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Abstract—Building good feature representations and learning
hidden source models typically requires large sample sizes.
In many applications, however, the size of the sample at an
individual data holder may not be sufficient. One such application
is neuroimaging analyses for mental health disorders — there
are many individual research groups, each with a moderate
number of subjects. Pooling such data can enable efficient feature
learning, but privacy concerns prevent sharing the underlying
data. We propose a model for private feature learning in which
the data holders share differentially private views of their respec-
tive datasets to enable collaborative learning of a joint feature
map. We give an example of such an algorithm for independent
component analysis (ICA) — a popular blind source separation
algorithm used in neuroimaging analyses. Our algorithm is a
differentially private version of the recently proposed distributed
joint ICA algorithm. We evaluate the performance of this method
on simulated functional magnetic resonance imaging (fMRI) data.

I. INTRODUCTION

Privacy is a central challenge in designing collaborative
healthcare research systems. Researchers may wish to share
data collected from local studies: such sharing can increase
sample sizes leading to more robust findings that can address
more complex phenomena. However, a combination of ethical,
legal, and technological issues prevent them from openly
sharing this data, because study subjects or patients may
not wish to have their personal private health details shared
without sufficient protections in place. Several recent studies
have demonstrated the feasibility of identifying individuals
from purportedly de-identified of anonymized data [1], [2],
which only increases fears around open data sharing.

One alternative to open sharing of data is to share access
to the private data via a “curator” that manages access to the
data itself. In such a setting, algorithms for statistical analysis,
signal processing, or machine learning must operate in a
distributed manner. An algorithm can query an individual site’s
data through the curator. Only certain specified queries are
permitted (e.g. histograms, linear functions of the data, or other
simple functions), and the curator manages the privacy loss
from answering these queries. The key to this quantification
is using a privacy metric. One such metric is differential pri-
vacy [2], which measures privacy risk in terms of the difficulty
of the hypothesis test for determining if an individual record
is in the database or not. Differentially private algorithms
are (almost always) randomized; the randomness creates the
uncertainty in a hypothesis test that models an adversary
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attempting to infer the presence/absence of an individual data
point in the data set. This randomness also means that the
curator provides approximate answers to queries. Thus, the
distributed algorithm must be robust to noise and that there
is a trade-off between privacy risk (often denoted by ¢) and
accuracy (or utility) in distributed private data analysis.

One way in which larger sample sizes can help is learning
more efficient feature representations for complex data. The
use of a common lower-dimensional representation of the data
can make further processing more efficient in terms of sample
size, communication overhead, and robustness. Furthermore,
such a representation can be learned once but used in many
further computations. The composition property of differential
privacy shows that further data-independent processing of
the output of an e-differentially private algorithm guarantees
privacy risk no more than ¢, so the system only needs to “pay
once” for learning the feature map.

In this paper we adapt a recently-proposed algorithm for
decentralized feature learning based on independent compo-
nent analysis (ICA) [3]. The distributed joint ICA algorithm
(djICA) can be employed to perform temporal ICA of func-
tional magnetic resonance imaging (fMRI) data. ICA is a
blind source separation algorithm; the goal of temporal ICA is
to identify temporally independent components that represent
activation of different neurological regions over time. Because
temporal ICA operates on such high dimensional data, it
requires more samples than are typically available from a
single study. This is because of computational complexity
and statistical sample size - the ratio of spatial to temporal
dimensions often requires the aggregate temporal dimension
to be similar to the voxel dimension [4]. We propose a
differentially-private distributed ICA algorithm based on that
of Baker et al. [4], which can be applied to decentralized data.
The approach combines local computations as well as global
computations to obtain both local and global parameters. We
show that in some regimes, our proposed algorithm can find
underlying sources in decentralized data nearly as accurately
as centralized or pooled data.

