
Parameters for Aspect Influence Models
Symbol meaning
0,0 | an influenced object and an influencing object
t,t’ | tokens for o and o’ respectively
te observed aspects for a token
b latent boolean variable
a latent aspect variable
z, 2’ | latent topic states for o and o respectively
T'(o0) | the number of tokens in the profile of object o
R(o) | the set of objects that influence o
D the total number of objects
D the set of all the observed tokens in object profiles and contexts
T the total number of distinct tokens
T the total number of distinct observed aspects
Z the total number of latent topic states
A the total number of latent influence aspects
A | the set of all the observed aspects
dg | length-T hyperparameters =(ag, - - - , iy ) to generate ¢
dg | length-Z hyperparameters =(ag, - - - , cvg) to generate 60
&y | length-A hyperparameters =(cv,, - - - , o) to generate 7
ay | length-T'® hyperparameters =(cvy, - - - , (y) to generate v
&~ | length-D hyperparameters =(a, - - - , o) to generate 7y
dlg | hyperparameters=(oid, Qnew) to generate 3
) a Z x T matrix
0,0 | aD X Z matrix
v a D xT% x L(D) matrix, where L(D) = maz,(R(0))
n a D x A matrix
B a D X 2 matrix
P a A x T® matrix

@@

uu]ex Tevet

fuju,f Teve

000
)

t ) token level

Influencing objects

(b) Observed Aspect Influence
Model (OAIM)

Influencing objects Influenced objects Influenced objects

(a) Latent Aspect Influence
Model (LAIM)

Fig. 4. Aspect influence models.

the detailed generative process for LAIM. In LAIM, there
are two types of observed variables, object-profile tokens ¢
and influence aspects t“. In LAIM, we incorporate two types
of objects: the objects that explicitly influence other objects
(i.e., graph nodes with outgoing edges) and the objects that
are explicitly influenced by other objects (i.e., graph nodes
with incoming edges).

For objects that explicitly influence other objects, we
model that their profile tokens ¢’ arise from latent topic states
7 by using LDA model. The topic mixture ¢’ is used to repre-
sent the probabilistic distribution of an object over all the
possible latent topic states. &' is generated using the Dirichlet
distribution with the hyperparameter &g = (o, . . ., ag).

For objects that can be influenced by other objects (i.e.,
graph nodes with incoming edges), we model their profiles
by considering their own content and connections from
other objects. The profile of an object o is formed with both
new information and inherited information from other
objects that influence o. An object o’s latent topic z (which is
used to draw token ¢) can be drawn from its own topic mix-
ture 6 or its influencing objects’ topic mixture ¢'". This choice
is modeled with a binary variable b which follows a
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1) For every latent topic state z, draw ¢ ~ dirichlet(dly)
2) For every latent aspect a, draw 1 ~ dirichlet(dy,)
3) For every object o that can influence other objects
a) Draw éz) ~ dirichlet(dg)
b) For each pmition pos in the profile of object o
i) Generate z’ with p(2’|o; 0’0) ~ multz(G )
ii) Generate t" with p(¢’|2’; ¢ 1)~ multz(qb )
4) For each object o that can be influenced by other objects
a) Draw 0, ~ dirichlet(dg)
b) Draw 7], ~ dirichlet(dy,)
¢) For each latent aspect a, draw 5, o, ~ dirichlet(d.)
d) Draw the proportion between newly generated values and values generated
from its influencing object
Bo ~ beta(ord, Mnew)
e) For each position pos of the profile for object o, generate its token from
either an influencing object or innovative state.
i) Draw a coin b with p(b|o) ~ bernoulli(B,)
ii) ifb =0,
A) Draw z with p(z|o; 0,) ~ multi(f,)
B) Generate ¢ with p(t|z, ¢.) ~ multi(p.)
iii) if b = 1, draw an influence aspect a, an influencing object o’, and a topic
state 2" for o from o’
A) Draw a with p(alo, 7o) ~ multi(i,)
B) Generate t* with p(t®|a, wa) ~ multz(d)u)
C) Draw an 1nterdct1ng, object o with I(o 25 o’) ~ multi(Yo,q)
D) Draw z=2' with p(z’|o’, 67 of) ™ mult:(f)’ ’)
E) Generate t = t" with p(t|2", d)z )~ multz(d)z )

Fig. 5. Generative process for LAIM 2,2, t,t,t% b, a, o represent 2/

0,pos’?
Zo,poss fo‘pogu fo.pns‘ f,)_p,)y bn‘pos’ Qo poss O 0\[,05

Bernoulli distribution with parameter B. f is generated
using a Beta prior dg = (o, @new). The choice of the influ-
encing object o’ follows a multinomial distribution with
parameters ¥, ,. ¥,, captures the different influence degrees
among objects on different aspects.

6.2 Observed Aspect Influence Model

The LAIM models an aspect as a latent state a and uses it to
decide how o' affects the generation of o. Each a is repre-
sented as a distribution over the observed influence aspects.
With the intuition that models with more variables are less
efficient compared with models with less variables. We pro-
pose a second generative probabilistic model by treating
observed influence aspects t* as the influencing aspects.
Fig. 4b shows this probabilistic model, which is denoted as
OAIM. Fig. 6 shows the generative process for OAIM. This
model contains less variables. It takes less time to learn
OAIM than to learn LAIM given the same input. However,
OAIM'’s results may not be as effective as LAIM. We com-
pare these two different models in Section 8.5.

