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Abstract—Dictionary learning is the problem of estimating
the collection of atomic elements that provide a sparse rep-
resentation of measured/collected signals or data. This paper
finds fundamental limits on the sample complexity of estimating
dictionaries for tensor data by proving a lower bound on the
minimax risk. This lower bound depends on the dimensions of
the tensor and parameters of the generative model. The focus of
this paper is on second-order tensor data, with the underlying
dictionaries constructed by taking the Kronecker product of two
smaller dictionaries and the observed data generated by sparse
linear combinations of dictionary atoms observed through white
Gaussian noise. In this regard, the paper provides a general lower
bound on the minimax risk and also adapts the proof techniques
for equivalent results using sparse and Gaussian coefficient
models. The reported results suggest that the sample complexity
of dictionary learning for tensor data can be significantly lower
than that for unstructured data.

I. INTRODUCTION

Dictionary learning has recently received significant at-
tention due to the increased importance of finding sparse
representations of signals/data. In dictionary learning, the goal
is to construct an overcomplete basis using input signals such
that each signal can be described by a small number of atoms
(columns) [1]. Although the existing literature has focused
on one-dimensional data, many signals in practice are multi-
dimensional and have a tensor structure: examples include
2-dimensional images and 3-dimensional signals produced
via magnetic resonance imaging or computed tomography
systems. In traditional dictionary learning techniques, multi-
dimensional data are processed after vectorizing of signals.
This can result in poor sparse representations as the structure
of the data is neglected [2].

In this paper we provide fundamental limits on learning
dictionaries for multi-dimensional data with tensor structure:
we call such dictionaries Kronecker-structured (KS). Several
algorithms have been proposed to learn KS dictionaries [2]-[7]
but there has been little work on the theoretical guarantees of
such algorithms. The lower bounds we provide on the minimax
risk of learning a KS dictionary give a measure to evaluate the
performance of the existing algorithms.

In terms of relation to prior work, theoretical insights
into classical dictionary learning techniques [8]-[16] have
either focused on achievability of existing algorithms [8]-
[14] or lower bounds on minimax risk for one-dimensional
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data [15], [16]. The former works provide sample complexity
results for reliable dictionary estimation based on the ap-
propriate minimization criteria [8]-[14]. Specifically, given a
probabilistic model for sparse signals and a finite number of
samples, a dictionary is recoverable within some distance of
the true dictionary as a local minimum of some minimization
criterion [12]-[14]. In contrast, works like Jung et al. [15],
[16] provide minimax lower bounds for dictionary learning
under several coefficient vector distributions and discuss a
regime where the bounds are tight for some signal-to-noise
(SNR) values. Particularly, for a dictionary D € R™*? and
neighborhood radius 7, they show N = O(r?mp) samples
suffices for reliable recovery of the dictionary within its local
neighborhood.

While our work is related to that of Jung et al. [15], [16], our
main contribution is providing lower bounds for the minimax
risk of dictionaries consisting of two coordinate dictionaries
that sparsely represent 2-dimensional tensor data. The full
version of this work generalizes the results to higher-order
tensors [17]. The main approach taken in this regard is the
well-understood technique of lower bounding the minimax
risk in nonparametric estimation by the maximum probability
of error in a carefully constructed multiple hypothesis testing
problem [18], [19]. As such, our general approach is similar to
the vector case [16]. Nonetheless, the major challenge in such
minimax risk analyses is the construction of appropriate multi-
ple hypotheses, which are fundamentally different in our prob-
lem setup due to the Kronecker structure of the true dictionary.
In particular, for a dictionary D consisting of the Kronecker
product of two coordinate dictionaries A € R™:*Pt and
B € R"™2%P2_ where m = mimsg and p = p1pe, our analysis
reduces the sample complexity from O(r?mp) for vectorized
data [16] to O(r2(mqp1 +mapz)). Our results hold even when
one of the coordinate dictionaries is not overcomplete (note
that both A and B cannot be undercomplete, otherwise D
won’t be overcomplete). Like previous work [16], our analysis
is local and our lower bounds depend on the distribution of
multidimensional data. Finally, some of our analysis relies on
the availability of side information about the signal samples.
This suggests that the lower bounds can be improved by
deriving them in the absence of such side information.

