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Data-Dependent Bounds on Network Gradient Descent

Avleen Bijrall, Anand D. Sarwate?, and Nathan Srebro®

Abstract— We study a consensus-based distributed stochastic
gradient method for distributed optimization in a setting com-
mon for machine learning applications. Nodes in the network
hold disjoint data and seek to optimize a common objective
which decomposes into a sum of convex functions of individual
data points. We show that the rate of convergence for this
method involves the spectral properties of two matrices: the
standard spectral gap of a weight matrix from the network
topology and a new term depending on the spectral norm of
the sample covariance matrix of the data. This result shows
the benefit of datasets with small spectral norm. Extensions of
the method can identify the impact of limited communication,
increasing the number of nodes, and scaling with data set size.

I. INTRODUCTION

This paper studies the problem of minimizing a regularized
convex function [1] of the form

N

£ T .
Jw) = 3T B2 M)
i=1

=B, p [(wTxy)] + 5 WP,

where £{-) is convex and Lipschitz and the expectation is
with respect to the empirical distribution P corresponding
to a given data set with IV total data points {(x, )} We
will assume x; € R and y, € R. This regularized empirical
risk minimizarion formulation encompasses algorithms such
as support vector machine classification, ridge regression,
logistic regression, and others [2]. For example x could
represent d pixels in a grayscale image and y a binary label
indicating whether the image is of a face: w'x gives a
confidence value about whether the image is of a face or
not

We would like to solve such problems using a network
of m processors connected via a network (represented by a
graph indicating which nodes can communicate with each
other). The system would distribute these N points across
the m nodes, inducing local objective functions J,(w) ap-
proximating (1). Decentralized optimization algorithms for
statistical computation and machine learning on large data
sets iry to trade off efficiency (in terms of estimation error)
and speed (from parallelization).

This work was supported by the National Science Foundation under award
CCF-1440033.

lAvieen Bijral is with Microsoft, Redmond, WA 98052, USA.
avbiijral@microsoft.com

ZAnand D. Sarwale is with the Department of Electrical and Computer
Engineering, Rutgers, The State University of New Jersey, 94 Brett Road,
Piscataway, NJ 08854, USA. anand. sarwate@rutgers. edu

IMathan Srebro is with the Toyota Technological Institue at Chicago,
6045 S. Kenwood Ave., Chicago, IL 60637, USA. natifttic.edu

978-1-5090-4550-1/16/$31.00 ©2016 IEEE

The theoretical analysis of distributed optimization meth-
ods has focused on providing strong data-independent con-
vergence rates under analytic assumptions on the objective
function such as convexity and smoothness. We analyze a
distributed primal averaging [3] algorithm in which nodes
process points sequentially, performing a stochastic gradient
descent (SGD) update locally and average the iterates of their
neighbors after each pradient step. In this paper we analyze
the convergence rate to identify factors corresponding to
the underlying data distribution. This work is in the spirit
of previous work [4] which studying mini-batching. Here
we see that the spectral norm p* = oy (Ep[xx"]) affects
the rate of convergence: we prove an upper bound on
the suboptimality gap for distributed primal averaging that
depends on p°. Our result suggests that networks of size
m < - gain from parallelization.

UnSerstanding how the data distribution affects the asymp-
totics of distributed optimization methods is challenging
because the statistical assumption on the nodes’ data means
that in homogenous networks, each node can reach the global
optimum by processing its own data [5]. In this sense the
network “hurts” the optimization process by distributing the
data so that each node converges slower. This is in contrast to
mini-batching, in which parallelizing gradient computations
leads to speed ups. Empirically, we see that factors such
as the sparsity may impact the degree to which distributed
processing can help. Our upper bound corroborates that
empirical evidence, but without a matching lower bounds
we cannot say that p° determines the rate of convergence.

Related Work. Several authors have proposed distributed
algorithms involving nodes computing local gradient steps
and averaging iterates, gradients, or other functions of their
neighbors [3], [6], [7]. By alternating local updates and
consensus with neighbors, estimates at the nodes converge to
the optimizer of J(-). In these works no assumption is made
on the local objective functions and they can be arbitrary.
Consequently the convergence guarantees do not reflect the
setting when the data is homogenous (for e.g. when data has
the same distribution); in particular, the error increases as
we add more machines. This is counterintuitive, especially
in the larpe scale regime, since this suggests that despite
homogeneity the methods perform worse than the centralized
setting (all data on one node).

