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Abstract A combination of vibrational inputs and state feedback is applied to control
the flight of a biomimetic air vehicle. First, a control strategy is developed for longi-
tudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial
effects. Vertical and forward motion is controlled by modulating the wings’ stroke and
feather angles, respectively. Stabilizing control parameter values are determined using
the time-averaged dynamic model. Simulations of a system resembling a hawkmoth
show that the proposed controller can overcome modeling error associated with the
wing inertia and small parameter uncertainties when following a prescribed trajec-
tory. After introducing the approach through an application to longitudinal flight, the
control strategy is extended to address flight in three-dimensional space.

Keywords Biomimetic air vehicle · Flapping flight · Averaging · Geometric control

1 Introduction

Bio-inspired engineering involves using examples from nature to solve technical prob-
lems (Jenkins 2011). For example, inspired by flying insects, researchers are devel-
oping biomimetic air vehicles (BAVs) that can quickly negotiate confined spaces and
withstand large disturbances. The engineering design of BAVs involves fluid mechan-
ics, multi-body dynamics, and control theory. Efforts to mimic insect flight have
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improved our knowledge of low Reynolds number, unsteady aerodynamics, nonlinear
dynamics and control, and the design and manufacture of microscale mechanisms.

The aerodynamic forces and moments acting on a BAV can be obtained by solv-
ing the Navier–Stokes equations with the appropriate boundary conditions, but this
approach does not readily support modeling and control design (Ramamurti and Sand-
berg 2002). Typical studies of insect or BAV dynamics and control adopt a quasi-steady
aerodynamic model whose parameters are determined from experimental studies. Most
of these quasi-steady models are based on the blade-element method, in which each
wing is divided into spanwise sections over which the flow is assumed to be two-
dimensional. Integrating the aerodynamic forces and moments along the span yields
an estimate of the total aerodynamic contribution of the wing (Ellington 1984). This
paper adopts the quasi-steady, blade-element aerodynamic model developed by Deng
et al. (2006b).

BAVs are generally underactuated systems resembling flying insects, bats, or birds.
Underactuated systems contain fewer actuators than degrees of freedom (DOFs), so a
vehicle that flaps appendages for propulsion and control is inherently underactuated.
Small-scale BAVs, as opposed to larger ornithopters, use high-frequency flapping to
generate sufficient aerodynamic forces to overcome gravity and fly. For example, the
nano hummingbird (Keennon et al. 2012) and Harvard microrobotic fly (Wood 2008)
use flapping frequencies of 30 and 110 Hz, respectively. Since insects and BAVs use
periodic aerodynamic forces generated by flapping their wings, they can be modeled
as nonlinear time-periodic (NLTP) systems. The averaging theorem (Guckenheimer
and Holmes 1983; Sanders and Verhulst 1985) is often used to construct a nonlinear
time-invariant (NLTI) approximation of a high-frequency NLTP system. If the NLTI
system has a hyperbolic equilibrium point, then the NLTP system has a corresponding
periodic orbit with the same stability properties (Guckenheimer and Holmes 1983).

Early efforts to control a BAV’s flight focused on stabilizing hovering flight. For
example, Deng et al. (2006a) developed a periodic proportional output feedback con-
trol law to stabilize hover. Though the authors mentioned the averaging theorem, they
did not determine the averaged dynamics analytically. Instead, they used multiple sim-
ulations to determine a linear approximation of the average aerodynamic forces and
moments. Khan and Agrawal (2007) discuss the use of differential flatness to develop
a nonlinear controller for the longitudinal dynamics of a BAV. In a series of papers,
Oppenheimer, Doman, and Sigthorsson describe an approach to three-dimensional
motion control of a BAV by modulating the flapping frequency (Oppenheimer et al.
2009; Doman et al. 2010; Oppenheimer et al. 2011). The “split-cycle” waveform
modulation technique enables a BAV to generate nonzero time-averaged aerodynamic
forces using the waveform parameters as feedback-controlled inputs. Later simulations
using high-fidelity dynamic and aerodynamic models demonstrated the robustness of
the control method to modeling uncertainties. Another technique, similar to split-cycle
control, called “biharmonic amplitude and bias modulation” was developed and tested
by Anderson and Cobb (2012, 2014), who also provide a useful summary of the major
work on BAVs.

