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Abstract—Westudyaconsensus-baseddistributedstochastic
gradientmethodfordistributedoptimizationinasettingcom-
monformachinelearningapplications.Nodesinthenetwork
holddisjointdataandseektooptimizeacommonobjective
whichdecomposesintoasumofconvexfunctionsofindividual
datapoints. Weshowthattherateofconvergenceforthis
methodinvolvesthespectralpropertiesoftwo matrices:the
standardspectralgapofaweight matrixfromthenetwork
topologyandanewtermdependingonthespectralnormof
thesamplecovariance matrixofthedata.Thisresultshows
thebenefitofdatasetswithsmallspectralnorm.Extensionsof
themethodcanidentifytheimpactoflimitedcommunication,
increasingthenumberofnodes,andscalingwithdatasetsize.

I.INTRODUCTION

Thispaperstudiestheproblemofminimizingaregularized
convexfunction[1]oftheform

J(w)=
N

i=1

(w xi;yi)

N
+
µ

2
w
2

(1)

=Ex∼P̂ (w x;y)+
µ

2
w
2
,

where (·)isconvexandLipschitzandtheexpectationis
withrespecttotheempiricaldistributionP̂corresponding
toagivendatasetwithN totaldatapoints{(xi,yi)}. We
willassumexi∈R

dandyi∈R.Thisregularizedempirical
riskminimizationformulationencompassesalgorithmssuch
assupportvectormachineclassification,ridgeregression,
logisticregression,andothers[2].Forexamplexcould
representdpixelsinagrayscaleimageandyabinarylabel
indicatingwhethertheimageisofaface:w xgivesa
confidencevalueaboutwhethertheimageisofafaceor
not.
Wewouldliketosolvesuchproblemsusinganetwork

ofmprocessorsconnectedviaanetwork(representedbya
graphindicatingwhichnodescancommunicatewitheach
other).ThesystemwoulddistributetheseN pointsacross
themnodes,inducinglocalobjectivefunctionsJj(w)ap-
proximating(1).Decentralizedoptimizationalgorithmsfor
statisticalcomputationandmachinelearningonlargedata
setstrytotradeoffefficiency(intermsofestimationerror)
andspeed(fromparallelization).
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Thetheoreticalanalysisofdistributedoptimizationmeth-
odshasfocusedonprovidingstrongdata-independentcon-
vergenceratesunderanalyticassumptionsontheobjective
functionsuchasconvexityandsmoothness. Weanalyzea
distributedprimalaveraging[3]algorithminwhichnodes
processpointssequentially,performingastochasticgradient
descent(SGD)updatelocallyandaveragetheiteratesoftheir
neighborsaftereachgradientstep.Inthispaperweanalyze
theconvergenceratetoidentifyfactorscorrespondingto
theunderlyingdatadistribution.Thisworkisinthespirit
ofpreviouswork[4]whichstudyingmini-batching.Here
weseethatthespectralnormρ2=σ1(ÊP[xx])affects
therateofconvergence: weproveanupperboundon
thesuboptimalitygapfordistributedprimalaveragingthat
dependsonρ2.Ourresultsuggeststhatnetworksofsize
m< 1

