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Abstract—Building good feature representations and learning
hidden source models typically requires large sample sizes.
In many applications, however, the size of the sample at an
individual data holder may not be sufficient. One such application
is neuroimaging analyses for mental health disorders – there
are many individual research groups, each with a moderate
number of subjects. Pooling such data can enable efficient feature
learning, but privacy concerns prevent sharing the underlying
data. We propose a model for private feature learning in which
the data holders share differentially private views of their respec-
tive datasets to enable collaborative learning of a joint feature
map. We give an example of such an algorithm for independent
component analysis (ICA) – a popular blind source separation
algorithm used in neuroimaging analyses. Our algorithm is a
differentially private version of the recently proposed distributed
joint ICA algorithm. We evaluate the performance of this method
on simulated functional magnetic resonance imaging (fMRI) data.

I. INTRODUCTION

Privacy is a central challenge in designing collaborative
healthcare research systems. Researchers may wish to share
data collected from local studies: such sharing can increase
sample sizes leading to more robust findings that can address
more complex phenomena. However, a combination of ethical,
legal, and technological issues prevent them from openly
sharing this data, because study subjects or patients may
not wish to have their personal private health details shared
without sufficient protections in place. Several recent studies
have demonstrated the feasibility of identifying individuals
from purportedly de-identified of anonymized data [1], [2],
which only increases fears around open data sharing.
One alternative to open sharing of data is to share access

to the private data via a “curator” that manages access to the
data itself. In such a setting, algorithms for statistical analysis,
signal processing, or machine learning must operate in a
distributed manner. An algorithm can query an individual site’s
data through the curator. Only certain specified queries are
permitted (e.g. histograms, linear functions of the data, or other
simple functions), and the curator manages the privacy loss
from answering these queries. The key to this quantification
is using a privacy metric. One such metric is differential pri-
vacy [2], which measures privacy risk in terms of the difficulty
of the hypothesis test for determining if an individual record
is in the database or not. Differentially private algorithms
are (almost always) randomized; the randomness creates the
uncertainty in a hypothesis test that models an adversary

attempting to infer the presence/absence of an individual data
point in the data set. This randomness also means that the
curator provides approximate answers to queries. Thus, the
distributed algorithm must be robust to noise and that there
is a trade-off between privacy risk (often denoted by ϵ) and
accuracy (or utility) in distributed private data analysis.
One way in which larger sample sizes can help is learning

more efficient feature representations for complex data. The
use of a common lower-dimensional representation of the data
can make further processing more efficient in terms of sample
size, communication overhead, and robustness. Furthermore,
such a representation can be learned once but used in many
further computations. The composition property of differential
privacy shows that further data-independent processing of
the output of an ϵ-differentially private algorithm guarantees
privacy risk no more than ϵ, so the system only needs to “pay
once” for learning the feature map.
In this paper we adapt a recently-proposed algorithm for

decentralized feature learning based on independent compo-
nent analysis (ICA) [3]. The distributed joint ICA algorithm
(djICA) can be employed to perform temporal ICA of func-
tional magnetic resonance imaging (fMRI) data. ICA is a
blind source separation algorithm; the goal of temporal ICA is
to identify temporally independent components that represent
activation of different neurological regions over time. Because
temporal ICA operates on such high dimensional data, it
requires more samples than are typically available from a
single study. This is because of computational complexity
and statistical sample size - the ratio of spatial to temporal
dimensions often requires the aggregate temporal dimension
to be similar to the voxel dimension [4]. We propose a
differentially-private distributed ICA algorithm based on that
of Baker et al. [4], which can be applied to decentralized data.
The approach combines local computations as well as global
computations to obtain both local and global parameters. We
show that in some regimes, our proposed algorithm can find
underlying sources in decentralized data nearly as accurately
as centralized or pooled data.