Notational Convention: Underlined bold upper-case, bold
upper-case, bold lower-case and lower-case letters are used
to denote tensors, matrices, vectors, and scalars, respectively.
We write [K| for {1,...,K}. The k-th column of a matrix
X is denoted by xj, while X7 denotes the matrix consisting
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of columns of X with indices I, ¥ X denotes the sum of all
elements of X, and I; denotes the d x d identity matrix. Also,
[|v]lo and ||v]|2 denote the £; and 5 norms of the vector v,
respectively, while | X|z and ||X||r denote the spectral and
Frobenius norms of X, respectively.

We write X ®X5 for the Kronedker product of two matrices
Xy e R™*" and X5 € RF*Y: the result is an mp x ng matrix.
Given X; £ R™*" and Xo € EF*", we write X » Xa
for their mp % n Kharri-Rao product [20]: this is essentially
the column-wise Kronecker product of matrices. Given two
matrices of the same dimension X, Xs € R™*™, their m x
n Hadamard product is denoted by Xy @ Xa, which is the
element-wise product of X; and Xs. For matrices X; and X,
we define their distance to be | X; — Xs||p. We use fiz) =
Qig(=)) if hme_,p f(=)/g(c) = ¢ < oo for some constant c.

II. BACKGROUND AND PROELEM FORMULATION

In the conventional dictionary leaming setup, it is assumed
that an observation y € R™ is generated via a fixed dictionary,

(1)

in which the dictionary D £ BR™*F is an overcomplele basis
{(m < p) with unit-norm columns, x € BP is the coefficient
vector, and n € R™ is the underlying noise vector. In conirast
to this conventional setup, our focus in this paper is on second-
order tensor data. Consider the 2-dimensional observation ¥ &
R™1 %M 1Jsing any separable transform, Y can be written as

(2)

where X € RP'*P? jg the matrix of coefficients and T <
R *™ apd Ty < RP2*™2 gre non-singular matrices trans-
forming the columns and rows of Y, respectively. Defining
AL (T;T and B 2 (T )T, we can use a property of
Kronecker products [21], vec(BXAT) = (A®B) vec(X), to
get the following expression for y £ vec(Y):

y=Dx+mn,

Y = (T7)TXT; ',

y=(A®B)x+n (3)
for coefficient vector x £ vec(X) € RP, and noise vector
n € R™, where p £ pyps and m £ mymao. In this work, we
assume N independent and identically distributed (i.i.d.) noisy
observations y that are penerated according to the model in
(3). Concatenating these observations in Y € R™*V  we have

4

where D £ A ®B is the unknown KS dictionary, X € RF*V
is the coefficient matrix which we initially assume to consist of
zero-mean random coefficient vectors with known distribution
and covariance ., and N € R™*V is additive white
Gaussian noise (AWGN) with zero mean and variance o=.
Our main goal in this paper is to derive conditions under
which the dictionary D can possibly be learned from the
noisy observations given in (4). In this regard, we assume
the true KS dictionary D) consists of unit norm columns and
we camry out local analysis. That is, the true KS dictionary

D is assumed to belong to a neighborhood around a fixed

Y =DX +N,

(normalized) reference KS dictionary Dy = Ap @ By, ie.,
llag4/la =1 ¥j € [p1], [[boslla = 1 V5 € [po], and Dy € D:

DE{D eR™P: || —1Vj €[], D'— A’ B,
A ER™P B ER™P) and  (5)
DeXDo,r) 2 {D'eD: D ~Dollp <r}, 6

where the radius = is known. It is worth noting here that,
similar to the analysis for vector data [16], our analysis
is applicable to the global KS dictionary learning problem.
Finally, some of our analysis in the following also relies on the
notion of the restricted isometry property (RIP). Specifically,
D satisfies the RIP of order = with constant 4, if

W s-sparse x, (1 — d,)[|x[|3 < [Dx|l3 < (1 + &)|x[3. (D

A Minimax risk analvsis

We are interested in lower bounding the minimax risk for

estimating D based on observations Y, which is defined as

the worst-case mean squared error (MSE) that can be obtained

by the best KS dictionary estimator I){Y'). That is,
= 2

£y {|Bv) -DJ2}.