II. PROBLEM FORMULATION

As mentioned earlier, ICA is quite popular for blind source
separation. It assumes that the observed signals are mixtures
of statistically independent sources [5]. Therefore, it aims to
decompose the mixed signals into the independent sources. In
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order to produce physiologically interpretable robust features,
ICA has been applied to brain imaging data. Successful appli-
cation of ICA on fMRI can be attributed to sparsity [6] and
statistical independence between the underlying sources [5].
In this paper we consider a generative ICA model, where the

is not trusted and the local sites employ differentially-private
algorithms for computation of parameters.

IT1I. ALGORITHM

independent sources 8 € R™V, composed of N observations 4 Decensralized Joint ICA

from r statistically independent components, and a linear
mixing process, defined with a mixing matrix A £ R?*", form
the observed data X € R%*V as a product X = AS. Many
ICA algorithms propose to recover the “unmixing matrix”
W — A-! assuming that A is invertible [4], by rying to
maximize independence between rows of the product WX
The maximal information transfer (Infomax) is a popular
heuristic for estimating W that results in maximizing an
entropy functional related to WX. Denoting the sigmoid
function as
1

we apply g(-) to a matrix or vector Z element-wise: g(Z) is
a matrix with the same size as Z and (g(Z) )y = g(Zy;). The
{differential) entropy of a random vector Z with joint density
q is

(1)

W(@) - - [ o(@)og a(@)iz. @
Now, the objective of Infomax ICA can be expressed as
W= argmax h(g(WX)). (3

In this paper we propose to modify a recently published [4]
decentralized data ICA algorithm to ensure differential pri-
vacy [2]. An algorithm 4(B) taking values in a set T provides
(e, d)-differential privacy if

Pr{A(D) € 8) < exp(e)Pr{ A(D') € 8) + 4, 4)

for all measurable 5 C T and all data sets [ and IV differing
in a single entry. This definition essentially states that the
probability of the output of an algorithm is not changed
significantly if the corresponding database input is changed
by just one entry. Here, £ and 4§ are privacy parameters, where
low ¢ and 4 ensure more privacy. It should be noted here
that the parameter 4 can be interpreted as the probability that
the algorithm fails. Therefore, an (e, ()-differentially private
algorithm guarantees much stronger privacy than an (e, 4)-
differentially private algorithm, where 4 > (. We refer to (e, 0)
differential privacy as e-differential privacy. For more details,
see the recent survey [7] or monograph [8].

In our setup, we have data distributed in different sites.
We want to learn “good” features by utilizing samples from
all sites while ensuring differential privacy. As mentioned
before, computations are performed in local sites as well
as the central site. In this scenario, two privacy concerns
may arise depending on whether the central sile is trusted
or not. The local site can employ non-private algorithms and
send the parameters to the central site if the central site is
trusted. However, in the more general case, the ceniral site

The djlCA algorithm is an ICA algorithm that can be
applied to decentralized data [4]. A number of modified ICA
algorithms exist for joining various data sets [9] together and
performing simultaneous decomposition of data from a num-
ber of subjects and modalities [10]. For instance, group spatial
ICA (GICA) is a noteworthy one for multi-subject analysis
of task- and resting-state fMRI data [11]. It assumes that
the spatial map components (S) are similar across subjects.
On the other hand, the joint ICA (jJICA) [12] algorithm for
multimodal data fusion assumes that the mixing process (A)
is similar over a group of subjects. However, group temporal
ICA also assumes common spatial maps but pursues statistical
independence of timecourses. Consequently, like jICA, the
common spatial maps from temporal ICA describe a common
mixing process (A) among subjects. While very interesting,
temporal ICA of fMRI is typically not investigated because of
the small number of time points in each data set, which leads
to unreliable estimates [4]. The decentralized jICA approach
overcomes that limitation by leveraging information from data
sets distributed over multiple sites.

As in djlCA [4], we take a model with s sites in which site
i has a collection of data matrices {X,,, € R*™™ : m =
1,2,...,M;} consisting of a total time course of length n,
time points over d voxels for M; individuals. Sites concatenate
their local data matrices temporally to form a d x n,M; data
matrix X, € RY*Y: where N; = n,M,. Let N =3[, N,
be the total length. We assume a common (global) mixing
matrix A € R?*" that generates the time courses in X, from
underlying sources S, € R™*": at each site. This yields the
following model:

X =[AS; AS; ---AS,| € RI*N, (5)
Decentralized joint ICA [4] uses locally computed gradients
to estimate a common, global unmixing matrix W £ R™*¢
corresponding to the Moore-Penrose pseudo-inverse of A,
denoted At.

