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Abstract—Point of interest (POI) recommendation, which pro-
vides personalized recommendation of places to mobile users, is
an important task in location-based social networks (LBSNs).
However, quite different from traditional interest-oriented mer-
chandise recommendation, POI recommendation is more complex
due to the timing effects: we need to examine whether the POI fits
a user’s availability. While there are some prior studies which
included the temporal effect into POI recommendations, they
overlooked the compatibility between time-varying popularity of
POIs and regular availability of users, which we believe has
a non-negligible impact on user decision-making. To this end,
in this paper, we present a novel method which incorporates
the degree of temporal matching between users and POIs into
personalized POI recommendations. Specifically, we first profile
the temporal popularity of POIs to show when a POI is popular
for visit by mining the spatio-temporal human mobility and POI
category data. Secondly, we propose latent user regularities to
characterize when a user is regularly available for exploring
POIs, which is learned with a user-POI temporal matching
function. Finally, results of extensive experiments with real-world
POI check-in and human mobility data demonstrate that our pro-
posed user-POI temporal matching method delivers substantial
advantages over baseline models for POI recommendation tasks.

I. INTRODUCTION

The rapid development of GPS equipped mobile devices

(e.g., smartphones) has powered large location-based social

networks (LBSNs) (e.g., Foursquare), raised the number of

mobile users, and enabled various location-based services

(LBS). Using these LBS, users share their experiences of

places, also known as Point of interests (POIs) such as restau-

rants or museums. Meanwhile, data collected through LBS

activity enable better personalized recommendations of POIs.

As a result, POI recommendation, which suggests personalized

POIs to users, becomes an important component to improve

user experiences and services provided by LBS.

Different from traditional interest-oriented merchandise rec-

ommendation (e.g., books, films, etc.), POI recommendation

is more complex and challenging due to the unique character-

istics of LBS. Firstly, besides personal interest, the timing of

recommended POIs should be compatible with users’ personal

availability. For example, if a user is usually available to

explore POIs during morning hours, he would be more likely

to visit POIs with morning popularity (e.g., coffee shops,

brunch restaurants). Similarly, if a POI is more popular during

night hours (e.g., bars), it is more rational to recommend it
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to users who are available at nights. Secondly, area activity

(or volume of people in an area) changes over time as people

concentration to different places at different times throughout a

day (e.g., work, entertainment). The area where recommended

POIs reside should be active at a given time to increase the

chance of visiting. For example, in the morning of weekdays,

users are concentrated surrounding office/business locations,

while at night time of weekends, nightlife and restaurant

regions are most active.

Recent studies have considered temporal influences on POI

recommendation, such as time-aware POI recommendation

which recommends different POIs to users at different time.

For example, [1] applies user-item matrix factorization for

each time slot and assumes every user has similar preferences

in consecutive time slots for regularization. [2] computes user

similarity via the same spatio-temporal check-ins in the past

and conducts a user-based recommendation approach. [3] adds

the time dimension to user-item matrix and applies tensor

factorization for recommendations. However, these studies

overlooked temporal regularity of users, and time-varying

popularity of POI. They also didn’t consider the influence of

temporal compatibility between users and POIs. In addition,

they solely depended on the time input of history check-

ins, and suffered from the sparsity problem of check-in data.

Last, these studies didn’t fully utilize spatio-temporal human

mobility patterns which reflect the changes of areas’ activity

over time. In order to address these limitations, in this paper,

we introduce a novel model which incorporates the temporal

compatibility between user regularities and POI popularities

into POI recommendation, and utilize human mobility data to

boost recommendation performances.

In this paper, we propose a Temporal Matching Poisson

Factorization Model (TM-PFM) to profile the popularity of

POIs, model the regularity of users, and incorporate the

temporal matching between users and POIs into overall recom-

mending consideration. We first present a new framework to

profile a time-varying popularity of POIs (e.g., hourly visiting

change) in a day. Traditional methods usually capture this

temporal variation by counting POIs’ check-in frequencies

therefore suffer from check-in data sparsity. Previous studies

[4], [5] and [6] have demonstrated that human mobility is

highly regular and predictable, and human mobility data from

heterogeneous sources display similar patterns. Therefore, we

utilize heterogeneous human mobility data to evaluate POI

popularity. The benefits of employing human mobility data
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include (i) it is more abundant and less biased than check-

in data, and (ii) it reveals which areas are currently active

which is a determinant of POI popularity. Moreover, we further

analyze POIs by categories and adopt a mixture model to

obtain the final POI temporal popularity pattern. Secondly,

except some particular events (e.g., parties, concerts), people’s

availability is usually determined by their routines, thus there

is a predictable regularity. Therefore, we consider temporal

regularity of each user which describes their regular available

time every day for POI exploration. We propose to learn the

latent regularity patterns of users by finding the best match

with the popularity patterns of visited POI based on check-in

frequencies. Finally, with the learned user regularity, we are

able to match users with POIs they have not visited yet, and

evaluate the temporal matching degree and the general user-

POI interest to make recommendations.

In summary, in this paper we propose a novel temporal

matching method between users and POIs for POI recommen-

dation, and strategically leverage rich spatio-temporal human

mobility data to boost the performance of the model. We

highlight our key contributions as follows:

• We propose a factorization based POI recommendation

model which incorporates the temporal matching between

user regularity and POI popularity to improve POI rec-

ommendations.