7 MODEL LEARNING

7.1 Gibbs Sampling Algorithm
We utilize the Gibbs sampling approach to learn the
model parameters and latent states that control the gen-
erative process of LAIM and OAIM. Gibbs sampling is
one of the Markov Chain Monte Carlo (MCMC) methods
and is widely used to estimate the values of a set of
latent variables. Gibbs sampling [10] allows to learn a
model by iteratively updating each latent variable when
fixing the remaining variables. The procedure of a typi-
cal Gibbs sampling algorithm is shown in Fig. 7.

The latent variables in the generative process of Fig. 5
are b,a, 0,7, and z. The latent variables in the generative
process of Fig. 6 are b,0,7, and z To facilitate the
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1) For every latent topic state z, draw ¢, ~ dirichlet(dgy)
2) For every object o that can influence other objects
a) Draw 0 ~ dirichlet(dg)
b) For each position pos in the profile of object o
i) Generate z’ with p(z'|0; 67 ) ~ multi(@l)
ii) Generate t’ with p(t'|2"; ¢,/) ~ multi(¢,,)
3) For each object o that can be influenced by other objects
a) Draw 0, ~ dirichlet(dg)
b) For each observed aspect tq, draw ¥, ¢, ~ dirichlet(da)
¢) Draw the proportion between newly generated values and values generated
from its influencing object B, ~ beta(aoid, Anew)
d) For each position pos of the profile for object o, generate its token from
either an influencing object or innovative state.
i) Draw a coin b with p(blo) ~ bernoulli(B,)
i) ifb=0,
A) Draw z with p(z|o; 0,) ~ multi(d.,)
B) Generate t with p(t|z, ¢.) ~ multi(¢p.)
i) ifb =1,
a
A) Draw an interacting object o’ with I (o’ L 0) ~ multi(§, ¢a)
B) Draw z=z" with p(2'|0", 0 ,/) ~ multi(6’ /)
C) Generate t =t with p(t' |2, ¢,/) ~ multi(d,)

Fig. 6. Generative process for OAIM.

sampling process, we need to maintain the sampling
counts of tokens that are assigned to different configura-
tions. For objects that can be influenced by other objects,
we use Ngy,. _ayvali, ..., val;] to denote the number of
tokens assigned to the configuration with dv, =valy, ...,
dv; = val; during the sampling process. For example,
Nyaop1,3,2,1] denotes the total number of tokens that
are assigned to object o; and that come from object 0, on
aspect a3 when the latent variable b is 1. For objects that
can influence others, the count cache is denoted as N'.
The meaning of each different count is detailed in [14].

The Gibbs sampling algorithm needs to sample the latent
variables using update equations. The update equations
used to learn LAIM are given in Egs. (1)-(6). For a detailed
derivation of all the equations, readers can refer to [14].

In each iteration i, the profile tokens for object o0 may
be newly self-generated or is borrowed from some other
objects. o’s tokens come from other objects that influence
o when b is 1. Let T"(a) be the total number of tokens
coming from other objects for influence aspect a, and let
T'(¢',a) be the total number of tokens coming from a
specific influencing object o' on aspect a. Then, the ratio
% can estimate the strength that o influences o on
aspect a, i.e., I(0 2>o). The expected value of any param-
eter variables can be approximated by averaging over all
the samples after the sampling chain converges [20].
The influence that o, has over o; on latent aspect a,

I (onason 1)@
I(0; % 0)) can be estimated as - 3, A]]:"a"b‘zoi’<:jlj<:;: E%((:)T;/y
where M is the total number of iterations of the con-
verged sampling chain after burn-in, and the superscript
() denotes the ith iteration. Similarly the influence that
o has over o; on the observed aspect ¢ can be estimated
as follows:

I(Ok t_a> o ) 7i . . Nn’t(lvolvb(0j7 tay Of, 1)(Z> + C(V
T i .
M Noap (05,1, 1) + | R(0)) e

(7)

OAIM. In learning OAIM, the update Egs. (1), (2), (5),
and (6) are still used. However, Eq. (3) is not needed for
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Gibbs Sampling Algorithm
Input: Random variables to estimate v1, v, ..., Un

1) Randomly initialize vy, va, ... v, = v?, vg, BN ”2;

2) For iteration ¢ = 1, ... M or until converge

a) Sample vi ~ p(vﬂvé’lj vizho Tvib_l)

b) Sample vy ~ p(val|vy, vy ..., vﬁfl)

c) ... _ o

d) Sample vy, ~ p(vn|vy, Vo, ..V, )
Output: vy, v2,...v, = 1)1’, v;, e v:’l

Fig. 7. Gibbs sampling algorithm.

OAIM because OAIM does not model latent influence
aspect ¢ anymore. In addition, Eq. (4) is changed to Eq. (8),
p(O;IOS|t_'7 5;7 27 27 (;;_‘IJOS) t_[;‘7 l;3
Nnﬁt",o’,h(ov taa Oé)us’ 1) + ) — 1 (8)
XPo=0/ b1 * .
M Ny p (0,89 1) + [R(0)]a, — 1

To implement the Gibbs sampling algorithm, we adopt
the blocking Gibbs sampling strategy [2], which samples
several variables together as a block to speed up the Gibbs
sampling process for complex probabilistic models. In par-
ticular, to sample token ¢,,s for influenced objects, all the
latent variables associated with position pos (i.e., byos, Gpos
(for LAIM), 0,,,, #p0s) are sampled together.

Time complexity. Let M be the total number of iterations
before the sampling process converges. For influencing
objects, the sampling procedure is the same for both the
LAIM and OAIM models. In each sampling iteration,
the algorithm samples a new latent state z,,s € {1,..., 2}
for each token t,,. The time complexity for sampling
influencing objects in both LAIM and OAIM is
O(M - D-T(o) - Z), where T(o) is the average number of
tokens in object o.

