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Abstract—The Nystrom method is a matrix approximation
technique that has shown great promise in speeding up spectral
clustering. However, when the input matrix is sparse, we show
that the traditional Nystrom method requires a prohibitively
large number of samples to obtain a good approximation. We
propose a novel sampling approach to select the landmark points
used to compute the Nystrom approximation. We show that the
proposed sampling approach obeys the same error bound as
in Bouneffouf and Birol (2015). To control sample complexity,
we propose a selective densification step based on breadth-first
traversal. We show that the proposed densification does not
change the optimal clustering. Results on real world datasets
show that by combining the proposed sampling and densification
schemes, we can obtain better accuracy compared to other
techniques used for the Nystrom method while using significantly
fewer samples.

I. INTRODUCTION

Spectral clustering is a popular technique for clustering [3]
based on the eigenvectors of the normalized graph Lapla-
cian. Low rank approximations are used to scale up these
methods by simplifying the computation of eigenvectors and
eigenvalues. Several iterative methods to compute the low
rank approximation like [4], [5] involve the use of the entire
matrix making them infeasible for large matrices. An alternate
approach, the Nystrom approximation, has been a standard
tool for low rank approximation of symmetric positive semi-
definite (SPSD) matrices since its introduction in [6]. In
cases where the input matrix has low rank, the Nystrom
approximation is known to return an exact approximation as
shown in [7].

Given an input matrix A, the Nystrdm method chooses a
subset of [ columns C' € R™*!, and reconstructs the complete
kernel matrix by A ~ CW,CT, where W is the principal sub-
matrix of A induced by the selected columns and W} is the
pseudo-inverse of its rank-k approximation. Various methods
have been proposed in the literature to construct the matrices
C and W. These can be broadly divided into three categories:
projection based, sampling based and clustering based.

Projection based methods use a data-independent projection
matrix to represent the entries of the matrix as points in lower
dimensional space. In other words, the matrices C' and W are
given by C = AS and W = 5’ AS respectively, where S is
the projection matrix. Examples of projection matrices used
include Gaussian projections, Subsampled Random Fourier
Transforms as described in [8].
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There has been recent work in improving the efficiency of
approximation in the case of spectral clustering by applying
clustering-based techniques to columns of normalized graph
Laplacians. [9] and [10] used the k-means algorithm (KS), to
select k& centroids as landmark points. These landmark points
are used to compute the Nystrom approximation. However,
the results in [11] show that both methods perform poorly for
non-convex clusters.

The incremental sampling (IS) algorithm proposed in [12],
first randomly samples two points from a dataset, to compute a
similarity matrix between the sampled points and the remain-
ing points. The algorithm picks the point with the smallest
variance, and then iteratively repeats the process until a desired
number of landmarks is reached. However, as shown in [13], in
higher dimensions the variance of the Euclidean distance tends
to zero. In such cases IS may pick inappropriate landmark
points and perform similarly to uniform sampling. In order
to address this behavior of points in high dimensional spaces,
[13] proposed minimum similarity sampling (SS). However, it
is outperformed by IS on low dimensional data. The approach
proposed in this paper relies on the norms of the columns
as opposed to the distance between them. Hence it performs
equally well for both low and high dimensional data.

[11] introduced Minimum Sum of Squared Similarities
(MSSS), which approximately maximizes the determinant
of the reduced similarity matrix that represents the mutual
similarities between sampled data points. However all these
methods can become computationally expensive as the size of
the matrix grows. In contrast to these methods, the proposed
algorithm relies on the sparsity of the input matrix to return
a good approximation efficiently even in high dimensional
spaces.

Both projection based approaches and clustering based
approaches require the computation of the entire matrix. For
sampling based methods, the matrices C' and W are given
by C = AS and W = S’AS respectively, where S is
the sampling matrix, i.e. C' is a subset of the columns of
A and W is its induced principal sub-matrix. Hence, the
entire input matrix does not need to be computed; a sub-
matrix C suffices. Examples include uniform sampling [14],
column norm sampling [15], leverage score sampling [8].
Since W is constructed without using a data-independent
projection matrix, sampling based approaches offer a better
generalization bound compared to projection based approaches



when the input matrix has a large eigen gap [16].