*=wmf s=sup (8)

D DeX(Dg.r)
In order to lower bound this minimax risk =*, we mesort to the
multiple hypothesis testing approach taken in the literature on
nonparametiric estimation [18], [19]. This approach is equiv-
alent to generating a KS dictionary Iy uniformly at random
from a carefully constructed class Ty = {Dy,...,Dp} C
A(Dg,r), L = 2, for a given (Dy, r). Observations ¥ =
ID;X + N in this setting can be interpreted as channel outputs
that are fed into an estimator that must decode D;. A lower-
bound on the minimax risk in this setting depends not only
on problem parameters such as the number of observations
N, noise variance «~, dimensions of the true KS dictionary,
neighborhood radius r, and coefficient distribution, but also
on various aspects of the constructed class Ty, [18].

To ensure a tight lower bound, we must construct Ty, such
that the distance between any two dictionaries in T, is suffi-
ciently large and the hypothesis testing problem is sufficiently
hard, i.e., distinct dictionaries result in similar observations.
Specifically, for [,1' € [L], we desire a construction such that

Wl #1',|Dy — Dypllp =22 and
Dkt (fou(Y)|lfp, (Y)) < az, (9)

where Dy, ( fou(Y)|| fo,. (Y }] denotes the Kullback-Leibler
(KL) divergence between the distributions of observations
based on Dy € Dy and Dy € Dy, whilke = and ap are
non-negative parameters. Roughly, the minimax risk analysis
proceeds as follows. Considering D(Y') to be an estimator that
achieves =*, and assuming =* < = and D; generated uniformly

at random from D, we have P(I{(Y) # 1) = 0 for the

minimum-distance detector [(Y') as long as |[D(Y)-Dy||r <
V/2z. The goal then is to relate =* to P(|D(Y)—Dy|r = v2¢)

and ]I"{RY] # [) using Fano's inequality [19]:

(1 -P(Y) # ) logo L —1 = I(Y;1), (10)

1149



2016 |EEE International Symposium on Information Theory

where I(Y;!) denotes the mutual information (MI) between
the observations Y and the dictionary ID;. Notice that the
smaller oy, is in (9), the smaller I(Y;l) will be in (10).
Unfortunately, explicitly evaluating I(Y;1) is a challenging
task in our setup because of the underlying distributions.
Similar to [16], we will instead resort to upper bounding
I(Y;I) by assuming access to some side information T{X)
that will make the observations Y conditionally multivariate
Gaussian (recall that I(Y;l) < I{Y;I|T(X))). Ouwr final
results will then follow from the fact that any lower bound
for =* pgiven the side information T(X) will also be a lower
bound for the general case [16].

B. Coefficient distribution

The minimax lower bounds in this paper are derived for var-
ious coefficient distributions. First, similar to [16], we consider
arbitrary coefficient distributions for which the covariance
matrix ¥ exists. We then specialize our resulis for sparse
coefficient vectors and, under additional assumptions on the
reference dictionary Dy, obtain a tighter lower bound for some

signal-to-noise ratio (SNR) regimes, where SNE = %&ﬂ
1) General coefficients: The coefficient vector x in ﬁ'llS

case is assumed to be a zero-mean random vector with
covariance ¥.. We also assume access to the side information
T(X) = X to obtain a lower bound on =* in this setup.

2) Sparse coefficients: In this case, we assume X to be an s-
sparse vector such that the support of x, denoted by supp(x),
is uniformly distributed over £ = {8 C [p] : | 8] = s}:

1
P(supp(x) = &) = ﬁ for any S € £. (11)
]
Further, we model the nonzero entries of x, i.e., Xs, as drawn

in an i.i.d. fashion from a distribution with variance =2:

E.{xsx§|S} = o5 L. (12)
Notice that an x under the assumptions of (11) and (12) has

L]

B, = ;aﬁlp. (13)
Further, it is easy to see in this case that SNR = ;—‘E& Finally,
the side information assumed in this sparse coefficients setup
will either be T(X) = X or T(X) = supp(X).