For the influenced objects, the algorithm in each iteration
draws a new block of latent variables by, a,,s (only for
LAIM), 0;05, and z,, for each token t,,, in every object. Since
we adopt the blocked Gibbs sampling strategy, the candi-
date size for a new sample at each position is the product of
the domain size of latent variables. Thus, the time complex-
ity of sampling influenced objects is O(M-D-T(o) - Z
‘R(0) - A) for LAIM and is O(M-D-T(o)-Z - R(0)) for
OAIM, where R(o) is the average number of objects that
influence the object o.

7.2 Parallel Gibbs Sampling Algorithm

The serial Gibbs sampling algorithm described in Section 7.1
cannot directly run in parallel. In one iteration, the serial
Gibbs sampling algorithm calculates the conditional proba-
bility of every variable using the counts in Fig. 8. The counts
are updated after drawing samples for each variable. These
counts need to be shared in the calculation of multiple vari-
ables” conditional probabilities. Let us use shared counts to
denote the counts that are needed in the calculation of
multiple conditional probabilities. If some variables are
sampled by directly applying this sampling principle in
parallel, other variables’ sampling processes need to wait
until the shared counts are updated. We call the procedure
of updating shared counts synchronization. The synchroniza-
tion of the shared counts blocks the calculation of the condi-
tional probability of the next variable.
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P(bpos = 0,1, 2, 27,6, @, bopos)

Nob(0,0) + anew — 1 [e))

XPo,z,b0 *
o No(0) + aora + new — 1
P(bpos = 1T, 1, 2,27, 0, @, b-pos)
No,p(0,1) + aora — 1 (2)

xp. .
Po=ol 01 No(0) + aord + anew — 1

p(apos|ty 7,2, 27,07, @-pos, t4, b)
No.u.,o’,b(o’ Apos 0;)()‘57 4o, -1
No.a.b(0; @pos, 1) + |R(0)|ay — 1
Nata p(apos; tpos: 1) + oy — 1 3)
T Naw(@pos, 1) + Toay — 1
No,ap(0,apos, 1) +ay — 1
’ Nop(o,1) + Aoy — 1

o

P(0hos B, 2, 27,07 <pos, @, b)
No,a,o/,b(o7a110570;105’1)+a’Y -1 )
No,a,b(0, apos, 1) + |R(0)|ay — 1

XPo=0o’ b1 "

P(zpos |t 2-30s, 27, 07, @, baposs bpos = 0) )
XpPz,t * Po,z,b0

]

P(2pos|t, V', Z-pos, 27,07, @, bopos, bpos = 1)

XPz,t " Po=o’ bl

(6)

Given the following count ratio p,

N;/qzr,bzl(oéosv Zpos, 1) + N(’),Z(O;)OS" Zpos) + g — 1
NI, (o 1) + N/ (0}5) + Zag — 1
Nz t(Zposs tpos) + NL 1 (2poss tpos) + g — 1
Nz (zpos) + Ni(zpos) + Tag — 1
No,25(0, 2pos, 0) + g — 1
No.5(0,0) + Zog — 1

Po=o’ b1 = n
pos?

Pzt =

Po,z,b0 =

Fig. 8. Gibbs sampling updating equations.

Object-dependent property. We observe that a good prop-
erty exists in the conditional probabilities of many variables.
A conditional probability is object-dependent when its calcu-
lation depends only on one object’s counts, but does not
depend on shared counts.

We identify that the conditional probabilities that have
object-dependent property are those calculated using
Egs. (1), (2), 4), and (8). These conditional probabilities can
be calculated in parallel without synchronization. We also
observe that the counts N.;, N, N., N/, N/, ,,, and Ny,
are shared counts and need to be synchronized.

Lazy-update strateqy for shared counts. For the shared
counts, we propose and utilize a lazy-update strategy. Typi-
cal Gibbs sampling algorithms immediately update the
counts after drawing samples for each variable. This updat-
ing operation creates much synchronization overhead in
parallel implementation. Motivated by the blocked Gibbs
sampling algorithm, which draws samples for a block of
variables together to improve sampling efficiency, we pro-
pose a new strategy, which updates the shared counts in a
lazy way. In particular, the shared counts are not updated
after drawing samples for each variable. Instead, they
are updated after finishing drawing samples for all the vari-
ables. Experimentally (Section 8.6.2, Figs. 20c, 20d), this
strategy can achieve very similar effect as a serial Gibbs
sampling algorithm.

Our parallel Gibbs sampling algorithm utilizes the
object-dependent property and the lazy-update strategy for
shared counts. For each object o, a thread is created to
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sample the variables for all the tokens in its profile. The
threads for all the objects are submitted to a thread pool
with a fixed size (# of cores). For a graph containing D
objects, the parallel algorithm creates D threads, which are
virtually running concurrently. Among these D threads,
only a few number (# of cores) of threads are actually run-
ning. The other threads are either terminated or waiting. In
running the serial Gibbs sampling in one thread, the counts
in object-dependent conditional probabilities are updated
after each variable is sampled. However, the shared counts
are synchronized only after all the threads for one sampling
iteration terminate.

8 EXPERIMENTS

We implement both the non-parallel and parallel Gibbs
sampling algorithms in Java. The aspect extraction algo-
rithm is implemented in Python. The experiments are con-
ducted on a workstation configured with 48 Intel(R) Xeon
(R) cores (2.40 GHz) and 2,56G RAM, running GNU/Linux.

8.1 Data Sets

We use one synthetic data set and two real data sets to test the
proposed methods. All the data sets are available at http://
www.cs.nmsu.edu/dbdm/data/aspectinfluencedata.tar.

