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On averaging and input optimization
of high-frequency mechanical
control systems

Sevak Tahmasian1, David W Allen2 and Craig A Woolsey2

Abstract

This paper presents the optimization of input amplitudes for mechanical control-affine systems with high-frequency, high-

amplitude inputs. The problem consists of determining the input waveform shapes and the relative phases between inputs

to minimize the input amplitudes while accomplishing some control objective. The effects of the input waveforms and

relative phases on the dynamics are investigated using averaging. It is shown that of all zero-mean, periodic functions,

square waves require the smallest amplitudes to accomplish a control objective. Using the averaging theorem the

problem of input optimization is transformed into a constrained optimization problem. The constraints are algebraic

nonlinear equalities in terms of the amplitudes of the inputs and their relative phases. The constrained optimization

problem may be solved using analytical or numerical methods. A second approach uses finite Fourier series to solve the

input optimization problem. This second approach confirms the earlier results concerning minimum amplitude inputs and

is then applied to the problem of minimizing control energy.
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1. Introduction

The actuators for mechanical control systems provide
the necessary forces and moments to generate desired
motions. The mass of an actuator scales with its max-
imum output. Thus, control forces with large ampli-
tudes require bigger actuators which increases the
total mass of the system. Besides minimizing the
energy or time required for a system to accomplish a
task (Bobrow et al., 1985; Berman and Wang, 2007;
Gregory et al., 2012), designers are often interested in
minimizing the total mass of a robotic system
(Chedmail and Gautier, 1990). For biomimetic robots
such as flapping wing micro air vehicles (FWMAVs),
decreasing the total mass of the system is an especially
important design objective (Karpelson et al., 2008).

Many robotic systems can be modeled as mechanical
systems that are affine in their inputs. Mechanical con-
trol-affine systems may use high-frequency periodic
inputs to effect desired motions ‘‘on average’’ (Bullo,
2002; Bullo and Lewis, 2005). Control of mechanical
systems using high- (force) amplitude, high-frequency
inputs is known as ‘‘vibrational control’’ (Meerkov,

1977; Bellman et al., 1986a, b). One of the simplest
examples of using vibrational control for stabilization
is the Stephenson–Kapitza pendulum (Kapitza, 1965),
a two-degree-of-freedom (2-DOF) inverted pendulum
that is stabilized by high-frequency vertical oscillations
of its pivot. More complex examples are biological and
biomimetic systems such as insects, small birds, real
and robotic fish, and FWMAVs. These systems use
high-frequency flapping of their wings, tails, and fins
to fly or swim or to perform desired motions
(Wood, 2008; Oppenheimer et al., 2011; Anderson
and Cobb, 2012).

The averaging theorem is a useful tool for analyzing
the dynamics of time-periodic systems (Guckenheimer
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and Holmes, 1983; Sanders and Verhulst, 1985).
Applying averaging to a time-periodic system yields
time-invariant dynamics that can be used to analyze
the time-varying system. Using the averaging theorem
and the nonlinear variation of constants formula,
(Bullo, 2002) presented an averaging technique for
vibrational control systems.

This paper addresses minimizing the input amplitude
for a class of mechanical control-affine systems with
high-frequency, high-amplitude zero-mean inputs,
using the averaging technique described in (Bullo and
Lewis, 2005). After discussing the effects of the relative
phase of the inputs on the averaged dynamics, it is
shown that the averaged dynamics do not change if
all the inputs are shifted by the same amount. It is
then shown that, of all zero-mean, periodic inputs
that generate the same averaged dynamics, a square
wave has the smallest amplitude. The input optimiza-
tion problem is then transformed into a classical con-
strained optimization problem (Bertsekas, 1982; Burns,
2014). A set of algebraic nonlinear equality constraints
is derived that must be satisfied by the optimum inputs.
The independent parameters appearing in the equality
constraints are the amplitudes of the square inputs and
their relative phases. Next, a finite Fourier series
approach to input optimization is presented. In this
approach the cost functional is determined using a
finite Fourier series representation of the zero-mean
periodic inputs. An example of a 3-DOF mechanical
control system shows agreement with the earlier,
analytical results. The finite Fourier series approach is
then applied to the problem of minimizing the input
energy.

For the averaging theorem to be applicable, the
operation frequency of the vibrational system must
exceed some minimum value !0 which depends on the
physics and parameters of the system, and input amp-
litudes. If the forcing frequency exceeds this minimum
value then the averaging theorem guarantees that if
there is a hyperbolically stable equilibrium of the aver-
aged system dynamics, there is a corresponding, hyper-
bolically stable periodic orbit for the original system.
Currently there is no general analytical method to
determine the value of !0. Therefore in this paper we
simply assume that the forcing frequency is higher than
!0, whatever its value. We also assume that by chan-
ging the input amplitudes the forcing frequency still
remains higher than the !0 corresponding to the new
input amplitudes. Meerkov (1973) presented an equa-
tion to estimate the minimum frequency !0 for a
system, but it results in a conservative value (Bellman
et al., 1985). Using stability maps, Berg and
Wickramasinghe (2015) have shown that for (possibly
narrow) ranges of frequencies less than !0, the original
system may still possess stable periodic orbits.

These stabilizing ranges of frequencies, if they exist,
are not predicted by the averaging theorem and may
be determined using numerical methods.

The paper is organized as follows. In Section 2, after
reviewing the averaging theorem as applied to vibra-
tional control systems, the effects of phase shifting of
the inputs on the averaged dynamics are discussed. In
Section 3, the effects of the input waveform shape are
considered and an optimization problem for a 1-DOF
example is solved. Input optimization for higher-
dimensional systems, along with examples, are pre-
sented in Section 4. Section 5 presents a numerical
approach to solve the input optimization problem
using a finite Fourier series representation of the
input waveforms. Energy optimization using the finite
Fourier series is discussed in Section 6. Section 7 sum-
marizes the contributions.

2. Averaging of mechanical
control-affine systems

Consider the time-periodic dynamical system

_x ¼ �fðx, tÞ, xð0Þ ¼ x0 ð1Þ

where f(x,t) is T-periodic in its second argument and
�> 0 is a small number. The averaged dynamics of the
system in equation (1) is defined as (Guckenheimer and
Holmes, 1983; Sanders and Verhulst, 1985)

_�x ¼ ��fð �xÞ, �xð0Þ ¼ x0 ð2Þ

where

�fð �xÞ ¼ 1

T

Z T

0

fð �x, tÞdt

According to the averaging theorem if x(t) and �xðtÞ
are solutions of equation (1) and equation (2) respect-
ively, then xðtÞ ¼ �xðtÞ þOð�Þ on a time scale 1

�.
Moreover, if �xe is a hyperbolic equilibrium point of
equation (2), then there exists �0> 0 such that for all
0<�� �0, the system in equation (1) possesses a unique
hyperbolic periodic orbit xpðtÞ ¼ �xe þOð�Þ of the same
stability type as �xe (Guckenheimer and Holmes, 1983;
Sanders and Verhulst, 1985).

The dynamics of an n-DOF mechanical control-
affine system with m inputs can be written in the fol-
lowing form

€q ¼ fðq, _qÞ þ
Xm
i¼1

giðqÞuiðtÞ, qð0Þ ¼ q0, _qð0Þ ¼ v0 ð3Þ

where q¼ (q1, . . . , qn)
T is the vector of generalized

coordinates and ui(t) are the inputs. For each
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i2 f1, . . . ,m}, take ui(t) to be the following high-fre-
quency, high-amplitude input

uiðtÞ ¼ !við!tÞ ð4Þ

where ! is the (high) frequency, and vi(t) is a zero-
mean, T-periodic function.

Defining the state vector x ¼ ðqT, _qTÞT and using the
inputs defined in equation (4), the system in equation
(3) can be written in the first order form

_x ¼ ZðxÞ þ
Xm
i¼1

YiðxÞ 1

�

� �
vi

t

�

� �
, xð0Þ ¼ x0 ¼ ðqT0 , vT0 ÞT

ð5Þ
where � ¼ 1

!, ZðxÞ ¼ _qT, f Tðq, _qÞ� �T
is the drift vec-

tor field, and YiðxÞ ¼ 01�n, g
T
i ðqÞ

� �T
are the input

vector fields.
Following the discussion in Bullo and Lewis (2005:

Chapter 9), for the inputs in equation (4), we define
scalar parameters �i, lij, and �ij, for i, j2 f1, . . . ,m}, as
follows

�i ¼ 1

T

Z T

0

Z t

0

við�Þd� dt ð6Þ

lij ¼ 1

T

Z T

0

Z t

0

við�Þd�
� � Z t

0

vj ð�Þd�
� �

dt ð7Þ

and

�ij ¼ 1

2
ðlij � �i�j Þ ð8Þ

Also we define the symmetric product between two
input vector fields Yi(x) and Yj(x) as

hYi : YjiðxÞ ¼ hYj : YiiðxÞ ¼ Yj ðxÞ, ½ZðxÞ,YiðxÞ�
� 	 ð9Þ

where [�,�] denotes the Lie bracket of vector fields.