We follow a two-step distributed principal component anal-
ysis (dPCA) procedure [4] in which each site combines local
PCA processing with a global PCA step after exchanging
information. This is an alternative to a single step in which we
compute a global PCA matrix but must send a d x d matrix
between sites. Unfortunately, communicating a function of the
local data may not save in the sense of differential privacy; our
algorithmic contribution is to replace the PCA computations
with differentially private PCA algorithms. In particular, we
use a recently proposed SN algorithm [13] which is a fast and
efficient algorithm for e-differentially private PCA. The end
result is a differentially private version of djICA.
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Algorithm 1 PrivatelocalPCA
Require: Data matrix X € RY*™ (with n samples of dimen-
sion d, each sample has bounded norm), privacy parameter
3
I C+ XXT
2 Generate d x p matrix E = [ey,eq,...,8;] where e; ~
..ﬂﬁu"{i]', 2lg)and p=d+1
% C+ C+EET )
4 Compute the SVD C = UXUT.
s: Let B'®) & R¥*¥ contain the largest k singular values and
U*) € R4k the corresponding singular vectors.
& Save U and B® locally.
7. return P = UK Bk

B. Differentially-private dPCA algorithms

Here, we describe privacy-preserving dPCA algorithms for
dimension reduction and whitening. This serves as a pre-
processing step to standardize the data prior to djICA, also
without communicating full data sets outside of local sites.
We replace the LocalPCA and GlobalPCA algorithms in djICA
by a e-differentially private PCA algorithm [13]. The DP-PCA
algorithm provides an e-differentially private approximation to
the data second-moment matrix C = XX 7. For completeness,
we reproduce the method in Algorithm 1.

The second algorithm is simply the GlobalPCA algo-
rithm of djlCA with calls to LocalPCA replaced by calls to
PrivateLocalPCA, and is given in Algorithm 2.

Algorithm 2 PrivateGlobalPCA

Require: s sites with data {X, € R¥<M:
intended final rank r, local rank & = r.
Choose a random order = for the sites.
: P(1) = PrivateLocalPCA(X (1), min{k, rank(X 1) })
s forall j =2 to s do

i=m(j)

Send P(j — 1) from site w(j — 1) to site «(7)

k' = min{k, rank({X,)}

P = Privatelocal PCA(X,;, k")

k' = max{k' rank(P(; — 1))}

o P(7) = PrivateLocalPCA([P' P(; — 1)]. k")

1tz end for

11: 7' = min{r, rank(P(s))}

12 U = NORMALIZETOPCOLUMNS(P(s),r') © At last site
13: Send U to sites w(l),...,w(s —1).

14 foralli =1 to s do
15 Xored = UTX,
16 end for

i=1,2,...,s},

i =T

& The locally reduced data

C. Privacy-preserving djiCA

Our private version of the djlCA algorithm is shown in
Algorithm 3. We replace the LocalPCA procedure in djiCA
with PrivatelocalPCA to guarantee differential privacy for the
preprocessing step. In the PrivateGlobalPCA step (Algorithm

Algorithm 3 differentially private decentralized joint ICA

(djICA)

Require: data {X;.q € R™Y: 1§ = 1,2, ... s}, where r
is the same across sites, tolerance level t = 10-%, 5 =0,
maximum iterations J, |Aw (0)||3 = ¢, initial learning
rate p = 0.015/In(r)

: Initialize W < R™™"

. while j < J, [|[Aw(j)||3 = ¢ do

for all sites i =1,2,...,s do

Generate E € R™V: i.i.d ~ Lap( %)

Zi(j) = W(i — )X, + b(j — 1)17 + E
Yi(5) = 9(Z4(5))

G(j) = p (T+ (1 - 2Y,(3))Z:(5) )W (i — 1)
() = p 3oy (1 = 2¥moa(5))

Send G(7) and hy(j) to the aggregator site.