We provide a first data-dependent analysis of a consensus
based stochastic gradient method in the homogenous setting
and demonsirate that there exist regimes where we benefit
from having more machines in any network

In contrast to our stochastic gradient based results, data
dependence via the Hessian of the objective has also been
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demonsirated in parallel coordinate descent based approaches
of Liu et al. [8] and the Shotgun algorithm of Bradley et
al. [9]. The assumptions differ from us in that the objective
function is assumed to be smooth [8] or £, regularized [9].
Most importantly, our results hold for arbitrary networks of
compute nodes, while the coordinate descent based results
hold only for networks where all nodes communicate with a
central aggregator (sometimes referred to as a master-slave
architecture, or a star network), which can be used to model
shared-memory systems. Another interesting line of work
is the impact of delay on convergence in distributed opti-
mization [10]. These results show that delays in the gradient
computation for a star network are asymptotically negligible
when optimizing smooth loss functions. We study general
network topologies but with intermittent, rather than delayed
communication. Our result suggest that certain datasets are
more tolerant of skipped communication rounds, based on
the spectral norm of their covariance.

We take an approach similar to that of Takat et al. [4] who
developed a speciral-norm based analysis of mini-batching
for non-smooth functions. We decompose the iterate in terms
of the data points encountered in the sample path [11]. This
differs from analysis based on smoothness considerations
alone [10]-[13] and gives practical insight into how com-
munication (full or intermittent) impacts the performance
of these algorithms. Note that our work is fundamentally
different in that these other works either assume a centralized
setting [11]-[13] or implicitly assume a specific network
topology (e.g. [14] uses a star topology). For the main
results we only assume strong convexity while the existing
guarantees for the cited methods depend on a variety of
regularity and smoothness conditions.

Limitation. In the stochastic convex optimization (see for
e.g. [15]) setting the quantity of interest is the population
objective corresponding to problem 1. When minimizing this
population objective our results suggest that adding more
machines worsens convergence (See Theorem 1). For finite
data our convergence results satisfy the intuition that adding
more nodes in an arbitrary network will hurt convergence.
The finite homogenous setting is most relevant in settings
such as data centers, where the processors hold data which
essentially looks the same. In the infinite or large scale
data setting, common in machine learning applications, this
is counterintuitive since when each node has infinite data,
any distributed scheme including one on arbitrary networks
shouldn’t perform worse than the centralized scheme (all data
on one node). Thus our analysis is limited in that it doesn’t
unify the stochastic optimization and the consensus setting
in a completely satisfactory manner.

In this paper we focus on a simple and well-studied
protocol [3]. However, our analysis approach and insights
may yield data-dependent bounds for other more complex
algorithms such as distributed dual averaging [6]. More
sophisticated gradient averaging schemes such as that of
Mokhtari and Ribeiro [16] can exploit dependence across
iterations [17], [18] to improve the convergence rate; an-
alyzing the impact of the data distribution is considerably

more complex in these algorithms.

We believe that our results provide a first step towards un-
derstanding data-dependent bounds for distributed stochastic
optimization in settings common to machine lkearning. Our
analysis coincides with phenomenon seen in practice: for
data sets with small p, distributing the computation across
many machines is beneficial, but for data with larger p more
machines is not necessarily better. Our work suggests that
taking into account the data dependence can improve the
empirical performance of these methods.

In this paper we describe our basic result for synchronous
networked gradient descent. Full details and proofs are
deferred to the full version of our manuscript [19].

II. MoDEL

We will use boldface for vectors. Let [k] = {1,2,... k}
Unless otherwise specified, the norm ||| is the standard
Euclidean norm. The spectral norm of a matrix A is defined
to be the largest singular value o3(A) of the matrix A or
equivalently the square root of the larpest eigenvalue of
AT A. For a graph G = (V,£) with vertex set V and edge
set £, we will denote the neighbors of a vertex ¢ € V by
N(E) CV.