• We present a novel framework which utilizes heteroge-

neous human mobility data to profile time-varying pop-

ularity of POIs which bypass the check-in data sparsity

issue. Meanwhile, we model users’ temporal regularity by

incorporating user-POI temporal matching into preference

estimation.

• We validate our proposed method with real-world LBSN

check-in and human mobility datasets. The effectiveness

of temporal matching in POI recommendation is proven

by extensive experiments and a substantial improvement

in recommendation performances over baseline methods

is demonstrated.

II. METHODOLOGY OVERVIEW

We first provide some basic concepts in LBS, then formulate

the problem of POI recommendation, and finally show the

overview of the proposed temporal pattern matching based

framework.

A. Preliminary

DEFINITION 1: (Check-in) A check-in is an event that a

LBSN user reports his/her physical visit to a POI. Generally,

a check-in contains the following information: LBSN user,

check-in POI with location (e.g., longitude and latitude),

category (e.g., Italian restaurant), and check-in timestamp.

DEFINITION 2: (Taxi trip) A taxi trip is a route that a

taxi delivers passengers from one location to another. Every

taxi trip starts with a passenger pick-up event and ends with a

passenger drop-off event. Each pick-up and drop-off contains

the information of location and timestamp.

TABLE I: Mathematical Notations.

Symbol Size Description

YYY M ×N user-POI check-in count matrix
TTT 1 × 2 day type = {wd(weekday), we(weekend)}
Q∗Q∗Q∗ N × S POI temporal popularity matrix, ∗ ∈ TTT
P∗P∗P∗ M × S user temporal regularity matrix, ∗ ∈ TTT
UUU M ×K user latent factor matrix
VVV N ×K item latent factor matrix
μ∗μ∗μ∗ 1 ×M user temporal regularity parameter vector, ∗ ∈ TTT

B. Problem Definition
Let U = {u1, u2, ..., uM} be a set of LBSN users and

V = {v1, v2, ..., vN} be a set of POIs where each POI has a

location (e.g., latitude and longitude). Consider the existence

of the historical check-ins where each record indicates a user

ui checked into a POI vj once, we can extract the check-

in number that ui preformed check-in to vj , named yij .
The objective of personalized POI recommendation is to

recommend POIs to users based on personal check-in history.

In addition, we integrate the large-scale spatio-temporal taxi

trip data, where each trip ends with a drop-off event which

indicates human arrivals with location and timestamp. We refer

i as user and j as POI in following sections for simplicity. The

important notations used in this paper are listed in Table I.

C. General Framework
We propose a two-step method which includes (i) profiling

temporal patterns of POI popularity and (ii) modeling temporal

matching of user-POI pairs.

Step 1: Profiling Temporal Patterns of POI Popularity.
We aim at profiling the temporal popularity of POIs which

describes how the popularity of a POI varies during a day.

Specifically, we split a day into S equal-sized time slots (e.g.,

24 hours), and each time slot is associated with a probability

describing the ratio of the in time slot visit volume to the

whole-day visit volume. We package these S probabilities

chronologically as a vector which is the temporal pattern of

popularity to be profiled. To achieve this, we first extract the

area activity (e.g., how many active people in the area) around

POI locations by utilizing human mobility data. Subsequently,

we extract the category popularity by aggregating the check-in

frequencies at the POI category level to refine the profiling.

Lastly, we use a mixture model to smooth and further charac-

terize the temporal pattern of POI popularity.

Step 2: Modeling Temporal Matching of user-POI pairs.
We aim to develop a user-POI temporal matching model to

infer the temporal regularity of users. First, we consider that

each user has regular available times every day due to personal

routines. Meanwhile, users are more likely to visit a POI

at its popular times. We associate S equal-sized time slots

with probabilities to show how likely a user may explore

POIs during a specific time slot in a day. By vectorizing

these probabilities, a user’s temporal regularities are defined.

Furthermore, we present a function which matches a user’s

latent regularity with a POI’s profiled popularity. We combine

the temporal matching degree with the general interest as

the overall preferences. Finally, we learn the users’ temporal

regularity by optimizing the distance between the estimated

preferences and the frequencies of history check-in at POIs.
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III. PROFILING TEMPORAL PATTERNS OF POI

POPULARITY

In this section, we introduce how to profile the temporal

popularity for POIs. Intuitively, counting the check-in fre-

quency during each time slot for a POI can complete this

job. However, the POI level check-in records are too few to

provide valid results. Thus we propose to alternatively analyze

the temporal popularity in an implicit way. Generally, the

current popularity of a POI is affected by two aspects: (i)

how many active people are around the POI, and (ii) what

type of service this POI provides. For the former one, we

assess the area activity by mining how many people come to

a POI’s area during a time slot with taxi trip data. For the later

aspect, we profile the category popularity by answering how

many people visit a POI category in a time slot with check-

in and POI category data. We combine these two effects to

generate rough popularity patterns for POIs. Last, we utilize

the mixture Gaussian model to smooth and characterize the

popularity variations to obtain the final popularity patterns.

