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Abstract—Weconsiderstochastic messagepassingalgo-
rithmsthatlimitthecommunicationrequiredfordecentralized
anddistributedconvexoptimizationandprovideconvergence
guaranteesontheobjectivevalue. Wefirstproposeacentral-
izedmethodthatmodifiesthecoordinate-samplingdistribution
forstochasticcoordinatedescent,whichwecallproportional
stochasticcoordinatedescent.Thismethodtreatsthegradient
ofthefunctionasaprobabilitydistributiontosamplethecoor-
dinates,andmaybeusefulinso-calledlock-freedecentralized
optimizationschemes.Forgeneraldistributedoptimizationin
whichagentsjointly minimizethesumoflocalobjectives,
weproposetreatingtheiteratesasgradientsandpropose
astochasticcoordinate-wiseprimalaveragingalgorithmfor
optimization.

I. INTRODUCTION

Large-networkparadigmsforcommunicationanddis-
tributedcomputationhavedrivenrenewedinterestinopinion
andbeliefformationmodelsfrommathematicalsociology
andpsychology.Onesuchrecentworkisthenovelmes-
sagepassingprotocolcalledsocialsampling[1]thatuses
limitedcommunicationtoperformdistributedestimation.
Thisprotocolissimilartoconsensus-based multi-agent
optimizationmodels–thegoalofthisworkistoinvestigate
theconnectionbetweenthetwo.Theideaisthatevery
agentperformslocalprocessingbasedonitslocalobjective
function,thensamplesitsbelieforstateoftheglobalat
randomtosendtoitsneighbors.Subsequently,agentsupdate
theirbeliefbasedonthemessagestheyreceivefromtheir
neighbors.Transmittingsamplesofthebeliefinsteadof
thecompleteinformationmakesthismethodsuitablefor
distributedsettingswithlimitedcommunicationresources.

Thesocialsamplingsetupissimilartoseveralexisting
stochasticoptimizationmethods,especiallystochasticcoor-
dinatedescentweresocialsamplesarethepartialderiva-
tives[2],[3].Distributedoptimizationhasreceivedsig-
nificantinterestinrecentyearsespeciallyconsensus-based
algorithmsundervariousassumptionsandconstraints[4]–
[8].Manyofthesevariantsbuildongeneralanalyses[9]–
[11]areamongremarkableworksinthedistributedopti-
mizationliterature. Manyotherauthorshavehavestudied
non-uniformsamplingalgorithmsthatdifferfromours[12]–
[15].OfparticularnoteistheseminalworkofNesterov,
whoproveslinearconvergencerateforhisnon-uniform
methodforstronglyconvexobjectivefunctions[12].Inour

centralizedsettingweconsideroptimizationofconvexand
smoothobjectivesratherthanstronglyconvexobjectives.

Wefirstproposeamethodforthesimplercaseofcentral-
izedoptimizationthatusesanovelnon-uniformsamplingof
thecoordinates.Inthisscheme,thechanceofacoordinatej
beingselectedisproportionaltopartialgradients∂f(w)∂wj

.We
showthatforconvexsmoothobjectivefunctions,ouralgo-
rithm,withconstantstepsize,achievesO 1

t convergence
rateinexpectation.Ourcentralizedanalysisisbasedon
theanalysisoftheuniformschemebySahlev-Shwartzand
Tewari[3].Therecentsurveyof Wright[16]summarizes
muchoftheearlyworkoncoordinatedescentmethods.

Ourproportionalmethodcanalsobeadoptedforshared
memorysystemswherethenodes(computationalagents)are
arrangedinastarnetwork.Forthissetup,ouralgorithmis
basedontheframeworkusedbyRechtetal.[17]where
acentralnode(memorynode)keepsthecurrentglobal
decisionvectorandtherestofnodes(computingnodes)
accesstothisvalueandupdateitinanasynchronousmanner.
Inthisframework,itisassumedthatwhileeachworking
nodeiscomputingitsupdatebasedonitslocalobjective
functionvalueandtransmittingittothecentralnode,other
workingnodescanalsoaccessorupdatethedecisionvector.
Thismeansthattheestimatesofthegradientvectorthat
aretransmittedtothecentralnodecouldbeobsolete. We
proposethateachnodeevaluatesitsestimateofthegradient
accordingtothePSCDupdaterule.Assumingthatthegap
betweentheaccesstimeandtheupdatetimeofeachnode
islimited,thesuboptimalitygapisbounded.