Therom 1. (Adapted from (Bullo and Lewis (2005)):
Consider the control-affine system in equation (3) with
high-frequency, high-amplitude inputs defined as equation
(4), and its first order form in equation (5). Suppose that
fðq, _qÞ and gi(q) depend polynomially on their arguments,
are twice differentiable in q, and that the components of
fðq, _qÞ are homogeneous in _q of degree two and less.
Consider the time-invariant system

_�x ¼ Zð �xÞ �
Xm
i,j¼1

�ijhYi : Yjið �xÞ ð10Þ

with the initial condition �xð0Þ ¼ �x0 ¼ x0 þ
Pm

i¼1 �iYiðx0Þ,
where �x ¼ ð�qT, _�qTÞT is the state vector. There exists a
positive �0 (corresponding to a frequency !0) such that

for all 0<�� �0 (equivalently, !�!0), qðtÞ ¼ �qðtÞ þ
Oð�Þ as �! 0 on the time scale 1. Furthermore, if the
system in equation (10) possesses a hyperbolically stable
equilibrium point �xe, then the system in equation (5) pos-
sesses a hyperbolically stable periodic orbit within an
O(�) neighborhood of the equilibrium point �xe, and the
approximation qðtÞ ¼ �qðtÞ þOð�Þ is valid for all time
t� 0.

We call the time-invariant system in equation (10)
the averaged form of the time-periodic system in equa-
tion (5).

Remark 2. Note that since the first n components of the
input vector fields Yi(x), i2 f1, . . . , m}, are zero, the ini-
tial conditions of the averaged dynamics in equation (10)
may also be written as �qð0Þ ¼ q0 and _�qð0Þ ¼
v0 þ

Pm
i¼1 �igiðq0Þ.

Therom 3. Consider the two control-affine systems in
equation (5) and equation (11) below

_y ¼ ZðyÞ þ
Xm
i¼1

YiðyÞ 1

�

� �
wi

t

�

� �
, yð0Þ ¼ x0 ð11Þ

where wi(t)¼ vi(tþ�0), i2 f1, . . . , m}, and 0��0�T.
For any �02 [0,T], the systems in equation (11) and
equation (5) have identical averaged dynamics with dif-
ferent initial states.

Proof. See Appendix 1.

The claim in Theorem 3 does not hold if the phase
shift is not applied uniformly, that is, if the phase of one
input is shifted relative to another. In this case, the
stability properties of the averaged and original dynam-
ics may also be affected. To make this clear, we present
the following example.

Example 1. Consider the following mechanical system
with two inputs

_x ¼

x3

x4

x23 � x24 � x3 þ x1 � x2

x23 þ x24 � 0:8x4 � 3x1

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ZðxÞ

þ

0

0

2x2

0

0
BBB@

1
CCCA

|fflfflfflffl{zfflfflfflffl}
Y1ðxÞ

!v1ð!tÞ

þ

0

0

0

3x1

0
BBB@

1
CCCA

|fflfflfflffl{zfflfflfflffl}
Y2ðxÞ

!v2ð!tÞ ð12Þ
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Considering the inputs v1(t)¼ cos t and v2(t)¼ cos(tþ�0),
where 0��0� 2p, and using equation (6) through
equation (8), one determines �1¼ 0, �2¼� sin�0, �11 ¼
�22 ¼ 1

4 and �12 ¼ �21 ¼ 1
4 cos�0. Using Theorem 1, the

averaged dynamics of equation (12) are

_�x1 ¼ �x3

_�x2 ¼ �x4

_�x3 ¼ �x23� �x24� �x3� 4:5 �x21þ 2 �x22þð1� 3cos�0Þ �x1� �x2

_�x4 ¼ �x23þ �x24� 0:8 �x4þ 4:5 �x21þ 2 �x22� 3 �x1� 3 �x2 cos�0

8>>>>>><
>>>>>>:

ð13Þ
where �x ¼ ð �x1, �x2, �x3, �x4ÞT is the state vector of the
averaged dynamics. The origin is an equilibrium point
of the original system in equation (12) and of its aver-
aged dynamics in equation (13). Linearizing the aver-
aged dynamics in equation (13) about the origin, one
obtains the linear, time-invariant system

d _�x ¼

0 0 1 0

0 0 0 1

1� 3 cos�0 �1 �1 0

�3 �3 cos�0 0 �0:8

0
BBBBB@

1
CCCCCAd �x ð14Þ

where d �x is the state vector of the linearized averaged
system. Using the eigenvalues of the state matrix of the
linearized system it can be shown that the linear system
in equation (14) is unstable for 0.696<�0< 5.588, and
stable otherwise. Therefore the time-periodic system in
equation (12) possesses an unstable periodic orbit
about the origin for 0.696<�0< 5.588, and a stable
one otherwise.

A portrait of the root locus of the linearized system
in equation (14) when changing �0 is shown in
Figure 1(a). The responses of the original time-periodic
system and its averaged dynamics for �0¼ 0 and
�0¼ 0.733 are presented in Figure 1(c) and (d). The
initial conditions for the simulations are x(0)¼
(0.1,� 0.1,0,0)T, and !¼ 50. Note that since the state
matrix of the linear system varies with cos�0, which is
bounded, the branches of the root locus of the linear
system shown in Figure 1(a) have finite lengths; none
approaches infinity.

In Figure 1(d), though the origin is an unstable equi-
librium point, the new equilibrium point that emerges
from the bifurcation is stable for �0� 1.434 and
�0� 4.849; see Figure 1(b). Therefore, for �0¼ 0.733,
the averaging results are still valid, except that the sta-
bility predictions correspond to a shifted equilibrium
point.

3. Input optimization of 1-DOF
control-affine systems

Consider the system in equation (3) where m¼ n¼ 1.
Using q as the generalized coordinate, x ¼ ðq, _qÞT as
the state vector, and the high-frequency, high-
amplitude input u1(t)¼!v1(!t), where v1(t) is a
T-periodic, zero-mean function, the first order form
can be written as

_x ¼ ZðxÞ þ YðxÞ!v1ð!tÞ ð15Þ
where Z(x) and Y(x) are defined as for equation (5).
The goal is to find the input function v1(t) with the
minimum amplitude for the system in equation (15)
to have a stable periodic orbit in an O(�) neighborhood
of a point xe¼ (qe, 0), where � ¼ 1

!.

Remark 4. In this and subsequent sections, we only con-
sider vibrational control systems operating with a forcing
frequency that is sufficiently high for the averaging the-
orem to apply. In terms of Theorem 1, we assume
that �� �0, or !�!0.

Using Theorem 1, the averaged dynamics of equa-
tion (15) can be written as

_�x ¼ Zð �xÞ � �11hY : Yið �xÞ ð16Þ

where �11 can be determined using equation (8). Thus
the parameter �11, associated with the input v1(t),
serves to scale the influence of the symmetric product.
According to Theorem 1, if the averaged dynamics in
equation (16) has an exponentially stable equilibrium
point at �xe, then the time-periodic system in equation
(15) has an exponentially stable periodic orbit in an
O(�) neighborhood of �xe. To begin, we require that
the point xe be an equilibrium point of the averaged
dynamics in equation (16), i.e.

0 ¼ ZðxeÞ � �11hY : YiðxeÞ ð17Þ

The set of equations (17) consists of two algebraic
equations. The first of these two equations is automat-
ically satisfied because the second component of xe (the
velocity component, _q) is zero. The second of these
equations can be written as

f ðqe, 0Þ � �11hðqeÞ ¼ 0 ð18Þ
where h(qe)¼ e2 � hY:Yi (qe), and ei is the ith unit vector of
the standard basis of Euclidean space (i.e. e2¼ (0, 1)T).
Assuming that h(qe) is nonzero, �xe ¼ xe will be an equi-
librium of the averaged dynamics provided

�11 ¼ f ðqe, 0Þ
hðqeÞ ð19Þ
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The parameter �11 determined using equation (19)
only guarantees that qe is an equilibrium of the aver-
aged system in equation (16). But it does not guar-
antee the stability of the equilibrium point qe.
Ensuring that the equilibrium is exponentially stable
requires additional analysis and, in some cases, feed-
back control as described in (Tahmasian and
Woolsey, 2015).