Biological flyers are remarkably robust to disturbances. Several efforts at control
design for BAVs have addressed robustness explicitly. Serrani et al. (2010) discusses
robust set-point control for the longitudinal motion of a 3-DOF BAV, and Bhatia et al.

123



J Nonlinear Sci (2017) 27:1193–1214 1195

(2014) used linear-quadratic regulator theory to address gust resilience. Rifai et al.
(2012) discuss the use of bounded state feedback control to robustly regulate a BAV’s
position and attitude. An empirical approach to maneuver control of an insect-scale
BAV is discussed in Ma et al. (2013). Adding adaptive elements to the controller
to cope with uncertainties can improve performance (Chirarattananon et al. 2014).
Other recent work on longitudinal flight control for insect-scale BAVs is discussed
in Elzinga et al. (2014). For recent reviews of dynamic and aerodynamic modeling,
stability analysis, and flight control of BAVs, see (Taha et al. 2012; Orlowski and
Girard 2012; Sun 2014; Ward et al. 2015).

In this paper, vibrational control and averaging, as discussed in (Bullo 2002; Bullo
and Lewis 2005), are used to control the three-dimensional motion of a BAV. Under
the proposed high-frequency, high-amplitude control law, the dynamics of the closed-
loop mechanical system take the form considered in Bullo (2002). Specifically, the
closed-loop dynamics are described by the sum of a slowly varying “drift” vector field
and one or more fast-varying input vector fields. Because of the high-frequency, high-
amplitude forcing, the drift vector field is a small perturbation, in comparison with
the input vector fields. As recognized in Bullo (2002), the structure of the equations
suggests the use of the averaging theorem to simplify stability and control analysis.
Because the dynamics are averaged over a complete flapping cycle, only one set of
averaged equations is needed. The proposed control method is an adaptation of the
one developed by Tahmasian et al. (2013); Tahmasian and Woolsey (2015), in which
vertical motion is controlled by modulating the stroke amplitude, forward motion is
controlled by modulating the feathering angle (the pitch angle of the wing), and lateral
motion is controlled by varying these parameters asymmetrically. The pitch attitude is
not directly controlled; however, it is passively stable if there is natural pitch damping.

Section 2 discusses vibrational control and averaging of control-affine mechanical
control systems. The equations of longitudinal motion of a BAV, including the wing
inertia effects, are derived in Sect. 3. By ignoring the wing inertia effects, the equations
are transformed to a simpler form that is amenable to the proposed control method.
The aerodynamic model is discussed in Sect. 4. In Sect. 5, the proposed control method
for control of longitudinal motion is presented, and the performance and robustness
of the controller are discussed in the context of numerical simulations. Afterward, the
method is extended for control of three-dimensional motion of a BAV, as discussed
in Sect. 6. Section 7 reviews the major conclusions from the work and suggests some
avenues for continuing research.

2 Vibrational Control and Averaging of Mechanical Control Systems

Consider an n-DOF mechanical control-affine system with m inputs:

q̈ = f (q, q̇) +
m∑

i=1

gi (q)ui (t), q(0) = q0, q̇(0) = v0 (1)

where q = (q1, . . . , qn)T is the vector of generalized coordinates, f (q, q̇) and
gi (q) are smooth vector fields on the state space manifold, and ui (t) are the inputs.
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We impose high-frequency, high-amplitude periodic inputs ui (t), i ∈ {1, . . . , m}, in
the form

ui (t) = ωvi (ωt) (2)

where ω is the (high) frequency and vi (t) is a zero-mean, T -periodic function. Defining
the state vector x = (qT , q̇T )T and using the inputs defined in (2), system (1) can be
written in the first-order form

ẋ = Z(x) +
m∑

i=1

Yi (x)

(
1

ε

)
vi

(
t

ε

)
, x(0) = x0 = (qT

0 , vT
0 )T (3)

where ε = 1/ω is a small parameter, Z(x) = (
q̇T , f T (q, q̇)

)T
is the drift vector

field, and Yi (x) = (
01×n, gT

i (q)
)T

are the input vector fields.
For the zero-mean, periodic inputs (2), we define scalar parameters κi , λi j , and μi j ,

for i, j ∈ {1, . . . , m}, as follows: (Tahmasian et al. 2016)

κi = 1

T

∫ T

0

∫ t

0
vi (τ )dτdt (4)

λi j = 1

T

∫ T

0

(∫ t

0
vi (τ )dτ

) (∫ t

0
v j (τ )dτ

)
dt (5)

and

μi j = 1

2
(λi j − κiκ j ) (6)

Also we define the symmetric product between two input vector fields Yi (x) and Y j (x)

as
〈Yi : Y j 〉(x) = 〈Y j : Yi 〉(x) = [

Y j (x), [Z(x), Yi (x)]] (7)

where [·, ·] denotes the Lie bracket of vector fields.