ρ2 gainfromparallelization.
Understandinghowthedatadistributionaffectstheasymp-
toticsofdistributedoptimization methodsischallenging
becausethestatisticalassumptiononthenodes’datameans
thatinhomogenousnetworks,eachnodecanreachtheglobal
optimumbyprocessingitsowndata[5].Inthissensethe
network“hurts”theoptimizationprocessbydistributingthe
datasothateachnodeconvergesslower.Thisisincontrastto
mini-batching,inwhichparallelizinggradientcomputations
leadstospeedups.Empirically,weseethatfactorssuch
asthesparsitymayimpactthedegreetowhichdistributed
processingcanhelp. Ourupperboundcorroboratesthat
empiricalevidence,butwithoutamatchinglowerbounds
wecannotsaythatρ2determinestherateofconvergence.
Related Work.Severalauthorshaveproposeddistributed
algorithmsinvolvingnodescomputinglocalgradientsteps
andaveragingiterates,gradients,orotherfunctionsoftheir
neighbors[3],[6],[7].Byalternatinglocalupdatesand
consensuswithneighbors,estimatesatthenodesconvergeto
theoptimizerofJ(·).Intheseworksnoassumptionismade
onthelocalobjectivefunctionsandtheycanbearbitrary.
Consequentlytheconvergenceguaranteesdonotreflectthe
settingwhenthedataishomogenous(fore.g.whendatahas
thesamedistribution);inparticular,theerrorincreasesas
weaddmoremachines.Thisiscounterintuitive,especially
inthelargescaleregime,sincethissuggeststhatdespite
homogeneitythemethodsperformworsethanthecentralized
setting(alldataononenode).
Weprovideafirstdata-dependentanalysisofaconsensus
basedstochasticgradientmethodinthehomogenoussetting
anddemonstratethatthereexistregimeswherewebenefit
fromhavingmoremachinesinanynetwork.
Incontrasttoourstochasticgradientbasedresults,data
dependenceviatheHessianoftheobjectivehasalsobeen
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demonstratedinparallelcoordinatedescentbasedapproaches
ofLiuetal.[8]andtheShotgunalgorithmofBradleyet
al.[9].Theassumptionsdifferfromusinthattheobjective
functionisassumedtobesmooth[8]orL1regularized[9].
Mostimportantly,ourresultsholdforarbitrarynetworksof
computenodes,whilethecoordinatedescentbasedresults
holdonlyfornetworkswhereallnodescommunicatewitha
centralaggregator(sometimesreferredtoasamaster-slave
architecture,orastarnetwork),whichcanbeusedtomodel
shared-memorysystems.Anotherinterestinglineofwork
istheimpactofdelayonconvergenceindistributedopti-
mization[10].Theseresultsshowthatdelaysinthegradient
computationforastarnetworkareasymptoticallynegligible
whenoptimizingsmoothlossfunctions. Westudygeneral
networktopologiesbutwithintermittent,ratherthandelayed
communication.Ourresultsuggestthatcertaindatasetsare
moretolerantofskippedcommunicationrounds,basedon
thespectralnormoftheircovariance.
WetakeanapproachsimilartothatofTaká̌cetal.[4]who

developedaspectral-normbasedanalysisofmini-batching
fornon-smoothfunctions.Wedecomposetheiterateinterms
ofthedatapointsencounteredinthesamplepath[11].This
differsfromanalysisbasedonsmoothnessconsiderations
alone[10]–[13]andgivespracticalinsightintohowcom-
munication(fullorintermittent)impactstheperformance
ofthesealgorithms.Notethatourworkisfundamentally
differentinthattheseotherworkseitherassumeacentralized
setting[11]–[13]orimplicitlyassumeaspecificnetwork
topology(e.g.[14]usesastartopology).Forthe main
resultsweonlyassumestrongconvexitywhiletheexisting
guaranteesforthecitedmethodsdependonavarietyof
regularityandsmoothnessconditions.
Limitation.Inthestochasticconvexoptimization(seefor

e.g.[15])settingthequantityofinterestisthepopulation
objectivecorrespondingtoproblem1.Whenminimizingthis
populationobjectiveourresultssuggestthataddingmore
machinesworsensconvergence(SeeTheorem1).Forfinite
dataourconvergenceresultssatisfytheintuitionthatadding
morenodesinanarbitrarynetworkwillhurtconvergence.
Thefinitehomogenoussettingismostrelevantinsettings
suchasdatacenters,wheretheprocessorsholddatawhich
essentiallylooksthesame.Intheinfiniteorlargescale
datasetting,commoninmachinelearningapplications,this
iscounterintuitivesincewheneachnodehasinfinitedata,
anydistributedschemeincludingoneonarbitrarynetworks
shouldn’tperformworsethanthecentralizedscheme(alldata
ononenode).Thusouranalysisislimitedinthatitdoesn’t
unifythestochasticoptimizationandtheconsensussetting
inacompletelysatisfactorymanner.
Inthispaper wefocusonasimpleand well-studied

protocol[3].However,ouranalysisapproachandinsights
mayyielddata-dependentboundsforothermorecomplex
algorithmssuchasdistributeddualaveraging[6]. More
sophisticatedgradientaveragingschemessuchasthatof
MokhtariandRibeiro[16]canexploitdependenceacross
iterations[17],[18]toimprovetheconvergencerate;an-
alyzingtheimpactofthedatadistributionisconsiderably