Thisapproachtodecentralizedoptimizationislikeastar
networkwithseveralnodesconnectedtoasinglememory
node.Severalauthorshavealsoconsideredstarnetwork
models[18],[19].Forgeneralconnectednetworks,the
gradientinformationfromothernodesisusefulonlyif
theircurrentstatesarenotverydifferentwhichforstrongly
convexobjectivefunctionisthecaseiftheestimatesare
closetotheoptimum.However,weareinterestedinmethods
thatguaranteeconvergence(atleastinexpectation)tothe
optimalpointregardlessoftheinitialestimategiventothe
algorithm.

Fordistributedsettings weproposesocialsampling
treatingtheprimaliterateasaprobabilitydistributionand
exchangingsamplesinthenetwork.Thissolutionmightbe
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usefulfornetworkswithlimitedcomputationandcommu-
nicationresources.Ourmethodsbuildontheframework
developedbyNedícandOzdaglar[20]. Weassumethat
thecomputationalnodesbroadcastinformationabouttheir
currentlocaldecisionvectorstotheirneighborstocooper-
ativelyoptimizetheglobalobjectivefunctionwhichisthe
averageofthelocalobjectivefunctions.However,incontrast
tothementionedworks,ourmethodsrelyonsharingpartial
informationwiththeneighbors,namelyinformationabouta
smallsubsetofthecoordinates.

II. PRELIMINARIES

A.Notation

Throughoutthispaper,superscriptiindicatesnodeiof
anetwork,exceptforejthatdenotesthej-thstandardcoor-
dinatevector.Furthermore,subscripttindicatesthediscrete
time(iterationsindex).Allelementindexesinmatricesand
vectorsaredemonstratedassubscripts,aswell. Wedenote
theset{1,···,k}by[k].Thevector1A forA⊆[d]is
ad-dimensionalvectorwith1’sforindicesi∈Aand0
elsewhere.

B.Optimization

Definition1.Afunctionf:Rd→R isconvexifforall
vectorsuandv,

f(u)−f(v)≥∇f(v)(u−v). (1)

Definition2.Afunctionf:Rd→R isλ-stronglyconvex
ifforallvectorsuandv,

f(u)−f(v)≥∇f(v)(u−v)+
λ

2
u−v2. (2)

Definition3. Afunctionf:Rd → R isL-Lipschitz
continuousifforallvectorsuandv,

f(u)−f(v)≤L u−v. (3)

Definition4. Afunctionf:Rd → R isL-smoothif
itistwicedifferentiableandhasL-Lipschitzcontinuous
gradients.

Theoptimalsolutiontoanoptimizationproblemis
denotedbyw∗.Asolutionwt(alsoreferredtointhis
paperasestimate,belief,ordecisionvector),foundbyan
optimizationalgorithmaftertiterationsis“-accurate”if
f(wt)≤f(w

∗)+.LetFtbethesigmaalgebraofallthe
randomeventsuptotimet.

C.NetworkModel

Wewillconsidertwotypesofproblemsinthispaper:
centralizedanddistributed.Forthedistributedsetting,we
makethefollowingassumptionsonthenetwork.

LetG=(V,E)representanundirectedgraphwithvertex
setV={1,···,n}andedgesetE⊆V×V.LetNi⊂V
bethesetoftheneighborsofnode(vertex)iandÑi=
Ni∪i.

Inthedistributedsetup,theoptimizationtaskisjointly
accomplishedbythenprocessingunitsthatarearranged
inanetworkrepresentedbyagraphG=(V,E)which
weassumetobeconnected;wefurtherassume(i,i)∈E
foralli.Ann×nmatrixQiscalledgraphconformant
ifQik=0 for(i,k)/∈E. Weconsider matrix-valued
processesQ(t)whereQ(t)isdoublystochastic.Weusethe
notationQik(t)=q

i
k(t). Wethinkofq

i
k(t)astheweight

thatnodeiassignstotheinformationfromnodekattime
t.Throughoutthepaperweassumethattheexpectation
ofeachstochasticgraphconformantmatrixcorrespondsto
aconnectedgraph.Deterministic matricescorrespondto
connectedgraphsaswell.

III. PROBLEMSETUPSANDALGORITHMS

First,weconsideranoptimizationprobleminacentral-
izedsetup.Then, Westudythecaseofoptimizingthesum
offunctionsfifori∈[n]whereeachfunctionisassociated
withonenodeofanetwork.

A.Centralizedproblemandalgorithm

Inthecentralizedproblem,weaimto minimizethe
followingobjectivefunction:

min
w∈Rd

f(w), (4)

wheref(w)isaconvexsmoothfunction.