Synthetic data set. We generate synthetic data using the
RMAT algorithm in [5] since it can generate graphs similar
to real world networks. The synthetic graph has ~1,500
nodes and ~2,000 edges. The object profiles is generated
using the generative process in Fig. 6 with W = 1,000, Z =
10, and 7* = 100. The hyperparameter values are set as
ag=0.1, a; =0.01, ay =0.0001, ag=0.5, @, =0.05, a0, =
0.01, ary = 0.01. The hyperparameters are set to be less than
1.0 because the Dirichlet distribution with small parameters
(smaller than 1.0) generates a sparse multinomial distribu-
tion (Fig. 9a) while large parameters generate dense distri-
butions (Fig. 9b). A sparse multinomial distribution means
that most words have very small probability (close to zero)
to occur in a document, which is consistent with the obser-
vations in topic models [4].

DBLP citation data set. We use the DBLP data set
from [34]. The DBLP data set is preprocessed by removing
the articles without abstracts. After the preprocess, the
DBLP data set contains ~325K abstracts (nodes) and ~1M
citations (edges). In total, there are ~40M tokens among
which ~25K are distinct tokens.

CiteMisc data set. We extract a subset of the DBLP citation
dataset and manually label sentences with aspects. We
define four aspects, “background”, “problem definition”,
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“solution” and “experiment”. Then, for the sentences that
act as contexts, two researchers discuss and choose the
aspect (out of the four aspects) that best captures the context
semantic. We denote this data set as CiteMisc. CiteMisc con-
tains 90 research articles and 71 citations. The total number
of distinct tokens, T, is ~1K and each article cites (i.e., is
influenced by) ~5 articles on average. The articles in Cite-
Misc are selected on eight major research topics, including
association rules, clustering, and topic modeling, etc.

Twitter50000 data set is crawled from the Twitter web-
site in the period of Oct. 1 2014 and May 18 2015. It con-
tains 50,000 Twitter users and their recent 200 tweets. A
Breadth-First Search (BFS) strategy is utilized to crawl
Twitter data. First, a seed set of Twitter users is randomly
chosen. Then, for each user in the seed set, his/her
friends are crawled and added to the seed set. Once a
user’s friends are crawled, this user is removed from the
seed set. This BFS crawling strategy can guarantee that all
the collected Twitter users form a connected graph. The
number of tokens, distinct tokens, and follow relation-
ships are ~90M, ~200K, and ~50K respectively. Each
Twitter user in this data set follows ~200 users on aver-
age. This data set embeds ~400 observed aspects, which
are the categories tagged to the tweets.

8.2 Baseline Approaches

We use Latent Dirichlet Allocation [4] as our first baseline
model. Our second baseline model is Citation Influence
Model (CIM) [7]. All the baseline approaches are used for
modeling the generative process of graphs.

8.3 Evaluation Measurement
8.3.1 Effectiveness

Effectiveness of aspect extraction. We use the classification accu-
racy to measure the aspect extraction method in Section 5.

Effectiveness of influence learning. We examine the conver-
gence and the correctness of our learning algorithm on the syn-
thetic data set using a similar idea in [11]. After generating
the synthetic data, we treat the parameters that are used to
generate the synthetic data as ground truth. Then, we run
the learning algorithms to learn the parameters. The learned
parameters are compared with the ground truth parameters
to verify the correctness and the convergence of our Gibbs
sampling algorithm.

(1) KL Divergence. KL divergence measures the difference
between two probability distributions. We use it to measure
the difference between ground truth parameters and the
learned parameters. Let ¢ denote the ground truth values
for one parameter ¢ (p(t|z)) and ¢ be the learned values.
We calculate the KL divergence of ¢, from ¢; for every pair
(i,7) where i,5 € {1,... Z}. The KL divergence of ¢; from
¢, is denoted as Dgr(¢,|l¢;) and is calculated as

Drr(@)1191) = L ¢

(2) Log-likelihood. The hkehhood over unseen data is cal-
culated on tokens in the profiles of both influencing and
influenced objects to compare the generalization capabilities
of the baseline approaches and our models, LAIM and

OAIM. The formulas we use to calculate likelihood for influ-
enced objects of CIM, OAIM, LAIM are Egs. (10), (11), and
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Fig. 10. Predictive likelihood functions.

(12) in Fig. 10 respectively. The likelihood for influencing
objects of OAIM, LAIM, CIM, and LDA models can be cal-
culated using Eq. (9) in Fig. 10.

(3) Perplexity. Perplexity measures how well a probability
distribution predicts a sample. The perplexity of an influ-
encing object or an object in the LDA model ¢ is calculated

as perp(d’) = exp{—loﬁf’o } [4]. The perplexity of an influ-
enced object o in CIM, OAIM, and LAIM are perpcr (o) =

log p(to) o A1ar
T(o)

exp{— bgpf%””} perpoan (o) =exp{— and

perpram (o) =exp{— %} respectively.

(4) PrecisionQK. To quantitatively evaluate the aspect-
level influence, we manually rank the papers that are
cited by a paper on each aspect according to the influ-
ence degrees. Then the aspect-level influence degrees,
which are calculated using Eq. (7), are compared with
the manual rank. Precision@3 is calculated on each
aspect.

(56) Case studies. We subjectively verify the results of
LAIM and OAIM by showing the learned results of several
graph nodes on Twitter50000 and CiteMisc data sets.

8.3.2 Efficiency

Running time. We compare the running time of both the non-
parallel and the parallel Gibbs sampling algorithms to dem-
onstrate that the actual running time is consistent with our
time complexity analysis. We also test the learning algo-
rithms on data sets of various sizes to show the scalability
of both OAIM and LAIM.