The contributions of this paper are,
1. When the input matrix is sparse, we show that techniques
that rely on the distances between columns fail to perform
well. Additionally, the Nystrém method based on uniform
sampling requires a prohibitively large number of samples to
obtain a good approximation.
2. We propose a novel sampling technique to select the initial
landmark points and show that for sparse matrices, it has an
error bound that is equal to MSSS [11] and requires far fewer
computations.
3. To control sample complexity, we propose a technique for
selective densification based on breadth first traversal.
4. We show that the proposed densification does not change
the optimal clustering when the input matrix is block diagonal.

II. OBSERVATIONS FOR SPARSE MATRICES

In this section we outline two major issues that are faced
by sampling based approaches when the matrix is extremely
sparse. First we show that distances between columns are
not useful for selecting landmark points when the matrix is
sparse. Second, we show that the expected number of samples
required for uniform sampling can be O(n) when the matrix
is sparse. Let the average degree of a node be d,,q and the
maximum degree of any node be dp,q.. For sparse matrices,
we assume that d2,,, is extremely small compared to the

max
number of vertices n.

A. Distances Between Sparse Columns

Observation 1. Suppose we are given a sparse, symmetric
positive semi definite matrix A of size n x n. For any pair of
columns of A, say x,y, with probability > 1 — dﬁmx/ n,

2 2 2
iz —4lI" = ll=lI” + [lyll

Proof. For a column x, we call column y favorable if there
exists a row i such that =; # 0 and y; # 0. ||z — y||*> #
||z||? + ||y||? only if y is favorable with respect to z. For y to
be favorable with respect to x, = and y must have at least one
common neighbor. We make two observations: = has at most
dmaz DNeighbors and each neighbor can have at most dpqz
neighbors. Thus, there are at most d2,,, ways to choose a

favorable y. This implies,
Pr| choosing a favorable y] dz,../n
Pr{|lz—y|* # [|l=[* + [ly/I*] dmaz/n

Since Pr [|lz —y|” = ||z|* + lly|*] = 1 — Prllz — y|* #
[|z]12+||||?], the statement in Observation 1 now follows. [

<
<

Consequence: In [9], the k-means algorithm is used to
select the landmark points used to compute the Nystrom
approximation. The k-means algorithm has three major steps:
initialization, cluster assignment and updating the center. In
the initialization step, candidate centers are chosen by sam-
pling £ columns uniformly at random. Among these centers
{c1,€2-..; ¢k }, 1et emip be the center with the smallest column
norm.

10

In the cluster assignment step, all the columns are assigned
to their closest center. For a column z, let its closest center
be represented as cg, i.e.

¢z = argmin ||z — ¢/
c
From Observation 1, this can be rewritten as,

¢z = arg min [|z]* + [|c|[®
c

This shows, points will be assigned to cpin Wwith high
probability. This leads to bad landmarks being chosen, re-
sulting in a poor approximation. Note, other techniques are
available to select the initial candidate centers. However, these
techniques are computationally intensive. Thus the k-means
based landmark selection is not useful when the matrix is
sparse.

B. Sample Complexity

Let C be the sub-matrix created by sampling I columns of
the input matrix A. A node in the graph is said to be covered
if its corresponding row in C has norm greater than zero. All
nodes that are not covered are mapped to the origin. This
results in a bad clustering and has to be avoided. Consider a
matrix A with n rows and columns.

Observation 2. When uniform sampling is used to select the
landmark points, to ensure any node x is covered, the number
of samples 1, satisfies,

E[l] 2 n/(dmaz +1)

Proof. z is covered only if = or one of its neighbors is sam-
pled. Since there are at most dy,,, neighbors, the probability
of choosing z or one of its neighbors is at most (d,;q.+1)/n.
Thus the number of samples needed [ is a geometric random
variable with the probability of success being (dmaz + 1)/n.
Thus we have E[l] > n/(dmas + 1) which is significantly
large if dpar < n. [l

In this paper, we address this issue by selectively densifying
the sampled matrix C' as described in the next section. Selec-
tive densification increases both d,,, and d,,,. This enables
sampling based approaches to cover the vertices of the graph
with a smaller number of samples. Since the computational
complexity of the Nystrom approach scales cubically with the
number of samples, using fewer samples results in a significant
speedup for large datasets.