II. PROBLEM FORMULATION

As mentioned earlier, ICA is quite popular for blind source
separation. It assumes that the observed signals are mixtures
of statistically independent sources [5]. Therefore, it aims to
decompose the mixed signals into the independent sources. In
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order to produce physiologically interpretable robust features,
ICA has been applied to brain imaging data. Successful appli-
cation of ICA on fMRI can be attributed to sparsity [6] and
statistical independence between the underlying sources [5].
In this paper we consider a generative ICA model, where the

independent sourcesS∈Rr×N,composedofNobservations
fromrstatistically independent components, and a linear
mixing process, defined with a mixing matrixA∈Rd×r,form
the observed dataX∈Rd×N as a productX=AS.Many
ICA algorithms propose to recover the “unmixing matrix”
W =A−1,assumingthatA is invertible [4], by trying to
maximize independence between rows of the productWX.
The maximal information transfer (Infomax) is a popular
heuristic for estimatingW that results in maximizing an
entropy functional related toWX. Denotingthesigmoid
function as

g(z)=
1

1+exp(−z)
(1)

we applyg(·)to a matrix or vectorZelement-wise:g(Z)is
amatrixwiththesamesizeasZand(g(Z))ij=g(Zij).The
(differential) entropy of a random vectorZwith joint density
qis

h(Z)=− q(Z) logq(Z)dZ. (2)

Now, the objective of Infomax ICA can be expressed as

Ŵ =argmax
W

h(g(WX)). (3)

In this paper we propose to modify a recently published [4]
decentralized data ICA algorithm to ensure differential pri-
vacy [2]. An algorithmA(B)taking values in a setTprovides
(ϵ,δ)-differential privacy if

Pr(A(D)∈S)≤exp(ϵ)Pr(A(D′)∈S)+δ, (4)

for all measurableS⊆Tand all data setsDandD′differing
in a single entry. This definition essentially states that the
probability of the output of an algorithm is not changed
significantly if the corresponding database input is changed
by just one entry. Here,ϵandδare privacy parameters, where
lowϵandδensure more privacy. It should be noted here
that the parameterδcan be interpreted as the probability that
the algorithm fails. Therefore, an(ϵ,0)-differentially private
algorithm guarantees much stronger privacy than an(ϵ,δ)-
differentially private algorithm, whereδ>0.Wereferto(ϵ,0)
differential privacy asϵ-differential privacy. For more details,
see the recent survey [7] or monograph [8].
In our setup, we have data distributed in different sites.

We want to learn “good” features by utilizing samples from
all sites while ensuring differential privacy. As mentioned
before, computations are performed in local sites as well
as the central site. In this scenario, two privacy concerns
may arise depending on whether the central site is trusted
or not. The local site can employ non-private algorithms and
send the parameters to the central site if the central site is
trusted. However, in the more general case, the central site

is not trusted and the local sites employ differentially-private
algorithms for computation of parameters.

III. ALGORITHM

A. Decentralized Joint ICA

ThedjICAalgorithm is an ICA algorithm that can be
applied to decentralized data [4]. A number of modified ICA
algorithms exist for joining various data sets [9] together and
performing simultaneous decomposition of data from a num-
ber of subjects and modalities [10]. For instance, group spatial
ICA (GICA) is a noteworthy one for multi-subject analysis
of task- and resting-state fMRI data [11]. It assumes that
the spatial map components (S)aresimilaracrosssubjects.
On the other hand, the joint ICA (jICA) [12] algorithm for
multimodal data fusion assumes that the mixing process (A)
is similar over a group of subjects. However, group temporal
ICA also assumes common spatial maps but pursues statistical
independence of timecourses. Consequently, like jICA, the
common spatial maps from temporal ICA describe a common
mixing process (A)amongsubjects. Whileveryinteresting,
temporal ICA of fMRI is typically not investigated because of
the small number of time points in each data set, which leads
to unreliable estimates [4]. The decentralized jICA approach
overcomes that limitation by leveraging information from data
sets distributed over multiple sites.

As indjICA[4], we take a model withssites in which site
ihas a collection of data matrices{Xi,m∈R

d×ni :m =
1,2,...,Mi}consisting of a total time course of lengthni
time points overdvoxels forMiindividuals. Sites concatenate
their local data matrices temporally to form ad×niMidata
matrixXi∈R

d×Ni whereNi=niMi.LetN =
s
i=1Ni

be the total length. We assume a common (global) mixing
matrixA∈Rd×rthat generates the time courses inXifrom
underlying sourcesSi∈R

r×Ni at each site. This yields the
following model:

X=[AS1AS2···ASs]∈R
d×N. (5)

Decentralized joint ICA [4] uses locally computed gradients
to estimate a common, global unmixing matrixW ∈Rr×d

corresponding to the Moore-Penrose pseudo-inverse ofA,
denotedA+.

