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ABSTRACT

Data sharing for collaborative research sysiems may not be
able to use contemporary architectures that collect and store
data in centralized data centers. Research groups often wish
to control their data locally but are willing to share access
to it for collaborations. This may stem from research cul-
ture as well as privacy concerns. To leverage the polential
of these aggregated larger data seis, we would like tools that
perform joint analvses without transmitting the data. Ideally,
these analyses would have similar performance and ease of
use as current team-based research structures. In this paper
we design, implement, and evaluate a decentralized data in-
dependent component analysis (ICA) that meets these crite-
ria. We validate our method on temporal ICA for functional
magnetic resonance imaging (IMRI) data: this method shares
only intermediate statistics and may be amenable to further
privacy protections via differential privacy.

Index Terms— multi-site collaboration, decentralized
data, ICA

1. INTRODUCTION

Research groups studying complex phenomena (such as cer-
tain diseases) ofien focus on specific questions but gather data
that could be used to answer questions beyond the scope of the
original study. For example, a mental health study may collect
4 brain scan using magnetic resonance imaging (MRI) from
all enrolled subjects but may only examine a particular aspect
of the MRI data. The whole scan is saved as part of the data
set associated with that study and could therefore be used in
other studies. Technological advances have dramatically in-
creased the complexity of data per measurement while lower-
ing the cost. Researchers hope to leverage data across multi-
ple research groups to achieve sufficiently large sample sizes
that may uncover important, relevant, and interpretable fea-
tures that characterize the underlying complex phenomenon.
Many research communities have proposed collaborative re-
search systems to help enable such joint analyses.

The standard industry solution to data sharing involves
each group uploading data to a shared-use data center such
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as a cloud-based service. This solution is not possible for
many research applications. For example, since neuroimag-
ing data is from human subjects, data sharing may be limited
or prohibited due to issues such as (i} local administrative
rilles, (i) local desire to retain control over the data until a
specific project has reached completion, (iii} ethical concerns
of data re-identification. The last point is particularly acute in
scenarios involving genetic information, patient groups with
rare diseases, and other identity -sensitive applications.

Recently, two data sharing architectures have emerged:
centralized data sharing via a repository, and case-specific,
agreement-hased collaborations. In the latter case, even esti-
mating simple statistical metrics from multiple sites currently
requires significant manual labor. For example, in contempo-
rary neuwroscience research, we could find no automated ap-
proaches that can use modern computational technigues Lo en-
able collaborative and interactive feature-learning from mul-
tiple sites.

In this paper, we take a step in the development of algo-
rithms for decentralized feature learning, by designing a de-
centralized data independent component analysis (ICA) [1]
algorithm, a widely-used method in neurcimaging applica-
tions. Specifically, we design a decentralized temporal TCA
aleorithm for use with functional magnetic resonance imag-
ing (tMRI) data. In resting-state tMRI studies, we can assume
that the spatial maps remain stable across subjects and exper-
iment duration [2], while activation of certain neurological
regions varies over time and across subjects. Temporal ICA
finds temporally independent components, hopefully corre-
sponding to the subjects’ intrinsic common spatial networks.
Temporal ICA typically requires more data than can be pro-
duced by a single research group because of computational
complexity as well as statistical sample size; the ratio of spa-
tial to temporal dimensions often requires the ageregate lem-
poral dimension to be similar to the voxel dimension.

To overcome these challenges, we suggest an approach
that allows for the computation of aggregate spatial maps
and local independent time courses across decentralized data
stored at different servers belonging to independent labs. The
approach combines individual computation performed locally
with global process to obtain both local and global resulis.
Our approach produces resulis with a similar performance to
the pooled-data case.



2. METHODS

In this section, we cover some preliminary concepts and de-
scribe our new algorithm, decentralized joint ICA (djICA).
Let 1 denote a column vector whose eniries are all equal 1o 1.