Data model. Let P be a distribution on R%+! such that
for (x,y) ~ P, we have ||x|| < 1 almost surely. Let S5 =
{x1,%0,..., Xy} be i.id sample of d-dimensional vectors
from P and let P be the empirical distribution of S. Let
¥ — E, _p[xx"] be the sample second-moment matrix of
5. Our goal is to express the performance of our algorithms
in terms of p2 = o1 (%), the spectral norm of £. The spectral
norm p? can vary significantly across different data sets. For
example, for sparse data sets p° is often small. This can
also happen if the data happens to lie in low-dimensional
subspace (smaller than the ambient dimension ).

Problem. Our problem is to minimize a particular instance
of (1) where the expectation is over a finite collection of data

points:

w* 2 argmin J(w) 2)
W

Let Ww;(t) be the estimate of w* at node j € [m] in the
t-th iteration. We bound the expected gap (over the data
distribution) at iteration T between J(w*®) and the value
J(w,(T)) of the global objective J(W;(T)) at the output
W;(T') of each node j in our distributed network. We
will denote the subgradient set of J{w) by &J(w) and a
subgradient of J{w) by V.J(w) € 8J(w).

In our analysis we will make the following assumptions
about the individual functions £(w' x): (a) The loss func-
tions {£(-)} are convex, and (b) The loss functions {£(-;y)}
are L-Lipschitz for some L = 0 and all y. Note that J(w) is
p-strongly convex due to the fs-regularization. Our analysis
will not depend on the the response y except through the
Lipschitz bound I so we will omit the explicit dependence
on y to simplify the notation in the future.

Network Model. We consider a model in which minimiza-
tion in (2) must be carried out by m nodes. These nodes
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are arranged in a network whose topology is given by a
graph G — an edge (i, ;) in the graph means nodes ¢ and
j can communicate. A matrix P is called graph-conformant
if Fy; = 0 only if the edge (i,7) is in the graph. We will
consider algorithms which use a doubly stochastic and graph-
conformant sequence of matrices P(t).

Sampling Model. We assume the N data points are
divided evenly and uniformly at random among the m nodes,
and define n = N/m to be the number of points at each
node. This is a necessary assumption since our bounds
are data dependent and depend on subsampling bounds of
spectral norm of certain random submatrices. However our
data independent bound holds for arbitrary splits. Let S;
be the subset of n points at node i. The local stochastic
gradient procedure consists of each node i € [m] sampling
from S; with replacement. This is an approximation to the
local objective function

-
aw) = Y X B2 )
JES;

Algorithm. In the subsequent sections we analyze the
distributed version {(Algorithm 1) of standard SGD. This al-
gorithm is not new [3], [7] and has been analyzed extensively
in the literature. The step-size 1, = 1/(ut) is commonly used
for large scale strongly convex machine learning problems
like SVMs (e.g.- [20]) and ridge regression: to avoid an extra
parameter in the bounds, we take this setting. In Algorithm
1 node i samples a point uniformly with replacement from
a local pool of n points and then updates its iterate by
computing a weighted sum with its neighbors followed
by a local subgradient step. The selection is uniform to
guarantee that the subgradient is an unbiased estimate of
a true subgradient of the local objective J;(w), and greatly
simplifies the analysis. Different choices of P(#) will allow
us to understand the effect of limiting communication in this
distributed optimization algorithm.

Algorithm 1 Consensus Strongly Convex Optimization
Input: {x;;}.where : € [m| and j € [n| and N = mn,
matrix sequence P(t), p =0, T =1

{Each i € [m] executes}

Initialize: set w,(1) = 0 € R%.

fort=1to T do
Sample X, uniformly with replacement from 5.
Compute g(t) € O6(W,(t) X o) Xee + pWalt)
wy(t +1) =370, Wy(t)Pyy(t) — mega(t)

end for

Output: Wy(T) = & Ec | Wq(t) for any i € [m].

Expectations and probabilities. There are two sources
of stochasticity in our model: the first in the split of data
points to the individual nodes, and the second in sampling
the points during the pradient descent procedure. We assume
that the split is done uniformly at random, which implies
that the expected covariance matrix at each node is the

same as the population covariance matrix . Conditioned
on the split, we assume that the sampling at each node is
uniformly at random from the data point at that node, which
makes the stochastic subgradient an unbiased estimate of the
subgradient of the local objective function. Let F; be the
sigma algebra generated by the random point selections of
the algorithm up to time £, so that the iterates {wy(t) : i €
[m|} are measurable with respect to F;.

