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Abstract—We study a distributed consensus-based stochastic
gradient descent (SGD) algorithm and show that the rate of
convergence involves the spectral properties of two matrices:
the standard spectral gap of a weight matrix from the network
topology and a new term depending on the spectral norm of
the sample covariance matrix of the data. This data-dependent
convergence rate shows that distributed SGD algorithms perform
better on datasets with small spectral norm. Our analysis method
also allows us to find data-dependent convergence rates as we
limit the amount of communication. Spreading a fixed amount
of data across more nodes slows convergence; for asymptotically
growing data sets we show that adding more machines can help
when minimizing twice-differentiable losses.

I. INTRODUCTION

Decentralized optimization algorithms for statistical com-
putation and machine learning on large data sets try to
trade off efficiency (in terms of estimation error) and speed
(from parallelization). From an empirical perspective, it is
often unclear when these methods will work for a particular
data set, and to what degree additional communication can
improve performance. For example, in high-dimensional prob-
lems communication can be costly. We would therefore like to
know when limiting communication is feasible or beneficial.
The theoretical analysis of distributed optimization methods
has focused on providing strong data-independent convergence
rates under analytic assumptions on the objective function such
as convexity and smoothness. In this paper we show how the
tradeoff between efficiency and speed is affected by the data
distribution itself. We study a class of distributed optimization
algorithms and prove an upper bound on the error that depends
on the spectral norm of the data covariance. By tuning the
frequency with which nodes communicate, we obtain a bound
that depends on data distribution, network size and topology,
and amount of communication. This allows us to interpolate
between regimes where communication is cheap (e.g. shared
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memory systems) and those where it is not (clusters and sensor
networks).

We study the problem of minimizing a regularized convex
function [1] of the form

AW XY By
Jw) =3 == 5wl (1)
i=1
I
—E, 5 [(wTx )] + £ W]

where £(-) is convex and Lipschitz and the expectation is
with respect to the empirical distribution P corresponding
to a given data set with N total data points {(x;,y;)}. We
will assume x; € R? and y; € R. This regularized empirical
risk minimization formulation encompasses algorithms such as
support vector machine classification, ridge regression, logistic
regression, and others [2]. For example x could represent d
pixels in a grayscale image and y a binary label indicating
whether the image is of a face: w'x gives a confidence
value about whether the image is of a face or not. We would
like to solve such problems using a network of m processors
connected via a network (represented by a graph indicating
which nodes can communicate with each other). The system
would distribute these /N points across the m nodes, inducing
local objective functions J;(w) approximating (1).

In such a computational model, nodes can perform local
computations and send messages to each other to jointly
minimize (1). The strategy we analyze is what is referred to as
distributed primal averaging [3]: each node in the network pro-
cesses points sequentially, performing a SGD update locally
and averaging the current iterate values of their neighbors after
each gradient step. This can also be thought of as a distributed
consensus-based version of Pegasos [4] when the loss function
is the hinge loss. We consider a general topology with m
nodes attempting to minimize a global objective function
J(w) that decomposes into a sum of m local objectives:
J(w) = >, J;(w). This is a model for optimization in
systems such as data centers, distributed control systems, and
sensor networks.

Main Results. Our goal in this paper is to characterize
how the spectral norm p? = o1(Ep[xx"]) of the sample
covariance affects the rate of convergence of stochastic con-
sensus schemes under different communication requirements.
Elucidating this dependence can help guide empirical practice
by providing insight into when these methods will work
well. We prove an upper bound on the suboptimality gap
for distributed primal averaging that depends on p? as well
as the mixing time of the weight matrix associated to the

algorithm. Our result shows that networks of size m < p%
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gain from parallelization. To understand the communication-
limited regime, we extend our analysis to intermittent commu-
nication. In a setting with finite data and sparse connectivity,
convergence will deteriorate with increasing m because we
split the data to more machines that are farther apart. We also
show that by using a mini-batching strategy we can offset
the penalty of infrequent communication by communicating
after a mini-batch (sub)gradient step. Finally, in an asymptotic
regime with infinite data at every node we show using results
of Bianchi et al. [5] that for twice-differentiable loss functions
this network effect disappears and that we gain from additional
parallelization.

Related Work. Several authors have proposed distributed
algorithms involving nodes computing local gradient steps
and averaging iterates, gradients, or other functions of their
neighbors [3], [6], [7]. By alternating local updates and
consensus with neighbors, estimates at the nodes converge to
the optimizer of J(-). In these works no assumption is made
on the local objective functions and they can be arbitrary.
Consequently the convergence guarantees do not reflect the
setting when the data is homogenous (for e.g. when data has
the same distribution), specifically error increases as we add
more machines. This is counterintuitive, especially in the large
scale regime, since this suggests that despite homogeneity the
methods perform worse than the centralized setting (all data
on one node).

We provide a first data-dependent analysis of a consensus
based stochastic gradient method in the homogenous setting
and demonstrate that there exist regimes where we benefit
from having more machines in any network.

In contrast to our stochastic gradient based results, data
dependence via the Hessian of the objective has also been
demonstrated in parallel coordinate descent based approaches
of Liu et al. [8] and the Shotgun algorithm of Bradley et al. [9].
The assumptions differ from us in that the objective function
is assumed to be smooth [8] or £; regularized [9]. Most
importantly, our results hold for arbitrary networks of compute
nodes, while the coordinate descent based results hold only for
networks where all nodes communicate with a central aggre-
gator (sometimes referred to as a master-slave architecture, or
a star network), which can be used to model shared-memory
systems. Another interesting line of work is the impact of
delay on convergence in distributed optimization [10]. These
results show that delays in the gradient computation for a
star network are asymptotically negligible when optimizing
smooth loss functions. We study general network topologies
but with intermittent, rather than delayed communication. Our
result suggest that certain datasets are more tolerant of skipped
communication rounds, based on the spectral norm of their
covariance.

We take an approach similar to that of Takac¢ et al. [11] who
developed a spectral-norm based analysis of mini-batching for
non-smooth functions. We decompose the iterate in terms of
the data points encountered in the sample path [12]. This
differs from analysis based on smoothness considerations
alone [10], [12]-[14] and gives practical insight into how
communication (full or intermittent) impacts the performance
of these algorithms. Note that our work is fundamentally

different in that these other works either assume a centralized
setting [12]-[14] or implicitly assume a specific network
topology (e.g. [15] uses a star topology). For the main results
we only assume strong convexity while the existing guarantees
for the cited methods depend on a variety of regularity and
smoothness conditions.

Limitation. In the stochastic convex optimization (see for
e.g. [16]) setting the quantity of interest is the population
objective corresponding to problem 1. When minimizing this
population objective our results suggest that adding more
machines worsens convergence (See Theorem 1). For finite
data our convergence results satisfy the intuition that adding
more nodes in an arbitrary network will hurt convergence.
The finite homogenous setting is most relevant in settings
such as data centers, where the processors hold data which
essentially looks the same. In the infinite or large scale
data setting, common in machine learning applications, this
is counterintuitive since when each node has infinite data,
any distributed scheme including one on arbitrary networks
shouldn’t perform worse than the centralized scheme (all data
on one node). Thus our analysis is limited in that it doesn’t
unify the stochastic optimization and the consensus setting in
a completely satisfactory manner. To partially remedy this we
explore consensus SGD for smooth strongly convex objectives
in the asymptotic regime and show that one can gain from
adding more machines in any network.