Speedup ratio. To evaluate our parallel Gibbs sampling
algorithm, we conduct three sets of experiments to
compare its speedup ratio with the ideal case by varying
the number of cores, the graph size, and the model
parameters.
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Fig. 11. Ten-fold cross validation result of six base classifiers (IW = 10,
CiteMisc data set).

8.4 Effectiveness of Aspect Extraction

We evaluate the effectiveness of the merging-based aspect
extraction algorithm, presented in Section 5, using the
CiteMisc data set, for which we manually label the aspects
of each sentence in the abstracts. We run 10-fold cross
validation and calculate the averaged accuracy. The 10-
fold cross validation is conducted as follows. First, it par-
titions the CiteMisc data set to 10 partitions. Then, it choo-
ses one partition as testing set and uses the original
instances and the augmented instances from the other
remaining nine partitions as training set to train a classi-
fier. The classifier is then used to predict the aspects of
testing instances. The accuracy of the classifier is then cal-
culated. This training-testing process is conducted 10
times with each time uses a different partition (from the
10 partitions) as testing set. The averaged accuracy from
the 10 executions is reported.

We utilize six classification algorithms implemented in:

e Support Vector Machine (SVM) with Radial Basis
Function (RBF) kernel (kernel parameter y = 1),
Decision Tree (DT) with entropy as splitting criteria,
AdaBoost (AB) with Decision Tree as the base esti-
mator where the number of estimators is 100 and the
learning rateis 1,

e Random Forest (RF) with Decision Tree as the base
estimator where the number of estimators is 100,

e Naive Bayesian (NB) with parameter « = 1,

e K-Nearest Neighbor (KNN) with k& = 1.

We test the merging-based strategy by varying the window
size from 2 to 20. Our results indicate that the aspect extrac-
tion algorithm achieves the best performance when the win-
dow size is 10. We report the results for W = 10, using which
the algorithm generates 3,104 augmented instances.

We plot the accuracies using a box plot in Fig. 11. In this
figure, the blue box and the red box represent the quartile
statistics of the extraction accuracy on the original and
the augmented data sets respectively. For each box, the
three short horizontal lines from top to bottom represent the
75th percentile, median, and 25th percentile of the 10 accu-
racy values. The symbols “-” at the end of the dashed line
are the minimum and maximum accuracies.

Fig. 11 shows that classifiers trained on the augmented
data sets have significant higher accuracies than classifiers
trained on the original data sets. This improvement comes
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Fig. 12. Log-likelihood and perplexity (Synthetic data set).

from the merging-based aspect extraction. On the aug-
mented data set the critical features are augmented. We also
observe that the most robust classifier is KNN. Its accuracy
variance is much smaller than the variances of other classi-
fiers. We thus choose KNN as the base classifier of the
Merging-based Aspect Extraction method when learning
the aspect-level influence.

8.5 Effectiveness of Models and Algorithms

This section presents the results of our proposed influ-
ence models and model learning algorithms. Section 8.5.1
shows the correctness and convergence of our Gibbs
sampling algorithm. Section 8.5.2 presents the log-likeli-
hood of the learned models. Section 8.5.3 presents the
performance of OAIM on CiteMisc data set using the Pre-
cision@3 measurement. Section 8.5.4 subjectively demon-
strates the usefulness of the results from OAIM and
LAIM through case studies on both Twitter50000 and
DBLP data sets.

8.5.1 Correctness and Convergence of the Gibbs
Sampling Algorithm

Convergence. We check the convergence of the learning algo-
rithm by examining the trend of the log-likelihood and the
perplexity (Fig. 12). The process converges after about itera-
tion 900 since the log-likelihood and perplexity stabilize
after that.

Correctness. To show that our Gibbs sampling algorithm
can correctly learn the ground truth parameters, we exam-
ine the differences between the ground truth values and the
learned values on one parameter ¢ (p(¢|z)). The KL diver-
gence of all the ¢;s (learned parameters) from all the ¢;s
(ground truth parameters), where ¢, j € {1,... Z}, is shown
in Fig. 13. The = and y axes are the indexes for ¢ and é
respectively. The darker the pixel at (i, j) is, the smaller the

KL-divergence of $; from ¢, is.
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Fig. 13. Comparison of learned parameters and ground truth.
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Fig. 13a shows the KL-divergence between each pair of ¢;
and ¢;. After rearranging Fig. 13a by swapping columns, we
get Fig. 13b. For each ¢, its corresponding learned parameter
is &, with the minimal KL divergence. As shown in Fig. 13,
there is a one to one mapping between ¢; and ¢;. These results
indicate that our algorithm can correctly learn the parameters.

We further examine the details of the learning process by
plotting ¢, and its matching ground truth ¢, in Fig. 14. At
the beginning of the learning process, ¢, is very random
and does not match with ¢,. As the learning process contin-
ues, ¢, quickly stabilizes and converges to ¢;, which is con-
sistent with the trend of log-likelihood and perplexity in
Fig. 12. After the model converges, most values are close to
zero because the hyperparameter values that are used to
generate the ground truth parameter are 0.01. Other param-
eters show similar behavior.

8.5.2 Log-Likelihood of the Learned Models

The log-likelihood for LAIM, OAIM, and baseline methods
(Figs. 15, 16, 17) are calculated. The reported log-likelihood
of each model is calculated after the model converges. In
these figures, LAIMz means that the number of latent
aspects A is z.