At the beginning, let us define the temporal popularity. We

assign a unique popularity pattern to every POI to describe

the visit volume changes over time slots every day. To profile

this temporal pattern, we use a size-S vector to represent the

ratio of each time slot’s visits to the whole day’s visits. All

the ratios are organized chronologically and their sum for a

day equals to 1. Usually, the temporal pattern of a POI’s

popularity changes largely from weekdays (Monday to Friday)

to weekends (Saturday, Sunday). Therefore, for each POI, we

identify two types of temporal pattern: (1) weekday pattern

qwd
j and (2) weekend pattern qwe

j . Formally, we denote

temporal patterns of a POI’s popularity as following:

q∗j = {q∗j,1, ..., q∗j,S}, ∗ ∈ {wd,we}, (1)

where q∗j,s represents the probability that visitors will check-

in to the POI j in the time slot s with respect to weekday

wd or weekend we. For each q∗j we have
∑S

s=1 q
∗
j,s = 1 and

q∗j,s ≥ 0.

A. Assessing Temporal Patterns with Area Activity

Every day, people concentrate to different places at different

times for daily purposes (e.g., working, entertaining). Given

a particular time, if a POI’s is in the area where contains

high volume of people, the POI is expecting to have more

visits. Taxi is a fundamental transportation tool for people

who live in large cities (e.g., New York City). Since each taxi

trip ends with a destination, given massive and comprehensive

taxi trips of a city, we are able to know where concentrates

high volume of people at different times. Therefore, we collect

taxi drop-offs which happened within walking distance (e.g.,

100 meters) of each POI’s location as shown in Figure 1a.

The reason of choosing 100-meter for drop-off collection is

that a longer distance makes the collection area too large that

the unique characteristic of POI location can not be captured,

meanwhile, a shorter distance may not cover the nearest street

crossing or road segment, thus POI locations may not be able

to collect enough drop-offs to profile area activity. We count
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Fig. 1: (a) Method of collecting taxi drop-offs for a POI, (b)

time-varying taxi drop-offs around an office POI.

taxi drop-offs by time slots and day types (e.g., the drop-offs

during 10AM-11AM in weekend days) as the example shown

in Figure 1b. Through this taxi data processing, we profile the

temporal pattern of area activity around POIs and denote them

as:

D∗
j = {D∗

j,1, ...,D∗
j,S}, ∗ ∈ {wd,we}, (2)

where D∗
j,s represents the portion of taxi drop-offs around POI

j during s-th time slot in a type of day. For each D∗
j we have∑S

s=1 D∗
j,s = 1 and D∗

j,s ≥ 0.

B. Refining Temporal Patterns with Category Popularity

At the same time, the popularity pattern of a POI is not only

dominated by area activity but also related to its category. For

example, at mid-night, even though an area may be highly

active by having many visits, a museum at this place can

not be popular. Therefore, the profiled patterns based on area

activity need to be further refined by integrating the category

popularity. At the level of POI category (e.g., department

stores), the sparsity problem of check-in data is alleviated.

Therefore, we count check-ins frequencies for categories over

time slots. We denote the category pattern as:

C∗
v = {C∗

v,1, ..., C∗
v,S}, ∗ ∈ {wd,we}, (3)

where C∗
v,s represents the portion of check-in at the category

v during s-th time slot in a type of day. For each C∗
v we have∑S

s=1 C∗
v,s = 1 and C∗

v,s ≥ 0.

Next, by combining the effects of category popularity with

the effects of area activity, we obtain the refined POI temporal

popularity which is more close to the reality. We denote

the combined temporal popularity of POIs as q′∗j , whose

probability for each time slot is:

q′
∗
j,s = ϕD∗

j,s + (1− ϕ)C∗
c(j),s, ∗ ∈ {wd,we}, (4)

where c(j) is the operation to get the category v of POI j,

0 < ϕ < 1 controls the weights.

C. Enhancing Temporal Patterns with Mixture Model

In the last part of temporal popularity profiling, we want

to describe each temporal pattern with a proper distribution.

The first motivation is to smooth the visit probability over

time slots because artificial spiting of drop-offs into time slots

may cause volatile patterns especially in adjacent time slots

as shown in Figure 2. Another motivation which is more

important is that we want to strategically characterize the
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Fig. 2: Example of two POI popularity patterns in hours of

day. Blue and Red: before and after GMM smoothing.

popularity pattern to be more discriminative by weakening the

idle time slots and highlighting the popular time slots.

To achieve the requirements raised by above motivations, we

propose to adopt Gaussian Mixture Model (GMM) to model

popularity patterns for several advantages. First, GMM can

express one or more visit peaks in a day as a POI usually

behaves in reality. Second, the Gaussian distribution can well

simulate the process of visit changes of POIs. For example, a

POI’s popularity often starts from idle to busy and gets back

to idle. Usually one process last for several time slots and

the popularity changes smoothly. Third, for the idle times, the

visit probability are weaken. Meanwhile, for the busy times,

probability are enhanced and concentrated to the peak point.