1I1. PROPOSED APPROACH

The proposed approach is outlined in Algorithm 1. It can
be divided into three phases. Let 0 < a < 1 be user-specified
constant. In the first phase, we sample a subset of al samples
as follows: choose a set of al initial columns uniformly at
random. Additional columns are sampled uniformly at random
and only the al columns with the highest column norm are
retained. Let us call this subset S; and the associated sub-
matrix C' (ie. C = A(:,S:) ). In this paper, we use an



iterative approach to selecting the columns, but it can be easily
parallelized to obtain further improvement in efficiency.

In the second phase, C is densified as follows: For each
column ¢ € S;, at step i, the function can_be_reached()
returns the set of nodes that can be reached from ¢ in ¢
steps. This is represented in the Algorithm as nn and the
predecessor for each node in nn is returned in prev. For each
node p € nn (let g be its corresponding node in prev) and
column s, if C(p, s) = 0, the new densified value is given as,
C(p,s) = C(g, s) * Ag; p)-

Finally, in the third phase, a pass is made over all the
columns to cover the columns that are not covered even after
the densification step.

Once the columns have been selected, the eigenvectors are
approximated using the approach outlined in [2]. We use the
procedure described in [2] due to its ability to handle matrices
that are not positive semi-definite. In case the input matrix
is positive semi-definite, we can use the simpler procedure
described in [1].

Algorithm 1 Proposed Modified Spectral Clustering
Input : Matrix A, the required number of clusters k&, number
of samples [, fraction of points a, maximum number of
densification steps mazx_hops
Output : Cluster assignment C
Procedure:
#H#Select initial landmark points
Sp +— Sample ol columns uniformly at random
g + argminges,deg(p)
t+0
while ¢ < (1 — a)l do
Sample a row ¢; uniformly at random
if [lcc]l > |lg]| then
S; — St_] — {q} U {Ct}
g+ argminges, |pl
end if
t+t+1
end while
##Densify selected columns
C +— A(S:,:)
for each s € S; do
for i < maz_hops do
[nn, prev] < can_be_reached(s, )
C(nn, s) + C(prev, s) * A(prev,nn)
end for
end for
##Compute Approximate eigenvectors
W < C(8:,7)
Dy + degree(W)
D + degree(C)
[U, A] + eig(W)
Q'+ D~Y3¢p 2
C + discretize(Q)

UAT
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IV. ANALYSIS
A. Justification for the initial sampling scheme

We briefly outline the MSSS algorithm to facilitate com-
parison with the proposed approach. The MSSS algorithm
proceeds iteratively by selecting the column that has minimum
similarity with the centers chosen so far. In other words, at
each iteration, the method chooses the column that is farthest
from the landmark points chosen so far.

At the end of m iterations, the proposed approach retains
t = ol columns which have the highest column norms.

Lemma 1. Suppose, at iteration m, columns 1, xs...x; have
been chosen so far. Suppose, the similarity between columns is
given by sim(z,y) = e 0-5+l2=v1® In the sparse case, with
probability > 1 —d2, . /n

™
arg max ly||? = argmin 3 sim?(y, z;)
¥ y

In other words, selecting the column with the highest column
norm is equivalent to selecting the column with the lowest
similarity with all the columns chosen so far.

Proof. Since sim(z,y) = e~05lz—=vll  we can apply Obser-
vation 1 to the exponent of the expression and state that, with
probability > 1 —d2,,./n,

. i 2 2 _ 2 2
sim(z,y) = e 0.5(lzl*+lyll*) — o—0-5ll<l” ,—0.5]yll
Thus,

Z sim®(y, z;)

(e oSl
3 (e 08l =05l 2
(e05llvl*)2 Z(G—D-EIII‘-HE)?

Hence,
—0.5]|y|I?

arg min e
y

arg max [|y|”
Y

. . 2
argmin ¥ sim*(y,z;)
sy ;

|

At iteration m, the proposed method retains ¢ columns that
have the maximum column norms over the set of columns
sampled till iteration m. Thus we see that at each iteration,
with high probability, the proposed sampling step selects the
column that has the least similarity to the columns chosen so
far. Using the following theorem from [11] we can also say
this increases the determinant at each step.

Theorem 1. [11] Suppose columns X = {z1,zs...T;n} have
been chosen so far. Let Ax be the Nystrém approximation
obtained by selecting the columns of X. Then for any pair of
columns p, q, if,

Z Simg(p:! 'Ti) S Z Simg(Q! I‘i}
then with high probability,
det(AxU{p}) 2 det(AxU{q})



This result can be used to prove that the Frobenius norm
error of proposed sampling scheme has the same upper bound
as MSSS. The upper bound on the Frobenius norm error is
given in the following theorem.