morecomplexinthesealgorithms.
Webelievethatourresultsprovideafirststeptowardsun-
derstandingdata-dependentboundsfordistributedstochastic
optimizationinsettingscommontomachinelearning.Our
analysiscoincideswithphenomenonseeninpractice:for
datasetswithsmallρ,distributingthecomputationacross
manymachinesisbeneficial,butfordatawithlargerρmore
machinesisnotnecessarilybetter.Ourworksuggeststhat
takingintoaccountthedatadependencecanimprovethe
empiricalperformanceofthesemethods.
Inthispaperwedescribeourbasicresultforsynchronous

networkedgradientdescent.Fulldetailsandproofsare
deferredtothefullversionofourmanuscript[19].

II. MODEL

Wewilluseboldfaceforvectors.Let[k]={1,2,...,k}.
Unlessotherwisespecified,thenorm · isthestandard
Euclideannorm.ThespectralnormofamatrixAisdefined
tobethelargestsingularvalueσ1(A)ofthematrixAor
equivalentlythesquarerootofthelargesteigenvalueof
A A.ForagraphG=(V,E)withvertexsetVandedge
setE,wewilldenotetheneighborsofavertexi∈Vby
N(i)⊆V.
Datamodel.LetPbeadistributiononRd+1 suchthat

for(x,y)∼P,wehavex ≤1almostsurely.LetS=
{x1,x2,...,xN}bei.i.dsampleofd-dimensionalvectors
fromPandletP̂betheempiricaldistributionofS.Let
Σ̂=Ex∼P̂[xx]bethesamplesecond-momentmatrixof
S.Ourgoalistoexpresstheperformanceofouralgorithms
intermsofρ2=σ1(̂Σ),thespectralnormof̂Σ.Thespectral
normρ2canvarysignificantlyacrossdifferentdatasets.For
example,forsparsedatasetsρ2isoftensmall.Thiscan
alsohappenifthedatahappenstolieinlow-dimensional
subspace(smallerthantheambientdimensiond).
Problem.Ourproblemistominimizeaparticularinstance

of(1)wheretheexpectationisoverafinitecollectionofdata
points:

w∗
def
=argmin

w
J(w) (2)

Letŵj(t)betheestimateofw
∗atnodej∈[m]inthe

t-thiteration. Weboundtheexpectedgap(overthedata
distribution)atiterationTbetweenJ(w∗)andthevalue
J(̂wi(T))oftheglobalobjectiveJ(̂wj(T))attheoutput
ŵj(T)ofeachnodejinourdistributednetwork. We
willdenotethesubgradientsetofJ(w)by∂J(w)anda
subgradientofJ(w)by∇J(w)∈∂J(w).
Inouranalysiswewillmakethefollowingassumptions
abouttheindividualfunctions(w x):(a)Thelossfunc-
tions{(·)}areconvex,and(b)Thelossfunctions{(·;y)}
areL-LipschitzforsomeL>0andally.NotethatJ(w)is
µ-stronglyconvexduetothe2-regularization.Ouranalysis
willnotdependonthetheresponseyexceptthroughthe
LipschitzboundLsowewillomittheexplicitdependence
onytosimplifythenotationinthefuture.
NetworkModel.Weconsideramodelinwhichminimiza-

tionin(2)mustbecarriedoutbym nodes.Thesenodes
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arearrangedinanetwork whosetopologyisgivenbya
graphG–anedge(i,j)inthegraph meansnodesiand
jcancommunicate.AmatrixPiscalledgraph-conformant
ifPij> 0onlyiftheedge(i,j)isinthegraph. Wewill
consideralgorithmswhichuseadoublystochasticandgraph-
conformantsequenceofmatricesP(t).

Sampling Model. Weassumethe N datapointsare
dividedevenlyanduniformlyatrandomamongthemnodes,

anddefinen
def
= N/m tobethenumberofpointsateach

node. Thisisanecessaryassumptionsinceourbounds
aredatadependentanddependonsubsamplingboundsof
spectralnormofcertainrandomsubmatrices.Howeverour
dataindependentboundholdsforarbitrarysplits.LetSi

bethesubsetofnpointsatnodei.Thelocalstochastic
gradientprocedureconsistsofeachnodei∈[m]sampling
fromSiwithreplacement.Thisisanapproximationtothe
localobjectivefunction