ICA Model. TCA is a popular method for blind source
sgparation: it attempts o decompose mixed signals into un-
derlying sources. Empirically. ICA applied to brain imaging
data produces robust features which are physiologically in-
terpretable and markedly reproducible across studies. While
justification for successful ICA of tMREI results had been pre-
viously attributed to sparsity [3], it has been shown [4] that
statistical independence between the underlying sources is in
fact the driving mechanism of ICA algorithms. In linear ICA,
we model a data matrix X € RV as a product X =~ AS,
where § € R™*¥ is composed of N observations from r sta-
tistically independent components, each representing an un-
derlying signal source.

We interpret ICA in terms of a generative model in which
the independent sources S are submitted to a linear mixing
process described by a mixing matrix A £ R", forming
the observed data X. Most algorithms attempl to recover
the “unmixing matrix” W = A1 assuming the matrix A
is invertible. They do this by trying to maximize indepen-
dence between rows of the product WX Maximal informa-
tion transfer (Infomax) is a popular heuristic for estimating
W that results in maximizing an entropy functional related to
WX, More precisely, with some abuse of notation, let
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glz) = (1)
be the sigmoid function with g{ Z) being the result of element-
wise application of g(-) on the entries of a matrix or vector Z.
The entropy of a random vector 2 with joint density p is

WZ) = —fp{E]logp{Z]dZ, @)

The objective of Infomax TCA then becomes

W = argmax h(g(WX)). (3)

As we will show, Infomax ICA is well-suited o decen-
tralization. However, note that many other approaches for
icentalized) ICA exist, e.g., FastlCA [5]. which has faster yet
less robust convergence, and the RADICAL algorithm [6],
which performs well on artifact removal for certain modali-
ties of biomedical data [7]. It would be interesting to see how
amenable these approaches are to decentralized implementa-
tion: we leave this for future work.

Decentralized Joint ICA. Our goal is to design an TCA
algorithm that can be applied to decentralized data. Currently,
a number of extensions of ICA exist for the purpose of joining
together various data sets [8] and performing simultaneous
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Fig. 1. djICA algorithm overview. The superscript “+ indi-
cates the pseudo inverse.

decomposition of data from a number of subjects and modal-
ities [2]. Group spatial ICA (GICA) stands out as the leading
approach for mulii-subject analysis of task- and resting-state
tMRI data [10]. building on the assumption that the spatial
map components (5) are common (or at least similar) across
subjects. Another approach, called joint ICA (jICA) [11]. is
popular in the field on multimodal data fusion and assumes
instead that the mixing process (A) over a group of subjects
is common between a pair of data modalities. A largely unex-
plored area of fMRI research is group temporal 1CA, which,
like spatial ICA, also assumes common spatial maps but pur-
sues statistical independence of timecourses instead. Conse-
quently, like jICA, the common spatial maps from temporal
ICA describe a common mixing process (A) among subjects.
While very interesting, temporal ICA of fMRI is typically not
investigated because of the small number of time points in
each data set, which leads to unreliable estimates. Our decen-
tralized jICA approach overcomes that limitation by leverag-
ing information from data sets distributed over multiple sites.

Suppose that we have = total sites; each site ¢ has a data
matrix X, € RY* " consisting of a total time course of length
N; time points over d voxels. Let N = 577_, N; be the total
length. We mode] the data at each site as coming from a com-
mon (global) mixing matrix A € R?*" applied to local data
sources 5; € B Thus, the total model can be written as

X = [AS; AS, - AS,] € RV, (4)

We design a new algorithm, decentralized joint ICA (djICA),
that uses locally computed gradients to estimate a common,
global unmixing matrix W & R™9 corresponding to the
Moore-Penrose pseudo-inverse of A in (4), denoted At