Inordersolvetheminimizationproblem(4),weusea
variantofthestochasticcoordinatedescentmethod,which
wecallcentralizedProportionalStochasticGradientDescent
(centralizedPSCD).Ateveryiterationt,acoordinatejis
randomlyselectedandthej-thcoordinateofwtisupdated:

wt+1=wt−η̂g
j
t, (5)

whereĝjt=C1e
jisanunbiasedestimateofthegradient

vectoronasinglecoordinate:E ĝj =gt.Inthisalgorithm
thecoordinatesareselectedaccordingtothefollowing
distribution:

P(j)=
|gj|

gt1
, (6)

wheregt ∈ ∂f(wt)isasub-gradientoff(wt)andgj
isasub-derivativeoff(wt)w.r.t.the j-thcoordinate.

ConsideringthatE ĝj = EC1e
j = C1 j

|gj|
gt 1
ej

whileE[sgn(gj)·gt1·e
j]=gt,weneedtosetC1=

gt1sgn(gj).Inthissetup, weuseconstantstepsize
η= 1

αLwhereListhemaximumcomponent-wiseLipschitz
constantoff(w)andαisaconstant.

Thepseudo-codeforthecentralizedsetupisdemon-
stratedinAlgorithm1.

B.SharedMemorySystem

Ourproportionalsamplingschemeextendsnaturallyto
shared-memorymodelsfordistributedoptimization.Inthese
models,acommon memoryelementholdingthecurrent
iteratewtisaccessedbyacollectionofnprocessors,each
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Algorithm1CentralizedPSCD

Require:λ,L,N,T
arbitrarilyselectw0∈R

d

setη= 1
αL

fort=1,2,...Tdo
calculategt∈∂f(wt)

selectJtaccordingtoP(j)=
|gj|
gt 1
forj∈[d]

setwt+1=wt−ηt gt1sgn(gj)e
j

endfor
returnwT+1

withitsownlocalobjectivefunctionfi(w).Thegoalofsuch
asystemistominimizetheaverageofthelocalobjectives:

min
w∈Rd

fS(w)=
1

n

n

i=1

fi(w), (7)

where{fi(w)}ni=1arestronglyconvexfunctionswithLips-
chitzcontinuousgradients.Inthissetup,acentralnodehas
amemorythatkeepsasharedestimatevectorandallother
nodeshaveaccesstothisnodetoreadorupdatetheestimate.
Ifthenodesoperatesynchronous,thealgorithmwillbe
essentiallyperformingtheconventionalunbiasedstochastic
gradientdescentontheentiredatasetS.

Here,wefocusonthemorechallengingasynchronous
setup,whichcanbeconsideredasamodifiedversionof
HOGWILD![17].Ourproposedmethodforthissetting,
calledasynchronousdistributedPSCD,assumesthateach
nodereadsthesharedvectoratarbitrarytimesandupdates
theestimateusingitslocalgradientinformation.Theupdate
ruleinthismethodis

wti+1=wti−η̂g
i
tir
, (8)

where η is a constant step size and ĝitir
=

gitir 1
sgn((gitir

)j)e
j. Also,wtir,wti,andwti+1 are

thevaluesofthesharedestimatewhenaccessedbynode
i,whenitisabouttobeupdatedbynodei,andwhenthe
updatebynodeiisused,respectively.Thedelayti−tir≤τ
issumoftwodelays,namely,thecomputationtimeof̂gitir
andcommunicationdelaybetweennodeiandthecentral
node. Duringthisperiod,theestimatevector mightbe
updatedbyothernodes.Infact,weassumethattkeeps
trackofthenumberofupdatestothesharedvectorby
anynode.Therefore,τisessentiallyanupperboundon
thenumberofupdatesbytheothernodeswhileacertain
nodeiscomputingandtransmittingitsupdatetothecentral
node.Sinceinouralgorithmonlyonerandomcoordinate
isupdatedbyeachnodeperiteration,theupdatesdonot
getoverwrittenbytheothernodestoooften.

C.Distributedcoordinate-wise Primal Averagingalgo-
rithms

Similartosharedmemorymodel,inageneralconnected
network, weaimto minimizetheaverageofthelocal

objectivefunctionsassociatedwiththenodesofthenetwork:

min
w∈Rd

fD(w)=
1

n

n

i=1

fi(w), (9)

where{fi(w)}arestronglyconvexfunctions.