Ji(w)=
j∈Si

(w xi,j)

n
+

µ

2
w

2
. (3)

Algorithm. Inthesubsequentsections weanalyzethe
distributedversion(Algorithm1)ofstandardSGD.Thisal-
gorithmisnotnew[3],[7]andhasbeenanalyzedextensively
intheliterature.Thestep-sizeηt=1/(µt)iscommonlyused
forlargescalestronglyconvex machinelearningproblems
likeSVMs(e.g.-[20])andridgeregression:toavoidanextra
parameterinthebounds,wetakethissetting.InAlgorithm
1nodeisamplesapointuniformlywithreplacementfrom
alocalpoolofnpointsandthenupdatesitsiterateby
computinga weightedsum withitsneighborsfollowed
byalocalsubgradientstep. Theselectionisuniformto
guaranteethatthesubgradientisanunbiasedestimateof
atruesubgradientofthelocalobjectiveJi(w),andgreatly
simplifiestheanalysis.DifferentchoicesofP(t)willallow
ustounderstandtheeffectoflimitingcommunicationinthis
distributedoptimizationalgorithm.

Algorithm1ConsensusStronglyConvexOptimization

Input:{xi,j},wherei∈[m]andj∈[n]andN =mn,
matrixsequenceP(t),µ>0,T≥1

{Eachi∈[m]executes}
Initialize:setwi(1)=0∈Rd.
fort=1toTdo

Samplexi,tuniformlywithreplacementfromSi.
Computegi(t)∈∂(wi(t)xi,t)xi,t+µwi(t)
wi(t+1)=

m
j=1 wj(t)Pij(t)−ηtgi(t)

endfor
Output:ŵi(T)=1

T
T
t=1 wi(t)foranyi∈[m].

Expectationsandprobabilities.Therearetwosources
ofstochasticityinour model:thefirstinthesplitofdata
pointstotheindividualnodes,andthesecondinsampling
thepointsduringthegradientdescentprocedure. Weassume
thatthesplitisdoneuniformlyatrandom, whichimplies
thattheexpectedcovariance matrixateachnodeisthe

sameasthepopulationcovariance matrixΣ̂.Conditioned
onthesplit,weassumethatthesamplingateachnodeis
uniformlyatrandomfromthedatapointatthatnode,which
makesthestochasticsubgradientanunbiasedestimateofthe
subgradientofthelocalobjectivefunction.LetFtbethe
sigmaalgebrageneratedbytherandompointselectionsof
thealgorithmuptotimet,sothattheiterates{wi(t):i∈
[m]}aremeasurablewithrespecttoFt.

III. MAINRESULT

Methodslike Algorithm1,alsoreferredtoasprimal
averaging,havebeenanalyzedpreviously[3],[7],[21].In
these worksitisshownthattheconvergenceproperties
dependonthestructureoftheunderlyingnetworkviathe
secondlargesteigenvalueofP. Weconsiderinthissection
thecase whenP(t) =P foralltwhere P isafixed
Markov matrix.Thiscorrespondstoasynchronoussetting
wherecommunicationoccursateveryiteration.

Weanalyzetheuseofthestep-size ηt = 1/(µt)in
Algorithm1andshowthattheconvergencedependsonthe
spectralnormρ2=σ1(̂Σ)ofthesamplecovariancematrix.

Theorem1:Fixa MarkovmatrixP andletρ2=σ1(̂Σ)
denotethespectralnormofthecovariancematrixofthedata
distribution.ConsiderAlgorithm1whentheobjectiveJ(w)
isstronglyconvex,P(t)=Pforallt,andηt=1/(µt).Let
λ2(P)denotethesecondlargesteigenvalueofP.Thenif
thenumberofsamplesoneachmachinensatisfies

n>
4

3ρ2
log(d) (4)

andthenumberofiterationsTsatisfies

T >2elog(1/ λ2(P)) (5)

T

log(T)
>max



 4

3ρ2
log(d),

8
5

1
4 m/ρ

log(1/λ2(P))



, (6)

thentheexpectederrorforeachnodeisatisfies

E[J(̂wi(T))−J(w∗)]≤

1

m
+

100 mρ2·logT

1− λ2(P)
·

L2

µ
·

logT

T
. (7)

Remark1:Theorem1indicatesthatthenumberofmachines
shouldbechosenasafunctionofρ. Wecanidentifythree
sub-casesofinterest:

Case(a):m ≤ 1
ρ2/3:Inthisregimesince1/m> mρ2

(ignoringtheconstantsandthelogTterm)wealwaysbenefit
fromaddingmoremachines.