Remark 5. For some systems, the origin is an equilibrium
point of both the time-varying system and its averaged
dynamics. For bilinear systems such as the following, for
example, the origin is an equilibrium regardless of the
input (Martinez et al., 2003)

€q ¼ f0ðq, _qÞqþ g0ðqÞquðtÞ

Using input u(t)¼!v(!t) and considering the origin as
the desired equilibrium point qe, equation (18) is satisfied
for any choice of �11. Moreover, the equilibrium may be
unstable for some values of �11 and stable for other

values. We focus on those cases where h(qe) 6¼ 0 and,
as mentioned above, we consider stability separately.

Recalling, from equations (6) to (8), that the param-
eter �11 is defined solely by the input waveform, it is
evident that there are an infinite number of T-periodic,
zero-mean functions v1(t) that satisfy equation (19).
Figure 2 shows three such functions: square, sine, and
triangular waves, with T¼ 1 and �11¼ 1. The square
function generates the same input parameter �11¼ 1,
but with smaller amplitude compared with the other
two functions. In the following two theorems it is
shown that, of all waveforms generating a given value
of �, the square wave has the smallest amplitude.

Theorem 6. For any T-periodic, zero-mean function
v(t), there exists a phase 0��0�T such that, for the
function w(t)¼ v(tþ�0)

�s ¼ 1

T

Z T

0

Z t

0

wð�Þd� dt ¼ 0
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Figure 1. Root locus (a) and bifurcation diagram (b) for �02 [0, 2�] along with time histories for the original and time-averaged

dynamics with �0 ¼ 0 (c) and �0 ¼ 0.733 (d). The equilibria in (c) and (d) are denoted by black asterisks in (b). Dashed-green and full-

red in (b) represent stable and unstable equilibria of (13), respectively.
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Proof. See Appendix 1.

Let �s represent the value of � given in equation (8)
for the signal w(t). Then according to Theorem 3, �s

remains constant as �0 is varied.

Theorem 7. Of all T-periodic, zero-mean functions v(t)
with the same amplitude B, the T-periodic square
function

SBðtÞ ¼
B; 0 � t � T

2

�B;
T

2
5 t � T

8><
>:

results in the largest value �, as determined using equa-
tion (8).

Proof. According to Theorem 6, all T-periodic, zero-
mean functions v(t) with the same amplitude B can be
shifted by an amount 0� ��T to make �s¼ 0, where �s
is determined using equation (6) for the phase-shifted
function, without affecting the value of �. That is,
� ¼ �s ¼ 1

2 ls. (Note that the amount of phase shift �
required to make �s¼ 0 depends on the particular
choice of function v(t).) Rather than consider each
function v(t) and compare the parameters �, one may
consider the phase-shifted functions w(t)¼ v(tþ�) and
compare their parameters ls; see equation (8).

Defining AsðtÞ ¼
R t
0 wð�Þd�, and using equation (7),

one may write

ls ¼
Z T

0

A2
s ðtÞdt

The magnitude of the zero-mean square function SB(t)
is maximum for all t2R, except at isolated times. Thus,
for all T-periodic, zero-mean functions v(t) with the
same amplitude B, the square function SB(t) has the
maximum absolute area A(t) under the curve t-v(t) for
any t2 [0,T], and so has maximum A2

s ðtÞ. Therefore, of
all functions v(t) with equal amplitude, the square func-
tion SB(t) has the maximum ls, and therefore has the
maximum �s¼�. œ

Corollary 8. Of all T-periodic, zero-mean functions with
equal values of � determined using equation (8), the
T-periodic square function SB(t) has the minimum amp-
litude B.

For function SB(t) with period T and amplitude B,
� ¼ �square ¼ T2B2

96 . For any other T-periodic, zero-mean
function with an amplitude of B, �<�square. Note that
in equation (4) if the amplitude of the input vi(t) is B,
the total amplitude of the input ui(t) is ! B.

Remark 9. As mentioned earlier, this minimum-
amplitude input certainly does not ensure stability.
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−20

−15

−10

−5

0

5

10

15

20

t

v 1(t
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μ
11
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Triangular

Figure 2. Periodic, zero-mean functions for which �11¼ 1.
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Analysis may suggest that feedback stabilization is
required. Feedback would generally be required, in any
case, in order to modulate the system’s average motion.
See (Tahmasian and Woolsey, 2015), for example.

4. Input optimization for multi-input
systems

Consider the n-DOF (n> 1) control-affine system in
equation (5). The goal is to determine inputs vi(t),
i2 f1, . . . ,m}, with amplitudes Bi, for the system to
have a periodic orbit in an O(�) neighborhood of a
point xe ¼ ðqTe , 01�nÞT while minimizing the cost func-
tion J ¼Pm

i¼1 B
2
i . For the system in equation (5) to

have a periodic orbit around point xe, we require that
xe be an equilibrium point of the averaged dynamics in
equation (10). Therefore xe must satisfy

ZðxeÞ �
Xm
i,j¼1

�ijhYi : YjiðxeÞ ¼ 02n�1 ð20Þ

Since the velocities are identically zero at an equilib-
rium point and the first n components of the symmetric
product are also zero, the first n of the 2n algebraic
equations (20) are satisfied. The last n equations of
equation (17) can be written as

Xm
i,j¼1

�ijhijðqeÞ � fðqe, 0Þ ¼ 0n�1 ð21Þ

where hij(qe) is the n� 1 vector of the last n components
of the symmetric product hYi: Yji(xe). Since �ij¼�ji,
i,j2 f1, . . . ,m}, the set of equations (21) consists of n
algebraic equations in the mðmþ1Þ

2 unknowns �ij, with
i� j. Each of the parameters �ii depends on the wave-
form and amplitude of the input vi(t) and is independ-
ent of the others, yielding m unknowns. But the
parameters �ij for i< j depend also on the relative
phase between vi(t) and vj(t).

The relative phases of the inputs are not all inde-
pendent. In general, if the phases of all the inputs
vi(t), i2 f2, . . . ,m}, relative to v1(t) are known, then
the relative phase of any two inputs vi(t) and vj(t),
i,j2 f2, . . . ,m}, is also known. Thus there are only
m� 1 independent parameters �ij, with i< j, to be
determined from equation (21). In total there are
2m� 1 independent parameters �ij to be determined.
We assume that equation (21) represents a consistent
system of algebraic equations and that 2m� 1> n so
that the parameters �ij are underdetermined.

From the definition of the symmetric product in
equation (9) it is evident that hij¼ hji. Also from the
structure of the class of systems defined by equation

(3), the vector fields of the symmetric products
hYi: Yji are only functions of the generalized coordin-
ates q (and not the velocities _q). Defining

aij ¼
hijðqeÞ i ¼ j

2hijðqeÞ i 6¼ j

�

and b¼ � f(qe,0), the set of equations (21) can be writ-
ten in the form

Xm
i,j¼1ði�j Þ

aij�ij þ b ¼ 0 ð22Þ

Suppose that ��
ij denotes a set of solutions of equation

(22) where i, j2 f1, . . . ,m}. Consider a set of T-periodic,
zero-mean functions vi(t) that generate these parameter
values �ij ¼ ��

ij. I.e. defining AiðtÞ ¼
R t
0 við�Þd� assume

that

1

2

1

T

Z T

0

A2
i ðtÞdt�

1

T

Z T

0

AiðtÞdt
� �2

 !
¼��

ii, i2 f1, . . . ,mg

and

1

2

1

T

Z T

0

AiðtÞAj ðtÞdt� 1

T

Z T

0

AiðtÞdt
� �

1

T

Z T

0

Aj ðtÞdt
� �� �

¼��
ij, i, j2 f1, . . . ,mg, i5 j

According to Theorem 7, if one chooses vi(t) as the
T-periodic, zero-mean square function SBi

ðtÞ with an

amplitude of Bi ¼ 4
ffiffiffiffiffiffi
6��

ii

p
T , then the amplitude Bi is no

greater than the amplitude of any other T-periodic,
zero-mean function vi(t) that generates the same aver-
aged dynamics.