We follow a two-step distributed principal component anal-
ysis (dPCA) procedure [4] in which each site combines local
PCA processing with a global PCA step after exchanging
information. This is an alternative to a single step in whichwe
compute a global PCA matrix but must send ad×dmatrix
between sites. Unfortunately, communicating a function ofthe
local data may not save in the sense of differential privacy;our
algorithmic contribution is to replace the PCA computations
with differentially private PCA algorithms. In particular,we
use a recently proposedSNalgorithm [13] which is a fast and
efficient algorithm forϵ-differentially private PCA. The end
result is a differentially private version ofdjICA.
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Algorithm 1PrivateLocalPCA

Require:Data matrixX∈Rd×n(withnsamples of dimen-
siond,eachsamplehasboundednorm),privacyparameter
ϵ

1:C←XX⊤

2:Generated×pmatrixE=[e1,e2,...,ep]whereei∼
N(0,12ϵId)andp=d+1

3:Ĉ← C+EE⊤

4:Compute the SVDĈ=UΣU⊤.
5:LetΣ(k)∈Rk×kcontain the largestksingular values and
U(k)∈Rd×kthe corresponding singular vectors.

6:SaveU(k)andΣ(k)locally.

7:returnP=U(k) Σ(k).

B. Differentially-private dPCA algorithms

Here, we describe privacy-preserving dPCA algorithms for
dimension reduction and whitening. This serves as a pre-
processing step to standardize the data prior todjICA,also
without communicating full data sets outside of local sites.
We replace theLocalPCAandGlobalPCAalgorithms indjICA
by aϵ-differentially private PCA algorithm [13]. The DP-PCA
algorithm provides anϵ-differentially private approximation to
the data second-moment matrixC=XX⊤.Forcompleteness,
we reproduce the method in Algorithm 1.
The second algorithm is simply theGlobalPCA algo-
rithm ofdjICAwith calls toLocalPCAreplaced by calls to
PrivateLocalPCA,andisgiveninAlgorithm2.

Algorithm 2PrivateGlobalPCA

Require:ssites with data{Xi∈R
d×Ni:i=1,2,...,s},

intended final rankr,localrankk≥r.
1:Choose a random orderπfor the sites.
2:P(1) =PrivateLocalPCA(Xπ(1),min{k,rank(Xπ(1))})
3:for allj=2tosdo
4: i=π(j)
5: SendP(j−1)from siteπ(j−1)to siteπ(j)
6: k′= min{k,rank(Xi)}
7: P′=PrivateLocalPCA(Xi,k

′)
8: k′=max{k′,rank(P(j−1))}
9: P(j)=PrivateLocalPCA([P′P(j−1)],k′)
10:end for
11:r′= min{r,rank(P(s))}
12:U=NORMALIZETOPCOLUMNS(P(s),r′)◃At last site
13:SendUto sitesπ(1),...,π(s−1).
14:for alli=1tosdo
15: Xi,red=U

⊤Xi ◃The locally reduced data
16:end for

C. Privacy-preservingdjICA

Our private version of thedjICAalgorithm is shown in
Algorithm 3. We replace theLocalPCAprocedure indjICA
withPrivateLocalPCAto guarantee differential privacy for the
preprocessing step. In thePrivateGlobalPCAstep (Algorithm

Algorithm 3differentially private decentralized joint ICA
(djICA)

Require:data{Xi,red∈R
r×Ni :i=1,2,...,s},wherer

is the same across sites, tolerance levelt=10−6,j=0,
maximum iterationsJ,∥∆W (0)∥

2
2=t,initiallearning

rateρ=0.015/ln(r)
1:InitializeW ∈Rr×r ◃for example,W =I
2:whilej<J,∥∆W(j)∥

2
2≥tdo

3: for allsitesi=1,2,...,sdo
4: GenerateE∈Rr×Nii.i.d∼Lap(∥W∥1ϵ )
5: Zi(j)=W(j−1)Xi+b(j−1)1

⊤+E
6: Yi(j)=g(Zi(j))
7: Gi(j)=ρI+(1−2Yi(j))Zi(j)

⊤ W(j−1)

8: hi(j)=ρ
Ni
m=1(1−2ym,i(j))

9: SendGi(j)andhi(j)to the aggregator site.
10: end for
11: At the aggregator site, update global variables
12: ∆W (j)=

s
i=1Gi(j)

13: W(j)=Wi(j−1) +∆W (j)
14: b(j)=b(j−1) +

s
i=1hi(j)

