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ABSTRACT

Data sharing for collaborative research systems may not be
able to use contemporary architectures that collect and store
data in centralized data centers. Research groups often wish
to control their data locally but are willing to share access
to it for collaborations. This may stem from research cul-
ture as well as privacy concerns. To leverage the potential
of these aggregated larger data sets, we would like tools that
perform joint analyses without transmitting the data. Ideally,
these analyses would have similar performance and ease of
use as current team-based research structures. In this paper
we design, implement, and evaluate a decentralized data in-
dependent component analysis (ICA) that meets these crite-
ria. We validate our method on temporal ICA for functional
magnetic resonance imaging (fMRI) data; this method shares
only intermediate statistics and may be amenable to further
privacy protections via differential privacy.

Index Terms— multi-site collaboration, decentralized
data, ICA

1. INTRODUCTION

Research groups studying complex phenomena (such as cer-
tain diseases) often focus on specific questions but gather data
that could be used to answer questions beyond the scope of the
original study. For example, a mental health study may collect
a brain scan using magnetic resonance imaging (MRI) from
all enrolled subjects but may only examine a particular aspect
of the MRI data. The whole scan is saved as part of the data
set associated with that study and could therefore be used in
other studies. Technological advances have dramatically in-
creased the complexity of data per measurement while lower-
ing the cost. Researchers hope to leverage data across multi-
ple research groups to achieve sufficiently large sample sizes
that may uncover important, relevant, and interpretable fea-
tures that characterize the underlying complex phenomenon.
Many research communities have proposed collaborative re-
search systems to help enable such joint analyses.
The standard industry solution to data sharing involves

each group uploading data to a shared-use data center such
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as a cloud-based service. This solution is not possible for
many research applications. For example, since neuroimag-
ing data is from human subjects, data sharing may be limited
or prohibited due to issues such as(i)local administrative
rules,(ii)local desire to retain control over the data until a
specific project has reached completion,(iii)ethical concerns
of data re-identification. The last point is particularly acute in
scenarios involving genetic information, patient groups with
rare diseases, and other identity-sensitive applications.

Recently, two data sharing architectures have emerged:
centralized data sharing via a repository, and case-specific,
agreement-based collaborations. In the latter case, even esti-
mating simple statistical metrics from multiple sites currently
requires significant manual labor. For example, in contempo-
rary neuroscience research, we could find no automated ap-
proaches that can use modern computational techniques to en-
able collaborative and interactive feature-learning from mul-
tiple sites.

In this paper, we take a step in the development of algo-
rithms for decentralized feature learning, by designing a de-
centralized data independent component analysis (ICA) [1]
algorithm, a widely-used method in neuroimaging applica-
tions. Specifically, we design a decentralized temporal ICA
algorithm for use with functional magnetic resonance imag-
ing (fMRI) data. In resting-state fMRI studies, we can assume
that the spatial maps remain stable across subjects and exper-
iment duration [2], while activation of certain neurological
regions varies over time and across subjects. Temporal ICA
finds temporally independent components, hopefully corre-
sponding to the subjects’ intrinsic common spatial networks.
Temporal ICA typically requires more data than can be pro-
duced by a single research group because of computational
complexity as well as statistical sample size; the ratio of spa-
tial to temporal dimensions often requires the aggregate tem-
poral dimension to be similar to the voxel dimension.

To overcome these challenges, we suggest an approach
that allows for the computation of aggregate spatial maps
and local independent time courses across decentralized data
stored at different servers belonging to independent labs. The
approach combines individual computation performed locally
with global process to obtain both local and global results.
Our approach produces results with a similar performance to
the pooled-data case.
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2. METHODS