Theorem 2.1 (Adapted from Bullo and Lewis (2005), Ch. 9) Consider control-affine
system (1) with high-frequency, high-amplitude inputs defined as (2), and its first-order
form (3). Suppose that f (q, q̇) and gi (q) depend polynomially on their arguments
and are twice differentiable in q and that the components of f (q, q̇) are homogeneous
in q̇ of degree two and less. Consider the time-invariant system

˙̄x = Z(x̄) −
m∑

i, j=1

μi j 〈Yi : Y j 〉(x̄) (8)

with the initial condition x̄(0) = x̄0 = x0 +
m∑

i=1

κi Yi (x0), where x̄ = (q̄T , ˙̄qT )T

is the state vector. There exists a positive ε0 (corresponding to a frequency ω0) such
that for all 0 < ε ≤ ε0 (equivalently, ω ≥ ω0), q(t) = q̄(t) + O(ε) as ε → 0
on the time scale 1. Furthermore, if the system (8) possesses a hyperbolically stable
equilibrium point x̄e, then the system (3) possesses a hyperbolically stable periodic
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orbit within an O(ε) neighborhood of the equilibrium point x̄e, and the approximation
q(t) = q̄(t) + O(ε) is valid for all time t ≥ 0.

We call the time-invariant system (8) the averaged form of the time-periodic system (3).
The significance of the symmetric product in the averaged dynamics (8) is that it

shows the control authority of the system when using inputs (2). Note that for the
class of control-affine systems defined in Theorem 2.1, the symmetric product defined
in (7) is a 2n × 1 vector field with its first n components being zero. The (n + k)th,
k ∈ {1, . . . , n}, element of the symmetric product 〈Yi : Y j 〉, i, j ∈ {1, . . . , m}, shows
the effect of the inputs ui and u j on coordinate qk . In this paper, we adopt the model (3)
for a BAV, along with its averaged form (8).

3 Equations of Longitudinal Motion

The system considered here comprises a main rigid body and two rigid wings. To
describe the motion of the body and the wings, four reference frames are defined as
shown in Figs. 1 and 2. First, an inertial frame {X, Y, Z} is fixed in space such that
the Z -axis points in the local direction of gravity. Second, the body frame {xb, yb, zb}
is fixed within the main body, with its origin at the body’s center of mass. The xb-
axis defines the longitudinal axis of the BAV, the yb-axis points to starboard, and
zb completes the right-handed orthogonal reference frame. A third frame {x, y, z} is
pinned to the origin of the inertial frame but rotates with the body, such that the x-,
y-, and z-axes remain parallel to the xb-, yb-, and zb-axes, respectively.

A fourth reference frame describes the motion of the wings. In longitudinal flight,
the two wings move symmetrically and the yb-axis remains parallel to the Y -axis. In
this case, the motion of both wings can be described using a single reference frame
{xw, yw, zw}, whose origin is fixed at the joint of the right wing with the yw-axis
pointing toward the wing tip. In this paper, the motion of each wing spar is confined
to the xb–yb plane. This restriction is consistent with observations of biological flyers,
for which the wing motion does not deviate from a body-fixed plane. Each wing’s
motion can be described by two angles: The stroke angle β describes the flapping
motion of the wing back and forth and the feather angle η describes the rotation of the
wing about the yw-axis. Since the velocity of the wings is due mainly to the flapping
motion, the wing angle of attack is well approximated by the feather angle η (Deng
et al. 2006a).

Fig. 1 Inertial and body
coordinate frames (side view)
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Fig. 2 Wing angles and wing coordinate frame

To derive the equations of motion of the system when considering the wing inertia
effects, we use the principle of virtual power (Greenwood 2003). Let ib, jb, and kb rep-
resent the unit vectors defining the body-fixed reference frame. The body translational
and rotational velocity in symmetric flight is

vb = u ib + wkb and ωb = θ̇ jb

We define the vector of generalized coordinates for longitudinal flight as q =
(x , z , θ , β)T , where x and z are quasi-coordinates associated with the body velocity
components u and w, respectively, and θ is the body pitch angle.