Itistemptingtodirectlyapplyproportionalgradient
samplingtothegeneralnetworksettingfordistributed
optimization.Anäıveadoptionofourcentralizedmethod
fordistributedsetupswouldinvolvecommunicatingpropor-
tionallysampledestimatesofthelocalgradientswiththe
neighborsinordertoconvergetoacommonoptimalpoint
oftheglobalobjectivefunction. Weshowthatthismethod
actuallyworksifthenodesarefullyconnectedwhereall
ofthenodesstartwiththesameinitialvalue.However,
sendinggradientinformationtoneighborsinthenetwork
doesnotnecessarilyhelpthemreachtheglobalminimizer
becauseatanyinstantt,variousnodeshavedifferentvalues
ofestimateswit,sothegradientvaluesfromtheneighbors
mightbetotallyirrelevant.Hence,forgeneralconnected
networkswesuggestthatthenodesexchangepartialinfor-
mationabouttheircurrentlocalestimates{wit}

n
i=1 instead

ofcommunicatinggradientinformation.

Ifallnodesareconnectedtoeachother,everynode
hasthegradientinformationofallnodes.However,since
thenodesarenotsharingtheirestimatevalues{wit},the
gradientinformationisnotusefulunlessallthenodeshave
thesameiteratevalueateveryiteration.Inordertosatisfy
thisrequirementwithoutsynchronizingtheiteratevaluesat
everyiteration,nodescanstarttheoptimizationalgorithm
withthesameinitialvalue.Theupdateruleinthismodelis

wit+1=w
i
t−ηt

n

k=1

ĝkt
n
, (10)

whereη= 1
λtand̂g

k
t= gkt 1

·sgngk
Jkt
·eJ

k
t.Intheend,

wiTwillbecalculated.

D.SynchronousCoordinate-wisePrimalAveraging

Asbefore,wearemotivatedbytheproblemoflimiting
communicationduringtheiterations.Basedontheworksby
[20]weconsideracommunicationschemebasedonsending
partialinformationaboutthecurrentiteratewit:eachnode
onlysendsanestimateŵtioftheircurrentactualestimate
wti.Inparticular,̂w

t
ionlycontainsinformationaboutasingle

(random)coordinateofwit.

Asimplemodelisforanoracletoselectacoordinateof
{wit}andhaveallnodessynchronizedtotransmitinforma-
tionaboutthatsamecoordinate.Thismethodcanbeseenas
acoordinate-wisevariantofthedistributedprimalaveraging
algorithmofNedícandOzdaglar[20].Inthisalgorithm,
ateveryiterationsomeoracleselectsarandomcoordinate
jfrom{1,···,n}andordersallnodestosendthej-th
coordinateofwittotheirneighbors.Eachnodeiupdatesits
j-thcoordinatewithaweightedaverageoftheirneighbor’s
coordinates.Subsequently,nodeiupdatesallcoordinatesof
witusingitsfulllocalgradientg

i
t=∇f

i(wit).Therefore,
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theupdaterulecanbewrittenas:

wit+1=
d

j=1k∈N̂i

Qjik(t)D
jwkt−η

i
tg
i
t forj∈[d],

(11)

whereDjisadiagonalmatrixwith1onitsj-thdiagonal
elementandzerootherwiseand

Qj(t)=
Q ifjisselectedattimet,

I otherwise.
(12)

E.AsynchronousCoordinate-wisePrimalAveraging

Thesynchronousalgorithmrequiresanoracletoselect
acommoncoordinatejsothatallnodesaverageonthe
samecoordinateateachtime.Inamorerealisticscenario,
however,wewouldliketoalloweachnodeitoselectits
owncoordinatejiatrandom.Itcanthensendthepair

ji,witji toitsneighbors.Then,nodeiwillreceivea

collectionofrequests jk,witjk :k∈N
i.Foreach

k∈Ni,itwillsendjk,witjk tonodek.Thispreserves

thebidirectionalityofthelinks.Eachnode,foreverycoor-
dinate,computesaconvexcombinationofitsownbeliefand
thoseoftheneighborswhohavesenttheirinformationabout
thesamecoordinate.Fordifferentcoordinates,theassigned
weightstotheneighborsneednotbethesame.

Forthisalgorithmtheupdateruleisthesameas(11),
exceptthatforeverycoordinatej,matrixQj(t)ischosen
i.i.dacrosstimeaccordingtoPGj,whichisaaprobability
distributionoverasetofdoublystochasticmatricescom-
fortanttosubgraphsofGeachofwhichincludeallofthe
self-loops.

IV. CONVERGENCEANALYSIS

Theconvergenceanalysisofthemethodspresentedinthe
previoussectionisprovidedhere.Duetolackofspace,more
detailedproofswillappearintheextendedversionofthis
paper.WefirstprovideananalysisofcentralizedPCSD.We
thenstatearesultfortheshared-memorycase.Weconclude
withsomeresultsontheasynchronousdistributedprimal
coordinatedescentmethod.