Therefore, we formally define the probability over time slots

of a POI popularity pattern q∗j with GMM as:

q∗j,s =
R∑
r=1

w∗
j,r · N (s|μ∗

j,r, σ
∗2
j,r), ∗ ∈ {wd,we}, (5)

where s represents the s-th time slots and R represents

the number of Gaussian components in a daily temporal

pattern. w∗
j,r represents the mixture weight of rth Gaussian

distribution. In our observation, most of the POIs have no more

than two visiting peaks in a day such as restaurants. Therefore

we predefine the number of Gaussian components R = 2 for

all GMM modeling. Input the POI temporal patterns q′∗j we

obtained in previous step, we apply Expectation–Maximization

(EM) algorithm to estimate the GMM for each pattern as

shown in Figure 2. Last, we obtain the final popularity patterns

q∗j for each POI.

IV. RECOMMENDATIONS VIA TEMPORAL MATCHING

In this section, we first introduce how to model the temporal

matching between user and POI, then we present the parameter

estimation of the model.

A. Model Specification

To generate recommendation of a POI j for a user i, we

assume the overall preference on the user-POI pair fij is

impacted by (i) the user-POI general interest score, δ(i, j),
and (ii) the user-POI temporal matching score, m(i, j):

fij = δ(i, j) ·m(i, j). (6)

The user-POI general interest score δ(i, j) is learned from

classic matrix factorization methods, by combining K-

dimensional user latent factor vector ui and POI latent factor

vector vj as follows: δ(i, j) = u�
i vj . The user-POI temporal

matching score m(i, j) is the degree of matching between

users and POIs, based on S-dimensional user temporal regular-

ity vectors ρ∗i and POI temporal popularity vectors q∗j , where

∗ ∈ {wd,we}, wd and we respectively represent the day

type of weekday and weekend. Next, we present the detailed

temporal matching modeling.

Capturing User Daily Temporal Regularity Except some

special events, the available hours for exploring POIs are

usually regular for users due to personal daily routines. For

example, if a user always have a long lunch break, thus he

may regularly explore POIs during 12PM to 2PM. Therefore,

we propose that every LBSN user has a latent daily-repeated

personalized temporal regularity which decides when he/she

is likely to explore POIs every day. Usually a individual’s

temporal regularities is different in weekday and weekend, we

define two types of daily temporal regularities for each user:

ρ∗i = {ρ∗i,1, ..., ρ∗i,S}, ∗ ∈ {wd,we}, (7)

where ρ∗i,s represent user i’s exploring probabilities during

time slot s for weekdays wd or weekend we. For each

regularity pattern ρ∗i , we have
∑S

s=1 ρ
∗
i,s = 1 and ρ∗i,s ≥ 0.

At the same time, we also want to regularize user’s avail-

ability distribution over time slots. In reality, users usually plan

one trip in a day and their availability does not fluctuate largely

in adjacent time slots, therefore we assume one window per

day for each user for POI exploration. We exploit a Gaussian

distribution to regularize each regularity pattern. For ρ∗i , we

have the probability in each time slots as:

ρ∗i,s = N (s|μ∗
i , ε

∗2
i ), ∗ ∈ {wd,we}. (8)

Here we model the check-in probability of s-th time slot as

the probability density at s (e.g., s = 5).

Modeling User-POI Temporal Matching Here we present

how we match the user’s temporal regularities with the POI’s

temporal popularities. The objective of temporal matching for

a user-POI pair is to examine if the POI is well-timed for

the user’s temporal regularity. For example, for a user who

explores POI in the morning time, a coffee shop is more well-

timed than a bar. Since the popularity pattern can indicate the

optimum time slots of POIs, our method is to find out if the

regularity pattern of users has any common time slots to favor

a POI’s popularity. We define the temporal matching score

m(i, j) for user i and POI j as following:

m(i, j) = γρwd�
i qwd

j + (1− γ)ρwe�
i qwe

j , (9)

where 0 < γ < 1 controls the weights of temporal matching

score on weekday and weekend. For example, we can assume

that the importance of each day of a week would be the same

for each user, therefore γ = 5
7 for five days of weekday and

the rest 2
7 for two days of weekend.

In this model, we have four latent variables to be learned:

POI interest latent factors vj , user interest latent factors ui,

and user daily temporal regularities ρ∗i , where ∗ ∈ {wd,we}
for day types of weekday and weekend respectively. vj and

ui are K-dimensional vectors while ρ∗i are S-dimensional

vectors. Since we model the regularity on every time slot s
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to be ρ∗i,s = N (s|μ∗
i , ε

∗2
i ) for user temporal regularity ρ∗i

as Equation (8), we further translate user temporal regularity

factors ρ∗i into μ∗
i and ε∗i . For reducing parameters to learn

and improving computational efficiency, we predefine a uni-

fied ε for all user temporal regularities by referring a usual

availability window of people (e.g., 4 hours). Therefore, we

rewrite the temporal matching score m(i, j) in Equation (9)

as following:

m(i, j) = γ
∑S

s=1 N (s|μwdi , ε2)qwdj,s + (1− γ)
∑S

s=1 N (s|μwei , ε2)qwej,s .

(10)

Finally, to infer the latent factors vj , ui and μ∗
i , we need

to formulate the estimated user-POI preference fij to follow a

probability distribution Pr(yij |fij), where yij is the user-POI

check-in count as the groundtruth of user preference. Also,

since all the user-POI visit count yij are non-negative, we

expect our estimated preference fij to be non-negative. We

use a Bayesian non-negative latent factor model.

