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Abstract—Advances in real-time location systems have enabled us to collect massive amounts of fine-grained semantically rich

location traces, which provide unparalleled opportunities for understanding human activities and generating useful knowledge. This, in

turn, delivers intelligence for real-time decision making in various fields, such as workflow management. Indeed, it is a new paradigm to

model workflows through knowledge discovery in location traces. To that end, in this paper, we provide a focused study of workflow

modeling by integrated analysis of indoor location traces in the hospital environment. In particular, we develop a workflow modeling

framework that automatically constructs the workflow states and estimates the parameters describing the workflow transition patterns.

More specifically, we propose effective and efficient regularizations for modeling the indoor location traces as stochastic processes.

First, to improve the interpretability of the workflow states, we use the geography relationship between the indoor rooms to define a

prior of the workflow state distribution. This prior encourages each workflow state to be a contiguous region in the building. Second, to

further improve the modeling performance, we show how to use the correlation between related types of medical devices to reinforce

the parameter estimation for multiple workflow models. In comparison with our preliminary work [11], we not only develop an integrated

workflow modeling framework applicable to general indoor environments, but also improve the modeling accuracy significantly. We

reduce the average log-loss by up to 11 percent.

Index Terms—Indoor location traces, workflow modeling, healthcare operation and management

Ç

1 INTRODUCTION

REAL-TIMElocation systems (RTLS) are being rapidly
developed and deployed. Of note, hospitals are increas-

ingly using these systems to track the movement of medical
devices, doctors, and patients (see Fig. 1), as well as the
interaction among them. However, their utilization is cur-
rently limited to basic tasks, such as locating a wheelchair
or checking the availability of an inpatient bed. In the near
future, we expect indoor location tracking data to be widely
available in many hospitals, as well as in other environ-
ments (e.g., shops, schools, warehouses, etc).
Understanding sequences ofproceduresthat reflectwork-

flows(e.g., surgery, from admission to recovery) remains an
important challenge, which we address in this work. Work-
flows reveal semantically meaningful patterns that can help
(i) understand how space and assets (e.g., medical equip-
ment, classrooms, shopping areas) are utilized (workflow
auditing); (ii) ensure that such utilization complies with
rules and regulations (workflowcompliance); and (iii)

perform any of these tasks in real time (workflowmonitor-
ing). For example, many healthcare providers have their
own work protocols to ensure that healthcare practices are
executed in a controlled manner. Non-compliance to these
protocols may be costly and expose the healthcare providers
to severe risks, such as litigation, prosecution, and damage
to brand reputation. Thus, there is a real need for effective
inspection of workflow compliance. This work focuses on
fundamental models to support all of the above tasks.
Hospital managers traditionally accomplish these tasks by

inspecting the detailed workflow logs [7], [14], [15], [19],
which can be in heterogeneous formats, stored in different
media (including paper), and provided passively by person-
nel and, therefore, may be biased and incomplete. The overall
task is quite daunting, and the opportunities to develop pro-
active approaches to help with workflow management tasks
are unparalleled. However, RTLS deployments are still used
in a relatively basic way, as noted above, with little work
focusing on how to leverage massive indoor location traces.
To this end, this paper provides a focused study of workflow
modeling via integrated analysis of indoor location traces,
evaluated on real data from hospital environments. Such
workflow models serve as fundamental building blocks in a
wide range of workflow management problems.
In particular, we propose theProactive Workflow Model

(ProWM) that, leveraging indoor location traces, provides
a unified framework for simultaneously (i) identifying
semantically meaningful regions as workflow states, and
(ii) summarizing sequential procedures as workflow tran-
sitions. Moreover, the proposed method is applicable to
general indoor environments where the workflow pat-
terns are hidden in the location traces of moving objects.
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Although workflow modeling is central to many build-
ing operations and management tasks, systematically con-
structing and estimating those models based on massive
indoor location traces is a non-trivial endeavor. Next, we
identify specific challenges in workflow modeling from
indoor location traces, and we outline the ingredients of our
proposed solution, which revolve around representation of
position/location and of mobility/transitions at three differ-
ent levels: micro, meso, and macro (see Fig. 2).
At the “micro” level, we have the raw data, which consist

of three-dimensional coordinates and geometric (euclidean)
distance between them. Based on these, we have to construct
or infer appropriate representations for workflow modeling.
1. “Meso” level.The raw data at the micro level, which is

what much of the research on indoor location traces focuses
on, are not appropriate for our purposes for a number of
reasons.
1a. Location.The granularity and quality of indoor loca-

tion traces captured by wireless location systems in the form
ofðx; y; zÞcoordinates might vary substantially from place to
place due to several factors: the density of sensor receivers,
environment changes (e.g., doors opening/closing) the
underlying localization techniques, and the sensor device
itself (e.g., remaining battery power). Given a particular set
of indoor location traces, it is very important to be aware of
its specific granularity and quality when modeling or analyz-
ing the data. Typically, it is possible to identify theroomthat
corresponds to a location with reasonable accuracy [10]. We
therefore use the floor plan information to map raw locations
(continuous) to rooms (discrete symbols).
1b. Topology/Proximity.Furthermore, the topologies of

indoor space are often much more complex than outdoor
space. For example, a small distance between two locations
does not mean that one is easily reachable from the other (e.g.,
two rooms with a shared wall but no door between them).