A.AnalysisofCentralizedPSCD

Theorem1.ConsiderAlgorithm(1)forsolvingproblem(4)
whenfisconvexwithL-Lipschitzcontinuouscomponent-
wisegradients.Withconstantstepsizeη= 1

αLwehave:

E[f(wT)−f(w
∗)]≤

α(Ψ(w0)−Ψ(w
∗))

T
, (13)

where

Ψ(w)=f(w)+
L

2
w−w∗ 2. (14)

ToprovethistheoremweneedthefollowingLemma,
whichisacorollaryofTheorem2.1.5inthebookof
Nesterov[21].

Algorithm2AsynchronousCoordinate-wisePrimalAver-
aging

Require:N,T,graphG,stepsizesequence{ηt},matrix
Q
arbitrarilyselectwi1∈R

dforalli∈[n].
fort=1,2,...Tdo
foralli∈[n]do
computegit∈∂f

i(wit)
selectjiuniformlyin[d]

send ji,witji toallnodesinN
i

endfor
foralli∈[n]do

send jk,witjk toeachnodek∈Ni

endfor
foralli∈[n]do
forallj∈[d]do
ifj∈{jk:k∈N̄i}then
(vit+1)j= k∈N̄iQ

j
ik(w

k
t)j

else
(vit+1)j=(w

i
t)j

endif
endfor
wit+1=v

i
t+1−ηtg

i
t

endfor
endfor
returnforeachi∈[n]theaverage

wiT=
1

T

T

t=1

wit.

foreachi∈[n]

Lemma1.Supposethatfunctionf(w)hascomponent-wise
Lipschitzcontinuousgradient:

|∇jf(w+he
j)−∇jf(w)|≤L

j|h|,

Thenwehave:

f(w+hej)−f(w)≤ ∇f(w),hej +
Lj

2
|h|2. (15)

Proof:Tofindanupperboundontheoptimalitygap
inthecentralizedsetup,wewillusetheprecedingLemma.
FollowingtheapproachtakenbyShalev-ShwartzandTewari
[3],definethepotentialfunctionΨ(w)in(14),wherew∗=
argminwf(w)istheminimizeroftheobjectivefunction
f(w)andListhe maximumcomponent-wiseLipschitz
constantoff(w).Usingthispotentialfunctionwewillprove
thatundersomeconditionforλoursuggestedmethodfor
updatingwtwillconvergetotheoptimalsolution.Define
γt = ηgt1sgn(gj)sothattheupdateη̂gt = γte

j.
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Considerthedifferenceofthepotentialacrossoneiteration:

Ψ(wt)−Ψ(wt+1)

=f(wt)−f(wt+1)

+
L

2
(wt−w∗ 2− wt+1 −w∗ 2)

(a)

≥ −gt (wt+1 −wt)−
Lγ2

t

2

+
L

2
(wt−wt+1) (wt+wt+1 −2w∗)

≥−gt −γte
j −

Lγ2
t

2

+
L

2
γte

j 2wt−2w∗−γte
j

≥γtgj−
Lγ2

t

2
+

L

2
γt(2wj−2w∗

j)−γ2
t

≥γtgj−Lγ2
t+Lγt wj−w∗

j , (16)

where(a)followsfromLemma1.

LetFtbetheσ-algebrageneratedbytherandomcoordi-
natechoicesuptotimet.Ifwetaketheconditionalexpec-
tationofbothsides,wewillhavethefollowinginequality,
whichisaveragedoverthechoiceJtattimet:

E[Ψ(wt)−Ψ(wt+1)|Ft]

≥

d

j=1

γt|gj|gj

gt 1
−Lγ2

t+L

d

j=1

γt|gj|wj−w∗
j

gt 1

≥
d

j=1

|gj|
2

αL
−

gt
2
1

α2L
+

d

j=1

gj wj−w∗
j

α

≥
gt

2
2

αL
−

gt
2
1

α2L
+

1

α
gt(wt−w∗). (17)

Wecanseethatif
gt

2
2

αL −
gt

2
1

α2L hasanon-negativevalue,
thenwewillhavethefollowinginequality:

E[Ψ(wt)−Ψ(wt+1)|Ft]≥
1

α
gt(wt−w∗), (18)

meaningthatαmustsatisfythefollowingcondition:

gt
2
2

αLMt

−
gt

2
1

α2LMt

≥0⇒ α≥
gt

2
1

gt
2
2

. (19)

Sincewehavethebound
gt

2
1

gt
2
2

≤d,itsufficestosetα≥d.