Case(b): 1
ρ2/3 < m≤ 1

ρ2:Theresulttellsusthatthere
isnodegradationintheerrorandtheboundimprovesbya
factor

√
mρ.Sparsedatasetsgenerallyhaveasmallervalue

ofρ2(asseeninTaḱǎcetal.[4]);Theorem1suggeststhat
forsuchdatasetswecanusealargernumberofmachines
withoutlosingperformance. Howevertherequirementson
thenumberofiterationsalsoincreases.Thisprovidesad-
ditionalperspectiveontheobservationbyTaḱǎcetal[4]
thatsparsedatasetsaremoreamenabletoparallelizationvia
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TABLEI

DATASETSANDPARAMETERSFOREXPERIMENTS

dataset training test dim. λ ρ2

RCV1 781,265 23,149 47,236 10 4 0.01
Covertype 522,911 58,001 47,236 10 6 0.21

mini-batching.Thesameholdsforourtypeofparallelization
aswell.

Case(c):m> 1
ρ2:Inthiscasewepayapenalty mρ2≥

1suggestingthatfordatasetswithlargeρweshouldexpect
toloseperformanceevenwithrelativelyfewermachines.

Notethat m > 1isimplicitintheconditionT >
2elog(1/ λ2))sinceλ2 =0 form =1.Thisexcludes
thesinglenodePegasos[4]case.Additionallyinthecaseof
generalstronglyconvexlosses(notnecessarilydependenton
w x)wecanobtainaconvergencerateofO(log2(T)/T).
Wedonotprovidetheproofhere.

IV. EXPERIMENTS

Ourgoalsinourexperimentalevaluationaretovalidate
thetheoreticaldependenceoftheconvergencerateonρ2and
toseeiftheconclusionsholdwhentheassumptionswemake
intheanalysisareviolated.Notethatallourexperimentsare
basedonsimulationsonamulticorecomputer.

A. Datasets,tasks,andparametersettings

The datasets usedin ourexperimentsaresumma-
rizedinTable(IV-A).Covertypeistheforestcovertype
dataset[22]usedin[20]obtainedfromthe UCIrvine
MachineLearning Repository[23],andrcv1isfromthe
Reuterscollection[23]obtainedfromlibsvmcollection[24].
The RCV1 datasethasasmallvalueofρ2, whereas
Covertypehasalargervalue.Inalltheexperimentswe
lookedat2-regularizedclassificationobjectivesforproblem
(1).Eachplotisaveragedover5runs.

Thedataconsistsofpairs{(x1,y1),...,(xN,yN)}where
xi∈Rdandyi∈{−1,+1}.Inallexperimentsweoptimize
the 2-regularizedempiricalhingeloss where (w x) =
(1−w xy)+.Thevaluesoftheregularizationparameter
µarechosenfromtobethesameasthoseinShalev-Shwarz
etal.[20].

Wesimulatednetworksofcomputenodesofvaryingsize
(m)arrangedinak-regulargraph withk= 0.25m or
afixeddegree(notdependentonm).Notethatthedepen-
denceoftheconvergencerateofprocedureslikeAlgorithm
(1)onthepropertiesoftheunderlyingnetworkhasbeen
investigatedbeforeandwereferthereadertoAgarwaland
Duchi[10]formoredetails.Inthispaperweexperimentonly
withk-regulargraphs.Theweightsonthe MarkovmatrixP
aresetbyusingthe max-degree Markovchain(see[25]).
Onecanalsooptimizeforthefastestmixing Markovchain
([25],[26]).Eachnodeisrandomlyassignedn= N/m
points.

B.IntermittentCommunication

Inthisexperiment weshowtheobjectivefunctionfor
RCV1 andCovertype as wechangethefrequency

ofcommunication(Figure1),communicatingafterevery
1,10,50and500iterations.Indeedaspredictedweseethat
thedatasetwiththelargerρ2 appearstobeaffected more
byintermittentcommunication.Thisindicatesthatnetwork
bandwidthcanbeconservedfordatasetswithasmallerρ2.