Theorem 2. [11] Suppose columns X = {z1,Ts...z;} have
been chosen so far. Let Ay be the optimal rank-k approxima-
tion and Ay be the rank-k Nystrom approximation obtained

by using the proposed method.
1/2

Here ds = max;;(Ai; +2A;5A4;). . For more details on the
error bound, please refer to Theorem 2 in [11].

Ods

mar

ks
A=Ak < [|A—Ax|+1+1) Y Aty
i=141

If the error bounds are similar, why should the proposed
sampling procedure be used? The proposed sampling scheme
eliminates the need to compare a candidate column with all
columns chosen so far. This improves efficiency especially
when a large number of columns need to be sampled. It also
allows the selection of columns in parallel making it easier
to scale to larger datasets while providing the same level of
accuracy.

B. Why Matrix norms are insufficient for spectral clustering

The Nystrdm approximation has been extensively studied
with respect to various matrix error norms, such as the Frobe-
nius norm, trace norm and the spectral norm. In this paper we
show that approximation of these norms is not sufficient for
producing a good clustering. For simplicity, we focus on the
trace norm error. However the examples can be extended to
any matrix norm.

1) Not Sufficient: Here we provide an approach to construct
two matrices that are extremely similar in terms of their trace
norms, but have a significantly different norm cut objective.
We begin by describing the norm cuts objective. Suppose, we
are given a graph G = (V, A), which is made up of a set of
n vertices V. The affinity matrix A is » x n whose entries
represent the similarity between vertices. If V3, V5 are subsets
of V, let links(V1,Va2) =3 ey, jev, Aij -

Furthermore, let degree(V;) = links(V;, V). The graph
partitioning problem seeks to partition the graph into k disjoint
clusters Vi, ...,Vg. For a possible clustering {V;..Vy}, the
norm cuts objective is described as,

links(V;, V\V;)
norm_cut(G,{V1..Vx}) = Z degTe(V;)

Also, let norm_cut(A, k)
miny, v, v, norm_cut(G,{Vi,...Vi}).

In order to show that a good approximation with respect to
the trace norm error is not necessarily a good approximation
with respect to the norm cuts ratio, we show that for any
value of € > 0, there exists n, k, A and B such that, A and B
both represent graphs with n vertices, such that |A — B|| <
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(1+¢€)||A|l1 and norm_cut(A, k) = O(k) * norm_cut(B, k).
Note, that the maximum value of norm_cut(A, k) is k.

Let A and B be the affinity matrices for undirected,
unweighted graphs with n vertices and k£ and k& — 1 equal
sized components respectively. Further, we assume that each
component is a clique. It can be shown that the normalized
symmetric laplacian of A (denoted by L(A)) has eigenvalues
n/(n — k) with multiplicity n — k and 0 with multiplicity k.
Similarly, L(B) has eigenvalues n/(n—k+1) with multiplicity
n—k+1 and 0 with multiplicity £ — 1. More generally, we
can state that

Lemma 2. [I7] Let A, D be the affinity and degree matrix
of a graph, with n vertices and k equal sized components,
Then the eigenvalues of the normalized symmetric laplacian
L(A) = I — D™"°AD~%5 are n/(n — k) with multiplicity
n — k and 0 with multiplicity k.

We can use Lemma 2 to compare the trace norm of the
difference of the two Laplacians, L(A) and L(B), as follows,

n—k
IL(A) LB = > IM(4) —x(B)]
i=1
n—k
s Z i3 . T + n
£ (n—k n—k’) n—k
T
= —k
(m )[n n—k’]+n—k’
== —k
e s
_ 2n
 on—k+1
where, ¥’ = k& — 1. Given a value of ¢, we can choose

appropriate values of n,k such that |L(A) — L(B)|?
(1+¢€)||L(A)||3. Now we examine the norm cuts ratio when we
try to partition these graphs into exactly k clusters. It is easy to
see that the norm_cuts(A) = 0, since the graph has exactly
k components. However for B, one of the k£ — 1 components
will have to be split into two equal parts to minimize the norm
cuts ratio. This results in a cut that involves =5 (:25 +1)/2
edges. Thus the norm cuts ratio for B is given as,

(n(n+2k —2)/(k+1)?)
C n(n+k—1)/2(k+1)2
n+2k—2
S 4ntk—1)

The second term reduces to a constant for a sufficiently large
value of n, resulting in a norm cuts ratio of O(k).