Bytakingtheexpectation withrespecttotheentire
historyuptotimet,wehave

E[Ψ(wt)−Ψ(wt+1)]≥
1

α
E gt(wt−w∗). (20)

Theconvexityoffimplies

E[f(wt)−f(w∗)]≤αE[Ψ(wt)−Ψ(wt+1)]. (21)

Consideringthefactthatf(wt)−f(w∗)isamonotonically
non-increasingsequencewithrespecttot,summingovert

givesus

TE[f(wT)−f(w∗)]≤E
T−1

t=0

(f(wt)−f(w∗))

≤α(Ψ(w0)−Ψ(wT)). (22)

Therefore:

E{F(wT)−F(w∗)}≤
α(Ψ(w0)−Ψ(wT))

T

≤
α(Ψ(w0)−Ψ(w∗))

T
. (23)

B. Distributedoptimizationforgeneralconnectednetworks

Theorem2providestheconvergenceanalysisforthe
casewithdeterministicQjacrosstimeforeverycoordinate
whichprovidesthebasisforanalyzingourproposedmethods
proposedinSectionIII-C wherethe weight matricesare
random.Ouranalysisrelatesseveralaveragequantitiessuch
asthetimeaverage

wi
T =

1

T

T

t=1

wi
t, (24)

thenetworkaverage

w̄t=
1

n

n

i=1

wi
t (25)

andthetime-and-networkaverage

w=

n

i=1

wi

n
=

T

t=1

w̄t

T
. (26)

Theorem2. Considersolvingproblem (9).Supposethat
everynodeusesupdaterule(11)withthesamestepsize
ηt= 1

λt acrossthenetworkandQj(t) =Qj forallj∈
[d].Furthermore,assumethatourobjectivefunctionsareλ-
stronglyconvexandhaveboundedgradients,thatisforany
vectorw∈Rdwehave ∇fi(w) ≤M and|∇jf

i(w)|≤
Mj.Then,forT≥max

j∈[d]
{−2elog( λ2(Qj))},

E fD(wi
T)−fD(w∗)≤(C2+C3log(T))

log(T)

T
,

where C2 = M 2

2nλ andC3 = 18M M
√

n
λ with M =

d
j=1

Mj

−log(
√

λ2(Qj))
.

Proof: Wetakeanapproachsimilarto Nedićand
Ozdaglar[20]. Wefirstfindaboundontheexpecteddistance
ofthenetworkaverage(25)fromtheoptimalpointw∗.Note
thatsinceQjisdoublystochasticforallj∈[d],wehave
thefollowingrecursiverelation:

w̄t+1 =w̄t−ηt

n

i=1

gi
t

n
. (27)
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Thisimpliesthefollowingrecursion:

w̄t+1 −w∗ 2

= w̄t−w∗−ηt

n

i=1

gi
t

n

2

= w̄t−w∗ 2+ ηt

n

i=1

gi
t

n

2

−2ηt(̄wt−w∗)
n

i=1

gi
t

n

(a)

≤ w̄t−w∗ 2+η2
t

M2

n
−2ηt

n

i=1

(̄wt−w∗)gi
t

n
,(28)

wherein(a) we madeuseofthefiniteformofJensen’s
inequality.Forthethesummandsofthethirdtermabove
wehave:

(̄wt−w∗)gi
t=(̄wt−w∗)∇fi(wi

t)

=(̄wt−wi
t)∇fi(wi

t)+(wi
t−w∗)∇fi(wi

t)
(a)

≥ − ∇fi(wi
t) w̄t−w∗ +fi(wi

t)−fi(w∗)

+
λ

2
wi

t−w∗ 2

=− ∇fi(wi
t) w̄t−w∗ +fi(wi

t)−fi(̄wt)

+
λ

2
wi

t−w∗ 2
+fi(̄wt)−fi(w∗)

(b)

≥ − ∇fi(wi
t) w̄t−wi

t +∇fi(̄wt)(wi
t−w̄t)

+
λ

2
wi

t−w∗ 2
+fi(̄wt)−fi(w∗)

(c)

≥ − ∇fi(wi
t) + ∇fi(̄wt) w̄t−wi

t

+
λ

2
wi

t−w∗ 2
+fi(̄wt)−fi(w∗), (29)

where(a)followsfrom Cauchy-Shwartzinequalityand
strongconvexityoffi,(b)isaresultofconvexityoffi

and(c)alsoresultsfromCauchy-Shwartzinequality.Using
inequality(29) wecanupper-boundthethirdterminthe
r.h.sof(28):