ITI. MAIN RESULT

Methods like Algorithm 1, also referred to as primal
averaging, have been analyzed previously [3], [7], [21]. In
these works it is shown that the convergence properties
depend on the structure of the underlying network via the
second largest eigenvalue of P. We consider in this section
the case when P(t) = P for all ¢+ where P is a fixed
Markov matrix. This corresponds to a synchronous setting
where communication occurs at every iteration.

We analyze the use of the siep-size n, = 1/(ut) in
Algorithm 1 and show that the convergence depends on the
spectral norm p? = o1 () of the sample covariance matrix.

Theorem 1: Fix a Markov matrix P and let p? = oy (%)
denote the spectral norm of the covariance matrix of the data
distribution. Consider Algorithm 1 when the objective J(w)
is strongly convex, P(t) = P for all ¢, and m; = 1/{put). Let
Aa(P) denote the second largest eigenvalue of P. Then if
the number of samples on each machine n satisfies

o EPQ log (d) (4)
and the number of iterations T satisfies
T = 2elog(1/+/ A2(P)) (5)

(8)* vmlp
ﬂ(pg g (d), ) ®

log(T) log(1/A2(P))

then the expected error for each node ¢ satisfies
IE‘.[J(wi 1= JwY)] <
1., 1004/ mp? - log T ;'_'.-_2 logT
m - 1—,/A(P) nw T

Remark 1: Theorem 1 indicates that the number of machines
should be chosen as a function of p. We can identify three
sub-cases of interest:

Case (a): m < #: In this regime since 1/m > \/mp?
{ignoring the constants and the log T" term) we atways benefit
from adding more machines.

Case (b): p,—lﬁ < m < : The result tells us that there
is no degradation in the error and the bound improves by a
factor /mp. Sparse data sets generally have a smaller value
of p? (as seen in Taka¢ et al. [4]); Theorem 1 suggests that
for such data sets we can use a larper number of machines
without losing performance. However the requirements on
the number of ierations also increases. This provides ad-
ditional perspective on the observation by Takac et al [4]
that sparse datasets are more amenable to parallelization via

()

871



TABLE 1
[IATA SETS AND PARAMETERS FOR EXPERIMENTS

data st | training | test dm. | A | 2|
ROVL 781,265 | 23,140 | 47,236 | 10 * | 0.01
Covertype | 522,911 | 58,001 | 47,236 | 10 & | 0.21

mini-batching. The same holds for our type of parallelization
as well.

Case (c): m > —: In this case we pay a penalty \/mp? =
1 sugpesting that E:b{ datasets with large p we should expect
to lose performance even with relatively fewer machines.

Note that s = 1 is implicit in the condition T' =
2e ]ng{l;'\.-"')._gj} since As = 0 for m = 1. This excludes
the single node Pegasos [4] case. Additionally in the case of
general strongly convex losses (not necessarily dependent on
w ' x) we can obtain a convergence rate of @(log®(T)/T).
We do not provide the proof here.

IV. EXPERIMENTS

Our goals in our experimental evaluation are to validate
the theoretical dependence of the convergence rate on ° and
to see if the conclusions hold when the assumptions we make
in the analysis are violated. Note that all our experiments are
based on simulations on a multicore computer.

A. Data sets, tasks, and parameter settings

The data sets used in our experiments are summa-
rized in Table (IV-A). Covertype is the forest covertype
dataset [22] used in [20] obtained from the UC Irvine
Machine Learning Repository [23], and rcvl is from the
Reuters collection [23] obtained from libsvm collection [24].
The RCvl data set has a small value of p°, whereas
Covertype has a larger value. In all the experiments we
looked at £s-repularized classification objectives for problem
{1). Each plot is averaged over 5 runs.

The data consists of pairs {{xy,y1), ..., (X, yw )} where
x; € R? and y, € {—1,+1}. In all experiments we optimize
the £y-regularized empirical hinge loss where f{w'x) =
(1 — w'xy),. The values of the regularization parameter
o are chosen from to be the same as those in Shalev-Shwarz
et al. [20].