In this section, we cover some preliminary concepts and de-
scribe our new algorithm,decentralized joint ICA(djICA).
Let1denote a column vector whose entries are all equal to1.
ICA Model.ICA is a popular method for blind source

separation: it attempts to decompose mixed signals into un-
derlying sources. Empirically, ICA applied to brain imaging
data produces robust features which are physiologically in-
terpretable and markedly reproducible across studies. While
justification for successful ICA of fMRI results had been pre-
viously attributed to sparsity [3], it has been shown [4] that
statistical independence between the underlying sources is in
fact the driving mechanism of ICA algorithms. In linear ICA,
we model a data matrixX ∈Rd×N as a productX ≈ AS,
whereS∈Rr×N is composed ofN observations fromrsta-
tistically independentcomponents, each representing an un-
derlying signal source.
We interpret ICA in terms of a generative model in which

the independent sourcesSare submitted to a linear mixing
process described by a mixing matrixA ∈ Rd×r, forming
the observed dataX.  Most algorithms attempt to recover
the “unmixing matrix”W = A−1assuming the matrixA
is invertible. They do this by trying to maximize indepen-
dence between rows of the productWX . Maximal informa-
tion transfer (Infomax) is a popular heuristic for estimating
W that results in maximizing an entropy functional related to
WX . More precisely, with some abuse of notation, let

g(z)=
1

1+e−z
(1)

be the sigmoid function withg(Z)being the result of element-
wise application ofg(·)on the entries of a matrix or vectorZ.
The entropy of a random vectorZwith joint densitypis

h(Z)=−  p(Z)logp(Z)dZ.      (2)

The objective of Infomax ICA then becomes

W =argmax
W

h(g(WX )).      (3)

As we will show, Infomax ICA is well-suited to decen-
tralization. However, note that many other approaches for
(centalized) ICA exist, e.g., FastICA [5], which has faster yet
less robust convergence, and the RADICAL algorithm [6],
which performs well on artifact removal for certain modali-
ties of biomedical data [7]. It would be interesting to see how
amenable these approaches are to decentralized implementa-
tion; we leave this for future work.
Decentralized Joint ICA.Our goal is to design an ICA

algorithm that can be applied to decentralized data. Currently,
a number of extensions of ICA exist for the purpose of joining
together various data sets [8] and performing simultaneous

Fig. 1.djICAalgorithm overview. The superscript ‘+’ indi-
cates the pseudo inverse.

decomposition of data from a number of subjects and modal-
ities [9]. Group spatial ICA (GICA) stands out as the leading
approach for multi-subject analysis of task- and resting-state
fMRI data [10], building on the assumption that the spatial
map components (S) are common (or at least similar) across
subjects. Another approach, called joint ICA (jICA) [11], is
popular in the field on multimodal data fusion and assumes
instead that the mixing process (A) over a group of subjects
is common between a pair of data modalities. A largely unex-
plored area of fMRI research is group temporal ICA, which,
like spatial ICA, also assumes common spatial maps but pur-
sues statistical independence of timecourses instead. Conse-
quently, like jICA, the common spatial maps from temporal
ICA describe a common mixing process (A) among subjects.
While very interesting, temporal ICA of fMRI is typically not
investigated because of the small number of time points in
each data set, which leads to unreliable estimates. Our decen-
tralized jICA approach overcomes that limitation by leverag-
ing information from data sets distributed over multiple sites.
Suppose that we havestotal sites; each siteihas a data

matrixXi∈R
d×Niconsisting of a total time course of length

Nitime points overdvoxels. LetN =
s
i=1Nibe the total

length. We model the data at each site as coming from a com-
mon (global) mixing matrixA ∈Rd×rapplied to local data
sourcesSi∈R

r×Ni. Thus, the total model can be written as

X =[AS1AS2···ASs]∈R
d×N.     (4)