Given the heavy skewness and wide range of discrete check-

in count data as shown in Figure 3b, we adopt a Poisson

distribution to model Pr(yij |fij):
yij ∼ Poisson(fij)

Pr(yij |fij) = (fij)
yij exp{−fij}

yij !
,

(11)

where fij = u�
i vj · m(i, j) refers to Equation (6), m(i, j)

refers to Equation (10).

Furthermore, vjk, uik can be given Gamma distributions

while μ∗
i can be given Gaussian distribution as empirical

priors. Therefore, the user-POI preferences can be modeled

as a generative process:

1) For each POI j, generate K-dim POI latent factor:

vjk ∼ Gamma(αV , βV ), (12)

2) For each user i, generate K-dim user latent factor:

uik ∼ Gamma(αU , βU ), (13)

Also, generate user temporal regularity factor for week-

day and weekend:

μ∗
i ∼ N (αμ, σ

2
μ), ∗ ∈ {wd,we}, (14)

3) For each user-POI pair < i, j >, generate response:

Pr(yij |vj ,ui, μ
wd
i , μwei ) = (fij)

yij exp{−fij}
yij !

, (15)

where Θ = {V ,U ,μwd,μwe} are parameters for estimation,

and Φ = {αV , βV , αU , βU , αμ, σ2
μ} are hyperparameters.

B. Parameter Estimation

Given the observations of user-POI check-in count Y and

the hyperparameters Φ, according to Maximum a posteriori

(MAP) estimation, we optimize parameters V ,U ,μwd,μwe

by maximizing the posterior probability:

Pr(V ,U ,μwd,μwe|Y ,Φ)

∝ Pr(Y |V ,U ,μwd,μwe) Pr(V ,U ,μwd,μwe|Φ). (16)

For Pr(yij |vj ,ui, μ
wd
i , μwdi ), we use Equation (15) to

compute:

Pr(Y |V ,U ,μwd,μwe,Φ)

=
M∏
i=1

N∏
j=1

(fij)
yij exp{−fij}

yij !

(17)

For Pr(vj ,ui, μ
wd
i , μwei |αV , βV , αU , βU , αμ, σ2

μ) which

are the prior distributions of V , U , μwd, and μwe, we use

Equation (12, 13, 14) to generate:

Pr(V |αV , βV ) =
N∏
j=1

K∏
k=1

vαV −1
jk exp(−vjk/βV )

βαV

V Γ(αV )

Pr(U |αU , βU ) =
M∏
i=1

K∏
k=1

uαU−1
ik exp(−uik/βU )

βαU

U Γ(αU )

Pr(μ∗|αμ, σ2
μ) =

M∏
i=1

1

σμ
√
2π

exp{− (μ∗
i − αμ)

2

2σ2
μ

}, ∗ ∈ {wd,we}.

(18)

Then we have the log posterior of Equation (16) as:

L(V ,U ,μwd,μwe|Y ,Φ) =
M∑
i=1

N∑
j=1

(yij ln fij − fij)

+
N∑
j=1

K∑
k=1

(
(αV − 1) ln vjk − vjk/βV

)

+
M∑
i=1

K∑
k=1

(
(αU − 1) lnuik − uik/βU

)

+
M∑
i=1

(
− 1

2
lnσ2

μ − (μwdi − αμ)
2

2σ2
μ

)

+
M∑
i=1

(
− 1

2
lnσ2

μ − (μwei − αμ)
2

2σ2
μ

)
+ const.

(19)

Taking derivatives on L with respect to vjk, uik, μwdi and

μwei , we have:

∂L
∂vjk

=
αV − 1

vjk
− 1

βV
+

M∑
i=1

(yij
fij

− 1
)
uik ·m(i, j)

∂L
∂uik

=
αU − 1

uik
− 1

βU
+

N∑
j=1

(yij
fij

− 1
)
vjk ·m(i, j)

∂L
∂μ∗

i

= −μ∗
i − αμ
σ2
μ

+
N∑
j=1

(
(
yij
fij

− 1) · u�
i vj

·
S∑
s=1

(γ∗q∗js(s− μ∗
i )

ε3
√
2π

exp{− (s− μ∗
i )

2

2ε2
}
))

, ∗ ∈ {wd,we},
(20)

where γwd and γwe are γ and 1−γ. We use gradient ascending

method to infer the parameters. Specifically, we maximize the

posterior by updating parameters as υ(t+1) ← υ(t) + ε× ∂L
∂υ ,

where υ is an element in {U ,V ,μ∗}, ∂L
∂υ is the derivatives

according to Equation (20), and ε is the learning rate.
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Fig. 3: (a) POI geographical distribution. (b) Check-in re-

sponse distribution.

V. EXPERIMENT

In this section, we empirically evaluate the performance

of our proposed methods. We perform all the experiments

on read-world datasets: LSBN data from Foursquare, human

mobility data from taxi trip records of New York City.

A. Experimental Data

For LBSN dataset, we use the Foursquare dataset which

is formulated in work [7]. The dataset includes the check-in

data in New York City (NYC) for 10 months (April 2012 to

February 2013). Each check-in contains the information such

as user ID, POI ID, location, timestamp and POI category.