Square wave inputs are appealing for another
reason, as well. Note that the parameters �ij scale the
effect of the various symmetric product vector fields in
equation (20). Thus, freedom available in choosing a
parameter value �ij enables one to generate time-aver-
aged inputs in the direction defined by the correspond-
ing symmetric product.

Theorem 10. For all T-periodic, zero-mean functions
v1(t) and v2(t) generating certain parameter values
�11� 0 and �22� 0

1. �12j j � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�11�22

p
2. Choosing the inputs as square functions allows the

greatest range of values for �12, obtained by chan-
ging the relative phase of the inputs.

Proof. See Appendix 1.
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The input optimization goal presented at the begin-
ning of this section can be restated: Minimize
J ¼Pm

i¼1 B
2
i under n constraints in equation (22).

Thus, one obtains a constrained optimization problem
(Bertsekas, 1982; Burns, 2014). The problem may be
solved using the method of Lagrange multipliers, rede-
fining the cost function as

 ¼
Xm
i¼1

B2
i þ

Xn
k¼1

�k
Xm

i,j¼1ði�j Þ
aijk�ij þ bk

 !
ð23Þ

where aijk and bk are the kth elements of the vectors aij,
and b respectively, and �k, k2 f1, . . . , n}, are the
Lagrange multipliers.

Using Theorems 7 and 10 it is evident that choosing
all the inputs as square functions has two advantages.
First, it results in using inputs with smallest amplitudes,
and second, it provides the biggest possible range for �ij,
with i< j, which can be adjusted by shifting the phases of
the various inputs relative to each other. Therefore we
choose the inputs as square functions with amplitudes
Bi, and seek the relative phases that minimize

Pm
i¼1 B

2
i .

The cost function  in equation (23) may be rewrit-
ten as

 ¼
Xm
i¼1

B2
i þ

Xn
k¼1

�k
Xm
i¼1

aiik�ii

 !

þ
Xn
k¼1

�k
Xm

i,j¼1ði5j Þ
aijk�ij þ bk

 !
ð24Þ

Since for a T-periodic square function with an ampli-
tude of Bi, we have �ii ¼ T2

96B
2
i , the cost function in

equation (24) may be expressed as

 ¼
Xm
i¼1

1þ
Xn
k¼1

cik�k

 !
B2
i þ

Xn
k¼1

�k
Xm

i,j¼1ði5j Þ
aijk�ij þ bk

 !

ð25Þ

where cik ¼ T2

96 aiik and �ij



 

 � T2

96 BiBj



 

, with i< j.
As mentioned earlier, the parameters �ij, with i< j,

are not all independent. To eliminate redundant param-
eters, one may introduce the relative phase of the inputs.
Suppose that the phase of each input vi(t) relative to v1(t)
is �i (with �1¼ 0). Then the relative phase of vj(t) and
vi(t) is �ij¼�j��i. For two T-periodic square functions
vi(t) and vj(t) with amplitudesBi andBj, respectively, and
a relative phase �ij 2 ½0, T

2�, it can be shown that

�ij ¼ T2BiBj

96
ð32�3ij � 24�2ij þ 1Þ ð26Þ

Therefore, the cost function  may be written in terms
of nþ 2m� 1 independent amplitudes Bi, i2 f1, . . . ,m},
relative phases �j, j2 f2, . . . ,m}, and Lagrange multipli-
ers �k, k2 f1, . . . , n} as

 ¼
Xm
i¼1

1þ
Xn
k¼1

cik�k

 !
B2
i

þ
Xn
k¼1

�k

 Xm
i,j¼1ði5j Þ

T2

96
aijkBiBj 32ð�j � �iÞ3

�

�24ð�j � �iÞ2 þ 1
�þ bk

!
ð27Þ

The extrema of the cost function are its stationary
points, which may be found by solving the nþ 2m� 1
algebraic equations

@ 

@Bi
¼ 0, i 2 f1, . . . ,mg

@ 

@�i
¼ 0, i 2 f2, . . . ,mg

@ 

@�k
¼ 0, k 2 f1, . . . , ng

8>>>>>><
>>>>>>:

ð28Þ

Note that, since �i 2 ½0, T
2�, i2 f1, . . . ,m}, the set of

equations (28) may not have a solution inside the
boundaries of �i, or the solutions may be local extrema.
To find the global extrema one should also look for
possible solutions on the boundaries of �i.

As mentioned in Remark 9, an optimal input
obtained using this approach is not guaranteed to pro-
duce a stable equilibrium. To enforce stability in the
optimization process, one could impose additional
inequality constraints on the characteristic values of
the linearized, time-averaged dynamics. Alternatively,
one could defer stability analysis until after the optimal
inputs are obtained. If analysis indicates that the result-
ing equilibrium is unstable but stabilizable, one could
design and implement a suitable feedback control strat-
egy after the fact, modulating the input amplitudes, for
example, in response to error measurements.

Example 2. Consider the 3-DOF system with three
inputs

€q1 ¼ �0:5 _q21 þ _q22 þ 0:5 _q23 � 2 _q1 _q2 � 2:5 _q1 _q3 þ 0:5 _q2 _q3

� 3:5 _q1 � _q2 þ _q3 � 5q1 � 0:02

þ ðq1 þ q2 þ q3 � 1Þu1ðtÞ
€q2 ¼ 1:5 _q21 þ 1:5 _q23 � 0:5 _q1 _q2 � 1:5 _q1 _q3 � 2 _q2 _q3 þ _q1

� 3:5 _q2 þ _q3 � 5q2 � 0:3

þ ðq1 � q2 þ q3 � 1Þu2ðtÞ
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€q3 ¼ _q21 þ 0:5 _q22 þ 1:5 _q23 � 0:5 _q1 _q2 þ 1:5 _q1 _q3 þ 0:5 _q2 _q3

� _q1 � 4:5 _q3 � 5q3 � 0:15

þ ðq1 þ q2 þ 2q3 þ 1Þu3ðtÞ ð29Þ

where ui(t)¼!vi(!tþ�i), i2 f1, 2, 3}, are high-
frequency, high-amplitude periodic inputs. The goal is
for the system to have a periodic orbit in an O(�) neigh-
borhood of the origin, where � ¼ 1

!, when using inputs
with the minimum possible amplitudes.

Considering vi(t), i2 f1, 2, 3}, as T-periodic, square
functions with amplitudes Bi and using Theorem 1,
the averaged dynamics of equation (29) can be deter-
mined. The averaged equations are not shown here. For
the original system to have a periodic orbit around the
origin, we require that the origin be an equilibrium
point of the averaged system. Setting the state to zero
in the averaged dynamics, the three constraint equa-
tions are

B2
1 þ 2B2

2 þ B2
3 � 64�22B1B2 þ 96�33B1B3

��23B2B3 � 1:92 ¼ 0

3B2
1 � 2B2

2 þ 3B2
3 þ 32�22B1B2 þ 96�33B1B3

þ2�23B2B3 � 28:8 ¼ 0

2B2
1 þ B2

2 � B2
3 � 32�22B1B2 � 32�33B1B3

þ�23B2B3 � 14:4 ¼ 0

8>>>>>>>><
>>>>>>>>:

ð30Þ

where

�22 ¼ ð�2 � 0:68Þð�2 � 0:25Þð�2 þ 0:18Þ

�33 ¼ ð�3 � 0:68Þð�3 � 0:25Þð�3 þ 0:18Þ

and

�23 ¼ 1� 24ð�2 � �3Þ2 � 32ð�2 � �3Þ3

Using the constraint equations (30), the cost function  
can be determined from equation (27). Now one may
use mathematical software or numerical methods to
find the global minimum of the cost function when
0 � �i � T

2, i2 f2,3}. Also, one must check the stability
of the origin for the optimum solution. For this exam-
ple, using both Mathematica and Matlab, and using
T¼ 1, the optimum solution was determined as
B1¼ 2.876, B2¼ 0.675, B3¼ 1.88, �2¼ 0.09, and
�3¼ 0.33. Using the linearization of the averaged
dynamics about the origin, for these optimum values
the origin is a stable equilibrium point for the averaged
dynamics. The simulation results of the original and

averaged dynamics using the optimum inputs are
shown in Figure 3. The initial conditions of the simu-
lations are x(0)¼ (0.2, 0.2,�0.2, 0, 0, 0)T and the fre-
quency !¼ 3�. Note that the initial conditions of the
averaged dynamics are different (in this case �xð0Þ ¼
ð0:2, 0:2,�0:2,�0:575,�0:131,�0:15ÞT).

