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Abstract—We consider stochastic message passing algo-
rithms that limit the communication reguired for decentralized
and distributed convex optimization and provide convergence
guarantees on the objective value. We first propose a central-
ized method that modifies the coordinate-sampling distribution
for stochastic coordinate descent, which we call proportional
stochastic coordinate descent. This method treats the gradient
of the function as a probability distribution to sample the coor-
dinates, and may be useful in so-called lock-free decentralized
optimization schemes. For general distributed optimization in
which agents jointly minimize the sum of local objectives,
we propose treating the iterates as gradients and propose
a stochastic coordinate-wise primal averaging algorithm for
optimization.

I. INTRODUCTION

Large-network paradigms for communication and dis-
tributed computation have driven renewed interest in opinion
and belief formation models from mathematical sociology
and psychology. One such recent work is the novel mes-
sape passing protocol called social sampling [1] that uses
limited communication to perform distributed estimation.
This protocol is similar to consensus-based multi-agent
optimization models — the goal of this work is to investigate
the connection between the two. The idea is that every
agent performs local processing based on its local objective
function, then samples its belief or state of the global at
random to send to its neighbors. Subsequently, agents update
their belief based on the messages they receive from their
neighbors. Transmitting samples of the belief instead of
the complete information makes this method suitable for
distributed settings with limited communication resources.

The social sampling setup is similar to several existing
stochastic optimization methods, especially stochastic coor-
dinate descent were social samples are the partial deriva-
tives [2], [3]. Distributed optimization has received sig-
nificant interest in recent years especially consensus-based
algorithms under various assumptions and constraints [4]-
[8]. Many of these variants build on general analyses [9]-
[11] are among remarkable works in the distributed opti-
mization literature. Many other authors have have studied
non-uniform sampling algorithms that differ from ours [12}-
[15]. Of particular note is the seminal work of Nesterov,
who proves linear convergence rate for his non-uniform
method for strongly convex objective functions [12]. In our
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centralized setting we consider optimization of convex and
smooth objectives rather than strongly convex objectives.

We first propose a method for the simpler case of central-
ized optimization that uses a novel non-uniform sampling of
the coordinates. In this scheme, the chance of a coordinate j
being selected is proportional to partial gradients E‘gr%. We
show that for convex smooth objective functions, our algo-
rithm, with constant siep size, achieves © (1) convergence
rate in expectation. Our centralized analysis is based on
the analysis of the uniform scheme by Sahlev-Shwartz and
Tewari [3]. The recent survey of Wright [16] summarizes
much of the early work on coordinate descent methods.

Our proportional method can also be adopied for shared
memory systems where the nodes (computational agents) are
arranged in a star network. For this setup, our algorithm is
based on the framework used by Recht et al. [17] where
a central node (memory node) keeps the current global
decision vector and the rest of nodes (computing nodes)
access to this value and update it in an asynchronous manner.
In this framework, it is assumed that while each working
node is computing its update based on its local objective
function value and transmitting it to the central node, other
working nodes can also access or update the decision vector.
This means that the estimates of the gradient vector that
are transmitted to the central node could be obsolete. We
propose that each node evaluates its estimate of the gradient
according to the PSCD update rule. Assuming that the gap
between the access time and the update time of each node
is limited, the suboptimality gap is bounded.

This approach to decentralized optimization is like a star
network with several nodes connected to a single memory
node. Several authors have also considered star network
models [18], [19]. For general connected networks, the
gradient information from other nodes is useful only if
their current states are not very different which for strongly
convex objective function is the case if the estimates are
close to the optimum. However, we are interested in methods
that guarantee convergence (at least in expectation) to the
optimal point regardless of the initial estimate given to the
algorithm.

For distributed settings we propose social sampling
treating the primal iterate as a probability distribution and
exchanging samples in the network. This solution might be



useful for networks with limited computation and commu-
nication resources. Our methods build on the framework
developed by Nedi¢ and Ozdaglar [20]. We assume that
the computational nodes broadcast information about their
current local decision vectors to their neighbors to cooper-
atively optimize the global objective function which is the
average of the local objective functions. However, in contrast
to the mentioned works, our methods rely on sharing partial
information with the neighbors, namely information about a
small subset of the coordinates.