Therefore, some fundamental assumptions commonly used
for (outdoor) trajectories may not hold for indoors. For
instance, widely-used similarity measures based on geomet-
ric distance [4] or degree of overlap [6] are not very meaning-
ful for indoor location traces. Our solution is to use a graph of
communicating rooms. An additional complication is that
this graph may change over time, and therefore should also
be inferred, rather than extracted from the floor plan.
2. “Macro” level.The representations at the “meso” level

are still too fine-grained to provide useful insights into
modeling the workflows.
2a. Location Granularity and Semantics.Multiple locations

may be used either concurrently or interchangeably and,
therefore, should be grouped together. However, this group-
ing will depend on the workflow/procedure, and may
change over time. We model the functional significance of a
location in the context of a workflow as a hidden state. There-
fore, a state is a probability distribution over rooms. However,
in order to obtain interpretable results, we need to regularize
it. To that end, we employ the graph derived in (1b) above.
2b. Transition Patterns.Once we have identified the states

(which, intuitively, should correspond to stages, or proce-
dures, that comprise a workflow), we need to learn the tran-
sition patterns between them. An additional challenge is
that, if we consider each device type independently, we
may have insufficient data to robustly estimate model
parameters. However, certain medical devices are often
used together for particular healthcare tasks. By leveraging
such naturally arising correlations, we may improve the
robustness of parameter estimation for the finite state
machines. We show that correlations can be incorporated
effectively and efficiently as another regularization, for
simultaneously estimating multiple workflow models.
3. Evolving Environment.In addition to the above chal-

lenges, the structure of indoor space is very dynamic and the
modeling framework should automatically adapt. In more
traditional settings, such as city road networks, the structure
of the environment may remain mostly unchanged for years.
However, the structure and utilization of modern buildings
may frequently change, based on evolving needs. Although
room partitions (1a, above) typically don’t change, every-
thing else (1b, 2a, and 2b) may change. For example, an eleva-
tor may be out of order, sections of the building may be
closed for cleaning or repairs, thereby changing the graph.
Rooms may become unavailable or have their purposes re-
assigned, therefore changing state composition. Workflows
may also change over time, as procedures are updated. Such
dynamic changes will alter the semantics of indoor location
traces. In order to effectively and efficiently deal with these
challenges, our method should be computationally efficient

Fig. 1. An example of a real-time location system (RTLS) deployed in a
hospital. Bottom layer: sensor tags attached to moving objects (e.g.,
medical devices, patients, and doctors); middle layer: receivers relaying
signals from sensors; top layer: network bridges connected to data/appli-
cation servers, to calculate and store locations of tracked objects.

Fig. 2. Challenges (numbers explained in the introduction) and our pro-
posed solutions (filled boxes).
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and also able to robustly estimate parameters based on more
limited, recent data, rather than rely on a long past history.
As a result, although there is extensive work on the anal-

ysis of location traces, e.g., [5], [6], [13], most is not suitable
for modeling indoor location traces for proactive workflow
analysis. For example, the method developed by [6] discov-
ers frequent trajectory patterns from outdoor location traces,
based on given thresholds (minimum support and time tol-
erance). However, such frequent patterns cannot provide a
parsimonious description of hospital workflows. For
instance, workflow compliance inspection requires all activ-
ities, rather than only a frequent subset of moving patterns.
Similarly, the periodic patterns mined from outdoor spatio-
temporal data by [13] are also a subset of moving activities
and cannot fully meet the needs of workflow monitoring,
auditing, or compliance inspection. Finally, although sto-
chastic models for indoor activities were proposed by [18],
the purpose of these models is to classify activities (rather
than provide an interpretable, parsimonious summary of
overall activity patterns), based mostly on supervised learn-
ing, requiring sufficient labeled training data.
In preliminary work [11], we approached challenges (2a)

and (2b) independently, by employing a density-based
clustering algorithm over the room graph, to construct spa-
tially contiguous “hard” clusters of rooms. Once this clus-
tering solution was fixed, states were fully observed, and
we therefore can directly learn the transition matrices
between these clusters.
Contributions.We propose stochastic models to proac-

tively unravel the workflow patterns hidden in the massive
indoor location traces, by automatically discovering work-
flow states, and estimating parameters describing the transi-
tion patterns. The discovered knowledge can then be
transformed to valuable, actionable intelligence in a wide
range of practical problems in indoor environments (e.g.,
hospitals).
More specifically, in this work we unify the treatment

of challenges (2a) and (2b), by proposing a novel hidden
Markov model which is regularized using the inferred
room graph and transition correlations. This allows us to
learn good representations of states (which are now “soft”
probability distributions) and jointly optimize learning
states and transitions. In addition to rigorously unifying the
modeling framework, our proposed approach also achieves
better accuracy than previous work, without sacrificing
computational efficiency.
We have also implemented and deployed a management

information system,HISflow, based on our methods to show
how the discovered knowledge can help with the three
important managerial tasks in hospitals: workflow monitor-
ing, auditing, and compliance inspection.
The rest of the paper is organized as follows. Section 2

discusses work related to modeling healthcare workflow
patterns, and to analyzing indoor location traces. Section 3
introduces the indoor location data and formalizes the prob-
lem of workflow modeling. Section 4 presents our model
based on regularized HMM (Hidden Markov Model) and
Section 5 details model estimation. Section 6 reports results
from extensive experimental evaluation of our method on
both synthetic data and real-world data. Finally, Section 7
concludes the paper.

2 RELATEDWORK

Workflow Analysis and Mining. Workflow analysis conven-
tionally relies on detailed workflow logs [1], [7], [16]. Work-
flow processes are typically represented by activity graphs.
Given the execution logs, which are lists of activity records,
workflow mining can be formalized as a graph mining
problem by viewing execution logs as walks on the activity
graphs [1]. In practice, there might be discrepancies
between the actual workflow processes and those perceived
by the management. In this case, to discover a completely
specified workflow design model, [16] presented an algo-
rithm to extract a process model from the workflow logs
and represent it in terms of a Petri net. Instead of discover-
ing the complete model, [7] later formalized the problem of
discovering the most frequent patterns of executions, i.e.,
the workflow substructures that have been scheduled more
frequently and have lead to a desired final configuration.
However, these methods rely on workflow logs which are
often manually recorded in several settings, including the
healthcare industry. Thus, the results may be distorted
due to bias and missing records. These distortions can be
misleading for many operation and management tasks in
hospitals, such as the inspection of workflow compliance. In
comparison, as we discussed in Section 1, in this paper we
propose a proactive approach to workflow modeling by
mining the digital location traces of moving objects. These
are automatically recorded by RTLS, requiring practically
no human intervention. The statistical modeling results pro-
vided by our approach are helpful for a range of operation
and management tasks in hospital environments.
Activity Modeling and Prediction.In terms of methodology,