III. Lower BOUND FOR GENERAL COEFFICIENTS

We now provide our main result for the lower bound for
the minimax risk of the KS dictionary learning problem for
the case of general (i.i.d.) coefficient vectors.

Theorem 1. Consider a KS dictionary learning problem
with N Lid observations generated according to model (3)
and the true dictionary satisfving (6) for some r and Dy.
Suppose X, exists for the zero-mean random coefficient
vectors. If there exists an estimator with worsi-case MSE
et < 2 min{1, 2}, then the minimax risk is lower
bounded by

C'1r o2
= Npl|Z:l2

: (er(pr(my — 1) + pa(ma — 1)) —3) (14)

ﬁrranyﬂ-::cl{r_‘ﬂMD-::t{LwhereGl=%‘:}E.

Outline of Proof: The idea of the proof, as discussed in
section II-A, is that we construct a set of L distinct KS
dictionaries that satisfy:

o D ={Dy,.... D} C X(Dy,r)

« Any two distinct dictionaries in Ty, are separated by a

minimum distance in the neighborhood, i.e., for any [, 1 £
[L] and some positive £ < 4= min{1, I }:

—DjllF = 2v2e, for l A1, (15)

Notice that if the true dictionary, I); £ Dy, is selected uni-
formly at random from 77, in this case then, given side infor-
mation T{X) = X, the observations Y follow a multivariate
Gaussian distribution and an upper bound on the conditional
MI I{Y;l|T{X)) can be obtained by using an upper bound
for KL-divergence of multivariate Gaussian distributions. This
bound depends on parameters =, N, mq, ma, p1,po, B, 5,7,
and o2,

Next, assuming (15) holds for Dy, if there exists an estima-
tor DfY ) achieving the minimax risk =* < & and the recovered
dictionary D(Y) satisfies |[D(Y) — Dy||r < v/2z, the mini-
mum distance detector IEY can recover ;. Consequently, the
probability of error P(D(Y) # Dy) < P(|D(Y) — Dillr =
+22) can be used to lower bound the conditional MI using
Fano's inequality. The obtained lower bound in our case will
only be a function of L.

Finally, using the obtained upper and lower bounds for the
conditional MI:

(|

m < I(Y;1T(X)) < m, (16)

a lower bound for the minimax risk =* is attained.

A formal proof of Theorem 1 relies on the following lemmas
whose proofs appear in the full version of this work [17]. Note
that since our construction of T; is more complex than the
vector case [16, Theorem 1], it requires a different sequence
of lemmas, with the exception of Lemma 3, which follows
from the vector case.

Lemma 1. There exists a set of L = 2°'(™P)—2 magrices
A, ¢ R™*P, where elements of A, take values o for some
a >0, suchfhaffarfl’ €L, 1 #1U any t > 0 and

£1 < ﬂl.ugﬂ (—gm—p) the following relation is sarisfied:

> aioan <t a7

Lemma 2 Considering the generative model in (3), given
some v > 0 and reference dictionary Dy, there exisis a set
Dy C X(Dy,r) of cardinaliry I = 201 ((m1—1lipi+{ima—1jpz)—1
mchrhafﬁranyﬂ-::cl-::#:g?, any 0 < t < 1, and any
=" = 0 sarisfving

- Td
&' < min {rﬂ.. 4—} (18)
iy
and any 1,I' € [L], with | # ', we have
2p 8,
Ta-0e <D -Dyl} < B (19
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Furthermore, considering the general coefficient model for X

and assuming side informarion T(X) = X, we have

ANP|Zsll2 ,
252 :

Vi, I(Y;lT(X)) < (20)