In this paper we focus on a simple and well-studied proto-
col [3]. However, our analysis approach and insights may yield
data-dependent bounds for other more complex algorithms
such as distributed dual averaging [6]. More sophisticated
gradient averaging schemes such as that of Mokhtari and
Ribeiro [17] can exploit dependence across iterations [18],
[19] to improve the convergence rate; analyzing the impact
of the data distribution is considerably more complex in these
algorithms.

We believe that our results provide a first step towards
understanding data-dependent bounds for distributed stochastic
optimization in settings common to machine learning. Our
analysis coincides with phenomenon seen in practice: for
data sets with small p, distributing the computation across
many machines is beneficial, but for data with larger p more
machines is not necessarily better. Our work suggests that
taking into account the data dependence can improve the
empirical performance of these methods.

II. MODEL
We will use boldface for vectors. Let [k] = {1,2,...,k}.
Unless otherwise specified, the norm ||-|| is the standard

Euclidean norm. The spectral norm of a matrix A is defined
to be the largest singular value o1(A) of the matrix A or
equivalently the square root of the largest eigenvalue of AT A.
For a graph G = (V, &) with vertex set V and edge set £, we
will denote the neighbors of a vertex i € V by N (i) C V.
Data model. Let P be a distribution on R+ such that
for (x,y) ~ P, we have ||x|| < 1 almost surely. Let
S = {x1,xa,... ’XN}A be ii.d sample of d-dimensional
vectors from P and let P be the empirical distribution of S.
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Let 3 = E,.p[xx"] be the sample second-moment matrix of
S. Our goal is to express the performance of our algorithms
in terms of p? = 0 (3), the spectral norm of 3. The spectral
norm p? can vary significantly across different data sets. For
example, for sparse data sets p? is often small. This can also
happen if the data happens to lie in low-dimensional subspace
(smaller than the ambient dimension d).

Problem. Our problem is to minimize a particular instance

of (1) where the expectation is over a finite collection of data
points:
w* & argmin J(w) (2)
Let w;(t) be the estimate of w* at node j € [m] in the ¢-th
iteration. We bound the expected gap (over the data distribu-
tion) at iteration T between J(w*) and the value J(Ww;(T))
of the global objective J(W;(T)) at the output w,;(T") of
each node j in our distributed network. We will denote the
subgradient set of J(w) by 0J(w) and a subgradient of J(w)
by VJ(w) € dJ(w).

In our analysis we will make the following assumptions
about the individual functions £(w ' x): (a) The loss functions
{¢(-)} are convex, and (b) The loss functions {¢(-;y)} are
L-Lipschitz for some L > 0 and all y. Note that J(w) is p-
strongly convex due to the /5-regularization. Our analysis will
not depend on the the response y except through the Lipschitz
bound L so we will omit the explicit dependence on y to
simplify the notation in the future.

Network Model. We consider a model in which minimiza-
tion in (2) must be carried out by m nodes. These nodes
are arranged in a network whose topology is given by a
graph G — an edge (i,7) in the graph means nodes ¢ and
j can communicate. A matrix P is called graph conformant
if P;; > 0 only if the edge (¢,j) is in the graph. We will
consider algorithms which use a doubly stochastic and graph
conformant sequence of matrices P(t).

Sampling Model. We assume the /N data points are divided
evenly and uniformly at random among the m nodes, and
define n & N /m to be the number of points at each node. This
is a necessary assumption since our bounds are data dependent
and depend on subsampling bounds of spectral norm of certain
random submatrices. However our data independent bound
holds for arbitrary splits. Let S; be the subset of n points
at node 4. The local stochastic gradient procedure consists of
each node ¢ € [m] sampling from .S; with replacement. This
is an approximation to the local objective function

owTx;
gw) = Y X Bz
JES:

Algorithm. In the subsequent sections we analyze the
distributed version (Algorithm 1) of standard SGD. This
algorithm is not new [3], [7] and has been analyzed extensively
in the literature. The step-size n; = 1/(ut) is commonly used
for large scale strongly convex machine learning problems
like SVMs (e.g.- [4]) and ridge regression: to avoid an extra
parameter in the bounds, we take this setting. In Algorithm
1 node 7 samples a point uniformly with replacement from a

local pool of n points and then updates its iterate by com-
puting a weighted sum with its neighbors followed by a local
subgradient step. The selection is uniform to guarantee that the
subgradient is an unbiased estimate of a true subgradient of
the local objective J;(w), and greatly simplifies the analysis.
Different choices of P(¢) will allow us to understand the effect
of limiting communication in this distributed optimization
algorithm.

Algorithm 1 Consensus Strongly Convex Optimization

Input: {x;;},where i € [m] and j € [n| and N = mn,
matrix sequence P(t), p>0,T > 1

{Each i € [m] executes}

Initialize: set w;(1) = 0 € R%,

fort=1to T do
Sample x;; uniformly with replacement from S;.
Compute g;(t) € O0(w;(t) "x;.4)x;i 1 + pwi(t)
wilt +1) = S w; (1) Py (1) — (1)

end for

Output: w;(T) = + ZtT:1 w;(t) for any i € [m].

Expectations and probabilities. There are two sources of
stochasticity in our model: the first in the split of data points
to the individual nodes, and the second in sampling the points
during the gradient descent procedure. We assume that the split
is done uniformly at random, which implies that the expected
covariance matrix at each node is the same as the population
covariance matrix 3. Conditioned on the split, we assume that
the sampling at each node is uniformly at random from the
data point at that node, which makes the stochastic subgradient
an unbiased estimate of the subgradient of the local objective
function. Let F; be the sigma algebra generated by the random
point selections of the algorithm up to time ¢, so that the
iterates {w;(¢) : i € [m]} are measurable with respect to F;.

III. CONVERGENCE AND IMPLICATIONS

Methods like Algorithm 1, also referred to as primal aver-
aging, have been analyzed previously [3], [7], [20]. In these
works it is shown that the convergence properties depend on
the structure of the underlying network via the second largest
eigenvalue of P. We consider in this section the case when
P(t) = P for all t where P is a fixed Markov matrix. This
corresponds to a synchronous setting where communication
occurs at every iteration.

We analyze the use of the step-size 17, = 1/(ut) in
Algorithm 1 and show that the convergence depends on the
spectral norm p? = o (f]) of the sample covariance matrix.