We first compare baseline approaches with our LAIM
and OAIM models and show the results in Fig. 15. On the
DBLP and Twitter50000, in which the number of observed
aspects 7 is 4 and ~400 respectively, OAIM and LAIM get
much better log-likelihood than baseline approaches. The
OAIM, LAIM, and CIM perform better than LDA because
LDA ignores graph structures while the influence models
capture graph structures as a part of the generative process.
The OAIM and LAIM outperform CIM because OAIM and
LAIM model aspects which CIM does not capture. These
results show that baseline approaches are not as effective as
our Aspect Influence Models in modeling the generative
process of the graphs.

The second set of experiments is conducted to compare
the LAIM and OAIM models because the difference
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between the performance of OAIM and LAIM is not obvi-
ous in Fig. 15. For this set of tests, we plot the difference of
the log-likelihood values (LLH-DIFF) between LAIM and
OAIM. Fig. 16 shows the results when we vary the number
of latent topic states (Z). When LLH-DIFF is smaller than
zero, it means that OAIM gets bigger log-likelihood value
than LAIM, and OAIM performs better than LAIM accord-
ingly. Fig. 16 shows that when the number of latent topic
states Z is small (Z = 10), OAIM performs slightly better
than LAIM (with negative LLH-DIFF value). When 7 is big
(Z > 10), LAIM performs better than OAIM (with positive
LLH-DIFF value). This trend is observed because, when the
number of topics is small, OAIM can capture the graph gen-
erative process very well and LAIM uses more variables
which may overfit the graph; when the number of topics
increases, the complexity of the model increases and OAIM
starts to underfit the generative process of graphs. This
trend is also observed in [31].

The third set of experiments is to evaluate LAIM's per-
formance when changing the number of latent aspects, A.
Fig. 17 plots the results when we vary A. The perfor-
mance of LAIM improves with the increase of A when A
is small. We can observe that LAIM’s log-likelihood value
on unseen data increases as A increases from 1 to 4 in
Fig. 17a, and as A increases from 10 to 40 in Fig. 17b. This
is because latent variables form a set of features extracted
from observed variables; a model using more latent varia-
bles loses less information, thus shows higher likelihood
in the testing samples. LAIM’s performance stabilizes or
slightly decreases once it reaches a point. For the DBLP
data set, which has four observed aspects, LAIM’s perfor-
mance is the best when A is 5. For Twitter50000 data set,
which has ~400 observed aspects, the best performance is
achieved when A is 40. When there are more latent varia-
bles, the parameter matrices are sparser, which decreases
the prediction capability of the model. This is consistent
with the trend observed in [4], which demonstrates that
proper number of latent variables give the best perfor-
mance, and less or more latent variables lead to underfit-
ting or overfitting.
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8.5.3 PrecisionQK

We measure the precision of the top-K results on CiteMisc
data set. For each citing article, its corresponding domain
experts (Ph.D. students who work in that domain) rank
the article’s citations. For each aspect t* € A, domain
experts give a list of ranked citations, in which the rank-
ing criterion is the influence degree from the cited article
to the citing article on the aspect t*. The manually ranked
citation lists are used as ground truth. After OAIM con-
verges, Eq. (7) is used to estimate the influence degree on
each aspect. Then, we calculate the Precision@3 of the
results discovered by the OAIM model on each aspect.
The precisions on the four aspects and the average preci-
sions are plotted in Fig. 18. The results show that OAIM
can find results with high precision for different numbers
of latent topics, and the precision increases with the num-
ber of latent topics.

8.5.4 Case Studies

This section subjectively verifies the Aspect Influence Mod-
els. After running our models on both the Twitter50000
and CiteMisc data sets, we select several graph objects
from these two graphs and show their most influencing
objects on several aspects. Note that the experiments were
run on the whole data sets. The results for case studies are
only reported on several objects which can be easily veri-
fied. We cannot show the results on all the nodes because
of space limitation.

For the Twitter50000 data set, we choose a few famous
users and analyze the aspects on which they are influenced.
These famous users are selected because it is easy to subjec-
tively verify the findings from our models. Table 3 shows a
sample of results from our OAIM model. For instance, a
user elise foley, who is a reporter of a newspaper Huffington
Post, is influenced on the aspect Election Day/Night 2012 by
user TeamRomney the most. This information shows that
this reporter’s interest is greatly influenced by Romney’s
team in the election. In addition, elise foley is influenced on
the aspect National Security by another user marcambinder,
who is inside the Government Secrecy Industry. Similarly, a
user dcharlesReuters, who is Reuters correspondent in Wash-
ington, covering homeland security issues, is influenced on
the aspect of national politics by the WSJ (i.e., Wall Street
Journal) the most. We observe that OAIM model is return-
ing us meaningful results from several Twitter users whom
we can verify subjectively.

We also report the topic-level influence among the users
in Table 3 to show the superiority of our aspect-level influ-
ence. We ran our topic discovery using Z=100 to match the
number of observed aspects. Then, for each aspect in
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TABLE 2
Topics and Representative Words

Topic Representative words

21 cyberattack, reject, communicate, cognition

29 obama, us, report, vote, today, new

23 job, manage, hire, business

e practition, gmail cleanup, newborn, gun, ambience
25 us, news, world, people, apple

TABLE 3
Top Influence Relationships Discovered by OAIM
on Twitter50000

[User w Top aspects Best Top influencing users
matched|
topic
. Election 22 TeamRomney, samyoung-
elisefoley Day/Night 2012 man
National Security 21 marcambinder, rozen
national politics 24 WSJ, Lis Smith
deharlesReuters 7o Crcs 7 WSJ, HuffPostPol
terkel thinkprocess-staff | NA brainstelter, ThinkProgress
self_created NA David_Ingram, jaketapper
ReutersPolitics Reporters 25 fiecl;(eJMlller, mattspetal-
self_created NA NewsHour, ReutersWorld
WestWingReport self_cre.z?ted NA JlmPethokoukls, BluGates
Journalism 25 mitchellreports, nytimes