−2ηt

n

i=1

(̄wt−w∗),git
n

≤2ηt

n

i=1

∇fi(wi
t) + ∇fi(̄wt) w̄t−wi

t

n

−ληt

n

i=1

wi
t−w∗ 2

n
−2ηt

n

i=1

fi(̄wt)−fi(w∗)

n

(a)

≤ 2ηt

n

i=1

∇fi(wi
t) + ∇fi(̄wt) w̄t−wi

t

n

−ληt w̄t−w∗ 2
−2ηt(fD(̄wt)−fD(w∗)), (30)

where(a)resultsfromfiniteformJensen’sInequalityaswell
asthedefinitionoffD.Substitutingthisresultin(28)and
takingexpectationw.r.t.theentirehistoryuptotimetwe

get

E w̄t+1 −w∗ 2

≤E w̄t−w∗ 2 +η2
t

M2

n

+2ηt

n

i=1

E ∇fi(wi
t) + ∇fi(̄wt) w̄t−wi

t

n

−ληtE w̄t−w∗ 2
−2ηtE[f(̄wt)−fD(w∗)]

≤(1−ληt)E w̄t−w∗ 2 +η2
t

M2

n
+4ηtME w̄t−wi

t −2ηtE[fD(̄wt)−fD(w∗)].
(31)

Byrearrangingthetermsweget:

E[fD(̄wt)−fD(w∗)]

≤
1−ληt

2ηt
E w̄t−w∗ 2 −

1

2ηt
E w̄t+1 −w∗ 2

+
ηt

2n
M2+2ME w̄t−wi

t . (32)

Thefollowing Lemma provides us with a bound on
E w̄t−wi

t .

Lemma2.SupposealltheassumptionsinTheorem2hold.
Foranynodeiatanytimetthenetworkaveragēwtin(25)
satisfies

E w̄t+1 −wi
t+1 ≤

2
√

n

λ

d

j=1

Mj
log(2bjet2)

bjt
, (33)

wherebj=−log( λ2(Qj)).

SubstitutingtheresultofLemma2andηt= 1
λt in(32):

E[fD(̄wt)−fD(w∗)]

≤
λ(t−1)

2
E w̄t−w∗ 2 −

λt

2
E w̄t+1 −w∗ 2

+
M2

2nλt
+

4M
√

n

λ

d

j=1

Mj
log(2bjet2)

bjt
. (34)

ThisprovidesaboundonE[fD(̄wt)−fD(w∗)].However,
inordertoanalyzetheasymptoticbehaviorofouralgo-
rithms,weareinterestedinE fD(wi)−fD(w∗).Consider
thetime-and-networkaverage(26).FromconvexityoffD

andJensen’sinequalitywehave:

E[fD(wT)−fD(w∗)]

≤
1

T

T

t=1

E[fD(̄wt)−fD(w∗)]

≤
T

t=1

λ(t−1)E w̄t−w∗ 2 −λtE w̄t+1 −w∗ 2

2T

+
1

T

T

t=1

M2

2nλt
+

1

T

T

t=1

4M
√

n

λ

d

j=1

Mj
log(2bjet2)

bjt
.

(35)
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Usingconvexity,Jensen’sinequality,andsomealgebrawe
canestablishthatforT>max

j∈[d]
{2bje},

E[fD(wT)−fD(w
∗)]

≤
1

T
t=1

−
λT

2
E w̄T+1−w

∗ 2

+
1

T

T

t=1

M2

2nλ
+
12MM

√
n

λ
log(T)

1

t

≤
CT
T

T

t=1

1

t

≤CT
log(T)

T
(36)

whereM =
d

j=1

Mj
bj
andCT =

M2

2nλ+
12MM

√
n

λ log(T).

ThisletsusrelatethetimeaveragewiT atanodetothe
networktimeaverage:

EfD(w
i
T)−fD(w

∗)

≤EfD(wT)−fD(w
∗)+∇fD(w

i
t)(w

i
t−wt)

(a)

≤EfD(wT)−fD(w
∗)+∇fD(w

i
T) wit−wT

(b)

≤E[fD(wT)−fD(w
∗)]

+E ∇fD(w
i
T)

T

t=1

wit−w̄t

T

≤E[fD(wT)−fD(w
∗)]+

M

T

T

t=1

E wit−w̄t .(37)

whereintheinequality(a)weusedCauchy-Shwartzandthe
(b)resultsfromJensen’sinequalityandthedefinitionofwiT
andwT.