We design a new algorithm, decentralized joint ICA (djICA),
that uses locally computed gradients to estimate a common,
global unmixing matrixW  ∈ Rr×dcorresponding to the
Moore-Penrose pseudo-inverse of A in (4), denotedA+.
Fig. 1 summarizes the overall algorithm in the context of



temporal ICA for fMRI data. Each siteihas data matrices
Xi,m∈R

d×nicorresponding to subjectsm =1,2,..., Mi
withdvoxels andnitime samples. Sites concatenate their
local data matrices temporally to form ad×niMidata ma-
trixXi,soNi= niMi. In a two-step distributed principal
component analysis (dPCA) framework, each site performs
local PCA (Algorithm 2) by means of singular value decom-
position (SVD), with matricesUi∈R

d×kandΣi∈R
k×k

corresponding to the top singular vectors and values, respec-
tively. The sites then compute a global PCA (Algorithm 3) to
form a common projection matrixU ∈Rd×r. Alternatively,
in a one-step dPCA framework, we can compute the global
U directly but at the expense of communicating a larged×d
matrix between sites. Finally, all sites project their data onto
the subspace corresponding toU to obtain reduced datasets
Xi,red∈R

r×Ni. The projected data is the input to the itera-
tivedjICAalgorithm that estimates the unmixing matrixW ∈
Rr×ras described in Algorithm 1. The full mixing matrix for
the global data is modeled asA ≈(WU  )+∈Rd×r.
After initializingW (for example, as the identity matrix),

thedjICAalgorithm iteratively updatesW using a distributed
natural gradient descent procedure [12]. At each iterationj
the sites update locally: in lines 4 and 5, the sites adjust the
local source estimatesZiby the bias estimatesb(j−1)1 ∈
Rr×Ni, followed by the sigmoid transformationg(·); they
then calculate local gradients with respect toWiandbiin
lines 6 and 7. Hereym,i(j)is them-th column ofYi(j).
The sites then send their local gradient estimatesGi(j)

andhi(j)to an aggregator site, which aggregates them ac-
cording to lines 11-13. After updatingW (j)andb(j), the
aggregator checks if any values inW (j)increased above an
upper bound of109in absolute value. If so, the aggregator
resets the global unmixing matrix, setsj=0, and anneals the
learning rate byρ=0.9ρ. Otherwise, before continuing, if
the angle betweenΔW (j)andΔW (j−1)is above60

o, the
aggregator anneals the learning rate byρ=0.9ρ, preventing
W from scaling down too quickly without learning the data.
The aggregator sends the updatedW (j)andb(j)back to the
sites. Finally, the algorithm stops when ΔW (j)

2
2<t.

In order to recover the statistically independent source es-
timatesSi, each site computes

Si≈WXi,red. (5)

For the pooled-data case, Amari et. al [13] demonstrate
thatW will converge asymptotically toA−1in Infomax ICA.
In the decentralized-data case,djICAacts as in the pooled-
data case in terms of convergence. The assumption of a com-
mon mixing matrix assures that the global gradient sum will
be identical to the pooled-data gradient on average, likewise
moving the global weight matrix towards convergence too.
PCA preprocessing.Here, we describe dPCA algorithms

for dimension reduction and whitening. This serves as a pre-
processing step to standardize the data prior todjICA, also
without communicating full data sets outside of local sites.

Algorithm 1decentralized joint ICA (djICA)

Require: data{Xi,red∈R
r×Ni:i=1,2,...,s}, wherer

is the same across sites, tolerance levelt=10−6,j=0,
maximum iterations J,ΔW (0)

2
2= t, initial learning

rateρ=0.015/ln(r)
1:InitializeW ∈Rr×r for example,W =I
2:whilej <J,ΔW (j)

2
2≥tdo

3: for allsitesi=1,2,...,sdo
4: Zi(j)=W (j−1)Xi+b(j−1)1
5: Yi(j)=g(Zi(j))
6: Gi(j)=ρ I+(1−2Yi(j))Zi(j) W (j−1)

7: hi(j)=ρ
Ni
m=1(1−2ym,i(j))

8: SendGi(j)andhi(j)to the aggregator site.
9: end for
10: At the aggregator site, update global variables
11: ΔW (j)=

s
i=1Gi(j)

12: W (j)=Wi(j−1) + ΔW (j)
13: b(j)=b(j−1) +

s
i=1hi(j)

14: Check upper bound and learning rate adjustment.
15: Send globalW (j)andb(j)back to each site
16:end while