II. PRELIMINARIES

A Notation

Throughout this paper, superscript ¢ indicates node ¢ of
a network, except for &' that denotes the j-th standard coor-
dinate vector. Furthermore, subscript ¢ indicates the discrete
time (iterations index). All element indexes in matrices and
vectors are demonstrated as subscripts, as well. We denote
the set {1,..-,k} by [k]. The vector 1, for A C [d] is
a d-dimensional vector with 1's for indices i € A and 0
elsewhere.

B. Optimization

Definition 1. A function f : R® — R is convex if for all
vectors u and v,

flu) — flv) = VF(w)" (u—v). (1)

Definition 2 A function f : R — R is A-strongly convex
if for all vectors u and v,

Flw) — @) 2 V@) (w—v)+ Jlu—vl’. @

Definition 3. A function f : R® — R is L-Lipschirz
continuous if for all vectors u and v,

If () — flo)ll < Liflu— vl (3)

Definition 4. A function f : R? — R is L-smooth if
it is rwice differentiahle and has L-Lipschitz continuous
gradients.

The optimal solution to an optimization problem is
denoted by w*. A solution w, (also referred to in this
paper as estimate, belief, or decision vector), found by an
optimization algorithm after ¢ iterations is “e-accurate™ if
flw) < flw*) + e Let JF; be the sigma algebra of all the
random events up to time £.

C. Network Model

We will consider two types of problems in this paper
centralized and distributed. For the distributed setting, we
make the following assumptions on the network.

Let G = (V, E') represent an undirected graph with vertex
set V={1,--- ,n}andedge set ECV xV.Let N* C V
be the set of the neighbors of node (vertex) i and N* =
N Ui
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In the distributed setup, the optimization task is jointly
accomplished by the n processing units that are arranged
in a network represented by a graph G = (V, E) which
we assume to be connected; we further assume (i,i) € E
for all i. An n x n matrix () is called graph conformant
if Qg = 0 for (i,k) ¢ E. We consider matrix-valued
processes (J(t) where (J(t) is doubly stochastic. We use the
notation Qu(t) = g;.(f). We think of gi(t) as the weight
that node ¢ assigns to the information from node k at time
t. Throughout the paper we assume that the expectation
of each stochastic graph conformant matrix corresponds to
a connected graph. Deterministic matrices comrespond to
connected graphs as well.

IIL.

First, we consider an optimization problem in a central-
ized setup. Then, We study the case of optimizing the sum
of functions f; for i € [n] where each function is associated
with one node of a network.

PROBLEM SETUPS AND ALGORITHMS

A. Censralized problem and algorithm

In the centralized problem, we aim to minimize the
following objective function:

(4)

min, f(w),

where f(w) is a convex smooth function.

In order solve the minimization problem (4), we use a
variant of the stochastic coordinate descent method, which
we call centralized Proportional Stochastic Gradient Descent
(centralized PSCD). At every iteration ¢, a coordinate j is
randomly selected and the j-th coordinate of wy, is updated:

Wyl = Wy — T, (5)

where 57 = (1! is an unbiased estimate of the gradient
vector on a single coordinate: E [§7] = g;. In this algorithm
the coordinates are selected according to the following
distribution:

o gyl
PO =g ©

where g € &f(w,) is a sub-gradient of f(w;) and g,
is a sub-derivative of f(w;) w.rt the j-th coordinate.
Considering that E[§'] = E[Cie'] = Y, 12l
while E[sgn(gy) - |lgz|l1 - '] = g:. we need to set Cy
|gell; senigy). In this setup, we use constant step size
&—lL where L is the maximum component-wise Lipschitz
constant of f{w) and o is a constant.

The pseudo-code for the centralized setup is demon-
sirated in Algorithm 1.