1 end for

11 At the aggrepator site, update global variables

1z Awl(j) =X Gilj)

13 W(j) =W — 1) + Awl(j)

14 b(j) =b(j—1) + Yo, he(j)

15 Check upper bound and learning rate adjustment.

16 Send global W(7) and b(;) back to each site

17: end while

- for example, W =1

W o m W e k=

2), each site i first computes a differentially privaie PCA
subspace from its local data. Let U; £ RY** and E, € RF*k
denote the top singular vectors and values from this decompo-
sition and U £ R*" the common projection matrix produced
by PrivateGlobalPCA. The sites receive U and project their
local data to produce X g € B™V:. The projected data is
the input to the iterative djlCA algorithm that estimates the
unmixing matrix W as described in Algorithm 3 [4].

Even though the preprocessing is done in a differentially
private manner, the djlCA algorithm itself may leak infor-
mation about the sites’ local data since it relies on ilerative
message-passing between the sites and a ceniral aggregator.
We therefore modify (5) to add Laplace noise to guarantee
additional privacy in the iteration. The full mixing matrix
for the global data is modeled as A = (WUT )+ ¢ Rdxr,
The algorithm iteratively updates W using distributed gradient
descent [14]. At each iteration j the sites update locally: in
lines 4 and 5, the sites adjust the local source estimates Z;
by the bias estimates b(j — 1)17 € R™": | followed by the
sipmoid transformation g(-); they then calculate local gradients
with respect to W; and ¥; in lines 6 and 7. Here yn, ;(j) is
the m-th column of ¥;(7).

After converging on a common W, each site estimates its
sources S,

8¢ = WX, ea. (6)

D. Proposed Differentially-private djlCA Algorithm

Theorem 1 (Differentially-private djlCA Algorithm): Adding
a matrix E, which contains i.i.d samples from Lap{mj,

[

to the variable Z in step 4 of the djICA algorithm makes
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the algorithm (Je, 0)-differentially private, where W is the
unmixing matrix.

Proof: Let us consider two neighboring data matrices X =
[x1 x2---xps) and X' =[x X2 --- x|, ], ie., the two matrices
are same except the last (or any one) individual is swapped
We assume that individual data matrices satisfy |32 < 3 v"
Therefore, |x;||; < 1. Now

[1X — X' |l2 = || — X |l2
< Ixarll2 + (1% 12
1

<
T Vd
Using the inequality between £s-norm and £-norm, we have

1
IX-Xh <Vd[X-X[2<vVd—==1 (D

vid
In the PCA pre-processing step, we reduce the dimension of
the data matrix X from d = N to r = N. Let us denote
this reduced dimension data matrices as Y and Y’ From
the definition of Ls-norm of matrices, we can state that
[Y]|lz2 = |X]|2. So, the relation |Y — Y'||; < 1 should also
hold. Under these conditions, we define the following function:

Z=f(Y)=WY +b, (8)

where W < R™™" is the weights matrix or the unmixing
matrix and b € B™™V js the bias estimate matrix. The £,
sensitivity of the function f is defined as

Af = 1LFCY) — FOY) 1.

- 'YJ la<1

This signifies the magnitude by which a single individual's
data can change the function output in the worst case, and
is the uncertainty to be introduced in order to hide the
participation of a single individual. According to the Laplace
mechanism, we need to add a noise matrix E € B™*N 1o
f(Y) to make it (e, 0)-differentially private. Here, the matrix
E consists ii.d. samples from a Laplace distribution with

2
variance 2 (%-f) . Now, using (8) and (9), we have

1A(Y) = £

L
= pmax (WY —Y)s
But we note that |[W(Y — Y')[l; < [[W]1[[Y — ¥l So,
we have Af = ||W||;. Therefore, if we add the noise mairix
E in each siep at any site with i.i.d. eniries from Lap{‘{—"e-f}l,
then the djICA algorithm is (€', 0)-differentially private, where
= Je and J is the total number of iterations required.