Fig. 1 summarizes the overall algorithm in the context of



temporal ITCA for fMRI data. Each site ¢ has data matrices
Xim = B¥™ comresponding to subjects m = 1,2, ... M
with o voxels and n, time samples. Sites concatenate their
local data matrices temporally to form a d x n; M; data ma-
trix. X, so Ny = n: My In a two-step distributed principal
component analysis (dPCA) framework, each sile performs
local PCA (Algorithm 2) by means of singular value decom-
position (SVD), with matrices U; € R¥<F and E; £ RF=k
corresponding to the top singular vectors and values, respec-
tively. The sites then compute a global PCA { Algorithm 3) to
form a common projection matrix U € B2*". Alternatively,
in a one-step APCA framework, we can compuie the global
U directly but at the expense of communicating a large d » o
matrix between sites. Finally, all sites project their data onto
the subspace coresponding to U to obtain reduced datasets
X rea € BR7%Mi_ The projected data is the input to the itera-
tive djICA algorithm that estimates the unmixing matrix W <
[E7=7 as described in Algorithm 1. The full mixing matrix for
the global data is modeled as A = (WTUT )+ e Ri=r,

After initializing W (for example, as the identity matrix),
the djlCA algorithm iteratively updates W using a distributed
natural gradient descent procedure [12]. At each iteration j
the sites update locally: in lines 4 and 3, the sites adjust the
local source estimates Z; by the bias estimates b(j —1)17 &
RN followed by the sigmoid transformation g(-): they
then calculate local sradients with respect to W, and by in
lines 6 and 7. Here ¥y, ;(7) is the rm-th column of Y, (7).

The sites then send their local gradient estimates Gq(f)
and hy(7) to an aggregator site, which aggregates them ac-
cording to lines 11-13. After updating W ;) and b(y), the
aggregator checks if any values in W1(7) increased above an
upper bound of 10? in absoluie value. If so, the aggregator
resets the plobal unmixing matrix, sets j = 0, and anneals the
learning rate by p = 0.9p. Otherwise, before continuing, if
the angle between Aw (7)) and Ay (7 — 1) is above 607, the
ageregator anneals the learning rate by p = 0.9p, preventing
W from scaling down too quickly without learning the data.
The aggregator sends the updated W () and b(7) back to the
sites. Finally, the algorithm stops when ||Aw(7)]3 < t.

In order to recover the statistically independent source es-
timates S;, each site computes

S = Wx-i:rml- (3)

For the pooled-data case, Amari et. al [13] demonstrate
that W will converge asymptotically to A= in Infomax ICA.
In the decentralized-data case, djICA acts as in the pooled-
data case in terms of convergence. The assumption of a com-
mon mixing matrix assures that the global gradient sum will
be identical to the pooled-data gradient on average, likewise
moving the global weight matrix towards convergence too.

PCA preprocessing. Here, we describe dPC A algorithms
for dimension reduction and whitening. This serves as a pre-
processing step to standardize the data prior to djlCA. also
without communicating full data sets outside of local sites.

Algorithm 1 decentralized joint ICA (djICA)

Require: data {X; 00 € B7*M 14 =1,2,. .. s} where r
is the same across sites, tolerance level t = 105, j =0,
maximum iterations J, | Aw (0)||3 = t. initial learning
raie p = 0.015/In(r)

: Initialize W  B™"7

e for example, W =1

|

2 while j < J, | Aw (7|3 > t do

3: forall sitesi = 1,2, .. sdo

& Zy(j) = W(j — DXs +b(j — )17

3: Y,(5) = g(Z;(4))

2 Gild) = p (T4 (1 = 2Y,())Z: () "YW (5 — 1)
7 hi(3) = p Xy (1= 2¥m,ild))

8: Send Gy(7) and hy( 7] to the aggregator site.
o end for

11k At the aggregator site, update global variables

1 Aw(g) = 31, Gi(g)

122 W(j) = Wy(j — 1) + Awl(j)

i3 b() =b(i— 1)+, h()

14: Check upper bound and leaming rate adjustment.