B. Shared Memory System

Our proportional sampling scheme extends naturally to
shared-memory models for distributed optimization. In these
models, a common memory element holding the current
iterate wy is accessed by a collection of n processors, each



Algorithm 1 Centralized PSCD
Require: A\, L, N, T
arbitrarily select wy € R?
setn = ﬁ
fort=1,2,... T do
calculate g; € 9f(w)
select J; according to P(j) = 124 for j € [d]
set wey1 = we — 7 [|gell; sgn(gy)e’
end for
return wrg

with its own local objective function f*(w). The goal of such
a system is to minimize the average of the local objectives:

. 1

Jnin, fs(w) = 2 ; fH(w), (7
where {f*(w)}?, are strongly convex functions with Lips-
chitz continuous gradients. In this setup, a central node has
a memory that keeps a shared estimate vector and all other
nodes have access to this node to read or update the estimate.
If the nodes operate synchronous, the algorithm will be
essentially performing the conventional unbiased stochastic
gradient descent on the entire data set 5.

Here, we focus on the more challenging asynchronous
setup, which can be considered as a modified version of
HOGWILD! [17]. Our proposed method for this setting,
called asynchronous distributed PSCD, assumes that each
node reads the shared vector at arbitrary times and updates
the estimate using its local gradient information. The update
rule in this method is
(8)

. — X 1)
Wiy = Wes — Tl s

where n is a constant step size and gl

li:i sgn{{g::-_ );) el. Also, wy, weand wge,, are
values of the shared estimate when accessed by node
i, when it is about to be updated by node i, and when the
update by node i is used, respectively. The delay t* —#} <
is sum of two delays, namely, the computation time of g}
and communication delay between node i and the central
node. During this period, the estimate vector might be
updated by other nodes. In fact, we assume that ¢ keeps
track of the number of updates to the shared wvector by
any node. Therefore, ~ is essentially an upper bound on
the number of updates by the other nodes while a certain
node is computing and transmitting its update to the central
node. Since in our algorithm only one random coordinate
is updated by each node per iteration, the updates do not
get overwritten by the other nodes too ofien

C. Distributed coordinate-wise Primal Averaging algo-
rithms

Similar to shared memory model, in a general connected
network, we aim to minimize the average of the local
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objective functions associated with the nodes of the network:

9)

weRd

min, fo(u) = =3 f(u),
i=1

where { f*(w)} are strongly convex functions.

It is tempting to directly apply proportional gradient
sampling to the general network setting for distributed
optimization. A naive adoption of our centralized method
for distributed setups would involve communicating propor-
tionally sampled estimates of the local gradients with the
neighbors in order to converge to a common optimal point
of the global objective function. We show that this method
actually works if the nodes are fully connected where all
of the nodes start with the same initial value. However,
sending gradient information to neighbors in the network
does not necessarily help them reach the global minimizer
because at any instant £, various nodes have different values
of estimates w}, so the gradient values from the neighbors
might be totally irrelevant. Hence, for general connected
networks we suggest that the nodes exchange partial infor-
mation about their current local estimates {w}}} ;| instead
of communicating gradient information.

If all nodes are connected to each other, every node
has the gradient information of all nodes. However, since
the nodes are not sharing their estimate values {w!}, the
gradient information is not useful unless all the nodes have
the same iterate value at every iteration. In order to satisfy
this requirement without synchronizing the iterate values at
every iteration, nodes can start the optimization algorithm
with the same initial value. The update rule in this model is

m ﬁ'k
i 1 T
Wiy =Wy — T E n’

k=1

(10)

where 7 = ﬁ and g = ||.‘?f||1 -5gN (g_';r) .e’¢. In the end,
wh. will be calculated.

D. Synchronous Coordinate-wise Primal Averaging

As before, we are motivated by the problem of limiting
communication during the iterations. Based on the works by
[20] we consider a communication scheme based on sending
partial information about the current iterate w}: each node
only sends an estimate ] of their current actual estimate
w}. In particular, ¢ only contains information about a single
(random) coordinate of wi.