Theorem 1: Fix a Markov matrix P and let p? = 0(2)
denote the spectral norm of the covariance matrix of the data
distribution. Consider Algorithm 1 when the objective J(w)
is strongly convex, P(t) = P for all ¢, and n; = 1/(ut). Let
A2(P) denote the second largest eigenvalue of P. Then if the
number of samples on each machine n satisfies

4
n > 3.7 log (d) 4
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and the number of iterations 7' satisfies

T > 2elog(1/+/22(P)) (5)

1

1 (5)* Vmip
—— >max | = log(d), ~22—~—__ |, 6
lo&(T) 37 5 Doy )0 ©

then the expected error for each node 7 satisfies
E[J(wi(T)) = J(w)] <

1 n 100y/mp? - logT E logT 7

m 1— /X (P) 7 T

Remark 1: Theorem 1 indicates that the number of machines
should be chosen as a function of p. We can identify three
sub-cases of interest:

Case (a): m < pz%: In this regime since 1/m > \/mp?
(ignoring the constants and the log T' term) we always benefit
from adding more machines.

Case (b): # <m< %: The result tells us that there is
no degradation in the error and the bound improves by a factor
\/mp. Sparse data sets generally have a smaller value of p?
(as seen in Takac et al. [11]); Theorem 1 suggests that for such
data sets we can use a larger number of machines without los-
ing performance. However the requirements on the number of
iterations also increases. This provides additional perspective
on the observation by Takac et al [11] that sparse datasets are
more amenable to parallelization via mini-batching. The same
holds for our type of parallelization as well.

Case (¢): m > p%: In this case we pay a penalty \/mp? > 1
suggesting that for datasets with large p we should expect to
lose performance even with relatively fewer machines.

Note that m > 1 is implicit in the condition 7' >
2elog(1/4/A2)) since Ao = 0 for m = 1. This excludes
the single node Pegasos [11] case. Additionally in the case
of general strongly convex losses (not necessarily dependent
on w ' X) we can obtain a convergence rate of O(log?(T")/T).
We do not provide the proof here.

IV. STOCHASTIC COMMUNICATION

In this section we generalize our analysis in Theorem 1 to
handle time-varying and stochastic communication matrices
P(t). In particular, we study the case where the matrices
are chosen i.i.d. over time. Any strategy that doesn’t involve
communicating at every step will incur a larger gap between
the local node estimates and their average. We call this the
network error. Our goal is to show how knowing p? can help
us balance the network error and optimality gap.

First we bound the network error for the case of stochastic
time varying communication matrices P(¢) and then a simple
extension leads to a generalized version of Theorem 1.

Lemma 2: Let {P(t)} be a iid sequence of doubly
stochastic Markov matrices and consider Algorithm 1 when
the objective J(w) is strongly convex. We have the following
inequality for the expected squared error between the iterate
w;(t) at node i at time ¢ and the average w(t) defined in
Algorithm 1:

2L /m log(2bet?)
i A e N T
" b t

where b = log (1/X; (E [P%(£)])).
Due to page restrictions we skip the proof of Lemma 2 and
point to the proof of a similar result in [6] (Theorem 3-
stochastic communication).
Armed with Lemma 2 we prove the following theorem for
Algorithm 1 in the case of stochastic communication.
Theorem 3: Let {P(t)} be an ii.d sequence of doubly
stochastic matrices and p? = 01(2) denote the spectral norm
of the sample covariance matrix. Consider Algorithm 1 when
the objective J(w) is strongly convex, and 7; = 1/(ut). Then
if the number of samples on each machine n satisfies

4
n > 37)2 log (d) &)

and the number of iterations 7 satisfies

T > 2elog(1/+/ A2 (E[P2(1)])) (10)
and
T 4
Toa(T) > max (302 log(d),
8 m 1
ﬁ' ﬁ log(1/X:(E [P?(tm))’
(1D

then the expected error for the output of each node 7 satisfies
E[J(wi(T)) = J(w")]

< l_}_ 1004/mp? - log T L* logT
“\m - VREPA)) w T

Remark: This result generalizes the conclusions of Theorem
1 to the case of stochastic communication schemes. Thus
allowing for the data dependent interpretations of convergence
in a more general setting.

12)

V. LIMITING COMMUNICATION

As an application of the stochastic communication scenario
of Theorem (3) we now analyze the effect of reducing the
communication overhead of Algorithm 1. This reduction can
improve the overall running time (“wall time”) of the algo-
rithm because communication latency can hinder the conver-
gence of many algorithms in practice [21]. A natural way of
limiting communication is to communicate only a fraction v
of the T total iterations; at other times nodes simply perform
local gradient steps.

We consider a sequence of i.i.d random matrices {P(¢)}
for Algorithm 1 where P(t) € {I, P} with probabilities 1 — v
and v, respectively, where I is the identity matrix (implying
no communication since P;;(t) = 0 for ¢ # j) and, as in
the previous section, P is a fixed doubly stochastic matrix
respecting the graph constraints. For this model the expected
number of times communication takes place is simply v7T.
Note that now we have an additional randomization due to
the Bernoulli distribution over the doubly stochastic matrices.
Analyzing a matrix P(¢) that depends on the current value of
the iterates is considerably more complicated.
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A straightforward application of Theorem 3 reveals that
the optimization error is proportional to % and decays as
o(L- lOgQ#) However, this ignores the effect of the local
communication-free iterations.

A mini-batch approach. To account for local communica-
tion free iterations we modify the intermittent communication
scheme to follow a deterministic schedule of communication
every 1/v steps. However, instead of taking single gradient
steps between communication rounds, each node gathers the
(sub)gradients and then takes an aggregate gradient step. That
is, after the ¢-th round of communication, the node samples a
batch Z; of indices sampled with replacement from its local
data set with |Z;| = 1/v. We can think of this as the base
algorithm with a better gradient estimate at each step. The
update rule is now

wit+1) =Y wi(t)P;(t) —mv Y _ gi(t).

JEN; i€ZL;

13)

We define gi1 / “(t) = Y ez, &i(t). Now the iteration count is
over the communication steps and gi1 / “(t) is the aggregated
mini-batch (sub)gradient of size 1/v. Note that this is anal-
ogous to the random scheme above but the analysis is more
tractable.

Theorem 4: Fix a Markov matrix P and let p?> = o1(3)
denote the spectral norm of the covariance matrix of the data
distribution. Consider Algorithm 1 when the objective J(w)
is strongly convex, P(t) = P for all ¢, and n, = 1/(ut) for
scheme (13). Let A2(P) denote the second largest eigenvalue
of P. Then if the number of samples on each machine n
satisfies

4
and
T > Zlog(1/\/ % (P))
1
8\1 2
ax og(d), B VP
log(vT) 3vp? log(1/A2)
1 4
— > — -log(d 15
)7 3, og(d) (15)
and then the expected error for each node 7 satisfies
E[J(wi(T)) = J(w")]
1 4.1 T
< (L 1 a00vs. Vet los(T)
m 1—+vX
L? 1 T
L7 log(vT) (16)
I T
where v is the frequency of communication and where Ay =

A2(P).