5. Alternate description of input
waveforms

Instead of choosing a particular shape for the input
waveforms and adjusting the amplitude and phase, a
general class of input waveforms can be defined using
a finite Fourier series. This formulation is similar to
the method for constructing periodic inputs by sum-
ming sinusoids at different frequencies presented in
(Vela, 2003; Vela et al., 2002a,b). Consider the finite
Fourier series of the zero-mean, T-periodic input wave-
form vi(t)

viðtÞ ¼
Xl
n¼1

Ai,n cos �ntð Þ þ Bi,n sin �ntð Þ� � ð31Þ

where Ai,n, Bi,n are Fourier coefficients and �¼ 2p/T,
where T is the base period. For convenience we define
ai,n¼Ai,n/� and bi,n¼Bi,n/�, and rewrite the finite
Fourier series equation (31) in the form of

viðtÞ ¼ �
Xl
n¼1

ai,n cos �ntð Þ þ bi,n sin �ntð Þ� � ð32Þ

The Fourier coefficients ai,n and bi,n are treated as free
parameters.

Figure 3. Time histories of the original system in equation (29)

and the averaged system when using the optimum inputs.
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Theorem 11. If the input waveforms vi(t) and vj(t) are
expressed in the form of equation (32), the parameters �i
and �ij are

�i ¼
Xl
n¼1

bi,n
n

and �ij ¼ 1

4

Xl
n¼1

1

n2
ai,naj,n þ bi,nbj,n
� �� �

Proof. See Appendix 1.

To introduce a notion of amplitude that is consistent
with earlier discussions of the input waveform, we make
the following definition.

Definition 12. The amplitude of a zero-mean, T-periodic
function w(t) is

ampw ¼ 1

2
max
t2 0,T½ �

w� min
t2 0,T½ �

w

� �

Once again we formulate a constrained optimization
problem with the cost functional J ¼Pm

i¼1 amp viðtÞð Þ2

subject to the constraint in equation (22). Since the
input waveforms are defined using finite Fourier series,
the decision variables are the Fourier coefficients.

Since the value of �ij only depends on the relative
phase between inputs, if the phase of all of the inputs is
shifted equally, the values of all �ij will remain con-
stant. Therefore, any phase shift �2 [0, 2p] that is
applied uniformly to the trigonometric terms in equa-
tion (32) will result in input waveforms that satisfy the
constraints with the same value of the cost functional.
Thus, there are infinitely many locally optimal input
waveforms, each with the same cost. The primary prob-
lem this poses is that it becomes impractical to find the
optimum waveforms using the Lagrange multiplier
method described previously. Instead, a numerical opti-
mization technique is used.

Example 3. Consider the planar two-link mechanism
on a cart depicted in Figure 4. Each link is a uniform
bar with mass mi, i2 f1, 2}, length li, and mass moment
of inertia Ii ¼ 1

12mil
2
i about its center of mass. The mass

of the cart ismc. The system is a 3-DOF system with two
inputs and moves in a horizontal plane; gravity does not
affect the motion. The inputs are the force F(t) acting on
the cart and the torque �(t) acting on the first link. We
assume the system is subject to linear damping with

coefficients of kd1 and kd2 in the first and second joints,
respectively. Considering q¼ (x, 	1, 	2)

T as the vector of
generalized coordinates, the goal is to generate a stable
periodic orbit in a O(�) neighborhood of a desired con-
figuration qd ¼ ðxd, 	d1 , 	d2ÞT, while using inputs with
minimum amplitudes. The dynamic equations of the
system can be written in the form

MðqÞ€q ¼ fðq, _qÞ þ FcðtÞ

where the generalized inertia matrix is

and

fðq, _qÞ ¼
1
2

�ðm1þ 2m2Þl1 _	21 cos	1þm2l2 _	
2
2 cos	2

�
� 1

2m2l1l2 _	
2
2 sinð	1� 	2Þ�kd1

_	1þkd2ð _	2� _	1Þ
1
2m2l1l2 _	

2
1 sinð	1� 	2Þ�kd2ð _	2� _	1Þ

0
BB@

1
CCA

and the vector of inputs is

FcðtÞ ¼
FðtÞ
�ðtÞ
0

0
B@

1
CA

Consider the following inputs

FðtÞ ¼ �kpc ðx� xdÞ � kdc _xþ !v1ð!tÞ
�ðtÞ ¼ �s � kp1ð	1 � 	d1 Þ þ !v2ð!tþ �Þ

ð33Þ

where v1(t) and v2(t) are T-periodic, zero-mean func-
tions with amplitudes of F0 and �0 respectively, kpc ,
kp1 , and kdc are control parameters, and �s is a nonzero
constant.

Using the state vector x ¼ ðqT, _qTÞT, one may trans-
form the equations of motion of the system into the
form of equation (5) with m¼ 2, and determine the

Figure 4. Two-link mechanism on a cart.

MðqÞ ¼
mc þm1 þm2 � 1

2 ðm1 þ 2m2Þl1 sin 	1 � 1
2m2l2 sin 	2

� 1
2 ðm1 þ 2m2Þl1 sin 	1 I1 þ 1

4 ðm1 þ 4m2Þl21 1
2m2l1l2 cosð	1 � 	2Þ

� 1
2m2l2 sin 	2

1
2m2l1l2 cosð	1 � 	2Þ I2 þ 1

4m2l
2
2

0
B@

1
CA

10 Journal of Vibration and Control



averaged dynamics using Theorem 1. The averaged
dynamics are in the form

_�x ¼ Zð �xÞ �
X2
i,j¼1

�ijhYi : Yjið �xÞ ð34Þ

where

YiðxÞ ¼
03�1

M�1
i ðqÞ

� �

with M�1
i ðqÞ being the ith column of M�1(q), and

ZðxÞ ¼ _q

M�1ðqÞ�fðq, _qÞ þ gðq, _qÞ�
� �

where

gðq, _qÞ ¼
�kpc ðx� xdÞ � kdc _x

�s � kp1ð	1 � 	d1Þ
0

0
B@

1
CA

Using the inputs in equation (33), the system may pos-
sess a stable periodic orbit in an Oð1!Þ neighborhood
of qd. This happens if the point xe ¼ ðqTd , 01�3ÞT is a
hyperbolically stable equilibrium point of the averaged
dynamics. For the point xe to be an equilibrium point
of the averaged system, it must satisfy

ZðxeÞ �
X2
i,j¼1

�ijhYi : YjiðxeÞ ¼ 0 ð35Þ

The set of algebraic equations (35) contains six equa-
tions, the first three being satisfied automatically
because of the system structure. For the point qd to
be an equilibrium point of the averaged dynamics,
one needs to choose parameters to satisfy the last
three equations of equation (35).

To establish a periodic orbit about the point qd one
should choose a value for �s and find �ij, i, j2 f1,2}, to
satisfy the equations in equation (35). Depending on
the physical parameters of the system, there may be
no acceptable solution for �s and �ij. As mentioned
earlier, however, in the discussion following equation
(21), we assume that equation (35) represents a consist-
ent set of algebraic equations.

Only two of the last three equations of equation (35)
are independent. Therefore there is a set of two inde-
pendent equations in three unknowns �ij¼�ji. The
equations yield a one-parameter family of solutions.
There is thus parametric freedom available for further
optimization.

Consider the case where the links have mass per unit
length 
m. For the physical parameters

mc ¼ 1 kg, 
m ¼ 1 kg=m, l1 ¼ 0:8 m, l2 ¼ 1 m

kpc ¼ 5, kdc ¼ 2, kp1 ¼ 10, kd1 ¼ 2, kd2 ¼ 1

and for xd¼ 0, 	d1 ¼ � �
9 rad, 	d2 ¼ �

9 rad, and
�s¼ 1N�m, the set of equations (35) to be satisfied are

0:2271�11 � 0:6111�12 � 1:5465�22 ¼ �0:4727

1:0179�11 � 3:1218�12 � 5:9772�22 ¼ �2:3732

1:4390�11 � 3:0137�12 � 11:9323�22 ¼ �2:4241

ð36Þ

The set of equations (36) contains two independent
equations in three unknowns and there are infinitely
many inputs v1(t) and v2(t) to be chosen. Choosing
F2
0 þ �20 as the cost function to be minimized, according

to Theorem 7 one should choose the inputs as
T-periodic, zero-mean square functions with ampli-
tudes F0 and �0 and a relative phase �, to be determined
using the optimization procedure discussed in
Section 4. Considering square inputs with T¼ 2p s,
one determines F0¼ 4.336N, �0¼ 1.202N�m, and
�¼ 0 as the optimal inputs.