another category of related work is the modeling and pre-
diction of human activities. For instance, [18] proposed sto-
chastic process models to predict the goals of indoor human
activities. Furthermore, for multiple-goal recognition, [2]
proposed a two-level architecture for behavior modeling
and [8] developed a dynamic Bayesian model where skip-
chain conditional random fields were used for modeling
interleaving goals. All the above approaches are supervised
and require sufficient labeled training data. However, in
our setting we wish to predict the next individual location/
state occurring in well-defined workflows, rather than cate-
gorize sequences of states. Moreover, we do not have
labeled training data.
Trajectory Mining.In terms of analytics of location traces,

trajectory pattern mining is also related to this work. For
instance, [6] introduced trajectory patterns as frequent
behaviors in terms of both time and space, where the fre-
quent trajectory patterns are computed based on given
thresholds. In [9], methods were proposed to discover peri-
odic patterns from spatio-temporal data, where a periodic
pattern is defined as a regular activity which periodically
happens at certain locations. Also, [17] proposed methods
to discover sequential patterns from imprecise trajectories
of moving objects. However, these methods were not devel-
oped for indoor spaces, were not designed for the purpose
of workflow modeling and, more importantly, the mined
frequent patterns cannot provide a parsimonious descrip-
tion of healthcare activities in hospitals, to support the
applications we have considered.
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Area-of-Interest Detection. Finally, the last category of
related work is the detection of area-of-interest, based on
trajectory data. For instance, [12] proposed a non-density-
based approach, called mobility-based clustering, to iden-
tify the hotspots of moving vehicles in an urban area. The
key idea is that sample objects serve as “sensors” to perceive
vehicle crowdedness in nearby areas using their instant
mobility, rather than the “object representatives”. More-
over, [20] proposed a stay point concept and identified hot-
spots from human moving trajectories. One location was
considered as a hotspot if several moving objects stay
nearby over a given time period. Finally, [6] used the neigh-
borhood function to model Regions-of-Interest. They parti-
tioned space into grids and quantified the interest of each
grid by the density/direction information within each grid.
As we have discussed, although methods mentioned above
are successful for analyzing outdoor location traces, most of
them are not applicable to indoor environments and, in par-
ticular, hospitals, because of the unique characteristics of
indoor space.

3 PRELIMINARIES ANDPROBLEMFORMULATION

We first describe the data from indoor location traces and
introduce necessary notation. Then, we formalize the prob-
lem of indoor workflow modeling.

3.1 Data Description and Transformation

Our location traces (trajectories) of medical devices are col-
lected indoors at several US hospitals. The location trace of
an objectOis defined as:

Definition 1 (Location trace).A location trace is a sequence
ðL1;L2;...Þ;where Li represents theith record in the
sequence. Li¼ðstarti; endi;xi;yi;ziÞ contains numerical
coordinatesðxi;yi;ziÞand the time that record was recorded,
wherestartiandendiare the start and end time, respectively,
ofLi. In other words, during the time frame fromstartito
endi, the object stays at the coordinateðxi;yi;ziÞin a three-
dimensional indoor space.

However, the indoor wireless communication may be
interrupted by environmental factors, leading to errors and
noise in the localization of moving objects. Therefore, a
coordinate localized by the RTLS might not indicate the
exact position, but a small area surrounding the coordinate
[10]. In addition, it is not meaningful to use the raw coordi-
nates for indoor workflow modeling. For example, although
two recorded coordinates may be separated by a small geo-
metric distance on the same floor, the actual moving dis-
tance from one coordinate to the other may be very large if
there is, e.g., a wall between them.
To cope with these challenges, we normalize the original

location traces for workflow modeling. Specifically, we proj-
ect each raw coordinate to a semantic location of the build-
ing, such as a room in the hospital, based on the floor maps
of the building. For the data and maps in this study, each
hallway is also treated as a room and some long hallways
have been segmented into multiple smaller rooms. Then,Li
can be transformed to:Li¼ðstarti; endi;riÞ;whereriis the
room containing the coordinateðxi;yi;ziÞ. After this projec-
tion, two neighboring coordinates of the raw location traces

may be mapped into the same room. In other words,rifor
Limay be the same as riþ1forLiþ1. We therefore merge
runs of consecutive records with the same room into
one record. Specifically, ifi<jandri¼riþ1¼ ¼rj,

we replace the subsequenceðLi;Liþ1;...;LjÞwith only one
recordLi¼ðstarti; endj;riÞ.

Now, each raw numerical location is mapped to a sym-
bolic room representation (graph node), and each location
trace is transformed to a symbolic sequence (traveling
path). This data pre-processing step greatly smooths out the
noise and alleviates the impact of errors on subsequent
workflow modeling tasks (described next). Additionally, it
also drastically reduces the computational cost, since we
significantly reduce the number of records in the data.

3.2 Concepts for Workflow Modeling

3.2.1 Workflow Modeling in Healthcare Environments

Our goal of workflow pattern modeling is to automatically
summarize the work activities in a systematic manner. To
this end, the concept of workflow patterns is actually a hier-
archy with several levels. At the lowest level, the location
trace can be seen as a workflow pattern instance. For exam-
ple, in Fig. 3, we show the location trace of an infusion
pump (red line). However, it is difficult to semantically
understand the pattern hidden in the raw location traces.
At the other extreme, three general high-level workflow

stages can be used to describe workflow logistics:preprocess-
ing maintenance stage,in-use stage,postprocessing maintenance
stage. Thein-use stageof a medical device corresponds to
the period when it is used for any healthcare purpose.
Before thein-use stage, a device is in thepreprocessing mainte-
nance stage, e.g., held in the storage room. After thein-use
stage, the device must go through thepostprocessing mainte-
nance stagebefore the next use cycle. These maintenance
processes include cleaning up, sterilization, disinfection,
etc. However, modeling workflow patterns based on the
generic stages is too coarse to provide useful results that
can help with healthcare workflow management. We need a
middle-level representationof the location traces, which leads
to our proposed workflow models.