Remark: Theorem (4) suggests that if the inverse frequency of
communication is large enough then we can obtain a sharper
bound on the error by a factor of p. This is significantly better
than a O(y/mp? - lof—;T) baseline guarantee from a direct
application of Theorem 1 when the number of iterations is
VT

Additionally the result suggests that if we communicate on
a mini batch(where batch size b = 1/v) that is large enough
we can improve Theorem 1, specifically now we get a 1/m
improvement when m < 1/p%/3,

VI. ASYMPTOTIC REGIME

In this section we explore the sub-optimality of distributed
primal averaging when 1" — oo for the case of smooth strongly
convex objectives. The results of Section (III) suggest that we
never gain from adding more machines in any network. Now
we investigate the behaviour of Algorithm 1 in the asymptotic
regime and show that the network effect disappears and we
do indeed gain from more machines in any network.

Our analysis depends on the asymptotic normality of a
variation of Algorithm 1 [5, Theorem 5]. The main differences
between Algorithm 1 and the consensus algorithm of Bianchi
et al. [5] is that we average the iterates before making the
local update.

We make the following assumptions for the analysis in
this section: (1) The loss function differentials {0 (¢(-))} are
differentiable and G-Lipschitz for some G > 0, (2) the
stochastic gradients are of the form g;(t) = VJ(w;(t)) + &,
where E[¢,] = 0 and E[¢,£,] = C, and (3) there exists p > 0
such that E [||€t\|2+p} < 00. Our results hold for all smooth

strongly convex objectives not necessarily dependent on w ' x.

Lemma 5: Fix a Markov matrix P. Consider Algorithm
1 when the objective J(w) is strongly convex and twice
differentiable, P(t) = P for all ¢, and n; = 1/(\t). then
the expected error for each node i satisfies for a arbitrary split
of N samples into m nodes

limsupT -E | J ZPijwj(T) — J(w™)

T—o00 J=1
< Y By mem) (17
= L Y i
JEN(3)
where H is the solution to the equation
VJAi(w"H+HVJ?(w*)T = C. (18)

Remark: This result shows that asymptotically the network
effect from Theorem 3 disappears and that additional nodes
can speed convergence.

An application of Lemma 5 to problem (1) gives us the
following result for the specialized case of a k-regular graph
with constant weight matrix P.

Theorem 6: Consider Algorithm 1 when the objective J(w)
has the form 1 , P(¢) = P and corresponds to a k-regular
graph with uniform weights for all ¢, and n; = 1/(At). then
the expected error for each node ¢ satisfies

limsupT -E | J Z Pw;(T) | —J(w")
T— o0 =1
25pL2

<
-k

Tr (V2J(w*) ™)

. g (19)
7
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TABLE 1
DATA SETS AND PARAMETERS FOR EXPERIMENTS
data set | training | test | dim. | X | p* |
RCVL 781,265 | 23,149 | 47,236 | 10 ¥ | 0.01
Covertype | 522,911 | 58,001 | 47,236 | 10 6 | 0.21

where the expectation is with respect to the history of the
sampled gradients as well as the uniform random splits of N
data points across m machines.

Remark: For objective (1) we obtain a 1/k variance reduction
and the network effect disappears.

VII. EXPERIMENTS

Our goals in our experimental evaluation are to validate the
theoretical dependence of the convergence rate on p? and to
see if the conclusions hold when the assumptions we make
in the analysis are violated. Note that all our experiments are
based on simulations on a multicore computer.

A. Data sets, tasks, and parameter settings

The data sets used in our experiments are summarized in Ta-
ble (VII-A). Covertype is the forest covertype dataset [22]
used in [4] obtained from the UC Irvine Machine Learning
Repository [23], and rcvl is from the Reuters collection [23]
obtained from libsvm collection [24]. The RCV1 data set has a
small value of ,62, whereas Covertype has a larger value. In
all the experiments we looked at £2-regularized classification
objectives for problem (1). Each plot is averaged over 5 runs.

The data consists of pairs {(Xq,¥1),---,(Xn,yn)} where
x; € R? and y; € {—1,+1}. In all experiments we optimize
the fo-regularized empirical hinge loss where {(w'x) =
(1 — wxy),. The values of the regularization parameter
are chosen from to be the same as those in Shalev-Shwarz et
al. [4].

We simulated networks of compute nodes of varying size
(m) arranged in a k-regular graph with k& = [0.25m| or a
fixed degree (not dependent on m). Note that the dependence
of the convergence rate of procedures like Algorithm (1) on
the properties of the underlying network has been investigated
before and we refer the reader to Agarwal and Duchi [10]
for more details. In this paper we experiment only with k-
regular graphs. The weights on the Markov matrix P are set
by using the max-degree Markov chain (see [25]). One can
also optimize for the fastest mixing Markov chain ( [25], [26]).
Each node is randomly assigned n = | N/m| points.

B. Intermittent Communication

In this experiment we show the objective function for
RCV1 and Covertype as we change the frequency of com-
munication (Figure 1), communicating after every 1,10,50
and 500 iterations. Indeed as predicted we see that the dataset
with the larger p? appears to be affected more by intermittent
communication. This indicates that network bandwidth can be
conserved for datasets with a smaller p?.

6
Infinite Data

6 i
=4- Machines
g --32
E 64
[« 9
Ho- —128
2 —-512

0 i

0 250 500 750 1000
Iteration

Fig. 2. No network effect with an increasing benefit of adding more machines
in the case of infinite data. (plot zoomed in for clear visuals)

C. Comparison of Different Schemes

We compare the three different schemes proposed in this
paper. On a network of m = 64 machines we plot the perfor-
mance of the mini batch extension of Algorithm (1) with batch
size 128 against the intermittent scheme that communicates
after every 128 iterations and also the standard version of the
algorithm. In Figure 3-(a) we see that as predicted in Theorem
(4) the mini batch scheme proposed in (13) does better than
the vanilla and the intermittent scheme.

D. Infinite Data

To provide some empirical evidence of Lemma 5 we
generate a very large (N = 107) synthetic dataset from a
multivariate Normal distribution and created a simple binary
classification task using a random hyperplane. As we can see
in figure 2 for the SVM problem and a k-regular network we
continue to gain as we add more machines and then eventually
we stabilize but never lose from more machines. We only show
the first few thousand iterations for clarity.

E. Diminishing Communication

To test if our conclusions apply when the i.i.d assumption
for the matrices P (%) does not hold we simulate a diminishing
communication regime. Such a scheme can be useful when
the nodes are already close to the optimal solution and
communicating their respective iterate is wasteful. Intuitively
it is in the beginning the nodes should communicate more
frequently. To formalize the intuition we propose the following
communication model

[P wp. CtP
Pt) = { I wp. 1-Ct?

where C,p > 0. Thus the sequence of matrices are not
identically distributed and the conclusions of Theorem (3) do
not apply.