The input waveform optimization problem for this
system was also solved using the alternate method
described in Section 5. The input waveforms v1(t) and
v2(t) are described as finite Fourier series and (amp,
v1(t))

2þ (amp, v2(t))
2 is chosen as the cost functional.

The results of this technique, along with a comparison
to the previous technique, are shown in Figure 5. As
can be seen, the results from the finite Fourier series
technique approach the square wave as the number of
Fourier coefficients increases.

The averaged system is then linearized about the
desired equilibrium point xe, and control parameters
are sought to stabilize the resulting linear system.
Figure 6 shows simulation results using the optimum
inputs with !¼ 50 rad/s. In this simulation, the ini-
tial velocity is zero and the initial configuration is
x0¼ 0.2m, 	10 ¼ �

6 rad, 	20 ¼ �
3 rad.

As stated in Theorem 7, a square wave is the optimal
solution for the cost functional J ¼Pm

i¼1 amp viðtÞð Þ2.
However if a different cost functional is chosen, the
square wave will not be the optimal input waveform,
in general, and the finite Fourier series may yield super-
ior results.

6. Input energy minimization

Minimizing the sum of the square of the amplitudes
of the input waveforms is a well-motivated cost func-
tional, because the input amplitude relates to actuator
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sizing requirements. Another well-motivated opti-
mization objective is minimizing the input energy.
Suppose u(t) is an input history that drives a
system, _x ¼ f t, xðtÞ, uðtÞð Þ, from x0 at time t¼ 0 to
xf at time t¼ tf. The input energy is defined as
(Burns, 2014)

Eðtf Þ ¼ 1

2

Z tf

0

uTðtÞuðtÞdt ð37Þ

If the inputs are T-periodic and tf¼ kT for some
k2Zþ , then

EðkTÞ ¼ k

2

Z T

0

uTðtÞuðtÞdt ð38Þ
Defibition 13. The �-averaged p-norm of a p-integrable
vector signal u(t) is

uðtÞ�� ��
�,p
¼ 1

�

Z �

0

Xm
i¼1

juiðtÞjp dt
 !1

p

where ui(t) is the ith element of u(t).

Using this definition, the T-averaged 2-norm of the
T-periodic input history u(t) is equal to

uðtÞ�� ��
T,2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

Z T

0

uTðtÞuðtÞdt
s

The T-averaged p-norm in Definition 13 satisfies the
required properties of a norm (Khalil, 1996).

Proposition 14. If vi(t) is defined as a finite Fourier
series as in equation (32), i.e.

viðtÞ ¼ �
Xl
n¼1

ai,n cos �ntð Þ þ bi,n sin �ntð Þ� �
then the T-averaged 2-norm can be expressed as

vðtÞ�� ��
T,2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

Z T

0

vTðtÞvðtÞdt
s

¼ �ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

Xl
n¼1

a2i,n þ b2i,n

� �vuut
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Figure 5. Optimal input waveforms for the cart with two-link mechanism obtained using the approaches described in Section 4 and

Section 5. The different solutions for the finite Fourier series correspond to different numbers of Fourier coefficients l2 f1, 3, 5, 7}.
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Figure 6. Time histories of x(t), 	1(t), and 	2(t) of the two-link mechanism on a cart.
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Proof. The proof is straight forward and is omitted.

Remark 15. Similar to square waves, there exists an
expression to easily compute �ij. Considering the
input waveforms vi(t)¼Bicos(�tþ�i) and vj(t)¼
Bjcos(�tþ�j)

�ij ¼ bibj
4

cos �ij
� �

where Bi¼ bi�, and �ij¼�j��i.

Therom 16. Let v(t)¼ [v1(t), . . . , vm(t)]
T be a vector

of continuous, zero-mean, T-periodic input waveforms
satisfying the conditions in equation (22). For the corres-
ponding values of �ij, the minimum input energy corres-
ponds to sinusoidal input waveforms, i.e. vi(t)¼
Bicos(�tþ�i).

Proof. See Appendix 1.

Recall that the amplitude cost functional considered
earlier was

Pm
i¼1 amp viðtÞð Þ2. For square waves or sinus-

oids, this can be written as
Pm

i¼1 B
2
i . Notice that the

input energy for square waves and sinusoids is propor-
tional to the sum of the square of the amplitudes, i.e.
for input waveforms expressed as square waves or
sinusoids vðtÞ�� ��2

T,2
/Pm

i¼1 B
2
i . Therefore, if the input

waveforms are defined as square waves, the same
input waveforms minimize both

Pm
i¼1 amp viðtÞð Þ2 and

vðtÞ�� ��2
T,2

, and likewise for input waveforms defined as
sinusoids. The proportionality constant is different
when considering square waves and sinusoids and
this difference leads to Corollary 8 suggesting that

square waves are the best choice for minimizingPm
i¼1 amp viðtÞð Þ2 and Theorem 16 suggesting that

sinusoids are the best choice for minimizing the input
energy.

Example 4. This example concerns the system defined
in Example 3. Instead of minimizing the input ampli-
tudes as in Example 3, we minimize the input energy.
The results of this optimization problem can be seen in
Figure 7. Comparing with Figure 5, the square wave
and finite Fourier series with l¼ 1 are the same in both
figures, but all of the other input waveforms are differ-
ent in the figures. This is the result of the fact that both
optimization problems are equivalent for square waves
and sinusoids, but not for finite Fourier series. The
optimal waveforms defined as finite Fourier series are
also the same as the optimal sinusoid. This is the
expected result; Theorem 16 shows that sinusoids min-
imize the input energy. Simulations of the system
dynamics are qualitatively similar to those of Figure 6.

Remark 17. The input optimization discussed in this
paper may also be used for design optimization of con-
trol-affine mechanical systems. The design parameters
may include physical system parameters as well as con-
trol parameters. The design challenge is to determine the
input waveforms and the design parameters p, within
acceptable ranges, that minimize a given cost function
while establishing a desired periodic orbit. If the resulting
periodic orbit is unstable, it may be stabilized through
feedback control or stability may be enforced through
additional constraints in the optimization problem. As
discussed in the introduction, additional analysis (e.g.
using stability maps, as in Berg and Wickramasinghe

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

2

4

6

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 7. The minimal input energy waveforms for waveforms expressed as square waves, sinusoids, and finite Fourier series with

l2 f1, 3, 5, 7}.
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(2015)) may be required to ensure that the forcing fre-
quency ! exceeds the critical value.

7. Conclusion

This paper addresses the input optimization of vibra-
tional control systems. By studying the effects of the
input signal waveforms on the averaged dynamics of
the vibrational system, we showed that periodic
square inputs require smaller amplitudes to effect a
given periodic motion than other periodic waveforms.
Using the averaged dynamics, the problem of input
optimization was transformed into a constrained opti-
mization problem. Solving the constrained optimiza-
tion problem, one determines the minimum amplitude
of each input and the relative phase between them. It
was shown that shifting all the inputs by the same
amount does not affect the averaged dynamics, as one
would expect. However, shifts in the relative phase
between input waveforms may alter the character (e.g.
the existence or stability of equilibria and periodic
orbits). An alternative method of optimizing the input
waveforms, using a finite Fourier series to define a gen-
eral class of inputs was also presented. When using
finite Fourier series as the input waveforms, the optimal
solution to the input amplitude minimization problem
approximates a square wave as the number of terms
increases. Finally, a second constrained optimization
was presented, with the aim of minimizing the input
energy for vibrational control. For this problem, the
optimal input waveforms were shown to be sinusoids.
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Appendix 1

Proof of Theorem 3. Since vi(t), i2 f1, . . . ,m}, is a zero-
mean, T-periodic function, wi(t) is also a zero-mean,
T-periodic function. For wi(t) and wj(t), i, j2 f1, . . . ,m}
we define

�si ¼
1

T

Z T

0

Z t

0

wið�Þd� dt ð39Þ

lsij ¼
1

T

Z T

0

Z t

0

wið�Þd�
� � Z t

0

wj ð�Þd�
� �

dt ð40Þ

and

�sij ¼
1

2
ðlsij � �si�sj Þ ð41Þ

Using Theorem 1, the averaged dynamics of equation
(11) is

_�y ¼ Zð�yÞ �
Xm
i,j¼1

�sijhYi : Yjið�yÞ

with an initial condition �yð0Þ ¼ x0 þ
Pm

i¼1 �siYiðx0Þ.
For any �02 [0,T], we show that �sij ¼ �ij.