Table 3, we chose several topics that best match the aspects
by manually checking the semantics of the topics. The third
column of Table 3 shows the topics and Table 2 shows the
top representative words of these topics. For user elisefoley,
her aspect Election Day/Night 2012 is best matched to topic
2o which is related to the election. This aspect and topic rep-
resent similar semantics. Similarly, user WestWingReport’s
second aspect represents similar semantics as topic zs.
However, results also show that many aspects captures the
influence dimension more accurately. For example, user eli-
sefoley’s second aspect National Security is more specific than
its best matched topic z;, which can be summarized as cyber
security. User dcharlesReuters’s results also show that aspects
capture the semantics more accurately than topic z4, which
is hard to summarize. Aspects such as thinkprocess-staff
cannot be matched with any discovered topics. These case
studies demonstrate that topics are not able to capture the
specific dimensions on which users are connected on social
networks. This is consistent with our modeling process
which uses the explicit aspects; explicit aspects can better
capture the reasons of connections.

To give a concrete idea about the results of LAIM, we
show several users and their most influencing users on two
latent influence aspects in Table 4. E.g., user dcharlesReuters
is most influenced by GStephanopoulos (a chief political cor-
respondent in ABC) on latent aspect Ag. As shown in
Table 4b, Ag has higher probability on observed aspects
related to news. This makes sense because dcharlesReuters is
a correspondent and his Twitter account activity shows that
he is influenced more on news aspect.

For the case studies of Table 4, we find the best
matched topics to the latent aspects. The latent aspects
A, and Ag can be summarized as foreign and news
respectively. However, they are both matched to topic
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TABLE 4
Top Influence Relationships Discovered by LAIM
on Twitter50000 (There are Overall A=10 Latent
Influence Aspects)

TABLE 5
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Top Influencing Articles Discovered by OAIM for the
Three Seed Articles in the CiteMisc Data Set

A user u Aspect Best Top influencing
matched| user
topic
dcharlesReuters latent aspect 8 z5 GStephanopoulos
WestWingReport latent aspect 3 23 brianstelter
rickklein latent aspect 4 25 GStephanopoulos
(a) Three users with the top-1 most influencing latent aspects
Asz (economy) Ay (foreign) Ag (news)
WSJ NGB National Journal on Twitter
OFA-States Foreign Office on Twitter Debate Watch 2012
WSJ staff FCO Ministers HotlineOnCall
IDebate Watch 2012 London2012 newzhoundz
HotlineOnCall Sochi 2014 Election Night

(b) Latent aspects A3, A4, and Ag

z5. This shows that aspects capture more specific infor-
mation (with finer granularities) due to the usage of
observed aspects.

Table 5 shows the results on CiteMisc data set with the
parameter setting Z = 10. There are four observed aspects
(i.e., T* = 4). For each influenced seed article, we show
the most influencing (i.e., top-1) article on two aspects,
background and solution, which OAIM discovers from the
CiteMisc data set. For instance, the article p3 Scalable Algo-
rithms for Association Mining is most influenced by the
article Set-Oriented Mining for Association Rules in Rela-
tional Databases on the Background aspect because they all
study the association rule mining problem. But when it
comes to the Solution aspect, the article Sampling Large
Databases for Association Rules influences p; more because
they all work on scalable large data processing. These dis-
coveries are consistent with our subjective understanding
on these research articles.

8.6 Efficiency of the Learning Algorithms

When we test the efficiency of the learning algorithms, we
extract nine smaller graphs from Twitter50000: Twitter100,
Twitter500, Twitter1000, Tuwitter2000, Twitter5000, Twit-
ter10000, Twitter20000, Twitter30000, Twitter40000. The total
number of tokens in these nine sub-graphs varies
from ~0.5M to ~50MM.

8.6.1 Learning Algorithms Comparison for LAIM

and OAIM

We first compare the running time of the serial Gibbs sam-
pling algorithms on learning two models LAIM and OAIM.
The per-iteration running time of LAIM10, LAIM20, and
OAIM with different number of latent topics (2) is collected
on Twitter50000 data set. The result is shown in Fig. 19a. We
can see that OAIM is much faster than LAIM no matter
whether the number of latent aspects A is 10 or 20. The run-
ning time of both LAIM and OAIM grows linearly in the
number of latent topics.

We show how these two models scale in graph sizes. The
per-iteration running time of LAIM10, LAIM20, and OAIM
on Twitter50000 and its nine sub-graphs is shown in
Fig. 19b. Fig. 19b shows that both models scale linearly in
the graph size. These results are consistent with our com-
plexity analysis in Section 7.1.

id | Article Top-2 Top influencing article
aspects
Density-Based Background | BIRCH: An Efficient Data
P Clustering in Clustering Method  for
Spatial Very Large Databases
Databases: The Solution A Density-Based
Algorithm Algorithm for Discovering
GDBSCAN and Clusters in Large Spatial
its Applications Databases with Noise
Unsupervised Background | The Author-Topic Model
P2\ prediction of for Authors and Docu-
Citation ments
Influences Solution Rao-Blackwellised Parti-
cle Filtering for Dynamic
Bayesian Networks
| Scalable Background | Set-Oriented Mining for
b3 Algorithms for Association Rules in Rela-
Association tional Databases
Mining Solution Sampling Large Databases
for Association Rules
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Fig. 19. Comparing running time of LAIM and OAIM.