However in Figure 3-(b) (C=1,p=0.5) we see that on a
network of m = 128 nodes the performance for the dimin-
ishing regime is similar to the full communication case and

(20)
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Intermittent on RCV

Intermittent on Covertype
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Performance of Algorithm (1) with intermittent communication scheme on datasets with very different p2. The algorithm works better for smaller

p? and there is less decay in performance for RCV1 as we decrease the number of communication rounds as opposed to Covertype (p? = 0.01 vs

Fig. 1.
p? =0.21).
Different Schemes on Covertype
\W- -
T—‘; Scheme
g = m=64-b=128
. = m=64-b=1-Full
g = 'm=64-b=1-Int

5
m“’"‘b

Iteration

Diminishing vs Full on Covertype

Scheme
— Diminishing
— Full

log(Primal)

S
%Q

N
N

N
S 3
K

P

Iteration

Fig. 3. a) Comparison of three different schemes a) Algorithm (1) with Mini-Batching b) Standard c) Intermittent with b = (1/v) = 128. As predicted the
mini-batch scheme performs much better than the others. b) The performance on Covertype with a full and a diminishing communication scheme is similar.

we can hypothesize that our results also hold for non i.i.d
communication matrices.

VIII. DISCUSSION AND IMPLICATIONS

In this paper we described a consensus stochastic gradient
descent algorithm and analyzed its performance in terms of
the spectral norm p? of the data covariance matrix under a
homogenous assumption. In the consensus problem this setting
has not been analyzed before and existing work corresponds
to weaker results when this assumption holds.

For certain strongly convex objectives we showed that
the objective value gap between any node’s iterate and the
optimum centralized estimate decreases as O(log*(T)/T);
crucially, the constant depended on p? and the spectral gap of
the network matrix. We showed how limiting communication
can improve the total runtime and reduce network costs by
extending our analysis with a similar data dependent bound.
Moreover we show that in the asymptotic regime the network
penalty disappears. Our analysis suggests that distribution-
dependent bounds can help us understand how data properties
can mediate the tradeoff between computation and communi-
cation in distributed optimization. In a sense, data distributions
with smaller p? are easier to optimize over in a distributed
setting. This set of distributions includes sparse data sets, an
important class for applications.

0018-9286 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permissio:

In the future we will extend data dependent guarantees to
serial algorithms as well as the average-at-end scheme [14],
[15]. Extending our fixed batch-size to random size can help
us understand the benefit of communication-free iterations.
Finally, we can also study the impact of asynchrony and more
general time-varying topologies.

We gather here the proof details and technical lemmas
needed to establish our results.

APPENDIX A
PROOF OF THEOREM 1

Theorem 1 provides a bound on the suboptimality gap for
the output w;(T") of Algorithm 1 at node 4, which is the
average of that node’s iterates. In the analysis we relate this
local average to the average iterate across nodes at time ¢:

m

wi(t). @1

We will also consider the average of w(t) over time.
The proof consists of three main steps.

o We establish the following inequality for the objective

n. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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E[J(w(t)) = J(w")] <

w]
2
-1

- %E (It +1) —w*\ﬂ

m

e
+ i \/ [Iw(t) -

i=1

wi(t)|]

- JE (I Ta(wa@) + 9w (@) )] /s 22)

where w(t) is the average of the iterates at all nodes and
the expectation is with respect to F; while conditioned
on the sample split across nodes. All expectations, except
when explicitly stated, will be conditioned on this split.

« We bound E [V (w;(1))|*] and % U)z AG 2]

m
in terms of the spectral norm of the covariance matrix of
the distribution P by additionally taking expectation with
respect to the sample S.

e We bound the network error E [Hv’v(f) —Wi(t)H2:| in

term of the network size m and a spectral property of
the matrix P.

Combining the bounds using inequality (22) and applying the
definition of subgradients yields the result of Theorem 1.

A. Spectral Norm of Random Submatrices

In this section we establish a Lemma pertaining to the
spectral norm of submatrices that is central to our results.
Specifically we prove the following inequality, which follows
by applying the Matrix Bernstein inequality of Tropp [27].

Lemma 7: Let P be a distribution on R? with second
moment matrix ¥ = Ez.p[ZZ "] such that ||Z|| < 1 almost
surely. Let (? = 01(X). Let Z1,Zy,...,Zx be an iid.
sample from P and let

K
Qx =Y ZpZ]

be the empirical second moment matrix of the data. Then for
K > 5(2 log(d),

01(Qk) 2
E | —==%| <5(°. 23
@) o

Thus when P is the empirical distribution we get that
E [01(1‘?1()] < 5<2
Remark: We can replace the ambient dimension d in the
requirement for K by an intrinsic dimensionality term but this
requires a lower bound on the norm of any data point in the
sample.

Proof: Let Z be the d x K matrix whose columns are
{Z}. Define X, = Z;Z; — 3. Then E[X;] = 0 and

)\max(Xk) = Amax (Zk?Z;cr - E)
2
< ||Zy|l
<1,

because X is positive semidefinite and ||z;|| < 1 for all ¢
Furthermore,

] (i[{i [xi]) = Ko (B [ZkZ, ZvZ; | — %°)

< Koy (E [||Yk||2 zkz,j]) + Koy (2)?

<K+
< 2K¢?,
since p < 1.

Applying the Matrix Bernstein inequality of Tropp [27,
Theorem 6.1]:

K 7‘2 ™
. (01 (Z Xk) N r) . {dexp (—3—16“2) <2
= dexp(-35) £ 22

Now, note that

K K
o1 (Z Xk> =0 (Z 7.7, — KZ) ,
k=1 k=1

S0 01 (Ele Xk) > r is implied by

Therefore
P ( > 7") <

Integrating (25) yields
E [U 1(QK)] _

dexp | — 3522”;) r <22
_BIgrl) T/22C2.
(25)

01(Qk)
& ¢

dexp

K

§3C2+/OOP(0'1(187§) CQZZ<2>d$
3

C2

S 3(2 +/ P (Ul(Qt) CQ >
2{2

<3¢+ dexp <—3Kr’) dr’
2<2 8

dx

8 d 3
2,9 _ 2,2
—3C+3 exp( 4CK>
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For K > log d,

3(2

B. Decomposing the expected suboptimality gap

The proof in part follows [3]. It is easy to verify that because
P is doubly stochastic the average of the iterates across the
nodes at time ¢, the average of the iterates across the nodes in
(21) satisfies the following update rule:

i(t)

m

wit+1) =wit)—n > & (26)

i=1

We emphasize that in Algorithm 1 we do not perform a final
averaging across nodes at the end as in (21). Rather, we ana-
lyze the average at a single node across its iterates (sometimes
called Polyak averaging). Analyzing (21) provides us with a
way to understand how the objective J(w;(t)) evaluated at
any node i’s iterate w;(t) compares to the minimum value
J(w*). The details can be found in Section (A-G).