Using wi(t)¼ vi(tþ�0), the parameter �sij can be
written as

�sij ¼
1

2T

Z T

0

Z t

0

við� þ �0Þd�
� � Z t

0

vj ð� þ �0Þd�
� �

dt

� 1

2T2

Z T

0

Z t

0

við� þ �0Þd� dt
� �

�
Z T

0

Z t

0

vj ð� þ �0Þd� dt
� �

ð42Þ

Using s¼ �þ�0, equation (42) can be rewritten as

�sij ¼
1

2T

Z T

0

Z tþ�0

�0

viðsÞds
� � Z tþ�0

�0

vj ðsÞds
� �

dt

� 1

2T2

Z T

0

Z tþ�0

�0

viðsÞds dt
� � Z T

0

Z tþ�0

�0

vj ðsÞds dt
� �

which can be expanded to

�sij ¼
1

2T

Z T

0

Z tþ�0

0

viðsÞds�
Z �0

0

viðsÞds
� �

�
Z tþ�0

0

vj ðsÞds�
Z �0

0

vj ðsÞds
� �

dt

� 1

2T2

Z T

0

Z tþ�0

0

viðsÞds�
Z �0

0

viðsÞds
� �

dt

� �

�
Z T

0

Z tþ�0

0

vj ðsÞds�
Z �0

0

vj ðsÞds
� �

dt

� �
ð43Þ

Equation (43) simplifies to

�sij ¼
1

2T

Z T

0

Z tþ�0

0

viðsÞds
� � Z tþ�0

0

vj ðsÞds
� �

dt

� 1

2T2

Z T

0

Z tþ�0

0

viðsÞds dt
� � Z T

0

Z tþ�0

0

vj ðsÞds dt
� �

ð44Þ

Using the change of variable r¼ tþ�0, equation (44)
can be written as

�sij ¼
1

2

1

T

Z Tþ�0

�0

Z r

0

viðsÞds
� � Z r

0

vj ðsÞds
� �

dr

�

� 1

T

Z Tþ�0

�0

Z r

0

viðsÞdsdr
� �

1

T

Z Tþ�0

�0

Z r

0

vj ðsÞdsdr
� ��
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Since vi(t) and
R
vi(t)dt are T-periodic, and for any

T-periodic function vi(t),
R Tþ�
� viðtÞdt ¼

R T
0 viðtÞdt, the

parameter �sij can be written as

�sij ¼
1

2

1

T

Z T

0

Z r

0

viðsÞds
� � Z r

0

vj ðsÞds
� �

dr

�

� 1

T

Z T

0

Z r

0

viðsÞdsdr
� �

1

T

Z T

0

Z r

0

vj ðsÞdsdr
� ��

which is the same as �ij.
Therefore shifting the phase of all the inputs by the

same amount �0 does not change the averaged dynam-
ics in equation (10). But since in general �i 6¼ �si , the
initial conditions of the two averaged dynamics may be
different. œ

Proof of Theorem 6. Using integration by parts, �s can
be written as

�s ¼ 1

T
t

Z t

0

wð�Þd�




T
0

�
Z T

0

twðtÞdt
 !

Both v(t) and w(t) are T-periodic zero-mean functions.
Therefore

R T
0 wðtÞdt ¼ 0, and �s can be simplified to

�s ¼ � 1

T

Z T

0

twðtÞdt

Replacing w(t)¼ v(tþ�) in the last equation one gets

�s ¼ � 1

T

Z T

0

tvðtþ �Þdt

which, using �¼ tþ�, can be written as

�s ¼ � 1

T

Z Tþ�

�

ð� � �Þvð�Þd�

¼ � 1

T

Z Tþ�

�

�vð�Þd� þ �

T

Z Tþ�

�

vð�Þd�

But
R Tþ�
� vð�Þd� ¼ R T

0 vð�Þd� ¼ 0. Therefore

�s ¼ � 1

T

Z Tþ�

�

tvðtÞdt

So �0 is the solution of

Fð�0Þ ¼
Z Tþ�0

�0

tvðtÞdt ¼ 0

which we show always exists. F(�) can be written as

Fð�Þ ¼
Z T

0

tvðtÞdtþ
Z Tþ�

T

tvðtÞdt�
Z �

0

tvðtÞdt

Using change of variable �¼ t�T in the second inte-
gral in the right hand side of the expression above

Fð�Þ ¼
Z T

0

tvðtÞdtþ
Z �

0

ð� þ TÞvð� þ TÞd� �
Z �

0

tvðtÞdt

which using v(�þT)¼ v(�) can be written as

Fð�Þ ¼ T

Z �

0

vðtÞdtþ
Z T

0

tvðtÞdt

Using the results of integration by parts at the begin-
ning of the proof, F(�) can be shown as

Fð�Þ ¼ T

Z �

0

vðtÞdt�
Z T

0

Z t

0

vð�Þd� dt

Defining the constant M ¼ � R T0 R t0 vð�Þd� dt and the
time-varying parameter AðtÞ ¼ R t

0 vð�Þd�, the function
F(�) can be written as

Fð�Þ ¼ TAð�Þ �
Z T

0

AðtÞdt ¼ TAð�Þ þM

Without loss of generality, suppose that M> 0.
Since A(0)¼A(T)¼ 0, therefore F(0)¼F(T)¼M> 0.
Though v(t) may be a piecewise continuous function,
A(�) is continuous everywhere. (It is the area under the
t-v(t) curve.) Therefore it is enough to show that there
exists �2 [0,T] such that F(�)� 0. Also, since A(�) is
continuous and A(0)¼A(T)¼ 0, so A(�) has at
least one minimum at �¼�m and A(�m)� 0.
Consider Fð�mÞ ¼ TAð�mÞ �

R T
0 AðtÞdt. Since A(t) is

continuous, using the first mean value theorem for inte-
grals (Salas et al., 2006), there exists �*2 [0,T]
such that

Z T

0

AðtÞdt ¼ TAð��Þ

Therefore

Fð�mÞ ¼ T
�
Að�mÞ � Að��Þ�

But since A(�m) is the minimum of A(�) and T is posi-
tive, F(�m)� 0, and so there exists �02 [0,T] such that
F(�0)¼ 0, which results in �s¼ 0.

Proof of Theorem 10. Using equation (8)

�11�22 � �2
12 ¼

1

4
ðl11 � �21Þðl22 � �22Þ � ðl12 � �1�2Þ2
� �
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which using equation (6) and equation (7), and defining
AiðtÞ ¼

R t
0 viðtÞdt, can be written as

�11�22 � �2
12

¼ 1

4T2

" Z T

0

A2
1ðtÞdt�

1

T

Z T

0

A1ðtÞdt
� �2

 !

�
Z T

0

A2
2ðtÞdt�

1

T

Z T

0

A2ðtÞdt
� �2

 !

�
�Z T

0

A1ðtÞA2ðtÞdt� 1

T

Z T

0

A1ðtÞdt
� �

�
Z T

0

A2ðtÞdt
� ��2

#
ð45Þ

For two integrable functions f, g : [0,T]!R, con-
sider the Cauchy–Bunyakovsky–Schwarz theorem
(Mitrinovic et al., 1993: Chapter 4)

Z T

0

f2ðxÞdx
� � Z T

0

g2ðxÞdx
� �

�
Z T

0

f ðxÞ gðxÞdx
� �2

ð46Þ

Replacing f(x) with f ðxÞ � 1
T

R T
0 f ðxÞdx, and g(x) with

gðxÞ � 1
T

R T
0 gðxÞdx in equation (46) one obtains

Z T

0

f2ðxÞdx� 1

T

Z T

0

f ðxÞdx
� �2

 !

�
Z T

0

g2ðxÞdx� 1

T

Z T

0

gðxÞdx
� �2

 !