Lemma 3. Consider the generative model in (3) with minimax
risk =* < = for some £ = (. Assume there exisis a finite set
Dy, C D with L dictionaries satisfving

| Dy — Dy|ff > 8 1)
for 1 # U, Then for any side l'nfurma.fiun T(X), we have
IY; | T(X)) = lqu{L} —1. (22)

Proof of Theorem 1. According to Lemma 2, for any =" sat-
isfying (18), there exists a set Dy C X(Dyp,r) of cardinality
L = 2"1'[["" Upr+(ma—1)p2)—1 that satisfies (20) for amy
£p < Sl.ug am:lan}'ﬂ < t < 1. According to Lemma
3, if we set 31}{1 — t)e' = &g, (21) is satisfied for Dy
and provided there exists an eshmamr with worst case MSE
satisfying =* < M n{l, } (22) holds. Combining
(20) and (22) we yl

32N p|| 2
31oma(D) ~ 1 STOGUTER) < B2
where 3 = 28(1 — t). Defining C; = =42, (23) translates
into
£ 2 DT (o) py(my — 1)+ palma — 1) =3). @4)
= N_‘.D”E " ciipi\my — pa\ma
O

IV. LowER BOUND FOR SPARSE COEFFICIENTS

We now turn our attention to the case of sparse coefficients
and obtain lower bounds for the corresponding minimax risk.
We first state a corollary of Theorem 1, for T(X) =

Corollary 1. Consider a KS dictionary learning problem with
N i.id observations according to model (3). Assuming the true
dictionary satisfies (6) for some r and the reference dictionary
Dy satisfies RIP(s, %}, if the random coefficient vector x is
selected according to (11) and there exfsfs an estimator with
waorst-case MSE error =* < QF{; Y mi n{l, dp} the minimax
risk is lower baundsd by

> G0 y(my — 1) + pama — 1)) — 3)

~ Nso2
doop
™
This mesult is a direct consequence of Theorem 1, by
substituting the covariance matrix of X given in (13) in (14).

(23)

farmryﬂ-::q-::ﬁ.g?andﬂ{t{l, where Cy =

A. Sparse Gaussian coefficients

In this section, we make an additional assumption on the
coefficient vector generated according to (11) and assume
non-zero elements of x follow a Gaussian distribution. By
additionally assuming the non-zero entries of x are iid., we
can write Xg as

Xs ~N(0,0.L). (26)

m

B = |=[5| 218
E1e] @ ElEEIE
HE £ =& 27

ap@by apaby agaby ay b

D=A®B Dy,

Fig. 1. An illustration of Dy s with p1 = 3, p2 = 6 and g =4
Here, Sq = {1,2, 2,3}, Sis = {3, 1,4, 5}, and S = {3, 7, 10, 1?}
Therefore, given side information T(x) = supp(x), obser-
vations y follow a multivariate Gaussian distribution. We
now provide a theorem for the lower bound attained for this
coefficient distribution.

Theorem 2. Consider a KS dictionary learning problem with
N iid observations according to model (3). Assuming the
true dictionary satisfies (6) for some v and the reference
coordinate dictionaries Ag and By sarisfy Rl P(s,%j, if the
random coefficient vector X is selected according ro (11) and
(26) and there exists an emma.far with worsi-case MSE error

o= m aup} then the minimax risk is lower
bounded by
Corlo?t
' > Famr (@ilm —1) +pama —1) =3) @D
forany 0 < ¢y < and 0 < t < 1, where O3 = 1.58 x
10—% P{l — t}
—a

Outline of Progf: The constructed dictionary class T in
Theorem 2 is similar to that in Theorem 1. But the upper
bound for the conditional MI, I(Y;[| supp(X)), differs from
that in Theorem 1 as the side information is different.