To simplify notation, we treat all expectations as condi-
tioned on the sample S. Then (26),

Emw@+n—wwzﬂ}
—E [|w(t) - w*| | 7]
+n’E ‘ ZZm; g;i ’
_ _ T = ]E gz |-7'—t
2n (W ( ;
—E ||w(t) - w| m}
m 2
LI g;;i !ft

Note that VJ;(w;(t)) = E|[g;(¢)|F], so for the last term,

for each 7 we have
VIi(wit) " (W(t) — w*)
= VJ1<WZ(t))T (W

> - ||VJi(Wi(t))|| w(t) —wi(t)]

+ VJi(wi() T (wi(t) — w)
> [V Iwi )] () = wi0)]

Jiwilt) = Ji(w) + 5 wi(t) = w
=~ [VIwi)Il W (t) = wi()]

(Wi (1)) = (W (1)

+ 5 lwit) = WP + (W (8)) = Ji(w)
> — |V I(wi(O)] () = wi(t)

5 Iwalt) = w4 T (1) — Ti(w?)
> = (IVAwil)I| + VI (0)]) [9(2) = wi(o)]
L llwilt) = |+ Ji(w (1) = Ji(w"),

(28)

where the second and third lines comes from applying the
Cauchy-Shwartz inequality and strong convexity, the fifth line
comes from the definition of subgradient, and the last line is
another application of the Cauchy-Shwartz inequality.

Averaging over all the nodes, using convexity of , the
definition of J(+), and Jensen’s inequality yields the following
inequality:

_2ntz (w(t TE[gzinN]:t]
< om z": W (@O (Vi (:Ln( DI+ IV Ii(w ()]
o, (Z A () - L(w*))
m:1 %12
35 )=
i=1
< 2m§: [ w(t) @ IV (nvzz(t))ll +IVL(w(@)I)
i=1
— 2 (J(W(t) = J(w*)) — e || W (t) = w*||* (29)
Substituting inequality (29) in recursion (27),
B [[lw(t+1) - w*[* | 7]
<E[Iw(t) - w|? m}
+n7E Z g;?(; ‘
+2nt2m: [w(t) — wi(®)| (IIVJs (;VZ O+ IVIi(w(®)]])
— 2, (J(W(t)) = J(w")) — e W () —w*|*. (30)
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Taking expectations with respect to the entire history F,

—w|’]

<E[IIW() - w|*] + nfE

E [[lw(t+1)

o~ 8ilt)
25

+ 2ny-
i E[[|w(t) — w;(t) (||VJiT(nwz'(t))|| + [VIi(w(®)])]

= 2 (ELI(W(8)) = J(w*)]) = e [[w() = w* ]

< =2 (E[J(w(t)) — J(w™)])

+ (L= pm)E [[Ww(t) = w* || + nE

zm:g(t)

—wi()]l’

B[V + 19 @] 31

This lets us bound the expected suboptimality gap
E[J(w(t)) — J(w*)] via three terms:

11— O =g [ - we)]

2
- ”tTE [Hv‘v(t 1) - w*\ﬂ (32)
T2 — %E ; g;f) (33)
L ﬁ [I15e(t) = wi(0) ]
=1
B[V + 1917, 69
where g T (1)) — J(w*)] < TI + T2 + T3, (35)

The remainder of the proof is to bound these three terms
separately.

C. Network Error Bound

We need to prove an intermediate bound first to handle term
T3.

Lemma 8: Fix a Markov matrix P and consider Algorithm
1 when the objective J(w) is strongly convex we have the
following inequality for the expected squared etror between
the iterate w;(t) at node ¢ at time t and the average w(t)
defined in Algorithm 1:

2L
VB0 -wor] < 2.4
where b = (1/2)log(1/X2(P)).
Proof: We follow a similar analysis as others [3, Prop.
3] [6, IV.A] [20]. Let W (¢) be the m x d matrix whose i-th

vm  log(2bet?)

e (6)
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row is w;(t) and G(¢) be the m X d matrix whose i-th row
is g;(t) . Then the iteration can be compactly written as

W(t+1)=Pt)W(t) — n:G(t)

and the network average matrix W (t) =
we can write the difference using the fact that P(¢) =
all ¢:

L11"W (t). Then
P for

W(t+1)—
1

m

W(t+1) =

117 — I) (PW(t) — n,G(t))

> W(t) —n; (;11T - [) G(t)
= ( LR P) (PW(t—1) —n;_1G(t — 1))
— < 117 — I> G(t)

— (nllnT - P2) W(t—1)
— 1 (;111T — P) G(t—1)
—n <771¢11T - 1) G(t)

= (Tilf — P2> W(t—1)

.
— né< 117 — P”) G(s). (37)
t—1

S=

Continuing the expansion and using the fact that W (1) = 0,

W(it+1) - W(t+1) =
(;nT ) W(l) — Z:n ( 117 P”) G(s)
- _Z”S (771111T P~ ) G(s)
s=1
- t:ns (771111T P ) G(s)

(38)
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Now looking at the norm of the i-th row of (38) and using
the bound on the gradient norm:

[[w(t ) - '( )l

m

Z(l—a)t )

) g(5)

1
e | D —g(t) —&i(t) H (39)
j=1
2L
< — — (P75, +=. (40)
;,us m )i 1ot

We handle the term || poe — (Pt=9) ||1 using a bound on
the mixing rate of Markov chams (c.f. (74) in Tsianos and
Rabbat [20]):

t—1 t—1
Ly/m t=s 1
Z H = (P79 < Lym > (\/ /\2(P)) <
s=1 Hs 1 K s=1 5
(41)
Define a = \/A2(P) <1 and b = —log(a) > 0. Then we
have the following identities:
to t—r41 t
a exp(—
= = 42
o Z t—7+1 Z (42)
Now using the fact that when & > —1 we have exp(—z) <
1/(1 4+ z) and using the integral upper bound we get
t ogt—7+1
T=1 T
t
<
772:1 14 b7)( t—T+1)
PR N /f dr
~(+b) 1 A+bn)t—7+1)
1 log(br + 1) — log(t — 7+ 1)1
(1 +0b)t bt+b+1 i
1 log(bt + 1) —log(b + 1) + log(¥)
S (L+b)t bt+b+1
< log(et(bt + 1))
- bt
log(2bet?)
< =", 43
< B2 “3)
Using (41) and (43) in (40) we get
_ L+/mlog(2bet?) 2L
[9(r) - wi(r) | < 2 CEEC) 2
o 4 ut
2
< 2L\/m log(2bet ) 44)
I bt
Therefore we have
_ 2L+/m log(2bet?
VE 190~ wio] < 2B g
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D. Bounds for expected gradient norms

1) Bounding E [||le-(v’v(t))||2 : Let B4 € OU(W(t)Txi )
denote a subgradient for the j-th point at node ¢ and 3, =
(B1t, B2ty - - ,6,1’,5)—r be the vector of subgradients at time ¢.
Let Qg, be the n xn Gram matrix of the data set .S;. From the
definition of ||V J;(w(t))|| and using the Lipschitz property of
the loss functions, we have the following bound:

IVJ:(w (1))
Z Bj,i(i,j +

JES:

2

pw (t)

2
5',txi,' _ 2
<2y o w(t)]
JES:

2 : i’ 6 ﬂ" XT‘X/“
_ Z]esq, ZJ 657;2 ¢ X X +2u2\|€v(t)||2

2 _
— B! Qs B, + 20 [w(t)