A simple model is for an oracle to select a coordinate of
{w}} and have all nodes synchronized to transmit informa-
tion about that same coordinate. This method can be seen as
a coordinate-wise variant of the distributed primal averaging
algorithm of Nedi¢ and Ozdaglar [20]. In this algorithm,
at every iteration some oracle selects a random coordinate
j from {1..-- n} and orders all nodes to send the j-th
coordinate of w! to their neighbors. Each node ¢ updates its
j-th coordinate with a weighted average of their neighbor’s
coordinates. Subsequently, node i updates all coordinates of
w; using its full local gradient g; = V f*(w;). Therefore,



the update rule can be written as:

d
w;+1 = Z Z ka{t}ﬂjwf - 7?:9:

j=1 &EJ';T’.

for j € [d],

(11)

where D7 is a diagonal matrix with 1 on its j-th diagonal
element and zero otherwise and
if 7 is selected at time ¢,
v0-{7

I otherwise. (12)

E. Asynchronous Coordinate-wise Primal Averaging

The synchronous algorithm requires an oracle to select
a common coordinate j so that all nodes average on the
same coordinate at each time. In a more realistic scenario,
however, we would like to allow each node i to select its
own coordinate ;' at random. It can then send the pair

(j‘.. (wf) j,.) to its neighbors. Then, node i will receive a
collection of reguests {(j",{:wﬁ}j*) 1k EN"'}. For each

k € N, it will send gj".. {w})j,‘ to node k. This preserves
the bidirectionality of the links. Each node, for every coor-
dinate, computes a convex combination of its own belief and
those of the neighbors who have sent their information about
the same coordinate. For different coordinates, the assigned
weights to the neighbors need not be the same.

For this algorithm the update rule is the same as (11),
except that for every coordinate g?-‘ matrix (7(¢) is chosen
i.i.d across time according to P, which is a a probability
distribution over a set of doubly stochastic matrices com-
fortant to subgraphs of G each of which include all of the
self-loops.

IV. CONVERGENCE ANALYSIS

The convergence analysis of the methods presented in the
previous section is provided here. Due to lack of space, more
detailed proofs will appear in the extended version of this
paper. We first provide an analysis of centralized PCSD. We
then state a result for the shared-memory case. We conclude
with some results on the asynchronous distributed primal
coordinate descent method.

A Analysis of Centralized PSCD

Theorem 1. Consider Algorithm (1) for solving problem (4)
when f is convex with L-Lipschitz continuous component-
wise gradients. With constant step size n = - we have:

where

(13)

L
Y(w) = flw) + Zllw - w2 (14)
To prove this theorem we need the following Lemma,
which is a corollary of Theorem 2.1.5 in the book of
Nesterov [21].
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Algorithm 2 Asynchronous Coordinate-wise Primal Aver-
aging
Require: N, T, graph G, step size sequence {n;}, matrix
gl:mitraril},-r select wi € R? for all i € [n].
fort =12 ...T do
for all i € [n} do
compute g; € 8f"(w})
select 7* uniformly in [d)
send j‘,{:wé}ji) to all nodes in A
end for
for all i £ [n] do
send (j", (wg}j,) to each node k € N
end for
for all i € [n] do
for all j € [d] do _
if jc{j*:k€N"'} then
ISE:":+1}I = 3 keN: Qe (wr)y

e
(vi41)y = (wi)y
end if
end for
1 1 i
Wy =V g — Thd
end cfilir o ‘

end for
return for each i € [n] the average

T
St
t=1

113;!":1

|

for each 1 € [n]

Lemma 1. Suppose that function f{w) has component-wise
Lipschitz continuous gradiens:

IV f(w + he!) — WV, f(w)| < L7|A],
Then we have:

Flw + he?) — ) < (VF(w),hel) + Z 2. (15)

Proaf: To find an upper bound on the optimality gap
in the ceniralized setup, we will use the preceding Lemma.
Following the approach taken by Shalev-Shwartz and Tewari
[3], define the potential function ¥(w) in (14), where w* =
argmin,, f(w) is the minimizer of the objective function
flw) and L is the maximum component-wise Lipschitz
constant of f(w). Using this polential function we will prove
that under some condition for A our suggested method for
updating w; will converge to the optimal solution. Define

Y = 7llgll,sen(g,) so that the update ng, Yeel.