C. ComparisonofDifferentSchemes

Wecomparethethreedifferentschemesproposedinthis
paper. Onanetworkofm =64 machines weplotthe
performanceofthe minibatchextensionof Algorithm(1)
withbatchsize 128againsttheintermittentschemethat
communicatesafterevery128iterationsandalsothestandard
versionofthealgorithm.InFigure3-(a)weseethat mini-
batchingdoesbetterthanthevanillaandtheintermittent
scheme.

D.InfiniteData

Wegeneratedaverylarge(N =107)syntheticdataset
fromamultivariatenormaldistributionandcreatedasimple
binaryclassificationtaskusingarandomhyperplane.Aswe
canseeinFigure2fortheSVMproblemandak-regular
network wecontinuetogainas weadd more machines
andtheneventuallywestabilizebutneverlosefrom more
machines. Weonlyshowthefirstfewthousanditerationsfor
clarity.

E. DiminishingCommunication

Totestifourconclusionsapplywhenthei.i.dassumption
forthe matricesP(t)doesnothold wesimulateadimin-
ishingcommunicationregime.Suchaschemecanbeuseful
whenthenodesarealreadyclosetotheoptimalsolution
andcommunicatingtheirrespectiveiterateiswasteful.Intu-
itivelyitisinthebeginningthenodesshouldcommunicate
morefrequently.Toformalizetheintuitionweproposethe
followingcommunicationmodel

P(t)=
P w.p.Ct−p

I w.p.1−Ct−p (8)

where C,p > 0.Thusthesequenceof matricesarenot
identicallydistributedandtheconclusionsofTheorem(??)
donotapply.

HoweverinFigure3-(b) (C =1,p=0.5)weseethat
onanetworkofm =128 nodestheperformanceforthe
diminishingregimeissimilartothefullcommunicationcase
andwecanhypothesizethatourresultsalsoholdfornoni.i.d
communicationmatrices.

V. DISCUSSION

Inthispaperwedescribedaconsensusstochasticgradient
descentalgorithmandanalyzeditsperformanceintermsof
thespectralnormρ2 ofthedatacovariance matrixundera
homogenousassumption.Theextendedversionofthispaper
containsadditionalresultsonintermittentcommunication
andtheasymptoticperformanceofthemethod.

• WecanextendtheconclusionsofTheorem1tothecase
ofstochasticcommunicationschemes,thusallowingfor
thedatadependentinterpretationsofconvergenceina
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Fig.1. PerformanceofAlgorithm(1)withintermittentcommunicationschemeondatasetswithverydifferentρ2.Thealgorithmworksbetterforsmaller
ρ2andthereislessdecayinperformanceforRCV1 aswedecreasethenumberofcommunicationroundsasopposedtoCovertype (ρ2=0.01vs
ρ2=0.21
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Fig.2. Nonetworkeffectwithincreasingbenefitofaddingmoremachines
inthecaseofinfinitedata.

moregeneralsetting.Forexample,wecouldanalyze
theeffectofreducingthecommunicationoverheadof
Algorithm1.Thisreductioncanimprovetheoverall
runningtime(“walltime”)ofthealgorithmbecause
communicationlatencycanhindertheconvergenceof
manyalgorithmsinpractice[27].Anaturalwayoflim-
itingcommunicationistocommunicateonlyafraction
νoftheTtotaliterations;atothertimesnodessimply
performlocalgradientsteps.Adeterministicschedule
ofcommunicationevery1/νiterationswouldallow
localnodestoperformminibatchsteps:

wi(t+1)=
j∈Ni

wj(t)Pij(t)−ηtν
i∈Ii

gi(t). (9)

• Wealsoexaminedthesub-optimalityofdistributed

primalaveragingwhenT→∞ forthecaseofsmooth
stronglyconvexobjectives.Ourresultssuggestthatwe
nevergainfromaddingmoremachinesinanynetwork.
AnasymptoticanalysisofAlgorithm1showsthatthe
networkeffectdisappearsandwedoindeedgainfrom
moremachinesinanynetwork.Theresultfollowsfrom
theasymptoticnormalityanalysisofBianchietal.[28,
Theorem5].ThemaindifferencesbetweenAlgorithm
1andtheconsensusalgorithmofBianchietal.isthat
weaveragetheiteratesbeforemakingthelocalupdate.
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