3.2.2 General Location Based Workflow Modeling

Indeed, as we discussed in the Introduction, we expect
indoor location tracking data to be more widely available in

Fig. 3. Workflow instances of infusion pump.
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environments beyond hospitals (e.g., shops, schools, ware-
houses, etc), and the automatic workflow modeling with the
indoor location data can be applied to discover different
types of human activity patterns in various of scenarios. To
this end, it’s a ubiquitous challenge to identify the right
representation level of the location traces for better work-
flow modeling and understanding. The raw location traces
include too much unnecessary minutia, while the pure
semantical high-level workflow stages are to coarse to
encode the spatial information. Therefore, one of our objec-
tives in developing the indoor location based workflow
models is to automatically construct the workflow states,
which are spatially contiguous as well as semantically
meaningful. In the following, we first discuss how to con-
struct the workflow states as the right representation levels
in the healthcare environments. We also highlight the
assumptions used by our models. Therefore, the proactive
workflow modeling framework is applicable to general
domains where the assumptions can be accepted and the
data is available.

3.2.3 Workflow States

To better model and understand the workflow processes,
we define the workflow states as a few key areas in these
trajectories. Our goal is to automatically generate these
workflow states and use them as “annotations” of the origi-
nal location traces. For example, we annotate the location
traces in Fig. 3 with areasCi(i¼1;...;5). The medical func-
tions of these areas are summarized in Table 1. The location
trace in red in Fig. 3 can now be concisely represented as
C17!C27!C37!C4. Such representation with the key areas
makes it easy to understand the workflow underlying the
location traces.
In fact, Fig. 3 is the map of the second floor of a hospital

building, which is centered aroundE1, the elevator con-
nected to the basement. The red location trace of one
infusion pump starts from the storage room in the basement
to the elevatorE1. AfterE1followsC1, which is the Post-
Anesthesia Care Unit (PACU), where the patient is ready
for medical procedures, such as surgery, and the medical
devices are attached to the patients. Next,C2is the area of
operating rooms (OR), where medical procedures are per-
formed. After the medical procedure, the patients and the
medical devices are moved toC3, the Intensive Care Unit
(ICU), based on medical needs. When the condition of the
patient becomes stable, the patient and the medical devices
being used will be further moved toC4, the Patient Care
Unit (PCU), before the patient is discharged. After the
patient is discharged, the medical devices will be moved
through elevatorE2to the basement, cleaned in a disinfec-
tion room, and then transferred into storage.

It should be noted that Fig. 3 is a grossly simplified view
of reality. In fact, we may have many workflow states, span-
ning multiple floors and buildings, and the overall work-
flow patterns are much more complex. Formally, we define
the workflow states (in general indoor contexts) as follows:

Definition 2 (Workflow state).A workflow state is an area in
the indoor space where specific workflow activities frequently
happen.

From the above example, it is clear that each such area
(where a particular stage of the process occurs) should cor-
respond to a workflow state, and that location traces repre-
sented using such workflow states convey the necessary
information for easily understanding and modeling work-
flow patterns. In other words, workflow patterns can be
understood much more clearly when location traces are rep-
resented using workflow states, rather than by using either
low-level rooms or high-level stages.

3.3 Problem Statement of Workflow Modeling

A further task in workflow modeling is to summarize the
transition patterns of the moving objects among workflow
states. As shown in Fig. 3, the transition from one state may
lead to several different states. For example, when the situa-
tion of a patient is stable after the medical operation atC2,
the medical devices and the patient might be moved
directly to PCU (C4;C5) without passing through ICU (C3).
Now, we can formally state the problem of location-based

workflow pattern modeling in general indoor environments:

Problem 1 (Workflow pattern modeling).Given the loca-
tion traces of moving objects (e.g., medical devices in hospitals,
shoppers in malls, loading trucks in warehouses, etc), workflow
pattern modeling discovers workflow knowledge including
workflow states and parameters describing the transition pat-
terns of the moving objects.

In practice, we have multiple types of objects moving
around indoors, and one workflow model can be built for
each of the object types. The multiple models are not inde-
pendent with each other. For instance, in hospitals, many
different types of medical devices are often used together
for a particular task. Therefore, although different types of
medical devices have different workflow patterns, there is
some natural correlation among their location traces.
Modeling such correlation not only helps reinforce the
robustness of the workflow models, but also provides better
understanding of the overall workflow patterns.

4 METHODOLOGY

Although the workflow states are not directly visible, the
observed location traces depend on the hidden workflow
states. Therefore, our Proactive Workflow Model (ProWM)
uses the Hidden Markov Model (HMM) to construct the
workflow states. In a HMM, each state has a probability dis-
tribution over the possible output observations. With the
Markov assumption, the state distribution can be estimated
with the observed data. In the following, we first introduce
necessary notation for hidden Markov modeling of location
traces, then present our regularization schemes to obtain
spatially contiguous (thus more interpretable) states, and to

TABLE 1
Annotation of Key Locations in Fig. 3

Locations Functions

C1 Post-anesthesia care unit (PACU)
C2 Operating room (OR)
C3 Intensive care unit (ICU)
C4,C5 Patient care unit (PCU)
E1,E2 Elevator
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leverage correlations among devices for multi-flow estima-
tion. Our regularization is intuitive, and can be viewed as a
prior over the model parameters. The parameters in the reg-
ularized models can also be estimated effectively.
We observe a set of room sequences X¼

fxn:n¼1;...;Ng, wherexn¼ðrn1;...;r
n
Tn
Þis the sequence

for thenth moving object,Tnis the length ofxn, andNis
the number of all moving objects. Each observationrnt2R
is associated with a workflow statesnt2S. Here,Ris the set
of rooms in the building andSis the set of workflow states.
Without loss of generality, we assume R¼f1;2;...;KRg
andS¼f1;2;...;KSg, whereKRis the number of rooms
andKSis the number of states. Hidden Markov Models
assume that, as shown in Fig. 4, when statesntis given, the
corresponding observationrntis independent to all other
statessnlforl6¼t, and the states

n
tþ1is independent to all pre-

vious statessnlforl<t. Then, the model is fully deter-

mined by the state transition probabilities Aij¼Prðs
n
tþ1¼

jjsnt¼iÞ, the emission probabilitiesBij¼Prðr
n
t¼jjs

n
t¼iÞ,

and the initial state distributionpi¼Prðs
n
1¼iÞ.