According to the principle of virtual power

∑
i

(
mi (v̇i + ρ̈ci ) − Fi

)
.
∂vi

∂ q̇ j
+ (

ḣi + miρci × v̇i − Mi
)
.
∂ωi

∂ q̇ j
= 0 (9)

where the index i ∈ {b, rw, lw} represents the three component rigid bodies (body,
right wing, and left wing), the index j ∈ {1, 2, 3, 4} refers to the four degrees of
freedom represented by the state vector q, and mi , vi , and ωi are the mass, velocity of
the center of mass, and angular velocity of the i th rigid body, respectively. The vector
ρci points from the reference point of the i th rigid body to its center of mass. (Since
the origin of the body frame is set at the body center of mass, ρcb = 0.) The vector hi

represents the angular momentum of the i th rigid body about the origin of the body
frame attached to that rigid body. The vectors Fi and Mi represent the external force
and moment acting on the i th rigid body.

For symmetric flight, the body angular momentum is hb = Iy θ̇ jb, where Iy is the
pitch moment of inertia of the body. Ignoring the aerodynamic effects of the body, the
only external force acting on the body is gravity, so Fb = −mg sin θ ib + mg cos θ zb
and Mb = 0.
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Each wing has mass mw and mass moments of inertia Ixw , Iyw , and Izw about the
xw-, yw-, and zw-axes, respectively. The translational and rotational velocities are

vw = u ib + (w − xhθ̇ )kb and ωw = θ̇ jb − β̇kb

where xh is the longitudinal distance from the origin of the body frame to the origin of
the wing frame. The angular velocity vector of the wing can be rewritten in the wing
frame as

ω(w)
w =

⎛
⎝ω1

ω2
ω3

⎞
⎠ =

⎛
⎝ β̇ sin η̂ − θ̇ cos η̂ sin β

θ̇ cos β

−β̇ cos η̂ − θ̇ sin η̂ sin β

⎞
⎠

where we define the convenient shorthand:

η̂(η) =
{

η ; β̇ ≥ 0

π − η ; β̇ < 0

(Both η and η̂ are used throughout, depending on which is more convenient.)
The position vector pointing from the hinge root to the wing center of mass is

ρcw = −xc iw + yc jw. One may compute

ρ̈(w)
cw

=
⎛
⎝ ρ̈1

ρ̈2
ρ̈3

⎞
⎠ =

⎛
⎝ xc(ω

2
2 + ω2

3) − yc(ω̇3 − ω1ω2)

−xc(ω̇3 + ω1ω2) − yc(ω
2
1 + ω2

3)

xc(ω̇2 − ω1ω3) + yc(ω̇1 + ω2ω3)

⎞
⎠

The time derivative of the wing angular momentum can be expressed in the wing frame
as

ḣ(w)
w =

⎛
⎝ ḣ1

ḣ2

ḣ3

⎞
⎠ =

⎛
⎝ Ixw ω̇1 + (Izw − Iyw)ω2ω3

Iyw ω̇2 + (Ixw − Izw)ω1ω3
Izw ω̇3 + (Iyw − Ixw)ω1ω2

⎞
⎠

The external forces acting on the wings are the gravitational and aerodynamic forces.
Since the lateral aerodynamic forces of the two wings are equal and opposite, they
cancel. Therefore, the vector of the external forces Fw expressed in the body frame is

F(b)
w =

⎛
⎝ Fx − mwg sin θ

0
Fz + mwg cos θ

⎞
⎠

where Fx and Fz are the aerodynamic forces acting in xb and zb directions, respectively.
The moments applied on the system include the moment due to the weight of the

wings, the aerodynamic moment, and the control moment acting on the wings. The
moment due to gravity is Mgw = (−d iw +rcg jw)×mwgki (where ki is the unit vector
in the direction of gravity) and the control moment is Mc = Mβ kb. We also consider
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a small damping moment acting against the pitch motion of the vehicle with damping
coefficient cq attributed to the main body of the vehicle. Substituting these terms in
Eq. (9) and simplifying, the longitudinal equations of motion are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx = m(u̇ + wθ̇ + g sin θ) + mw(ρ̈1 cos η̂ cos β + ρ̈2 sin β + ρ̈3 sin η̂ cos β − xh θ̇2)