15: Send global W(5) and b(7) back to each site
16: end while

First, Balcan et al. [14] use subspace embeddings that de-
crease the runtime for dPCA while controlling for the accu-
racy of U. Bai et al. [15], however, bvpass local data re-
duction in their approach (i.e., one-step dPCA), which was
appealing and motivated its choice for some of our experi-
ments. Lastly, an alternative two-step dPCA approach was
considered based on the STP and MIGP [16] approaches re-
cently developed for large PCA of multi-subject fMRI data.
Its advantage is the small whitening matrix P & B that
is transmitted across sites, compared to the large d = d R-
matrix in Bai's algorithm [15]. The downside is that there
are no bounds on the accuracy of U, and resulis can vary
slightly with the order in which sites and subjects are pro-
cessed. Nonetheless, our resulls suggest that the two-step
dPCA approach, summarized in Algorithms 2 and 3, yields
a fairly good estimate of 1.

Algorithm 2 Local PCA algotithm {LocalPCA)

Require: data X € B4*" and intended rank k
I: Compute the SVD X = UEV.
2: Let B'% & R*** contain the largest k singular values
and U & R4=¥ the comresponding singular vectors.
3. Save U and £ jocally and return P = U5

Algorithm 3 uses a peer-lo-peer scheme 1o ileratively re-
fine P(j), with the last site broadcasting the final U to all
sites. LT is the matrix containing the top + columns of P'(s)
with largest Lo-norm, but normalized to unit Ls-norm in-
stead. Following the recommendation in [16], we set » = 20
and k& = 5 - r for our simulations.



Algorithm 3 Global PCA algorithm (GlobalPCA)

Require: s sites with data {X; € R&<N: . =12, s}
intended final rank v, local rank k = r.

: Choose a random order « for the sites.

: P(1) = LocalPCA(X ;1. min{k, rank(X ;) })

s forall j =20 sdo

i =m(y)

Send P4 — 1) from site w(j — 1) to site #(5)

E' = min{k, rank(X;}}

P’ = LocalPCA{X,, k")

k= max{k’, rank{P{j — 1))}

P(j) = LocalPCA([P' P(; — 1)), k")

10 end for

1I: ' = min{r, rank(P{s)}}

122 U = NORMALIZETOPCOLUMNS(P(s).r") &= Al last site

13: Send U o sites =(1), ..., m(s — 1)

14: foralli =110 =do

15 X.iﬂ-‘_-,.] = UTK;'

l16: end for

BoEe o B W R e b

e The locally reduced data

3. RESULTS

We examined five different scenarios involving synthetic data
to understand if and when djlCA would have comparable per-
formance o a pooled analysis.

Synthetie sources. The S signals were simulated using a
oeneralized autoregressive (AR) conditional heteroscedastic
(GARCH) model [17, 18], which has been shown to be use-
ful in models of causal source separation [ 19] and time-series
analyses of data from neuroscience experiments [19, 20], es-
pecially resting-state fMRI time courses [21, 22]. We sim-
ulated MMRI time courses using a GARCH model by gen-
erating an AR process (no moving average terms) randomly
such that the AR series converges. We chose a random order
between | and 10 and random coefficients {«[f]} such that
al0] € [0.55,0.8] and off] = [-0.35,0.35] for £ = 0. For
the error terms d; = opee, we used an ARMA model driven
by ¢; from a generalized Normal distribution with shape pa-
rameter 100 (so it was approximately uniform on [—1, 1)) and
o = 0.1+ 0.1yt — 1]* + 0.75¢[t — 1]%. For each of 2048
simulated subjects, we generated 20 time courses with 250
time poinis, each after a “burn-in” period of 20000 samples,
checking that all pair-wise correlations between the 20 time
courses was below 0,35, We generated a total of 2048 mixed
datasets for each experiment.