2) Not Necessary: To show that preserving matrix norms
is not necessary for an approximation to be good with respect
to the norm cuts objective, we consider the case of a block
diagonal matrix A with & blocks. Let L be the corresponding
normalized Laplacian. We are interested in the eigenvectors
of L, which are the same as the eigenvectors of L2, L3, etc.
However |L — L*||; can be arbitrarily high.

norm_cut(B)



C. Justification for the densification step

Now we proceed to provide approximation guarantees for
the proposed densification scheme with respect to the norm
cuts objective. Specifically, we state that

Lemma 3. If the affinity matrix is block diagonal, the clus-
tering induced by the affinity matrix does not change after
densification.

Proof. We use the connection to the weighted kernel k-means
objective shown in [18] which showed that spectral clustering
using the norm cuts objective is equivalent to weighted kernel
k-means. Specifically, given an affinity matrix A and its asso-
ciated degree matrix D, number of clusters k, minimizing the
norm cuts objective was shown to be equivalent to weighted
kernel k-means problem with kernel matrix K = D~1AD™!
and weight matrix W = D. Thus,

is the weighted degree of vertex j and
Kij = Ay;/(di * d;)

Suppose m, is the center of cluster m.. They show that the
distance of any point to the center of cluster 7, is given as

I p(ai) — mell* = Ky — 22 [t
' ¢ " > wj (2 w)?
ajETe ajEMT,

Plugging these values in the expression for ||¢(a;) —m.||?,
we get,

Aij Ay

lp(as) —m ||2—K--—2a3%“ ’ +Z ?

i ell” = K d,-Zd: (Zdj)Q
ajEMe ajEMe

Since A is block diagonal, no entries of column ¢ are
modified except those corresponding to vertices in ;. Thus

we have,
X 4y-a
aAjEMT:
and
PRSI
@;,a;EMe aAjET,
Thus we get,
1
lp(as) — me|® = Kis — > &
QjETe

Suppose column  belonging to cluster 7. is densified. Since
a; belongs to ., ||¢(ai) —me||? is smaller than the distance to
any other center. Let the new affinity matrix after densification
be A’. The distance of the point a; from its center is given

b L]
y 1

2 d;

aAjEWe

'l
Kﬁi -

16 (as) — me||* =

13

14/ (as) = mell* — llé(as) — me|[®

G

i1

1
‘i,l'.+ Z dj

ajEM:

1

2. d
ajEMe
1

2. d;
ajEme
1

2. 4
aAjEm,

0

1

> 4
a;ETe
1

> 4

ajETe

+ 1)

* (2)

<

Equation 1 follows from the fact that K;; > K/,. Equation 2

follows from the observation that >  d; > > d;. This
a;EMe d a;EMe

holds because, the densification only adds positive entries to

A.

Thus we see that after densification, the point moves
closer to its own center, while its distance to other clusters
remains unchanged. This ensures that the clustering remains
unchanged.

O

V. EXPERIMENTAL RESULTS
A. Matrix Norm Errors

For the sake of completeness, we present the errors with
respect to various matrix norms. For all our experiments, we
used the experimental framework in [8]. The following errors
were used: ||A|ls = ||Diag(E)|| denotes the spectral norm
of A; ||Allr = ||Diag(Z)||2 denotes the Frobenius norm of
A; |All« = || Diag(Z)]|1 is the trace norm of A.

The HEP, GR datasets were obtained from [19]. The datasets
are extremely sparse in terms of their non-zero entries. In
addition, it has been noted that their spectra decays slowly.
We restrict the rank of the Laplacian for each dataset to 20. In
other words, the low-rank approximation is ’filtered” through
a space of rank 20.

Figure 1 shows a comparison between the various matrix
norm errors, for the proposed algorithm (called “modified”)
and Nystrom using uniform sampling (unif), Subsampled
Random Fourier Transforms (srft) and Gaussian projections
(gauss). The result shows that the proposed method yields
a better approximation than srft and gauss for all the errors
considered. Even though uniform sampling has lower matrix
norm error compared to the other methods, it is important to
note that a significantly large number of rows and columns in
the resulting approximation had norm zero. This is shown in
Figure 3. In contrast, due to the use of the densification and
clean up steps, the proposed approach significantly reduces the
number of uncovered columns.