Probability parametersQ¼ðA; B;pÞcan be estimated by
maximizing the log-likelihoodLðQjXÞ¼log PrðXjQÞ, e.g.,
the Baum-Welch algorithm. We improve the model estima-
tion using the maximum a posteriori (MAP) estimation:

PrðX;QÞ/PrðXjQÞexpð VðQÞÞ:

In the remaining of this section, we define the prior regulari-
zationVðQÞ.

4.1 Regularized Workflow States

In practice, the identified workflow states should be spa-
tially contiguous. For example, we want to identify areas of
semantically meaningful locations, such as ‘2nd floor north-
east patient rooms’ and ‘basement central storage rooms’. In
this section, to encourage each workflow state to be a contig-
uous region in the building, we use the proximity between
rooms to define a prior on the workflow state distribution.
Specifically, letG be the graph where nodes represent
rooms and edges signify that these two rooms communicate
with each other. We also useGas its adjacency matrix. We
define the regularization

VBðBÞ¼
1

2

X

s

X

ij

GijðBsi BsjÞ
2¼trðBðD HÞB0Þ;

whereH¼12ðGþG
0Þis a symmetric graph andDis the

diagonal degree matrix ofH, withDii¼
P
jHij. Intuitively,

we use VBðBÞto encourage neighboring rooms to have

similar probabilities in the state distribution. Note that,
D His always positive-semidefinite andVBðBÞ 0.
The graphG can be user-provided or automatically

defined given the historical location traces of the moving
objects. In this study, we letGij¼1if and only if there exists

a traceðrn1;...;r
n
Tn
Þand1 t<Tn, such thatr

n
t¼iand

rntþ1¼j. In other words, we letGij¼1if one can transit

from roomitojdirectly, andGij¼0otherwise. Such a defi-

nition avoids the use of geometric distance, which is not
particularly meaningful in indoor environments, as dis-
cussed earlier. Moreover, our definition also avoids the use
of parameters, such as distance thresholds.

4.2 Adaptive Multiflow Estimation

For healthcare procedures on one patient, multiple types of
medical devices are often needed at the same time and
place. Thus, these different types of moving objects transit
together, therefore following correlated workflow models,
which can be estimated jointly. To this end, first, we
can use a common workflow state distributionB¼BðkÞ,
k¼1;...;K, for all theKtypes of moving objects. Indeed,
using a common state distribution for all types also reduces
the model complexity dramatically.
Second, to estimate theKworkflow transition matrices

fAðkÞj1 k Kg, we borrow the idea of mean-regularized
multi-task learning [3]. Specifically, we assume that each

AðkÞ, for1 k K, can be written as

AðkÞ¼Að0ÞþDðkÞ

where the difference DðkÞ¼AðkÞ Að0ÞbetweenAðkÞand

Að0Þis ‘small’ when the workflow transitions of different
types of moving objects are similar to each other. Therefore,
define the regularizer as

VAðAÞ¼
1

2

XK

k¼1

kDðkÞk2¼
1

2

XK

k¼1

kAðkÞ Að0Þk2

One can show that the optimalAð0Þminimizing the regular-
izerVAðAÞis

Að0Þ¼
1

K

XK

t¼1

AðtÞ;

and thus we have

VAðAÞ¼
1

2

XK

k¼1

kAðkÞ
1

K

XK

t¼1

AðtÞk2: (1)

In other words, mean-regularized multi-task learning
assumes that the transitions are related in a way that the true
estimates are all close to the meanAð0Þ. Note that, although
in this work we consider only the mean-regularized multi-
task learning for the multiflow estimation, general formula-
tions can be easily adopted when more knowledge is
available. For example, if we had pairwise correlations
between the workflow models of different types of objects,
e.g., the correlationrijbetween the typeiand the typej,we

can define the ‘multiflow’ regularization as

VAðAÞ¼
1

2

X

ij

rijkA
ðiÞ AðjÞk2: (2)

Fig. 4. The graphical Hidden Markov Model. White nodessnt2Sare hid-
den workflow states; Shaded nodes rnt2R are observed room
sequence.
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5 IMPLEMENTATION

With the regularizations VAðAÞandVBðBÞ,theobjective
function to simultaneously estimate all the workflow
models is

JðAð1Þ;...;AðKÞ;B;pð1Þ;...;pðKÞÞ

¼
X

k

LðAðkÞ;B;pðkÞÞ VðQÞ (3)

whereLðAðkÞ;B;pðkÞÞ¼log PrðrðkÞjAðkÞ;B;pðkÞÞand

VðQÞ¼1VAðAÞþ2VBðBÞ:

We maximize JðQÞ, where the parameters areQ¼

ðAð1Þ;...;AðKÞ;B;pð1Þ;...;pðKÞÞ, using the regularized
Baum-Welch algorithm, which iteratively applies the fol-

lowing two steps. Based on the current value of̂Q, the first
step is to compute the probabilities:

g
ðkÞ
iðtÞ¼Prðs

ðkÞ
t ¼ijr

ðkÞÞ

ðkÞ
ijðtÞ¼Prðs

ðkÞ
t ¼i; s

ðkÞ
tþ1¼jjr

ðkÞÞ

and define

G
ðkÞ
ij¼

XTk

t¼1

g
ðkÞ
iðtÞ½r

ðkÞ
t ¼j; X

ðkÞ
ij¼

XTk 1

t¼1

ðkÞ
ijðtÞ:

Note that, here we assume that there is only one observation
sequencerðkÞof thekth type of the moving objects. Nota-
tions for more general case would be more complicated but
leading to the same computation.
The second step of this Expectation Maximization (EM)

algorithm computes the new parameter valueQ, by
maximizing the expected value of the objective function in
Equation (3)

QðQÞ¼
X

k

EsðkÞjrðkÞ;̂Qlog Prðs
ðkÞ;rðkÞjQÞ VðQÞ

¼
X

sðkÞ

PrðsðkÞjrðkÞ;̂QÞlog PrðsðkÞ;rðkÞjQÞ VðQÞ

where the log-likelihood is given by

log PrðsðkÞ;rðkÞjQÞ

¼logp
ðkÞ

s
ðkÞ
1

þ
XTk 1

t¼1

logA
ðkÞ

s
ðkÞ
t s
ðkÞ
tþ1

þ
XTk

t¼1

logB
s
ðkÞ
t r
ðkÞ
t

It follows thatpðkÞ¼arg max
P
ig
ðkÞ
ið1Þlogp

ðkÞ
i, where the

solution isp
ðkÞ
i ¼g

ðkÞ
ið1Þ. For updating ofAandB, we have

the following results:

Proposition 1 (Optimization subproblem ofA).Given

the current value ofðB;pð1Þ;...;pðKÞÞ, the problem of updat-

ingðAð1Þ;...;AðKÞÞto optimizeQðQÞis equivalent to:

A¼argmax
X

k

X

ij

XTk 1

t¼1

ðkÞ
ijðtÞlogA

ðkÞ
ij 1VAðAÞ

¼argmax
X

k

X

ij

X
ðkÞ
ijlogA

ðkÞ
ij 1VAðAÞ

s.t. A 0;
X

j

A
ðkÞ
ij¼1;8k; i:

Proposition 2 (Optimization subproblem ofB).Given

the current value ofðAð1Þ;...;AðKÞ;pð1Þ;...;pðKÞÞ, the prob-
lem of updatingBto optimizeQðQÞis equivalent to:

B¼argmax
X

k

X

ij

XTk

t¼1

g
ðkÞ
iðtÞ½r

j
t¼jlogBij 2VBðBÞ

¼argmax
X

k

X

ij

G
ðkÞ
ijlogBij 2VBðBÞ

s.t. B 0;
X

j

Bij¼1;8i:

Note that,A; B 0are element-wise constraints. Since

1;2 0, both problems in Proposition 1 and 2 are concave
and we have efficient algorithms (e.g., gradient ascent) to
updateAandB. Particularly for the special case when

1¼ 2¼0, we have:

A
ðkÞ
ij¼

X
ðkÞ
ij

P
jX
ðkÞ
ij

; Bij¼

P
kG
ðkÞ
ij

P
k

P
jG
ðkÞ
ij

:

5.1 Choosing the Number of Workflow States

One important aspect of training ProWM is how to choose
an appropriate number of latent workflow states. A com-
monly used approach for estimating the latent states of
HMMs is to leverage domain knowledge or some existing
algorithms to pre-cluster the observations [21]. In our prob-
lem, we shall pre-cluster the indoor location records to
guide the training of ProWM. To this end, we adopt the den-
sity-based clustering algorithm proposed in [11], which
computes the neighborhood of a location record as well as
its density based on the historical location traces. Using this
algorithm, the number of clusters can be automatically
determined, and the detected clusters can be of different
densities and arbitrary shapes. More importantly, the
detected clusters are spatially contiguous, and therefore can
be semantically annotated, such as ‘2nd floor northeast
patient rooms’ and ‘basement central storage rooms’.
In this paper, since we use a common emission matrix in

Equation (3), we accordingly piece together the pre-cluster
solutions for all theKtypes of moving objects:

C¼[Kk¼1C
ðkÞ

whereCðkÞis the pre-cluster solution of thekth type of mov-

ing object. Note that, whenC12C
ð1ÞandC22C

ð2Þoverlap,
i.e.,C1\C26¼;, we merge them together asC1[C22C.
Now, we have the common pre-cluster solution expressed
inCand can determine the number of workflow statesjCj.

5.2 Non-Essential Space Reduction

In addition to choosing the number of latent states in our
ProWM, the results of pre-clustering can also be used for
accelerating parameter estimation. In reality, not every room
in the building is associated with healthcare activities and not
every movement in the devices’ trajectories needs to be mod-
eled. For example, we may have many location records in
front of the elevator. Although many trajectories may briefly
go through that location, no healthcare activities occur at such
non-essential locations. With the pre-clustering solution, we
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can exclude the non-essential observations in the indoor
space, to reduce the modeling complexity. As shown in [11],
the density-based pre-clustering algorithm can effectively
identify the non-essential locations as outliers in the clustering
results. Intuitively, these low-density1outliers consist of
short-duration stays at one or more locations, whereas health-
care activities happen mostly when the medical devices are
stationary. Therefore, our implementation filters out the non-
stationary locations from the workflow modeling. Specifi-
cally, the union[c2Ccis a proper subset of the indoor space

and, accordingly, we model only the observationsrkt2[c2Cc,
reducing the modeling complexity without compromising
the modeling quality of the workflow patterns.

6 EMPIRICALEVALUATION

This section evaluates the performance of our workflow
models. We first use the synthetic data to show the effective-
ness of our ProWM methods. We then apply our models on
real-world data collected in indoor healthcare environments.