Mixing model and algorithms. We evaluated 5 different
scenarios for processing our synthetic data, as summarized in
the table below:

scenario | preprocessing | mixing matrix A
1. ICA {pooled) | none ii.d. Gaussian

2. djiCA none i.i.d. Gaussian

3, ICA (pooled) | PCA simTB map

4. djiCA One—5Step dPCA | simTB map

5. djICA Two—5Step dPCA | simTB map

For the one-step dPCA scenario, we use Bai et. al’s dPCA
algorithm without updating [15], and for the two-step dPCA
scenario, we use the LocalPCA algorithm ( Algorithm 2), fol-
lowed by GlobalPCA (Algorithm 3). For the first two scenar-
ios, we generated i.i.d. Gaussian mixing matrices A ¢ B"™",
For the higher-dimensional problems (scenarios 3-5), we used
the IMRI Simulation Toolbox's simTB spatial maps [23] o
generate different A € B%"" mixing matrices.

As a performance metric we use the Moreau-Amari inter-
symbol interference (1S1) index [12], which is a function of
the square matrix Q = WA, where W = WU,
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Fig, 2. Tncreasing the number of subjects at two sites

How do the algorithms compare as we increase the data at
a fived number af sites? We fixed s = 2 sites and evaluared
our five algorithms. For the distributed settings we split the
data evenly per site. Fig. 2 shows ISI versus the total data set
size. As the data increases all algorithms improve, and more
importantly, the distributed versions perform nearly as well
as the pooled-data counterparts. Results are averaged over 10
randomly generated mixing matrices.

How do the algorithms compare as we increase the number
af sites with a fived amount of data sets per site? We fixed the
total 2048 subjects but investigated the effect of increasing s
where M; = 32 subjects at each site. Results are averaged
over 10 randomly generated mixing matrices. Fig. 3 demon-
strafes the convergence of 181 curve with the increase of the
combined data. Again, we see that the performance of djICA
is very close to the centralized pooled performance, even for
a small number of subjects per siie.

How does splitting the data sets across more sites affect per-
Jormance? We examined splitting the 2048 data subjects
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Fig. 4. Gradually splitiing 2048 subjects

across more and more sites (increasing s), so for small s each
site had more data. Fig. 4 shows that the performance of
djICA is very close to that of the pooled-data ICA_ even with
more and more siles holding fewer and fewer data poinis.
This implies that we can support decentralized data with little
loss in performance.

Estimated spatial maps. For three data distribution set-
tings of the last experiment (gradually splitting data over
maore and more sites), Fig. 5 shows the spatial maps estimated
in scenarios 3-5. The maps contain + = 20 independent spa-
tial components, which are color coded. The map under the
heading *GT" is the ground-truth simulated map generated
with simTB, the map under the heading “Pooled” is the map
estimated by performing centralized pooled ICA, maps un-
der the heading "djlCAp" underwent Bai's (high-bandwidth)
one-step dPCA prior to djICA, and maps under the heading
djlCAp® underweni the (lower-bandwidih) two-step dPCA
process prior to djlCA. The components estimated in each of
the maps in Fig. 5 illustrate not only that djlGA can estimate
components as well as pooled ICA, but that the algorithm
can perform well regardless of how the subject datasels are
distributed across sites.
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Fig. 5. Spatial pap estimations for 2048 subjects over differ-
ent site distributions

4. DISCUSSION AND CONCLUSIONS

In contrast to systems optimized for processing large amounts
of data by making computation more efficient { Apache Spark,
H20 and others), we focus on a different setting common
in research collaborations: data is expensive to collect and
spread across many sites. To that end we proposed a dis-
tributed data ICA algorithm that (in synthetic experiments)
finds underlying sources in decentralized data nearly as ac-
curately as its centralized counterpart. This shows that al-
gorithms like djlCA may enable collaborative processing of
decentralized data by combining local computation and com-
munication. To further validate this proof-of-concept we plan
to evaluate this method on real IMRI experiments. Additional
extensions include reducing the bandwidth of the method and
designing privacy-preserving variants that guarantee differen-
tial privacy [24]. There, reducing the iteration complexity will
help guarantee more privacy and hence incentivize larger re-
search collaborations,
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