15: Check upper bound and learning rate adjustment.
16: Send globalW(j)andb(j)back to each site
17:end while

2), each siteifirst computes a differentially private PCA
subspace from its local data. LetUi∈R

d×kandΣi∈R
k×k

denote the top singular vectors and values from this decompo-
sition andU∈Rd×rthe common projection matrix produced
byPrivateGlobalPCA.ThesitesreceiveUand project their
local data to produceXi,red∈R

r×Ni.Theprojecteddatais
the input to the iterativedjICAalgorithm that estimates the
unmixing matrixW as described in Algorithm 3 [4].
Even though the preprocessing is done in a differentially

private manner, thedjICAalgorithm itself may leak infor-
mation about the sites’ local data since it relies on iterative
message-passing between the sites and a central aggregator.
We therefore modify (5) to add Laplace noise to guarantee
additional privacy in the iteration. The full mixing matrix
for the global data is modeled asA =(WU⊤)+ ∈Rd×r.
The algorithm iteratively updatesW using distributed gradient
descent [14]. At each iterationjthe sites update locally: in
lines 4 and 5, the sites adjust the local source estimatesZi
by the bias estimatesb(j−1)1⊤∈Rr×Ni,followedbythe
sigmoid transformationg(·);theythencalculatelocalgradients
with respect toWiandyiin lines 6 and 7. Hereym,i(j)is
them-th column ofYi(j).
After converging on a commonW,eachsiteestimatesits

sourcesSi:

Si=WXi,red. (6)

D. Proposed Differentially-privatedjICAAlgorithm

Theorem 1 (Differentially-privatedjICAAlgorithm):Adding
amatrixE,whichcontainsi.i.dsamplesfromLap(∥W∥1ϵ ),
to the variableZin step 4 of thedjICAalgorithm makes
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the algorithm(Jϵ,0)-differentially private, whereW is the
unmixing matrix.
Proof:Let us consider two neighboring data matricesX=

[x1x2···xM]andX
′=[x1x2···x

′
M],i.e.,thetwomatrices

are same except the last (or any one) individual is swapped.
We assume that individual data matrices satisfy∥xi∥2≤

1
2
√
d
.

Therefore,∥xi∥1≤
1
2.Now

∥X−X′∥2=∥xM −x
′
M∥2

≤∥xM∥2+∥x
′
M∥2

≤
1
√
d

Using the inequality betweenL2-norm andL1-norm, we have

∥X−X′∥1≤
√
d∥X−X′∥2≤

√
d
1
√
d
=1 (7)

In the PCA pre-processing step, we reduce the dimension of
the data matrixX fromd×N tor×N.Letusdenote
this reduced dimension data matrices asY andY′.From
the definition ofL2-norm of matrices, we can state that
∥Y∥2=∥X∥2.So,therelation∥Y−Y

′∥1≤1should also
hold. Under these conditions, we define the following function:

Z=f(Y)=WY +b, (8)

whereW ∈Rr×ris the weights matrix or the unmixing
matrix andb∈Rr×N is the bias estimate matrix. TheL1
sensitivity of the functionfis defined as

∆f= max
∥Y−Y′∥1≤1

∥f(Y)−f(Y′)∥1. (9)

This signifies the magnitude by which a single individual’s
data can change the function output in the worst case, and
is the uncertainty to be introduced in order to hide the
participation of a single individual. According to the Laplace
mechanism, we need to add a noise matrixE∈Rr×N to
f(Y)to make it(ϵ,0)-differentially private. Here, the matrix
E consists i.i.d. samples from a Laplace distribution with

variance2 ∆f
ϵ

2

.Now,using(8)and(9),wehave

∆f= max
∥Y−Y′∥1≤1

∥f(Y)−f(Y′)∥1

= max
∥Y−Y′∥1≤1

∥W(Y−Y′)∥1

But we note that∥W(Y−Y′)∥1≤∥W∥1∥Y−Y
′∥1.So,

we have∆f=∥W∥1.Therefore,ifweaddthenoisematrix
Ein each step at any site with i.i.d. entries from Lap(∆fϵ),
then thedjICAalgorithm is(ϵ′,0)-differentially private, where
ϵ′=JϵandJis the total number of iterations required.