6.1 Synthetic Data and Results

We simulate workflow processes with known state distribu-
tions and transition patterns to demonstrate the effective-
ness of ProWM. First, we define five workflow (hidden)
states where each distributes uniformly on 20 rooms (sym-
bols), with emission probability 0.05 on each room. There-
fore we have a block structure in the emission matrixB.We
inject Gaussian noisesNð0;0:01Þin the emission matrix.
Then, we simulate 200 sequences each with length 100 (total
20,000 observations). With the simulated data, the hidden
states identified by naive HMM method is shown in Fig. 5
(top). As can be seen, the naive HMM method can only par-
tially uncover the ground-truth structures of the hidden
state. In comparison, as shown in Fig. 5 (middle), our regu-
larized ProWM method can (almost) perfectly construct the
(permuted) true workflow states in Fig. 5 (bottom).
To test the effectiveness of the multiflow regularization

(Equation (2)), we randomly generate two transition pat-
terns shared by five workflow processes with transition
matrices AðkÞ,k¼1;...;5. The two transition patterns are

shown in Fig. 6 (bottom), where Pattern 1 is shared by the
first three processes and Pattern 2 is shared by the last two.
The transition matrix of each process is generated by inject-
ingNð0;0:01Þto the associated pattern. Then we simulate
100 sequences (with length 100) for each workflow process.
As shown in Fig. 6 (top), the transition patterns identified
by five independent HMMs are not capturing the designed
Pattern 1 and Pattern 2. The reason is that the HMM optimi-
zation is highly non-convex with difficulty to find the
designed optimum in the optimization space. In contrast,
with our multiflow regularization, ProWM can successfully
approximate the ground-truth in all workflow processes.
In addition to above visual comparisons, ProWM also

increases the likelihood of the model parameters. The
increases are 72 and 31 percent per sequence in Fig. 5 and 6,
respectively.

6.2 Indoor Location Data

Our real-world indoor location data sets are collected from
several hospitals in the US. Sensor tags are attached to med-
ical devices operated in these hospitals, allowing them to be
tracked by real-time location systems. Table 2 shows basic
statistics of the data collected for various types of medical
devices in Hospital 1. The second and third columns show
the number of medical devices of each type operated in this
hospital, and the number of location records collected dur-
ing the period from January 2011 to August 2011.
In the remaining of this section, we first illustrate the

workflow states identified by ProWM. We then analyze the
goodness-of-fit of ProWM, with respect to important statis-
tics. Particularly, we show that the regularized workflow
states are semantically meaningful and easily amenable to
interpretation; and the adaptive multiflow estimation can
reinforce the modeling performance, especially for real-time
applications.

Fig. 5. The workflow states of HMM and ProWM.

Fig. 6. The workflow transitions of HMM and ProWM.

TABLE 2
Data Statistics in Hospital 1

Type #Objects #Locations

Wheelchair 121 524415
PCA II Pump 66 4431
Venodyne 403 1588045
Feeding Pump 83 157370
PCA Pump 136 231057
ETCO2 137 220380

1.Density also incorporates time duration of stay.
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6.3 Workflow States

In Equation (3), we set 1¼0and select an appropriate
value for 2¼10

vwherev2½ 5;5, to construct interpret-
able workflow states. Generally, the larger the 2, the more
continuous the states. Fig. 7, illustrates the unregularized
workflow states on two floors in Hospital 1. The figures at
the lower level are maps of the basement, and the figures at
the upper level are maps of the second floor. In each map,
rooms are shaded based on the emission probabilities

(>105) for each state distribution (darker indicates higher
probability of a room belonging to that state). Several issues
are evident in the results. First, some states are not contigu-
ous in the indoor space, e.g., State 1, 2 and 5. State 2 even
covers rooms in two different floors. Second, States 3 and 4
are duplications of each other.
In contrast, as shown in Fig. 8, these issues can be

effectively addressed by the regularization we proposed
in Section 4.1. Not only the regularized workflow
states are contiguous in theindoor space, but they can
also be easily matched to known room usage, e.g.,

Post-anesthesia care unit (PACU), Operating room (OR),
Intensive care unit (ICU), Patient care unit (PCU), Device
Maintenance and Device Storage. For example, in the
unregularized workflow states, the left highlighted area
in the basement of State 1 and the highlighted area in the
basementofState2areactuallyneighborsandallare
used for storage. The central highlighted area in the base-
ment of State 1 has differentusage, which is device main-
tenance. On the other hand, in the regularized workflow
statewehaveclearlyidentifiedtheStorageand Mainte-
nance states without any supervision. Also, regularized
workflow states have smooth emissions in contiguous
areas of the building (e.g., compare the PCU state in
Fig. 8 with State 5 in Fig. 7).

6.4 Goodness-of-Fit

We measure the goodness-of-fit of the learned workflow
models by computing theaverage log-losswith test location
traces. For a test location sequenceTr¼ðr1;...;rTÞ, the
average log-loss is

Fig. 7. Unregularized workflow states. Issues: 1) Several states are not continuous in the indoor space, e.g., States 1, 2, and 5. Especially, State 2
covers rooms in two floors. 2) States 3 and 4 are effectively duplicates.
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‘ðTrÞ¼
1

T
log PrðTrjQÞ: (4)

We randomly partition the data into ten subsets and com-
pute the average log-loss in ten rounds. In each round, we
use nine of these subsets as training data to estimate the
model parameters and compute ‘ðTrÞfor eachTrin the
remaining test data.
We set 2based on results in Section 6.3, then choose

1¼10
vwithv2½ 5;5that achieves the lowest average

log-loss on validation data. Thesolid red linesin Fig. 9 show
‘ðTrÞwith respect to the length ofTr. We also show the
results withsolid green linesfor the baseline models, using

1¼0in Equation (3). Fig. 9 shows that the regularized
multiflow models consistently achieve lower information
loss across different types of moving objects.
For certain workflow managerial applications, we have

to estimate the models in real-time with limited training
data. In this case, our models substantially outperform base-
lines by unified estimation. This is clearly demonstrated by

repeating the above comparison using less training data. As
shown by thedashed lines, the improvement of the regular-
ized multiflow models is more significant compared to
baselines. Moreover, the regularized models are more
robust, without sharp jumps in the plot.
In Fig. 9, we also show the performances of the baseline

methods developed by [11] inblue lines. The results demon-
strate that goodness-of-fit is significantly improved by inte-
grating workflow construction and transition estimation.