Combiningtheresultsfrom(37),(36),andLemma2
givesusthedesiredupperboundontheloss:

EfD(w
i
T)−fD(w

∗) (38)

≤CT
log(T)

T
+
2M
√
n

λT

T

t=1

d

j=1

Mjlog(2bjet
2)

bjt
(39)

≤CT
log(T)

T
+
6MM

√
nlog(T)

λT

T

t=1

1

t

≤
M2

2nλ
+
12MM

√
n

λ
log(T)

log(T)

T

+
6MM

√
nlog(T)

λ

log(T)

T

=
M2

2nλ
+
18MM

√
n

λ
log(T)

log(T)

T
. (40)

Nowthatwehaveestablishedtheresultsforthecase
withtime-invariantweightmatrices,wegoontostudythe
casewhereQj(t)isselectedi.i.d.fromdistributionPGj.Note

thatforeverycoordinatej,thequantityPGjisafunctionof

{PCi}
n
i=1 thatareprobabilitydistributionsovercoordinate

indexesateachnode.Thefollowinglemmaisusedinthe
sequeltoanalyzethebehaviorofourmethods.

Lemma3.Supposethesameassumptionsastheorem(2)
holdexceptthatin(11),Qj(t)isani.i.dsequenceofdoubly
stochasticmatricesdrawnfromdistributionPGj.Then,for
witandw̄twehavethat:

E w̄t+1−w
i
t+1 ≤

d

j=1

2Mj
√
n

λ

log(2bjet
2)

bjt
, (41)

wherebj = −logEσ2 Q
j(t) andσ2 Q

j isthe
secondlargestsingularvalueofQj(t).

Now, wearereadyto findtheupperboundon
EfD(w

i
T)−fD(w

∗) inthesetupwithrandomweight
matrices.

Theorem3. AssumethatallconditionsinLemma(3)
hold.Also,wehavethefollowingupperboundonthe
lossofalgorithm(11)fortheoptimizationproblem(9)if
T≥−2elogEσ2 Q

j(t) :

EfD(w
i
T)−fD(w

∗)

≤
M2

2nλ
+
18Mc

√
n

λ
log(T)

log(T)

T
, (42)

wherec=
d
j=1

Mj
−log(E[σ2(Qj(t))])

andM andMjareas
definedintheorem(2).

Proof:ByapplyingLemma3to(32)andfollowingthe
sameprocedureasthatoftheproofofTheorem2,weget
thestatedresult.

Weremarkthatforbothdistributedalgorithmssuggested
inSectionIII-C,theanalysisinTheorem3holds.Thesyn-
chronousalgorithmisaspecialcasewhereQjisrandomly
astochasticmatrixwhichtakesvaluefrom{Q,I}.Inthe
asynchronousmethodthesamplespaceislarger,i.e.Qj,
whichisdefinedinsubsectionIII-E.Ouranalysis,with
minorchanges,extendstothecasewheneachnodeupdates
itsbeliefusingunbiasedestimatesofthelocalgradient
insteadofthefulllocalgradient.

V. CONCLUSION

Inthispaper,weusedsocialsamplingtolimitthecom-
municationincooperativemulti-agentoptimizationsettings.
Forcentralizedandsharedmemorysystems,weproposed
anewnonuniformvariantofstochasticcoordinatedescent
andprovidedupperboundsontheexpectedsub-optimality
gap.Thismethodrequiresfullknowledgeoflocalgradient
vectors,whichseemscomputationallywasteful.However,
thismethodmaybeusefulforsharedmemorysystemswith
limitedcommunicationresources wherecomputinglocal
gradientvectorsbyeachnodeisinexpensiveandweare
moreconcernedabouttheamountofcommunicationor
contentionamongnodesratherthanthecomputationcost.
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Wenotethatindistributed modelssharinggradient
informationisnotnecessarilybeneficial;thissuggeststhat
nodesshouldsharesamplesoftheircurrentestimates{wit}.
Weproposedastochasticcoordinate-wiseconsensus-based
optimizationmethodthatrequiresnodestosharerandom
coordinatesoftheirestimates withtheirneighbors. We
providedconvergenceanalysisandexpliciterrorboundsin
expectationforthismethod.

Aninterestingquestionraisedinthecentralizedmodel
isthathowusing“stale”gradientvaluesfromprevious
iterationswouldaffecttheconvergencerateofthealgorithm.
Lessfrequentfullgradientevaluationdrasticallyreducesthe
computationalcostofthealgorithm,thereforeadelayed
PSCDmethodmightsolvetheintrinsicissueofPSCDthat
itrequiresevaluationofthefullgradientateveryiteration.
Analyzingsuchaschemewouldbuildonrecentresults
ofScmidtetal.[22].Finally,anempiricalevaluationof
ourmethodsontypicalobjectivefunctions,especiallyin
machinelearning,mayshedmorelightonwhennonuniform
samplingcanhelpinpractice.
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