(9

Af= max
Y—x"|1<1

IV. EXPERIMENTAL RESULTS

We generated synthetic data from the same model as Baker
et al. [4] to test the impact of privacy on the djlCA algorithm.
We tested the difference between ICA with global PCA pre-
processing on the pooled data and ICA with the two-stage
distributed PrivateGlobalPCA algorithm. The source signals
S were simulated using the peneralized autoregressive (AR)
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Fig. 2. Variation of normalized gain index of differentially-private djlCA
algorithm with different « with that of djICA algorithm for (a) distributed
data (1024 subjects) and (b) pooled data (512 subjects)

conditional heteroscedastic (GARCH) model [15], [16]. We
have utilized 1024 and 512 simulated subjects in our experi-
ments for the distributed setting and for pooled data setting,
respectively.

In order to demonstrate the quality of the estimated com-
ponents, it is inmitive to show the auto-correlation plots
of the estimated independent components S..;. Fig. 1{a)-(d)
show the auto-correlation of S.;; obtained from the original
djlCA algorithm and Fig. 1(e)-(h) show the auto-correlation of
See: obtained from the proposed differentially-private djlCA
algorithm with fixed privacy (e = 1). As mentioned before,
we used 1024 subjects equally distributed among 4 sites.
We observe that for e = 1, the components are almost as
independent as the non-private algorithm. However, with the
decrease of ¢ to ensure more privacy, the independence of the
components starts to reduce quite sharply. We observed similar
results for the pooled data scenario.

We employ another index that quantizes the quality of
the unmixing matrix. One such index is the normalized gain
index [17], which varies from 0 to 1, with 0 indicating that
the unmixing mairix is an identity matrix. Fig. 2(a) shows
the wvariation of this index for differentially-private djlCA
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algorithm with different privacy levels (i.e. different e values)
for distributed data. For comparison with the non-private
djICA algorithm, we included the graph of the same index
in the same plot. Here, we observe that privacy has a negative
impact on the normalized gain index, i.e., the performance
of the ICA algorithm. This can be considered as the price
one has to pay in order to ensure privacy. For the pooled
data scenario, we observed similar performance degradation
of the differentially-private djICA algorithm when compared
with non-private djlICA as shown in Figure 2(b) for the non-
pooled case. Because the sample size was smaller for the
pooled data simulations, the performance of the differentially-
private djICA algorithm and the non-private djICA algorithm
is slightly worse than their distributed counterparts.

V. CONCLUSIONS

In this paper we proposed some modifications to a recently-
proposed algorithm for feature learning using decentralized
data ICA. The proposed algorithm can be applied to temporal
ICA of fMRI data. The djICA algorithm is capable of ex-
tracting features from distributed data almost as good as from
the pooled data. We have generated synthetic data according
to a popular model for our experiments. We formulated
the whole system in such a way that some computations
are performed in local sites and some are performed in
the central site - this reduces the cost of transmitting large
matrices. We have graphically demonstrated that the recovered
components are statistically independent even for quite strict
privacy guarantee. We have also shown the variation of privacy
with a performance index, which showed empirically that the
proposed differentially-private algorithm ensures good utility
while preserving privacy.

Although our results in this paper are not comprehensive,
they indicate the insisting on “untrusted” computation infras-
tructures — making each site render all messages differentially
private before communicating — can have a significant impact
on privacy-preserving feature learning. An alternative, left for
future work, is to have the centralized aggregator be trusted —
sites can communicated functions of their datas (in this case,
PCA subspaces and gradients) and the aggregator can act as a
differentially private curator, communicating back to the sites
in a differentially private manner. Even though each site is
contributing some data, the privacy guarantees they will not
learn “too much” about the other sites’ data. This has the
added benefit of significantly reducing the amount of added
noise and may salvage some of the performance loss, allowing
stronger privacy protections by reducing e.
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