6.5 Computational Efficiency

In this subsection, we evaluate the performance of training
ProWM. In particular, we first choose the number of work-
flow states based on the pre-clustering of location records.
We also use the pre-clustering solution to reduce the model-
ing space, as introduced in Section 5.2. After that, we run the
alternative optimization procedure to compute the optimal
transition probabilitiesAkfork¼1;...;Kand the workflow
emission probabilitiesB. We compare the training time
against two baselines: 1) The same alternative optimization

Fig. 8. Regularized workflow states can be easily interpreted with semantics as follows: Post-anesthesia care unit (PACU), Operating room (OR),
Intensive care unit (ICU), Patient care unit (PCU), Device Maintenance, and Device Storage.
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procedure without non-essential space reduction. 2) The
model developed in [11].
Two interesting observations follow from the comparison

of running time and information loss in Table 3. First, by
reducing the non-essential modeling space, we can signifi-
cantly reduce computation complexity without decreasing
modeling performance. The model with reduced space has
average log-loss comparable to that of the model using the full
space. Second, in the scenario with substantially limited train-
ing data, the running time of the proposed ProWM model
with reduced modeling space is close to that of the baseline
model developed in [11]. However, our ProWM model has
significantly better prediction performance (2:399<2:689).
In other words, we reduce the average log-loss by 11 percent
while maintaining computational efficiency.

6.6 Application: Workflow Monitoring

The learned workflow model is valuable, since a range of
practical problems can benefit from the modeling results.
Indeed, we have implemented a management information
system, HISflow, to exploit the discovered knowledge for
healthcare operation and management. A screenshot of

HISflow is shown in Fig. 10; for techniques used in our
implementation, see [11]. In the following, we elaborate on
one particular application, workflow monitoring.
When the extracted workflow patterns are mapped to

specific procedure codes (either existing or new), we can
identify abnormal behavior within daily healthcare activi-
ties in real-time. When such anomalies occur, warnings or
alerts can be activated by the management system, poten-
tially helping reduce the risk of faults or accidents in health-
care services. One approach to develop such a system is to
rank the ongoing trajectories of all monitored medical devi-
ces based on the averagelog-loss in Equation (4). In this
way, the top-ranked devices merit more scrutiny. However,
these ranking results may not be intuitive from the manage-
ment perspective. In fact, it is vital to provide more insights
into the causes behind the higherlog-loss trajectories. To
this end, given the recent trajectoryTr¼ðr1;r2;...;rTÞ
which is ranked in the top, we compute the most likely cor-
responding state sequenceðs1;s2;...;sTÞand identify the

time of abnormal eventsT̂¼maxt‘ðr1:tÞ, as well as the

description of each observation fort¼2;...;̂T:

1) Unlikely transition: Ifst6¼st1 and logAst1st
logBstrt.

Fig. 9. The comparison of average log-loss. Red: ProWM with regularized multiflow models. Green: ProWM without multiflow regularization. Blue:
Baselines developed by [11]. Solid: 90 percent training and 10 percent testing. Dashed: 10 percent training and 90 percent testing.

TABLE 3
Comparison of the Running Time of
Different Methods in Two Scenarios

Model Training:Testing Running
Time (s)

Information
Loss

ProWM 9:1 238 2.270
(reduced space) 1:9 31 2.399

ProWM 9:1 1037 2.267
(full space) 1:9 419 2.401

CTMC [11]
9:1 71 2.401
1:9 29 2.689

In one scenario we have sufficient training data, with a ratio of training:testing
data equal to 9:1. In the other scenario the ratio is 1:9. Fig. 10. The screenshot of HISflow.
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2) Long wait:Ifst¼st1and logAst1st logBstrt.
3) Unlikely location:If logBstrt logAst1st.
Intuitively,unlikely transitionindicates that the state tran-

sition fromst1is unlikely to end atst, and the likelihood of
the transition contributes significantly to the increase of
averagelog-loss‘ðTrÞ. TheLong waitcase is similar, except
that the workflow states are unchanged. Finally, in the case
ofunlikely location, we observed the locationrtfor the state
st, however, the locationrtis unlikely to be emitted by the
statestand the likelihood of the emission contributes more
to the increase of‘ðTrÞ, compared to other explanations.
As can be seen in Fig. 10, based on the averagelog-loss,

we can effectively identify the abnormal traces with
detailed explanations. Specifically, we highlight the expla-
nation for each identified abnormal device with different
background color in the ‘Status’ column of the list. When
the user clicks one item in the list, we show more details
in the right panel (e.g., the distribution of different recent
causes for the anomaly, and the current location of the
device). In the left panel, we also show the aggregated dis-
tribution of different anomaly causes in the identified list.
Such an intuitive and interpretable real-time monitor sys-
tem is valuable for the hospital managers to improve the
quality of healthcare services.

7 CONCLUDINGREMARKS

In this paper, we leveraged location traces of medical devi-
ces to model the healthcare workflow patterns in hospital
environments. Specifically, we developed a stochastic
process-based framework, which provides parsimonious
descriptions of long location traces. This framework pro-
vides new opportunities to concisely understand the logis-
tics of a large hospital. From a technical perspective, we
proposed a unified modeling approach based on a novel
regularized HMM method, that produces interpretable
states and leverages correlations between devices for
improved robustness. From an application perspective, the
discovered knowledge, such as workflow states and transi-
tion patterns can be integrated into management informa-
tion system we developed. With this system, we showed
that valuable intelligent applications for healthcare opera-
tion and management can be enabled to manage, evaluate
and optimize the healthcare services. Extensive experimen-
tal results on both the synthetic data and the real-world
data validated the effectiveness of our proposed work.
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