< 2B 01(Qs) + 20® WD)
(Qs )

<2r? =50 492 Iw(1))? (46)
We rewrite the update (26) in terms of {x;.}, the points

sampled at the nodes at time ¢:

m

(t)(l _ /“775 — Z 8€(W1( ) Xi,t)xi,t.

m
=1

wt+1)=

(47)

Now from equation (47), after unrolling the recursion as in
Shalev-Shwarz et al. [4] we see

1 Lol
3 Dz 9w

( ) Xi,T)Xi,T.

m

(48)

Let 7% € 9¢(w;(7) "x; ) the subgradient set for the ith node
computed at time 7, then we have

_ 1 o
@l < 7 512 me” (49)
Let us in turn bound for each node ¢ the term

HZt i, rﬂ Let 72 € Ol(w;(1)Tx;,) denote a sub-
gradient for the point sampled at time 7 at node 7 and
v = (74,78, ...,7i_1) " be the vector of subgradients up
to time ¢ — 1. We have

t—1

E %
VrXi,r

=1

Z 'YT’YT’X X!

= ('Y ) Qi,t—17i
< |l¥)|* o1(Qie—1)
< (t-— 1)L20'1(Qi,t71)7

where Q;;—1 is the (t — 1) x (¢ — 1) Gram submatrix
corresponding to the points sampled at the i-th node until time

(50)
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Further bounding (49):

< 1Y V- LQUl(ta 1))2
(t—1)

2
L (1 [o1(Qiea)
12 (m;l t—1

Since as stated before everything is conditioned on the sample

Il ()] <

split we take expectations w.r.t the history and the random split
and using the Cauchy-Schwarz inequality again, and the fact

that the points are sampled i.i.d. from the same distribution,
_ 2
E[IIw(0))?]
2 m m . :
<G LD E foﬂQz,t-l)al(Qn_l)}

t—1
1=1 j=1

I? 1 K&
w22

i=1 j=1

L [01(Qi-1)
-E [

The last line follows from the expectation over the sampling
model: the data at node 7 and node j have the same expected
covariance since they are sampled uniformly at random from
the total data.

Taking the expectation in (46) and substituting (51) we have

B [Ivawo)?] < 20 73]

Since S, is a uniform random draw from S and by assuming
both ¢ and n to be greater than 4/(3p?)log(d), applying
Lemma 7 gives us

B[V (w(t)] < 20L2%,

| /\

PR

(D

+2L°E { } . (52)

(53)

2) Bounding E [||VJi(w,;(t))||2] : We have just as in the
previous subsection

(QS )

IV (wi () |* < 202 2502 4 9p? fwy (1)

Using the triangle inequality, the fact that (a1 + a2)? < 2a2 +
2a§, the bounds (44) and (51), and Lemma 7:

2 _ 2 _ 2

E [ Iwi(®)1°] < 28 [lwi(t) - w(t)|*] + 28 [|w(0)]’]
8L?*m log®(2bet®)  5L%p?

2 b2t —1)2 112

Since the second term does not scale with ¢, from (54) we can
infer that for the second term to dominate the first we require

t 8 ym

(54)

log(t) 5 pb
This gives us
1012 p?
E |||w; : (55)
IwI] < =5
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and therefore

E [[IVJ:(wi(t) ] < 3022, (56)

E. Bound for T2
Because the gradients are bounded,

m

gi(t

Zgz 1

—Z [|i1<2>|| |
i#]

Lj + 3y Ele) i)

m m2

'y E [gi(t) "g;(t)]

m2

<
i#£]

L, Y EBro [Elgi()'e

2

S (01Fi]]

m m

Now using the fact that the gradients g;(t) are unbiased
estimates of V.J;(w;) and that g;(¢) and g, (¢) are independent
given past history and inequality (56) for node ¢ and j we get

Xz Broy [E&i(®) g (01 Fia]]

m2
_ ZEE L [VIi(wi(1) TV (w;(t))]
m2
i#]
2 2
5 wﬂf (1973w (8)] }\/Efm (115773 w5 (1)
<
— 2
i#i mn
-1
_ (m ) -30L%p?
m
< 30L%p°. (57)
Therefore to bound the term T2 in (35) we can use
m L2
Z g | < L o2 (58)
m

F. Bound for T'3

Applying (45), (53), and (56) to T3 in (35), as well as
Lemma 8 and the fact that (a; + as)? < 2a3 + 2a3 we obtain
the following bound:

1 _
SER)S VE (90
A2 [ v+ 19 )1

—wi(t)|’]

1 &K 2Ly/m log(2bet?)
< — -10L
- m 2 bt 0Lp
20L% +/ log(T
<= Ogt( )., (59)
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G. Combining the Bounds evalvated at w;(T), and ar = (a1, a9, ..
vector of subgradients. As before,

.,an)! be the
Finally combining (58) and (59) in (35) and applying the

step size assumption 7; = 1/(ut): 2

N
. 2 |1 N
E[J(w(t)) - J(w") V7w (T)I" = HN 2 i+ ()
(?771 - /’L) — *
< L [|w(t) - w* ] < 3" Qa2 (1)
—1 ~
N [Hv‘v(t 1) - W*“?] < 10L%p% + 2% Wi (T)|?
2 T
22 2 1
L(30L? L2 1 <10L%0% + 2”2 ) wi()])
I um t t=1
+ 20L7 ) @ ) log(2bet?) b Taking expectations of both sides and using (55) as before:
I b t
. 2
< Lt— Vg [I1w(t) = w* ] B IV (wi(1)]*] < 3020%
#t ) 12 Taking expectations of both sides of (64) and using the
5 [II w(t+1)—w*| } + Ky - i (60) Cauchy-Schwarz inequality, (63), the preceding gradient

bound, Lemma 8 and the definition of Ky we get

where KO = (30/7 + 1/m + Q?O v m log ) /b) us- E [J(VAVl(T)) _ J(W*)]
ing t < T and assuming 1" > 2be. ) ) T
Let us now define two new sequences, the average of the < K- Lf ) log(T ) 2\/ 0L \/m o log(T) Zl
- t
t=1

average of iterates over nodes from ¢ = 1 to 7" and the average © T
for any node i € [m] ) ( 2 V30- W log T) log T
T <
1
== w(t) 61
T 2 L 70y/mp? logT\ L* logT
=1 < (004 1 081 ). LB (65
1 « po T
=7 > wilt). (62)
t=1 Recalling that b = log(1/X2(P)) > 1 — Ay(P), assuming

T > 2be and subsuming the first term in the third and taking

Then summing (60) from ¢ = 1 to T, using the convexity of . ; .
g (60) & Y expectations with respect to the sample split the above bound

J and collapsing the telescoping sum in the first two terms of

(60). can be written as
E [J(W(T)) ~ J(w") E [J(#:(T)) = J (w")] < (31 1001¢_: ( Ph;gT)
<7 iE (1))~ J(w")] 2o
< LR [Iw T+ 1) - W] + Ko LT;W -
< Kj —2 10%(?) (63) APPENDIX B