First, Balcan et al. [14] use subspace embeddings that de-
crease the runtime for dPCA while controlling for the accu-
racy ofU. Bai et al. [15], however, bypass local data re-
duction in their approach (i.e., one-step dPCA), which was
appealing and motivated its choice for some of our experi-
ments. Lastly, an alternative two-step dPCA approach was
considered based on the STP and MIGP [16] approaches re-
cently developed for large PCA of multi-subject fMRI data.
Its advantage is the small whitening matrixP ∈ Rd×kthat
is transmitted across sites, compared to the larged×dR-
matrix in Bai’s algorithm [15]. The downside is that there
are no bounds on the accuracy ofU, and results can vary
slightly with the order in which sites and subjects are pro-
cessed. Nonetheless, our results suggest that the two-step
dPCA approach, summarized in Algorithms 2 and 3, yields
a fairly good estimate ofU.

Algorithm 2Local PCA algotithm (LocalPCA)

Require: dataX ∈Rd×N and intended rankk
1:Compute the SVDX =UΣV.
2:LetΣ(k)∈ Rk×kcontain the largestksingular values
andU(k)∈Rd×kthe corresponding singular vectors.

3:SaveU(k)andΣ(k)locally and returnP=U(k)Σ(k).

Algorithm 3 uses a peer-to-peer scheme to iteratively re-
fineP(j), with the last site broadcasting the finalU to all
sites.U is the matrix containing the toprcolumns ofP(s)
with largest L2-norm, but normalized to unitL2-norm in-
stead. Following the recommendation in [16], we setr=20
andk=5·rfor our simulations.



Algorithm 3Global PCA algorithm (GlobalPCA)

Require: ssites with data{Xi∈R
d×Ni:i=1,2,...,s},

intended final rankr, local rankk≥r.
1:Choose a random orderπfor the sites.
2:P(1) =LocalPCA(Xπ(1),min{k,rank(Xπ(1))})
3:for allj=2tosdo
4: i=π(j)
5: SendP(j−1)from siteπ(j−1)to siteπ(j)
6: k = min{k,rank(Xi)}
7: P =LocalPCA(Xi,k)
8: k = max{k,rank(P(j−1))}
9: P(j)=LocalPCA([P P(j−1)],k)
10:end for
11:r= min{r,rank(P(s))}
12:U =NORMALIZETOPCOLUMNS(P(s),r) At last site
13:SendU to sitesπ(1),...,π(s−1).
14:for alli=1tosdo
15: Xi,red=U Xi The locally reduced data
16:end for

3. RESULTS

We examined five different scenarios involving synthetic data
to understand if and whendjICAwould have comparable per-
formance to a pooled analysis.

Synthetic sources.TheSsignals were simulated using a
generalized autoregressive (AR) conditional heteroscedastic
(GARCH) model [17, 18], which has been shown to be use-
ful in models of causal source separation [19] and time-series
analyses of data from neuroscience experiments [19, 20], es-
pecially resting-state fMRI time courses [21, 22]. We sim-
ulated fMRI time courses using a GARCH model by gen-
erating an AR process (no moving average terms) randomly
such that the AR series converges. We chose a random order
between 1 and 10 and random coefficients{α[]}such that
α[0]∈ [0.55,0.8]andα[]∈ [−0.35,0.35]for > 0. For
the error termsδt= σtt, we used an ARMA model driven
bytfrom a generalized Normal distribution with shape pa-
rameter 100 (so it was approximately uniform on[−1,1]) and
σ2t=0.1+0.1y[t−1]

2+0.75σ[t−1]2. For each of 2048
simulated subjects, we generated 20 time courses with 250
time points, each after a “burn-in” period of 20000 samples,
checking that all pair-wise correlations between the 20 time
courses was below 0.35. We generated a total of2048mixed
datasets for each experiment.