We simulated networks of compute nodes of varying size
(m) arranged in a k-regular graph with & = |0.25m| or
a fixed degree (not dependent on m). Note that the depen-
dence of the convergence rate of procedures like Algorithm
(1) on the properties of the underlying network has been
investigated before and we refer the reader to Agarwal and
Duchi [10}] for more details. In this paper we experiment only
with k-regular graphs. The weights on the Markov matrix P
are set by using the max-degree Markov chain (see [25]).
One can also optimize for the fastest mixing Markov chain
( [25], [26]). Each node is randomly assigned n = [N /m|
points.

B. Intermittent Communication

In this experiment we show the objective function for
RCV1 and Covertype as we change the frequency

of communication (Figure 1), communicating after every
1,10, 50 and 500 iterations. Indeed as predicted we see that
the dataset with the larger p® appears to be affected more
by intermittent communication. This indicates that network
bandwidth can be conserved for datasets with a smaller p°.

C. Comparison of Different Schemes

We compare the three different schemes proposed in this
paper. On a network of m = 64 machines we plot the
performance of the mini batch extension of Algorithm (1)
with batch size 128 against the intermitient scheme that
communicates afier every 128 iterations and also the standard
version of the algorithm. In Figure 3-(a) we see that mini-
batching does better than the vanilla and the intermittent
scheme.

D. Infinite Dara

We generaied a very large (N = 107) synthetic dataset
from a multivariate normal distribution and created a simple
binary classification task using a random hyperplane. As we
can see in Figure 2 for the SVM problem and a k-regular
network we continue to gain as we add more machines
and then eventually we stabilize but never lose from more
machines. We only show the first few thousand iterations for
clarity.

E. Diminishing Communication

To test if our conclusions apply when the i.i.d assumption
for the matrices P(¢) does not hold we simulate a dimin-
ishing communication regime. Such a scheme can be useful
when the nodes are already close to the optimal solution
and communicating their respective iterate is wasteful. Intu-
itively it is in the beginning the nodes should communicate

more frequently. To formalize the intuition we propose the
following communication model

| P wp Ct7F
P _{ I wp. 1-Ct?

where C,p > 0. Thus the sequence of matrices are not
identically distributed and the conclusions of Theorem (?7)
do not apply.

However in Figure 3-(b) (C' = 1,p = 0.5) we see that
on a network of m = 128 nodes the performance for the
diminishing regime is similar to the full communication case
and we can hypothesize that our results also hold for non i.i.d
communication matrices.

(8)

V. DISCUSSION

In this paper we described a consensus stochastic gradient
descent algorithm and analyzed its performance in terms of
the spectral norm p° of the data covariance matrix under a
homogenous assumption. The extended version of this paper
contains additional results on intermittent communication
and the asymptotic performance of the method.

+ We can extend the conclusions of Theorem 1 to the case

of stochastic communication schemes, thus allowing for
the data dependent interpretations of convergence in a
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Fig. 2. Mo network effect with increasing benefit of adding more machines
in the case of infinitz data.

more peneral setting. For example, we could analyze
the effect of reducing the communication overhead of
Algorithm 1. This reduction can improve the overall
running time (“wall time™) of the algorithm because
communication latency can hinder the convergence of
many algorithms in practice [27]. A natural way of lim-
iting communication is to communicate only a fraction
v of the T total iterations; at other times nodes simply
perform local gradient steps. A deterministic schedule
of communication every 1/v iterations would allow
local nodes to perform minibatch steps:

Wit +1) = Y w(t)Py(t) —mev Y gilt). (9)
JEN: 1eT;
+« We also examined the sub-optimality of distributed
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primal averaging when T — oo for the case of smooth
strongly convex objectives. Our results suggest that we
never gain from adding more machines in any network.
An asymptotic analysis of Algorithm 1 shows that the
network effect disappears and we do indeed gain from
more machines in any network. The result follows from
the asymptotic normality analysis of Bianchi et al. [28,
Theorem 5]. The main differences between Algorithm
1 and the consensus algorithm of Bianchi et al. is that
we average the iterates before making the local update.
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