PROOF OF THEOREM 4
Now using the definition of subgradient, Cauchy-Schwarz,

) ; We will first establish the network lemma for scheme (13).
and Jensen’s inequality we have

Lemma 9: Fix a Markov matrix P and consider Algorithm 1

J(wi(T)) — J(w*) when the objective J(w) is strongly convex and the frequency
’ . . R T R of communication satisfies

< J(W(T)) = J(w") + VI (wi(T)) " (Wi(t) — w(T)) 4

< JW(T)) = J(wW™) + VI (Wi (T)| [|wi(t) — w(T)] L > 37 log(d) (67)

< J(w(T)) = J(w")

P - we have the following inequality for the expected squared error
+ VI (T))]) - Z [wi(t) — w(t)] . (64) b_etween the it.erate wl-.(t) at node 7 at time ¢ and the average
T w(t) defined in Algorithm 1 for scheme (13)

S0 2
To proceed we must bound E [HVJ(VAW(T))HQ} in a similar \/E [||W(t) _ Wi(t)HQ} < AL~/ 5mp? log (2bet”) (63)
way as the bound (53). First, let o; = 9¢(W;(T) " x;) denote bt

the subgradient for the i-th loss function of J(-) in (1), where b= (1/2)log(1/A2(P)).
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Proof: Tt is easy to see that we can write the update
equation in Algorithm 1 as

wilt+1) = Pyt)w;(t) — g’ () (69)
j=1

where

5 o Pi(t) when i # j

Pi;(t) = { P(t) — % when i = j (70)
and g;(t) = g’" (t) + pwi(t).

We need first a bound on ‘ gjl-/ “(s) H using the definition of
the minibatch (sub)gradient:

‘ D errs OUWi(s) T xp, )Xk,
o :
< L?v|[Quyll

1/v
From (40) and the minibatch (sub)gradient bound
[w(t) — wi(t)]]

2

2
V)| =

(71)

IN
=
»
B
~
3=
I
A
.
SN—
<
~_
R
~
<
—
>

s=1 j=1
1 i v
+ (Z —g (1) - g (1)
j=1
g B, e
> v 1/v v 115 Lt
< Lyv|lQuyll
=1 |2 — P, + H(Ptfs) (P1—s), 1
s=1 HS
2Ly/v || Q||
_|_ -
ut
SR - @ ll, 28V (1|l
T e e
Continuing as in the proof of Lemma 8, taking expectations
and using Lemma 7, for 1/v > % log(d) we have

VB 1960 - wio ] < ALy B [ Q] 10g 2ber?)

1 bt
< ALY 5mp? log(2bet?)
- I bt

(72)

|

For the scheme (13) all the steps until bound (35) from proof
of Theorem 3 remain the same. The difference in the rest of
the proof arises primarily from the mini batch gradient norm
factor in Lemma 9. We have the same decomposition as (35)
with T1, T2, and T3 as in (32), (33), and (34). The gradient
norm bounds also don’t change since the minibatch gradient
is also an unbiased gradient of the true gradient V.J(-). Thus
substituting Lemma 9 in the above and following the same
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steps as in proof of Theorem 3, replacing 17" by vI' where
T is now the total iterations including the communication as
well as the minibatch gathering rounds, we get Theorem 4.

A. Proof of Lemma 5

In the proof we will use the corresponding multivariate
normality result of Bianchi et al. [5, Theorem 5]. Finally using
smoothness and strong convexity we shall get Lemma 5.

It is easy to verify that Algorithm 1 satisfies all the assump-
tions necessary (Assumptions 1, 4, 6, 7, 8a, and 8b in Bianchi
et al. [5]) for the result to hold. Next it is straightforward to
show that the average over the nodes of the iterates Ww;(¢),
w;(t) for Algorithm 1 and distributed algorithm of [5] are
the same and satisfy

2is 8i(t)

w(t+1)=w(t) —n -

wi(t+1):wi(t+1)—ntw (73)
Now note that

T1=Network Error  T2=Asymptotically Normal

From Lemma 8 we know that the network error (T1) decays
and from update equation (73) we know that the averaged
iterates for both the versions are the same . Then the proof
of Theorem 5 of Bianchi et al. [5] shows that the term T2,
under the above assumptions when appropriately normalized
converges to a centered Gaussian distribution. Equation (74)
then implies

Vit (wi(t) —=w*) ~ N (0,H), (75)
where H is the solution to the equation
VJAi(w"H+HVJ?(w*)T = C. (76)

Let Y ~ N(0,I), so we can always write for any X ~
N(0,H)
X =YHY?, (77)
and thus
IX|I* =Y HY (78)

Then it is well known that |X||*> ~ x2(Tr(H)) and so
E[IX]*] = Te(H).

Let us now consider the suboptimality at the iterate
>oiy Piyw;(t). Tt is easy to see that for a differentiable and
strongly convex function

2
m . G m .
T D Pywy(t) | —J(w*) < 3 D Pywit) —w
j=1 j=1
(719)
Now it is easy to see from (75) that for a node j € N (i)

Piv/pt (wj(t) = w*) ~ N (0, (P;)"H) . (80)
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This implies that

Z PVt (w;(t) —w") ~ N |0,

JEN ()

> (Py)? | H

JEN (1)

Then taking expectation w.r.t to the distribution (81) and using
standard properties of norms of multivariate normal variables,

2

E || D Pyt (wi(t) - w")

JEN (1)

= > &) | rH).

JEN(0)

(82)

Then substituting in bound (79) and taking the limit we
finally get

limsupT-E |J ZPUW] (1) —J(w")
T—o00 j=1

<3 prnm S

& (83)
JEN (i) H

B. Proof of Theorem 6

The the covariance of the gradient noise under the sampling
with replacement model is

E [gi(t)gi(t)T]

Z;Nﬂ ﬁi,txix? H a T T
i=1

VJ(;vi(t))VJ(wi(t))T.

C

— VI (wilt) VI (wilt))T

+ 1Pwi(t)wi(t) " —
(84)

Thus we can bound the spectral norm of C as
01(C) < L2 + 2uLE [[wi(t)[] + #°E [Ilwi(0) ]

+E ||V (wi)I] - (85)

Now from bound (55) since T' — oo we have

B [Iw)] < 52

B [IIVJ:(wi(t)I*] < 30220,
Putting everything together we get

01(C) < 50pL>. (86)

Next note that H = C (V2J(W*))_1 /2. From the com-
pleteness and uniform weight assumptions on the graph, we
have

1
> (P’ = —. (87)

JEN(4)
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Thus substituting in Lemma 5, using (86) gives us

(1]

(2]
(3]

(4]

[5]

[6]

(71

(8]

91

[10]

[11]

[12]

[13]

limsupt¢-E [ J ZP”W] t)y | —J(w")

t—o0 j=1
1 ﬂ((cvw(w*))‘l) ke
S 5 ;
< BT (R )
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