Mixing model and algorithms. We evaluated 5 different
scenarios for processing our synthetic data, as summarized in
the table below:

scenario     preprocessing    mixing matrixA
1. ICA (pooled)  none i.i.d. Gaussian
2.djICA      none i.i.d. Gaussian
3. ICA (pooled)  PCA simTB map
4.djICA      One−Step dPCA  simTB map
5.djICA      Two−Step dPCA  simTB map

For the one-step dPCA scenario, we use Bai et. al’s dPCA
algorithm without updating [15], and for the two-step dPCA
scenario, we use theLocalPCAalgorithm (Algorithm 2), fol-
lowed byGlobalPCA(Algorithm 3). For the first two scenar-
ios, we generated i.i.d. Gaussian mixing matricesA ∈Rr×r.
For the higher-dimensional problems (scenarios 3-5), we used
the fMRI Simulation Toolbox’s simTB spatial maps [23] to
generate differentA ∈Rd×rmixing matrices.
As a performance metric we use the Moreau-Amari inter-

symbol interference (ISI) index [12], which is a function of
the square matrixQ =ŴA , wherêW =WU  .
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Fig. 2. Increasing the number of subjects at two sites

How do the algorithms compare as we increase the data at
a fixed number of sites?We fixed s=2sites and evaluated
our five algorithms. For the distributed settings we split the
data evenly per site. Fig. 2 shows ISI versus the total data set
size. As the data increases all algorithms improve, and more
importantly, the distributed versions perform nearly as well
as the pooled-data counterparts. Results are averaged over 10
randomly generated mixing matrices.
How do the algorithms compare as we increase the number
of sites with a fixed amount of data sets per site?We fixed the
total2048subjects but investigated the effect of increasings
whereMi=32 subjects at each site. Results are averaged
over 10 randomly generated mixing matrices. Fig. 3 demon-
strates the convergence of ISI curve with the increase of the
combined data. Again, we see that the performance ofdjICA
is very close to the centralized pooled performance, even for
a small number of subjects per site.
How does splitting the data sets across more sites affect per-
formance? We examined splitting the 2048 data subjects



Fig. 3. Each site with 32 subjects

Fig. 4. Gradually splitting 2048 subjects

across more and more sites (increasings), so for smallseach
site had more data. Fig. 4 shows that the performance of
djICAis very close to that of the pooled-data ICA, even with
more and more sites holding fewer and fewer data points.
This implies that we can support decentralized data with little
loss in performance.

Estimated spatial maps. For three data distribution set-
tings of the last experiment (gradually splitting data over
more and more sites), Fig. 5 shows the spatial maps estimated
in scenarios 3-5. The maps containr=20independent spa-
tial components, which are color coded. The map under the
heading ‘GT’ is the ground-truth simulated map generated
with simTB, the map under the heading ‘Pooled’ is the map
estimated by performing centralized pooled ICA, maps un-
der the heading ‘djICAp’ underwent Bai’s (high-bandwidth)
one-step dPCA prior todjICA, and maps under the heading
djICAp2underwent the (lower-bandwidth) two-step dPCA
process prior todjICA. The components estimated in each of
the maps in Fig. 5 illustrate not only thatdjICAcan estimate
components as well as pooled ICA, but that the algorithm
can perform well regardless of how the subject datasets are
distributed across sites.

Fig. 5. Spatial pap estimations for 2048 subjects over differ-
ent site distributions

4. DISCUSSION AND CONCLUSIONS

In contrast to systems optimized for processing large amounts
of data by making computation more efficient (Apache Spark,
H2O and others), we focus on a different setting common
in research collaborations: data is expensive to collect and
spread across many sites. To that end we proposed a dis-
tributed data ICA algorithm that (in synthetic experiments)
finds underlying sources in decentralized data nearly as ac-
curately as its centralized counterpart. This shows that al-
gorithms likedjICAmay enable collaborative processing of
decentralized data by combining local computation and com-
munication. To further validate this proof-of-concept we plan
to evaluate this method on real fMRI experiments. Additional
extensions include reducing the bandwidth of the method and
designing privacy-preserving variants that guarantee differen-
tial privacy [24]. There, reducing the iteration complexity will
help guarantee more privacy and hence incentivize larger re-
search collaborations.
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