To work with NYC taxis which mainly drive in the city area,

we limit the POIs to the most densely populated borough -

Manhattan. Also, we remove the users and POIs with too few

check-ins (e.g., less than 3) from our dataset to avoid cold

start problem. We finalized a dataset of 975 users for 4722

POIs with 64702 check-in observations. The user-POI check-

in count matrix has a sparsity of 99.24 percent. Each user

performs 66 check-ins to POIs on average. The number of

check-ins for a POI ranges from 1 to 257. Figure 3 provides

the geographical distribution of POIs as well as the distribution

of user-POI check-in responses.

For human mobility data, we use yellow cab trip records

from NYC taxi & limousine commission1 covering the time

range of check-in dataset. Due to the large size of taxi trips in

NYC, we randomly sample 2 million trips in Manhattan. Each

taxi trip contains an origin and a destination with information

of location and timestamp.

B. Experimental Metrics

In our experiments, we recommend each user a list of N
POIs which have the highest predicted values but are not

visited in training set. Then we evaluate the lists based on

the recommended POIs which are actually visited by users in

testing set.

1http://www.nyc.gov/html/tlc/html/about/trip record data.shtml

Precision and Recall: Given a top-N recommendation list

of POIs LN,rec, precision and recall are defined as:

Precision@N =
|LN,rec ∩ Lvisited|

N

Recall@N =
|LN,rec ∩ Lvisited|

|Lvisited| ,
(21)

where LN,rec represents the recommended list of N POIs for

a user, and Lvisited represents the visited POIs of the user in

test set. By averaging the precision and call value of all users,

we obtain the overall precision and recall for a recommender

system.
F-measure: F-measure is the harmonic mean of precision

and recall. We adopt a unbalance F-measure Fβ which put

more emphasis on precision than recall by setting β = 0.5:

Fβ = (1 + β2) · Precision · Recall

β2Precision + Recall
. (22)

C. Baseline Algorithms
The experimental study compares our proposed temporal

matching Poisson factor model (TM-PFM) with state-of-the-

art factor-based models. Specifically, we compare our pro-

posed TM-PFM model with following algorithms:

• Probabilistic Matrix Factorization (PMF) [8]: a widely

used probabilistic factor-based model with Gaussian ob-

servation noise.

• Non-negative Matrix Factorization (NMF)[9]: a matrix

factorization model with the constrain of non-negative

latent variables.

• Bayesian Probabilistic Tensor Factorization (BPTF)[3]:

a model which introduces time dimension to traditional

user-item factor-based collaborative filtering method.

• Location Recommendation with Temporal effects

(LRT)[1]: a factor-based model which learns users’

time-aware preferences at separated time slots and

use the preference similarity in consecutive times as

regularization.

Since BPTF and LRT are temporal recommendation model,

therefore, we need to obtain the overall preference for POIs.

We aggregate the preference at each time slot by two ways.

• Sum: we consider a user’s overall preference on a POI

as the sum of his preference at each time slot.

• Voting: for each time slot, we make a separate recommen-

dation list and give the recommended POIs a nomination.

The overall preference on a POI is obtained by the

number of nominations.

For the experiment setup, we randomly divided the user-

item check-in count data into 80 percent for training and 20

percent for testing. We set λU = λV = 0.005 for PMF. We

set να = Wα = β = 1 for BPTF. For TM-PFM, we set

αU = αV = 4 when K = 10, and αU = αV = 3 when

K = 20. For both K, we set S = 24, ϕ = 0.6, γ = 5
7 ,

βU = βV = 0.2, ε = 3, α = 11.5, and σμ = 3.5.

D. Overall Performances
Figure 4 shows the precision@N, recall@N and Fβ mea-

sure@N (β = 0.5) of all compared approaches on our dataset.
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Fig. 4: Precision, recall, and Fβ measure @1, @5 and @10

with two different latent dimensions K.

For top-N position, we examine N = 1, 5, 10. For latent factor

dimension, we explore K = 10 and K = 20.

Generally, we can see that our proposed approach TM-

PFM consistently outperform baseline methods, including tra-

ditional recommendation models (PMF, NMF) as well as the

temporal recommendation model (BPTF, LRT) for different N
and different K. Specifically, we find that PMF performances

similarly as BPTF approach with aggregation rule of voting

or sum. NMF outperforms the previous three approach (PMF,

BPTF-Voting, BPTF-Sum) by making latent variables non-

negative. Furthermore, LRT approach (LRT-Sum, LRT-Voting)

with either voting or sum rule outperforms NMF by learning

time-aware preferences and assuming similarities for consec-

utive time slots. For temporal recommendation models BPTF

and LRT, we find that the sum aggregation rule generally

performs better than voting aggregation rule, especially on

LRT with quilt significant differences. Last, our proposed

TM-PFM model further outperforms LRT significantly on

precision, recall and Fβ measure, with respect to K = 10
and K = 20.

At the same time, from the experiment results we can see

that the non-negative factor models (NMF, LRT and TM-PFM)

preform better than the regular factor models (PMF, BPTF).

One reason is that regular models are more suitable for explicit
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Fig. 5: Precision and recall of proposed model with different

time slot number S of temporal patterns (K=10).

response (e.g., rating), but for implicit response such as check-

in count data which is heavily skewed to 1, non-negative

models provide better performance. Comparing our proposed

model with other non-negative models (NMF, LRT), our model

which adopts Poisson observation noise is more appropriate

for modeling count data. Also, while the other non-negative

models can only apply an approximation of probabilistic gen-

erative process, our proposed model provides a more authentic

way. Compare to all baseline methods, our model demonstrates

the effectiveness of incorporating user-POI temporal matching

consideration into POI recommendations.