IV. EXPERIMENTALRESULTS

We generated synthetic data from the same model as Baker
et al. [4] to test the impact of privacy on thedjICAalgorithm.
We tested the difference between ICA with global PCA pre-
processing on the pooled data and ICA with the two-stage
distributedPrivateGlobalPCAalgorithm. The source signals
Swere simulated using the generalized autoregressive (AR)
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Fig. 1. Independence of components for a fixedϵfor distributed synthetic
data

Privacy risk (ϵ)
10
-3

10
-2

10
-1

10
0N

or
m
al
i
z
e
d 
g
ai
n 
i
n
d
e
x

0

0.05

0.1

0.15

0.2
(a) Variation of performance - distributed data

Differentially-private djICA
djICA

Privacy risk (ϵ)
10-3 10-2 10-1 100N

or
m
al
i
z
e
d 
g
ai
n 
i
n
d
e
x

0.1

0.15

0.2

0.25

0.3
(b) Variation of performance - pooled data

Differentially-private djICA
djICA

Fig. 2. Variation of normalized gain index of differentially-privatedjICA
algorithm with differentϵwith that ofdjICAalgorithm for (a) distributed
data (1024 subjects) and (b) pooled data (512 subjects)

conditional heteroscedastic (GARCH) model [15], [16]. We
have utilized 1024 and 512 simulated subjects in our experi-
ments for the distributed setting and for pooled data setting,
respectively.

In order to demonstrate the quality of the estimated com-
ponents, it is intuitive to show the auto-correlation plots
of the estimated independent componentsSest.Fig.1(a)-(d)
show the auto-correlation ofSestobtained from the original
djICAalgorithm and Fig. 1(e)-(h) show the auto-correlation of
Sestobtained from the proposed differentially-privatedjICA
algorithm with fixed privacy (ϵ=1). As mentioned before,
we used 1024 subjects equally distributed among 4 sites.
We observe that for ϵ=1,thecomponentsarealmostas
independent as the non-private algorithm. However, with the
decrease ofϵto ensure more privacy, the independence of the
components starts to reduce quite sharply. We observed similar
results for the pooled data scenario.

We employ another index that quantizes the quality of
the unmixing matrix. One such index is the normalized gain
index [17], which varies from 0 to 1, with 0 indicating that
the unmixing matrix is an identity matrix. Fig. 2(a) shows
the variation of this index for differentially-privatedjICA
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algorithm with different privacy levels (i.e. different ϵ values)
for distributed data. For comparison with the non-private
djICA algorithm, we included the graph of the same index
in the same plot. Here, we observe that privacy has a negative
impact on the normalized gain index, i.e., the performance
of the ICA algorithm. This can be considered as the price
one has to pay in order to ensure privacy. For the pooled
data scenario, we observed similar performance degradation
of the differentially-private djICA algorithm when compared
with non-private djICA as shown in Figure 2(b) for the non-
pooled case. Because the sample size was smaller for the
pooled data simulations, the performance of the differentially-
private djICA algorithm and the non-private djICA algorithm
is slightly worse than their distributed counterparts.

V. CONCLUSIONS

In this paper we proposed some modifications to a recently-
proposed algorithm for feature learning using decentralized
data ICA. The proposed algorithm can be applied to temporal
ICA of fMRI data. The djICA algorithm is capable of ex-
tracting features from distributed data almost as good as from
the pooled data. We have generated synthetic data according
to a popular model for our experiments. We formulated
the whole system in such a way that some computations
are performed in local sites and some are performed in
the central site - this reduces the cost of transmitting large
matrices. We have graphically demonstrated that the recovered
components are statistically independent even for quite strict
privacy guarantee. We have also shown the variation of privacy
with a performance index, which showed empirically that the
proposed differentially-private algorithm ensures good utility
while preserving privacy.

Although our results in this paper are not comprehensive,
they indicate the insisting on “untrusted” computation infras-
tructures – making each site render all messages differentially
private before communicating – can have a significant impact
on privacy-preserving feature learning. An alternative, left for
future work, is to have the centralized aggregator be trusted –
sites can communicated functions of their datas (in this case,
PCA subspaces and gradients) and the aggregator can act as a
differentially private curator, communicating back to the sites
in a differentially private manner. Even though each site is
contributing some data, the privacy guarantees they will not
learn “too much” about the other sites’ data. This has the
added benefit of significantly reducing the amount of added
noise and may salvage some of the performance loss, allowing
stronger privacy protections by reducing ϵ.
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