We also check the convergence of LAIM and OAIM
on the Twitter50000 data set, as what we have done on
the Synthetic data sets in Section 8.5.1. The convergence
criterion we adopt is R value [9]. The smaller the R
value is, the closer the sampling chain is to convergence.
We set the number of iterations in the initial burnin
phase to be 100. When the R value of the sampling chain
is less than 1.01 [23], the Gibbs sampling algorithm is
treated as converged. The number of iterations before
the convergence for LAIM and OAIM on different sets of
parameters and different sizes of Twitter data sets varies
in the range of [20,50].

8.6.2 Parallel Gibbs Sampling Algorithm

We design experiments to show the performance of the par-
allel Gibbs sampling algorithm (to learn OAIM). Fig. 20
shows the efficiency of the parallel algorithm that we
describe in Section 7.2. Both the non-parallel and the paral-
lel Gibbs sampling algorithms are tested on the Twitter50000
data set and its nine sub-graphs. We compare the speedup
ratio of our parallel algorithm with the ideal parallel
speedup ratio by testing the algorithms with different num-
ber of cores, graph sizes, and model complexities.

The speedup ratio of a parallel algorithm with n cores
over its corresponding serial algorithm has an upper bound,
which is n, according to Amdahl’s Law [25]. In the ideal
parallel case, every computation step of a serial algorithm
can be parallelized, which produces the perfect speedup
ratio n. When evaluating our parallel Gibbs sampling, we
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compare the speedup ratio of the parallel Gibbs sampling
with the perfect speedup ratio.

Fig. 20a shows the speedup ratio of the parallel Gibbs
sampling algorithm when increasing the number of cores
used in running the parallel algorithm. When the number of
threads is small (2-6), the speedup ratio is close to perfect.
When the number of threads is more than six, the speedup
ratio is a little less than the perfect ratio. This decrease of per-
formance is due to the overhead of thread scheduling when
the number of threads increases. Despite the decrease, it can
be observed that the speedup ratio still grows linearly in the
number of cores. Overall, the trend in Fig. 20a shows that the
speedup ratio of our parallel Gibbs sampling is close to the
ideal speedup ratio, which indicates that our algorithm can
make good use of the multiple cores in a system.

We also test the performance of the parallel sampling
algorithm on various sizes of data to demonstrate how the
algorithm scales in graph sizes. For this test, we fix the
number of cores to be four, and utilize the Twitter50000
and its nine sub-graphs. The results are shown in Fig. 20b.
The figure shows that the parallel algorithm does not out-
perform the serial one on small data sets. It is because the
thread scheduling overhead takes more time than compu-
tations on small data sets. When the data set size grows,
the speedup ratio of the parallel algorithm becomes close
to perfect. This indicates that the parallel algorithm has
better speedup on larger data sets. This figure also shows
that the parallel implementation scales well on real world
large data sets.

We report the log-likelihood trend of the parallel and
serial Gibbs sampling algorithms when graph sizes vary to
verify the correctness of our parallel Gibbs sampling algo-
rithm. Fig. 20c compares the log-likelihood values of the
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parallel and serial Gibbs sampling algorithms. We can see
that there is no major difference between the log-likelihood
values of the two algorithms for the same graph size. To fur-
ther investigate their differences, we plot the ratio of the log-
likelihood of the parallel Gibbs sampling algorithm over the
serial Gibbs sampling algorithm in Fig. 20d. All the ratios
are close to 1. These results show that the parallel algorithm
can speed up the learning process, and at the same time
guarantees the effectiveness.

We also explore how the parallel algorithm scales in
the model complexity by changing the number of latent
topics (Z). For this experiment, we fix the number of
cores to be six and the data set to be Twitter50000. The
results are shown in Fig. 20e. It shows that when the
model becomes more complicated (with a greater 7), the
parallel Gibbs sampling can achieve better speedup ratio.
This demonstrates that the parallel Gibbs sampling algo-
rithm can achieve better speedup ratio when the model
complexity increases.

Fig. 20f compares the log-likelihood of OAIM learned
using the parallel Gibbs sampling (with lazy-update) and
the serial Gibbs sampling on the Twitter50000 data set. For
different numbers of latent topics, the log-likelihood values
of two Gibbs sampling algorithms do not differ much. This
result shows that the parallel Gibbs sampling algorithm can
speed up the learning of the Aspect Influence Model with-
out sacrificing effectiveness.

9 CONCLUSIONS AND FUTURE WORK

We study the problem of detecting influence relationships
at aspect level from graphs. In particular, these influence
relationships capture in which context (influence aspect)
and how strong (influence degree) that one object influences
another. We first propose a semi-supervised Merging-based
Aspect Extraction Algorithm to automatically extract
aspects from graphs. We then design two probabilistic mod-
els, OAIM and LAIM, to capture and represent these influ-
ence relationships. We design blocking Gibbs sampling
algorithms to learn the probabilistic models. We further
design a parallel Gibbs sampling algorithm by utilizing the
object-dependent property and the lazy-update strategy.
Extensive experiments on synthetic and real data sets show
that the aspect extraction algorithm can label influence
aspects very accurately, and the two probabilistic models
can generate meaningful results. Efficiency tests of the serial
and parallel Gibbs sampling show that the learning algo-
rithms scale linearly in the size of data sets, the complexity
of the models, and the number of cores.

In the future, we will extend our aspect-level model to
biological pathway study by considering a special charac-
teristic of such data. The characteristic is that multiple mole-
cules fogether influence another molecule under a certain
context. This type of influence at the aspect level is very
meaningful. However, to discover the aspect-level influence
from such data, we need to consider the combined nature
of multiple graph nodes.
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