Consider the difference of the potential across one iteration:

W) — Ulwpyr)
= flwe) — flwes1)

+ %':”wc —w*|? - llwey s — w*|?)
(a) L’rg

= —.q: (wesr —we) —

L
+ = (‘ws — wc+1:|

(we + w1 — 2u*)
> g7 (- rﬁej} Lf
L (o) (20— 20" — )
> Ty — LTTE + = L (e 2wy —2uwl) - %)
> ygy — Li + L'rz (g —wf), (16)

where (a) follows from Lemma 1.

Let F; be the o-algebra generated by the random coordi-
nate choices up to time ¢. If we take the conditional expec-
tation of both sides, we will have the following inequality,
which is averaged over the choice .J; at time #:

E [W(w:) — ¥(wes1)F]

d
Tlgslas o elggl (wy —wj)
+ L
¢ llgelly " Z llgel1
T
}Zw "“”‘+Zg"{ 3~ wj)
"91”2 ||9‘|:||J3
=
> lods Mol | 27 (e — ). (a7

We can see that if %1 - "—é’—:.%i has a non-negative value,
then we will have the following imqualily:

E[¥(w:) — ¥(we1)|F] = gt T (wy — w*), (18)
meaning that « must satisfy the following condition:
lgelld — llgellf llgell?
l=a> . (19)
aLy, o’Lu, llgll3

Since we have the bound ':g'”‘ < d, it suffices to set o = d.

By taking the expectation with respect to the entire
history up to time £, we have

1
E[¥(we) — U(wesr)] 2 ~E [g (we —w*)].  (0)
The convexity of f implies
E|f(w) — f(w*)] < oF [¥(we) — Tlweyr)]. (21)

Considering the fact that f(w;)— f(w*) is a monotonically
non-increasing sequence with respect to ¢, summing over ¢
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gives us

-1
TE [f(wr) — f(w*)] <E | (flw) — f{w‘j}]

t=0
< a(¥(wp) — ¥(wr)). (22)
Therefore:
a (W(wp) — F(ws))
< T . (23)
|

B. Distributed optimization for peneral connected networks

Theorem 2 provides the convergence analysis for the
case with deterministic ()7 across time for every coordinate
which provides the basis for analyzing our proposed methods
proposed in Section III-C where the weight matrices are
random. Our analysis relates several average quantities such
as the time average

T
. 1
T = 5 > wi, (24)
t=1
the network average
S R
1y = — uly (25)
=1
and the time-and-network average
e &t T Y
= — = — 26
w B > T (26)

Theorem 2. Consider solving problem (9). Suppose that
every node uses update rule (11) with the same step size
M = + across the network and Q(t) = Q7 for all j €
[d]. F uﬂ}:erm-:ra, assume thar our objective functions are A-
strongly convex and have bounded gradients, that is for any
vector w € R we have ||V ft{w)| < M and |V, f'{w)| <

M;. Then, for T = }%ﬁ{_ge log(/ A2(Q7))},

E [fo(@) ~ fo(w)] < (Cs + Cslog(T) &L,

where Co = 2 and C; = BEMMVR iy ppr =

> :
1= _log(y/Aa (@)}

Proof: We take an approach similar to MNedié and
Ozdaglar [20]. We first find a bound on the expected distance
of the network average (23) from the optimal point w*. Note
that since @7 is doubly stochastic for all j € [d], we have
the following recursive relation:

g
_ _ a;
We] =Wy — T E ;

i=1

(27)



This implies the following recursion:

_ 2
B2 — w*l

ﬂgi_ﬂ

— 55, — 9r® — E_t
= [[i0y — w Tt n
i=1

oo

+TRE%

2

”—'*”2

= |l@: — — I (D,

n g.‘
— ¥y T ot
w*) Z -
i=1 i=1
(a} M2 m (i — w*) T gt
< @ — w*|* + ??sﬂ? - ETRZ {EﬂJ, (28)
i=1
where in (a) we made use of the finite form of Jensen's
inequality. For the the summands of the third term above

we have:

(@t — w*) T gt = (@ — w*) TV 4 (uf)
— (e — wl) V() + (wf — ") TV )
S IV | e — ] + Fud) — F )
+ 2 fluf — o
— IV ) || 15 — w®| + £*(wf) — f*(me)
+ 2 [l — w0t + £(@0) — ()

]
> — ||V ()| || @ — wil| + V£ (2e) T (wi — @)
+ 5 et — w*|* + £@0) - £

{IIW‘ wp)|| + [V £ (@) |]) e — wi

Y T

where (a) follows from Cauchy-Shwartz inequality and
strong convexity of f, (b) is a result of convexity of f*
and (c) also resulis from Cauchy-Shwartz inequality. Using
inequality (29) we can upper-bound the third term in the
rh.s of (28):

(e —w*), a)

— 2 E { L
'f-"j“ (wi)|| + |[V f1(@:) iy — w

-I'_'

-.-r

(29)

i=1 n
| L, i) — fHwt
_Asz_gmzw
i=1

2 o, ZjH?chWHWPwaMHw—wM

—ﬁm IIHJ:—HJ*II — 2 (fo(Be) — fo(w®)),  (30)

where (a) results from finite form Jensen's Inequality as well
as the definition of fp. Substituting this result in (28) and
taking expectation w.r.t. the entire history up to time ¢ we
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get
E [|[@e41 — w*|?]
Mﬂ
<E [|| &, —w*n?] 0 —

o z: "?thn+nvfhmnnwa—wm1

— AyE [||m; —w*|’] - 2nE[f(m) — fo(w")
Mﬂ
< (1= M) E [[[@e — w|P] + 57—
+ 4 ME [||@, — wi]|] — 2niE (@) — fo(w 11

By rearranging the terms we get:
E[fp(@:) — fo(w*)]
1-2 1
< E (1~ w"I] — 5 [les1 — w]

+ M + 2ME [, — wi]] .

(32)

The following Lemma provides us with a bound on
E [ — ui]

Lemma 2. Suppose all the assumptions in Theorem 2 hold.
For any node i at any time t the network average 1w, in (25)

sarisfies

2 log(2b;e t2
E [[|@e+1 — wiy||] < "FZM g{bj’: L Gy
where by = — log(y/A2(Q7)).

Substituting the result of Lemma 2 and 5, = ; in (32):
E [fp(i:) — fo(w®)]

At —1 At
<A E (2 — w*P] - SR (@01 — wI?]

AM/mi . log(2bge t 9}
2nAt 2 M, by t G4

This provides a bound on E [fp(®;) — fp(w®)|. However,
in order to analyze the asymptotic behavior of our algo-
rithms, we are interested in E [ fp (') — fp(w*)]. Consider
the time-and-network average (26). From comvexity of fp
and Jensen's inequality we have:

E[.fﬂ(‘ff'r — fo(uw*)]
ZEUD{H&} foluw?*)]
T

— w*||?]

At — V)E [[|z — ME [||41 — w*||]




Using convexity, Jensen’s inequality, and some algebra we
can establish that for T = mﬁ{%je}'
Jje

E[fn ir) — fplw*)]
Z ——IE [ll@rs1 — w*||?]

T
1 19M M’ /n 1
tT2 (:m x o :') :
T
Cr &1
- =T -
ST 2%
log(T
<80 (36)
d . '
where M’ — El% and Cp = M 4 12MMR )0 (T),

This lets us relate the time average w}. at a node to the
network time average:

E [fp(#7) — fo(w®)]
< E [fp(ir) — fo(w*) + V fp(ig) " (i — )]

(a)
< E[fpliir) — fo(w*) + ||V fo(@p)|| |&f — @r|]

(®) ~

< E|fp(wr) — fo(w*)]

oy Jlwt — ]

ar)| D
=1

M T
<E[fp(@r) - fo(w")] + 7 D E[lw} —w|[]. 37
=1

+E ||Vin(

where in the inequality (a) we used Cauchy-Shwartz and the
(b) results from Jensen's inequality and the definition of w}.
and w.