Given the true dictionary I); and support & for the k-
th coefficient vector Xg, let Dy s, denote the columns of Dy
corresponding to the non-zeros elements of x;.. In this case,
we have

¥ie =Dy s x5, +n, k< [N] (28)

We can write the subdictionary D); s, in terms of the Khatri-
Rap product of two smaller matrices:

D! ,AS" = A-IQ,S;M ¥ B!*.Skhﬁ {29}

where S = {ixHi=1, ik € [p1], and Spp = {1}y ik €
[p), are multisets with the following relationship with Sp =
{ig}e_1:tk € [p: i = (e — 1)p2 + 1}, k € [s]. Note that
A s, and By, s, are not submatrices of A; and B;,, as
Spg and Spy are multisets. Figure 1 provides a visual illustra-
tion of (29). Therefore, the observations follow a multivariate
Gaussian distribution with zero mean and covariance matrix:

iy = og5(A, s, * By, s, ) (AL s, * B, s,)T + 071
(30)
and we need to obtain an upper bound for the conditional MI
using (30). We state a variation of Lemma 2 necessary for the

proof of Theorem 2. The proof of the lemma is again provided
in [17].

Lemma 4. Considering the generative model in (3), pgiven
some v > 0 and reference dictionary Dy, there exisis a set
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TABLE 1
ORDER-WISE LOWER BOUNDS ON THE MINIMAX RISK FOR VARIOUS
COEFFICIENT DISTRIBUTIONS

Dictionary Unstructured [16] | Kronecker ithis paper)
Distribution
rip r2(mypy + mapa)
Sme P L —— T
NSNE NmSNE
. rip r3(m1p1 + mapa)
Gaussian Sparse
NmSNR2 Nm2SNR2

Dz, € X(Do,) of cardinality L = 24((™s=rw+(ma—ra) !

such thar for any 0 < ¢y < Slug?’ any 0 < t < 1, and any
=" = 0 sarisfving
R
0<e {mm{r T} (31)
"dp
and any 1,I' € [L], with | # ', we have
2 8
21— <D -Delf < 5. (D)

Furthermore, assuming the reference cuum.’ma.fs dictionaries
Ay and By sarisfv RIP(s, 11;} and the coefficient marrix X
is selected according to (11) and (26), considering side
information T(X) = supp(X), we have:

Ns&?

€. (33)

I(Y; | T(X)) < ?921( )

Proof of Theorem 2. According to Lemma 4, for any = sat-
isfying (31), there exists a set Ty C X(Dyp, ) of cardinality
L = 2"1'[["‘1 Upr+(ma—1)p2)—1 that satisfies (33) for any
.:1-::Sl s and any 0 < t < L Semng;Hl t)e! = 8e,
(21) is sahsﬁad for T, and, provided there f:x]sls an eshmamr

with worst case MSE satisfying * < 2209 minf1, 4p} (22)
holds. Consequently,
1 8 x 7921 fo,\4 Ns?
= _1< . - a4
5 loga(L) — 1 = I(Y;IIT(X)) = o (J ) =
(34)

where c; = (1 — t). Defining C2 =
(34) can be written as

1.58 x 1075 B0

) 2 (e1(pr(my — 1) + pa(ma —

E}G{Ju Ns?

=

V. DiscussION AND CONCLUSION

In this paper we follow an information-theoretic approach
to provide lower bounds for the worst-case MSE of KS
dictionaries that generate 2-dimensional tensor data. Table
I lists the dependence of the known lower bounds on the
minimax rates on various parameters of the dictionary learning

2
problem and the SNR= —4.. Compared to the results in [16]

for the unstructured ﬂll:tlﬂ‘llﬂ]‘}’ learning problem, which are
not stated in this form, but can be reduced to this, we are
able to decrease the lower bound in all cases by reducing the

scaling O(pm) to O(pimy + pama) for KS dictionaries. This
is intuitively pleasing since the minimax lower bound has a
linear relationship with the number of degrees of freedom of
the KS dictionary, which is (pymy + pams), and the square
of the neighborhood radius 2. The results also show that the
minimax risk decreases with a larger number of samples N
and increased SNR. Notice also that in high SNR regimes, the
lower bound in (25) is tighter, while (27) results in a tighter
lower bound in low SNR regimes. Our bounds depend on
the signal distribution and imply necessary sample complexity
scaling N = @(r?(myp; + maps). Future work includes
extending the lower bounds for higher-order tensors and also
specifying a learning scheme that achieves these lower bounds.
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