�
Z T

0

f ðxÞ gðxÞdx� 1

T

Z T

0

f ðxÞdx
� � Z T

0

gðxÞdx
� �� �2

ð47Þ

Comparing the right hand side of equation (45) with
inequality equation (47) it is evident that the right hand
side of equation (45) is always positive, and so
�11�22 � �2

12.
For the case when v1(t) and v2(t) are square functions

with amplitudes B1 and B2 respectively, it can be shown

that �11 ¼ T2B2
1

96 and �22 ¼ T2B2
2

96 . For the case when the

relative phase of the two square functions is zero,

�12 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�11�22

p ¼ T2B1B2

96 and is maximum, and if the

phase between them is T
2, then �12 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�11�22
p ¼

� T2B1B2

96 and is minimum. For a phase shift T
4, �12¼ 0.

For any other phase, �12j j5 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�11�22

p
. So using square

functions SB1
and SB2

and depending on their relative

phase, �12 may have any value in its maximum possible
range. Note that one may choose other periodic, zero-
mean waveforms, such as sine or triangular functions,
to generate �12 in the same range as the square func-
tions, but those other waveforms require bigger ampli-
tudes than the square waves.

Proof of Theorem 11. This proof utilizes the properties
stated in the following remark.

Remark 18. Let ni and nj be any natural numbers, i.e.
ni,nj2N. Because sinusoids form an orthogonal basis for
the Fourier series, the following property holds

Z T

0

cos �nitð Þ cos �njt
� �

dt ¼
Z T

0

sin �nitð Þ sin �njt
� �

dt

¼ 0 if ni 6¼ nj

�=� if ni ¼ nj

�

Additionally

Z T

0

cos �nitð Þ sin �njt
� �

dt ¼ 0

for any ni, nj2N.

Let the input waveforms be defined as finite Fourier
series as in Equation (32). Thus

�i ¼ 1

T

Z T

0

Z t

0

vi �ð Þd� dt

¼ 1

T

Z T

0

Z t

0

�
Xl
n¼1

ai,n cos �n�ð Þ þ bi,n sin �n�ð Þ� �
d� dt

Because �/T¼ 2p/T2, the previous expression can be
shown to be equivalent to

�i ¼ 2�

T2

Xl
n¼1

ai,n
1

T

Z T

0

Z t

0

cos �n�ð Þd� dt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

0
BB@

þbi,n
1

T

Z T

0

Z t

0

sin �n�ð Þd� dt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼T2

2�n

1
CCCCA

Thus

�i ¼
Xl
n¼1

bi,n
n

ð48Þ
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Prior to defining �ij as in Theorem 11, it is necessary
to compute lij (see equation (7)) because �ij is defined
using lij as shown in equation (8). Let vi and vj be
defined as finite Fourier series, i.e.

viðtÞ ¼ �
Xl
ni¼1

ai,ni cos �ni�ð Þ þ bi,ni sin �ni�ð Þ� �

vjðtÞ ¼ �
Xl
nj¼1

aj,nj cos �nj�
� �þ bj,nj sin �nj�

� �� �

It can be shown that

lij ¼ 1

T

Z T

0

Z t

0

viðsiÞdsi
� � Z t

0

vjðsjÞdsj
� �

dt

is equivalent to

lij ¼ 1

T

Z T

0

Xl
ni, nj¼1

�
ai,niaj,nj
ninj

sin �nitð Þ sin �njt
� �

þ ai,nibj,nj
ninj

sin �nitð Þ � ai,nibj,nj
ninj

sin �nitð Þ cos �njt
� �

þ bi,niaj,nj
ninj

cos �nitð Þ sin �njt
� �þ bi,nibj,nj

ninj
cos �nitð Þ

� bi,nibj,nj
ninj

cos �nitð Þ cos �njt
� �þ bi,niaj,nj

ninj
sin �njt
� �

þ bi,nibj,nj
ninj

� bi,nibj,nj
ninj

cos �njt
� ��

dt

Switching the order of integration and summation and
applying the properties from Remark 18 yields

lij ¼ 1

2

Xl
n¼1

1

n2
ai,naj,n þ bi,nbj,n
� �� �

þ
Xl

ni, nj¼1

bi,nibj,nj
ninj

� �
ð49Þ

Notice that

�i�j ¼
Xl

ni, nj¼1

bi,nibj,nj
ninj

� �

Therefore

�ij ¼ 1

2
lij � �i�j
� � ¼ 1

4

Xl
n¼1

1

n2
ai,naj,n þ bi,nbj,n
� �� �

ð50Þ

Proof of Theorem 16. Consider the problem of mini-
mizing the input energy of vi(t) with �ii¼�?, which
satisfies the constraint in equation (22). Assume
that vi(t) is a continuous, zero-mean, T-periodic func-
tion. Therefore vi(t) can be expressed as a Fourier
series, i.e.

viðtÞ ¼ �
X1
n¼1

ai,n cos �ntð Þ þ bi,n sin �ntð Þ� �
Since vi(t) is defined as a Fourier series, one finds
that

�ii ¼ �? ¼ 1

4

X1
n¼1

1

n2
a2i,n þ b2i,n

� �
ð51Þ

and the input energy of this waveform is

viðtÞ
�� ��2

T,2
¼ �2

2

X1
n¼1

a2i,n þ b2i,n

� �
ð52Þ

Notice that the summands of equation (51) and equa-
tion (52) differ only by a factor of 1/n2. Minimizing
equation (52) subject to equation (51) is equivalent to
minimizing

P1
n¼1ða2i,n þ b2i,nÞ subject to

P1
n¼1

1
n2
ða2i,n þ

b2i,nÞ ¼ �?. Notice that

X1
n¼1

a2i,n þ b2i,n

� �

¼
X1
n¼1

1

n2
a2i,n þ b2i,n

� �
þ n2 � 1

n2
a2i,n þ b2i,n

� �� �

¼
X1
n¼1

1

n2
a2i,n þ b2i,n

� �� �
þ
X1
n¼1

n2 � 1

n2
a2i,n þ b2i,n

� �� �

Applying the constraint yields

X1
n¼1

a2i,n þ b2i,n

� �
¼ �? þ

X1
n¼1

n2 � 1

n2
a2i,n þ b2i,n

� �� �

Since �? is a constant and (n2� 1)/n2¼ 0 if n¼ 1, mini-
mizing the input energy of vi(t) subject to �ii¼�? is
equivalent to minimizing

X1
n¼2

n2 � 1

n2
a2i,n þ b2i,n

� �
ð53Þ

Notice that (n2� 1)/n2> 0 for all n> 1, so the minimum
of equation (53) occurs when a2i,n þ b2i,n ¼ 0 for all n� 2
which occurs when ai,n, bi,n¼ 0 for all n� 2.
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Therefore, the minimum-input-energy, continuous,
zero-mean, T-periodic waveform corresponding to
�ii¼�? can be expressed as a Fourier series where
all of the Fourier coefficients except for the first
pair are zero. Such a Fourier series represents a sinus-
oid, i.e.

viðtÞ ¼ bi� cos �tþ �ið Þ

¼ �
X1
n¼1

ai,n cos �ntð Þ þ bi,n sin �ntð Þ� �

where ai,1¼ bicos(��i), bi,1¼ bisin(��i), and
ai,n, bi,n¼ 0 for all n> 1. Thus, the minimum-input-
energy, continuous, zero-mean, T-periodic waveform
corresponding to �ii¼�? is a sinusoid.

Assume that v(t)¼ [v1(t), . . . , vm(t)]
T is a vector of

continuous, zero-mean, T-periodic input waveforms

satisfying the conditions in equation (22). This assump-
tion constrains the possible input waveforms vi(t) such
that each input waveform has a prescribed value of �ii.
Furthermore, each pair of input waveforms has a pre-
scribed value of �ij.

The input energy of v(t), vðtÞ�� ��2
T,2

, does not depend
on the relative phase of the input waveforms, which
determines �ij. Thus, the optimization problem reduces
to minimizing the input energy of each vi(t) with �ii

satisfying equation (22).
As previously stated, for vi(t) with �ii satisfying

equation (22) the minimum-input-energy input wave-
form corresponds to sinusoids. Therefore, if
v(t)¼ [v1(t), . . . , vm(t)]

T is a vector of continuous, zero-
mean, T-periodic input waveforms satisfying the condi-
tions in equation (22), the minimum input energy cor-
responds to sinusoidal input waveforms, i.e. vi(t)¼
Bi� cos(�tþ�i). œ
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