Figure 2 shows a comparison of the computation time for
the various methods. This shows that as the number of samples
being considered increases, the proposed method requires
significantly lower time compared to Nystrom with srft and
gauss making it better suited for large datasets.
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Fig. 1: Comparison of errors for proposed algorithm (mod-
ified), Nystrom with uniform sampling (unif), Subsampled
Random Fourier Transform (srft), Gaussian Projections (gaus-
sians) for different datasets. We restrict the rank of these
datasets to 20.

15
Caliemns Sampled (%)

(a) GR

1 15

Cofurams Sampled (%)
(b) HEP

20

Fig. 2: Comparison of running time: Modified Nystrém (mod-
ified) v/s Nystrom with Subsampled Random Fourier Trans-
form (srft), Gaussian Projections (gauss) for different datasets.
We restrict the rank of these datasets to 20. The plots show
that the proposed method is computationally better than both
gauss and srft.
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Fig. 3: Comparison of columns with norm zero: Modified
Nystrom (modified) v/s Nystrdm with Subsampled Random
Fourier Transform (srft), Gaussian Projections (gauss) for
different datasets. The plots show that the proposed method
covers all the columns with significantly fewer samples. In
contrast, uniform sampling fails to cover all the columns even
after sampling 20% of the columns.

Name Instances | Attributes | Classes
Aggregation (Agg) 788 2 7
D31 3100 2 31
Flame (Fla) 240 2 2
AK Jain‘s toy problem (AK) 373 2 2

TABLE I: The synthetic datasets used in our experiments.

B. Spectral Clustering

1) Synthetic Data: We compared the performance of the
proposed approach to the results of approaches described in
[18] and [20]. Both of these methods use the entire affinity
matrix and do not perform any sampling. We evaluated the
norm cuts ratio and the computation time on six commonly
used synthetic datasets [11], described in Table I, and repeated
our evaluations 10 times. The proposed approach sampled 30%
of the points. We measured the clustering quality of each
algorithm using the average accuracy across different datasets.
The results are shown in Figure 4. The proposed approach,
the weighted kernel k-means approach in [18] and the spectral
method in [20] are denoted in Figure 4 as “proposed”, “kulis”,
“shi” respectively. For all the datasets, the proposed approach
results in comparable accuracy while resulting in a significant
computational speedup.

2) Image Segmentation: One of the most popular appli-
cations of spectral clustering is image segmentation. In this
section, we describe results obtained on an image segmentation
benchmark [20]. The affinity matrix and the final discretization
were computed using the approach of [20]. Since we had
access to the function that was used to generate the affinity
matrix, we used a simpler densification step. Namely,

Cij

stmilarity(i, j) if j = argmax
0 otherwise

p similarity(i, p)

The final segmentation was refined using the connected
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Fig. 4: The first and second rows show the clustering obtained by [18] and the proposed approach respectively on several toy
problems. The third and fourth rows show the norm cuts ratio and the time taken for each dataset. It can be seen that the
proposed approach yields very similar results while taking comparable amount of time.
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Fig. 5: Figures (a) and (c) show the norm cuts ratio, whereas
(b), (d) show the time taken by different methods. The
proposed method outperforms Nystrom with uniform sampling
(nys) in terms of norm cuts ratio while taking a similar amount
of time. The baseline methods shi [20] and kulis [18] use the
entire affinity matrix. Thus they offer lower norm cuts ratio,
and have a significantly higher computation time.

components algorithm in [21]. The proposed approach is
compared against the approaches in [20] (shi) and [18] (kulis).
Experimental results in Figure 5 show that the proposed
approach obtains the same accuracy as the Nystrom approxi-
mation with uniform sampling, while using significantly fewer
samples.

VI. CONCLUSION

When the input matrix is sparse, we showed that the tradi-
tional Nystrom method requires a prohibitively large number
of samples to obtain a good approximation. To control sample
complexity, we propose a selective densification step based on
breadth first traversal to ensure all nodes are covered. We show
that the proposed densification does not change the optimal
clustering when the input matrix is block diagonal. Results on
real world datasets show that the proposed method outperforms
other techniques used for the Nystrém approximation.
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