E. Performance with Different Time Slot Number

We study the model performance in different time slot

numbers as shown in Figure 5. As we equally split one day into

multiple time slots to construct temporal patterns, the number

of time slots S decide the length of each single slot. We

compare four different numbers of time slots in this study:

12 time slots for 2-hour/slot, 24 time slots for 1-hour/slot,

48 time slots for 30-minute/slot and 96 time slots for 15-

minute/slot. The larger number of time slots means the patterns

of popularity or regularity are more fine-grained. Figure 5

shows the precision and recall performance of model at top-N

position 1,5, and 10. We have two observations. Firstly, we can

see that, as the number goes higher, the model achieve better

performance. The only exception appears at precision@1 and

recall@1 where performance decrease a few from 48 time slots

to 96 time slots. However, the overall increasing trend still

exists. The reason is that the popularity patterns characterize

every POI to be more distinctive as the number of time slot

goes up. By matching users’ regularity with their visited POIs,

the regularity patterns can be inferred with finer resolution.

Therefore, the performance can be boosted by larger time slot

numbers generally. Secondly, we can find out that the increase

slows down when time slot number goes large. The largest

increase usually happened at 12 time slots. After that, the

performance does not increase strongly as before. One reason

is that each time slot starts to lack sufficient observations
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Fig. 6: Precision and recall of proposed model with different

weight ϕ of area-activity for mixing with category popularity

(1− ϕ) (K=10).

(e.g., taxi drop-offs) for popularity profiling as the number of

time slot becomes large. On the efficiency aspect, larger time

slot number means more computation in temporal matching

analysis, thus increase the training time. Therefore, 24 (1 hour

per slot) and 48 (30-minute per slot) are relatively optimal time

slot numbers which take account of both model performance

and computation efficiency.

F. Tuning the Weight ϕ for Area Activity

As shown in Figure 6, we tune the weight ϕ of area activity

pattern to test the performances of our model. For profiling the

final popularity patterns of POIs, we propose to combine the

patterns of both area activity and category popularity with a

mixing parameter ϕ. Recalling Equation (4), ϕ decides the

mix ratio of the two patterns. For example, ϕ = 0.8 means

we combine 0.8 times area activity effects and 0.2 times

POI category effects to generate popularity patterns. Here we

study what ϕ value gives good performances with four ϕ
configuration: from ϕ = 0.8 which emphasizes more on area

activity to ϕ = 0.2 which favors more on POI category. Here

we can see that ϕ = 0.6 provides the best performance and

ϕ = 0.4 gets the second place. From the observation, we can

conclude that both the area activity and the category popularity

provide the important knowledge for POI popularity profiling.

Specifically, area activity studied by taxi trips makes the larger

contribution in POI profiling.

G. Tuning the Ratio θ of Weekday to Weekend

In our original configuration, we assume that each day of

the week has the same weight for modeling user-POI temporal

matching. Therefore, we set the matching score of a user-POI

pair m(i, j) in Equation (9) to have γ = 5
7 because of 5

weekdays in a week while 1 − γ = 2
7 comes from two days

in weekend. However, people may have unbalance weight on

the days of weekdays or weekends. In this study, we want to

tune the trade-off between weekdays and weekend to explore
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Fig. 7: Precision and recall of proposed model with differ-

ent weekday/weekend ratio θ for computing temporal match

scores (K=10).

the day importance of LBSN users in New York City. We use

the ratio θ to denote the trade-off:

θ =
Daywd

Daywe
, (23)

where Daywd denotes the weight of a day of weekday and

Daywe denotes the weight of a day of weekend. For example,

if θ = 1
2 which means a day of weekend is twice important

than a day of weekday, we have γ = 5
9 for weekday and

1−γ = 4
9 for weekend by considering 5 days as weekday and

2 days as weekend in a week.

Figure 7 shows the performance comparison of different

weight ratios θ. We test θ from 1/3 which means a day of

weekend is three times more important than a day of weekday

to 3/1 which means the opposite. The top-N performances in

terms of precision, recall are visualized. We can observe that

the performance at θ = 1/1 achieves the highest, which means

the importance of weekdays and weekends are almost the same

for modeling the user-POI temporal compatibility. Also, as

the ratio θ goes more and more unbalance, the performance

becomes worse generally, except precision and recall @1 from

θ = 2/1 to θ = 3/1. From this study, we can see that large

city such as NYC provides rich lifestyles in weekdays as in

weekends.

H. Correlation between Taxi Trips and LBSN Check-ins

Here we conduct a case study to explore the spatio-temporal

correlation between heterogeneous taxi rider mobility and

LSBN user check-in behavior. We randomly sample taxi

drop-offs and POI check-ins during different time period of

weekday and plot their locations to make the heatmaps. Figure

8 shows the heatmaps of two different period: 8AM–9AM and

8PM–9PM in weekdays. For visualization purpose, we only

show the heat color on relatively high density areas, therefore

the plain areas do not mean there are no events of drop-off or

check-in.

556



(a) Taxi drop-off 8–9AM. (b) Check-in 8–9AM.