Combining the results from (37), (36), and Lemma 2
gives us the desired upper bound on the loss:

E [.if'ﬂn'[ﬁfr:I - .fD{‘w’}] (38)
=1 j=1
log(T) 6MM'/mlog(T) < 1
=Cr—¢ \T ZE
M2 12MM’ log(T
< (m fvf— (T}) og(T')
6M M’ y/nlog(T) log(T)
+ A T
(M2 sMMyE log(T)
- (oSl =L @
|

Now that we have established the results for the case
with time-invariant weight matrices, we go on to study the
case where ()7(t) is selected i.i.d. from distribution Pf Note
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that for every coordinate j, the quantity 'PG is a function of

{PE}n_, that are probability dlsmhuu:]ns over coordinate
mdf:xf:s al each node. The following lemma is used in the
sequel to analyze the behavior of our methods.

Lemma 3. Suppose the same assumptions as theorem (2)
hold except that in (11), Q7(t) is an i.id sequence of doubly
stochastic matrices drawn from distribution Pf Then, for

w! and w; we have that:
d
2M;+/7 log(2bse 12)
<<
<. bt

=1

where b, —log (E [o2 (@Q(t))]) and o2 (Q7) is the
second largest singular value of QX (t).

41)

E [|[e+1 — iy ]

Now, we are ready to find the upper bound on
E [fp(@%) — fp(w*)] in the setup with random weight
matrices.
Theorem 3. Assume that all conditions in Lemma (3)
hold. Also, we have the following upper bound on the
loss of algorithm (11) for the optimization problem (9) if
T=-2¢elog {IE. [crg {Q-"'l[t:l}]}

E [fo(@}) — fo(w*)]
M2 18Mcy log(T)
- (_gnl LM/ mgrr}) = @

where ¢ = E—l——mml‘ and M and M; are as
defined in thearem (2

Proof: By applying Lemma 3 to (32) and following the
same procedure as that of the proof of Theorem 2, we get
the stated result. ]

We remark that for both distributed algorithms suggested
in Section II1-C, the analysis in Theorem 3 holds. The syn-
chronous algorithm is a special case where )7 is randomly
a stochastic matrix which takes value from {C},1}. In the
asynchronous method the sample space is larger, ie. @Y,
which is defined in subsection III-E. Our analysis, with
minor changes, extends to the case when each node updates
its belief using unbiased estimates of the local gradient
instead of the full local gradient

V. CONCLUSION

In this paper, we used social sampling to limit the com-
munication in cooperative multi-agent optimization settings.
For centralized and shared memory systems, we proposed
a new nonuniform variant of stochastic coordinate descent
and provided upper bounds on the expected sub-optimality
gap. This method requires full knowledge of local gradient
vectors, which seems computationally wasteful. However,
this method may be useful for shared memory sysiems with
limited communication resources where computing local
gradient vectors by each node is inexpensive and we are
more concemed about the amount of communication or
contention among nodes rather than the computation cost.



We note that in distributed models sharing gradient
information is not necessarily beneficial; this suggests that
nodes should share samples of their current estimates {w} } .
We proposed a stochastic coordinate-wise consensus-based
optimization method that requires nodes to share random
coordinates of their estimates with their neighbors. We
provided convergence analysis and explicit error bounds in
expectation for this method.

An interesting question raised in the centralized model
is that how using “stale™ gradient values from previous
iterations would affect the convergence rate of the algorithm.
Less frequent full gradient evaluation drastically reduces the
computational cost of the algorithm, therefore a delayed
PSCD method might solve the intrinsic issue of PSCD that
it requires evaluation of the full gradient at every iteration.
Analyzing such a scheme would build on recent results
of Scmidt et al. [22]. Finally, an empirical evaluation of
our methods on typical objective functions, especially in
machine learning, may shed more light on when nonuniform
sampling can help in practice.
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