(c) Taxi drop-off 8–9PM. (d) Check-in 8–9PM.

Fig. 8: Heatmap of mobility of taxi riders and LBSN users at

different time slot of weekday.

Figure 8a, 8b show the human mobility of taxi riders and

LBSN users in morning hour 8AM to 9AM. We can find that in

the morning people are mainly concentrated in two business

regions of NYC: Midtown (area around Rockefeller Center)

and Financial District (area around Wall Street). Because of

worse traffic, people who take taxi to Financial District are

fewer than those take taxi to Midtown. Compare the taxi

drop-off with check-in in morning hour, we can see that the

taxi riders are relatively strong co-located with LBSN user

mobility. Figure 8c, 8d show the taxi drop-offs and check-

ins in night hour 8PM to 9PM. We can see that people leave

business regions where they work in daytime. Meanwhile, they

are going to residential areas (e.g., Upper Each, Upper West)

where do not have many POIs for check-in as well as restau-

rant & nightlife areas (e.g., Greenwich Village, East Village,

Fashion District) where have dense check-ins. Significantly,

the check-in distribution is spatio-temporal correlated with the

mobility trend of taxi riders. This case study supports our idea

that the temporal patterns of LBSN users’ check-in behavior

are predictable via heterogeneous massive human mobility

data, which can be utilized for boosting recommendation

performance.

VI. RELATED WORK

In this section, we introduce the related work from three

research angle: personalized recommendation methodology es-

pecially latent factor model, temporal influence enhanced POI

recommender system, and human mobility analysis especially

in LBSN environment.

Collaborative filtering technique, especially the factorization

based approach has shown its importance to the field of

recommender system. It has been widely used for various

classic recommendation algorithms. The basic factorization

algorithms include matrix factorization [10], probabilistic ma-

trix factorization [8] and its Bayesian version [11], as well

as other variants [12], [13]. Most of these algorithms are

majorly developed for explicit user response (e.g., rating),

and assumes that the responses follow a Gaussian distribution

over the predicted preferences. As more and more emerging

recommendation applications which only have implicit user

responses (e.g., count of web-click or check-in) came to

the research filed, recommender systems are also required to

infer user preferences from these heavy skew and wide range

data. However, Gaussian-based latent factor models show their

limitation on prediction performance. Under this circumstance,

researchers developed latent factor models which is more suit-

able for implicit responses by setting non-negative constraints

on latent variables [14], [9], [15], which aims to force the

predicted preferences into a wider range to adapt implicit

responses. Furthermore, by better modeling heavy skew data

and providing rigorous probabilistic generative process, Pois-

son distribution became popular in recommendation modeling

especially for implicit response [16], [17], [18], [19].

The second group is more specific to incorporate temporal

influences into recommender system for better understanding

users’ temporal preferences. The first category can be summa-

rized as time-aware recommendation which learns temporal

preferences to recommend items for specific time slots (e.g.,

an hour of a day). The early work in [20], [21] discover the

dynamic of user preference or interests over time. More re-

cently, researchers start to investigate periodic patterns of user

preferences (e.g., hourly interests of every day). One direct

solution is to add an time dimension to user-item matrix and

apply tensor factorization [3], [22]. The work in [1] considers

a user’s separated latent variables at different time slots, and

preserves the similarity of personal preference in consecutive

times. The work in [2] makes time-aware recommendations

by a user-based collaborative filtering method which computes

the similarity between users by finding the same POIs at the

same times in their check-in history. The work in [23] learns

temporal preferences by adopting topic model and training

unique temporal features for each topic. Relevant work can

also be found in [24], [25]. Our work is mostly related to this

category. Meanwhile, there exists the other category which

can be concluded as successive POI recommendation. The

objective of this category aim to learn sequential patterns to

predict user preferences for next POI, such as the work in

[26], [27] which train personalized Markov chain to capture

sequential check-in preferences. More relevant work can be

found in [28], [29].

The last group of research concentrates on human mobil-

ity analysis of LBSN users. The work in [30] shows that

users’ mobility similarity is strongly correlated with their

social proximity. The work in [5] utilizes Gaussian mixture

model to capture users’ periodic mobility at different states

(e.g., home/work). The work in [31] explores the connectivity

among urban places via the mobility of LBSN users. The

work in [6] uses heterogeneous mobility data to measure a

static connectivity among areas for boosting the performance

of user location prediction. The work in [32] explores and
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categorize urban lifestyles with the mobility of LBSN users.

More relevant work can be found in [33], [34].

VII. CONCLUSIONS

In this paper, we developed a POI recommendation model

by considering the temporal matching between users and POIs.

Firstly, we presented a method to profile the temporal popular-

ity of POIs by (i) mining area activity patterns with taxi trips,

(ii) integrating category popularity pattern with POI category

level check-ins, and (iii) enhancing patterns with mixture

mode. Moreover, we learned the latent temporal regularity

of users by incorporating the temporal matching degrees of

user-POI pairs into user overall preference estimation. Finally,

we conducted extensive experiments with POI check-in and

human mobility data. As demonstrated by the experimental

results, the consideration of temporal matching between users

and POIs can better model LBSN users’ choosing processes.

The performance improvement of our proposed method is

substantial compared to benchmark methods.
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