Fz = m(ẇ − uθ̇ − g sin θ) + mw(ρ̈3 cos η̂ − ρ̈1 sin η̂ − xh θ̈ )

My = mw
(
du̇ sin η̂ + (d cos η̂ cos β − rcg sin β − xh)ẇ + xh θ̈ (xh − d cos η̂ cos β + rcg sin β)

+ xh(ρ̈1 sin η̂ − ρ̈3 cos η̂ + uθ̇ + g cos θ) − (d cos η̂ cos β − rcg sin β)(uθ̇ + g)

+ d θ̇ (w − xh θ̇ ) sin η̂
) + Iy θ̈ + ḣ2 cos β − ḣ1 cos η̂ sin β − ḣ3 sin η̂ sin β − cq θ̇

Mβ = mw(d cos η̂ sin β + rcg cos β)(u̇ + (w − xh θ̇ )θ̇ ) + ḣ1 sin η̂ − ḣ3 cos η̂

(10)
where My is the aerodynamic moment about the yb-axis and Mβ is the stroke control
moment applied to the right wing. (In symmetric flight, the left wing moves in unison
with the right.)

The inertial effects of the wings on the main body are of small magnitude and may
be omitted for control design (Sun et al. 2007; Taha et al. 2012). Therefore, rather
than use Eq. (10), we use simpler equations that omit the mutual inertial effects of
the wings and body on one another, such that the motion of the main body can be
represented using a conventional fixed-wing aircraft model (Etkin 1972). In this case,
the equations of motion take the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u̇ = −qw − g sin θ + 1
m Fx

ẇ = qu + g cos θ + 1
m Fz

q̇ = 1
Iy

(My − cqq)

β̈ = 1
I w
zb

Mβ

(11)

where q = θ̇ is the pitch rate of the body and I w
zb

= Ixw sin2 η̂ + Izw cos2 η̂ is the mass
moment of inertia of the right wing about the zb-axis.

Letting U and W denote the inertial components of forward and downward velocity,
respectively, the translational kinematic equations are

(
Ẋ
Ż

)
=

(
U
W

)
=

(
cos θ sin θ

− sin θ cos θ

) (
u
w

)

Rewriting Eq. (11) in the inertial frame gives

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U̇ = 1
m FX

Ẇ = g + 1
m FZ

q̇ = 1
Iy

(My − cqq)

β̈ = 1
I w
zb

Mβ

(12)

where (
FX

FZ

)
=

(
cos θ sin θ

− sin θ cos θ

) (
Fx

Fz

)
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4 Aerodynamic Model

The aerodynamic force and moment are determined using a quasi-steady blade-
element model (Deng et al. 2006a, b). The model includes both the translational and
rotational effects of the wing motion. Here, we consider a single wing among a pair
that moves symmetrically, recognizing that the total contribution will be doubled. We
later relax the assumption of symmetric flapping.

The feather (wing pitch) kinematics are prescribed in the following form: η(t) =
η0 sgn(β̇), where sgn represents the signum function (Deng et al. 2006a, b). Thus, the
feather angle remains at a constant value η0 during the forward stroke and reverses
sign when the stroke motion reverses. The normal and tangential aerodynamic forces
are

FN = 1

2
ρ AwCN v2

cp

FT = 1

2
ρ AwCT v2

cp (13)

where vcp is the velocity of the center of pressure of the wing, ρ is the density of the
fluid, Aw is the surface area of the wing, and CN and CT are force coefficients. Since
the wings undergo high-frequency flapping motion, assuming the body is moving
slowly compared with the wings’ velocities, almost all of the translational velocity of
a blade element of the wing at a distance r from the joint (root) of the wing is due to the
flapping motion. (In simulations, the induced angle of attack due to the body motion
is retained.) So the velocity of the center of pressure of the wing can be considered as
vcp ≈ rcpβ̇, where rcp denotes the position of the center of pressure in the yw direction
(Deng et al. 2006b):

rcp =
√∫ R

0 c(r)r2dr

Aw
(14)

where R is the wing semi-span and c(r) is the chord length at a distance r from the
wing joint in the yw direction. Substituting vcp into (13) gives

FN = 1

2
ρ AwCN r2

cpβ̇
2

FT = 1

2
ρ AwCT r2

cpβ̇
2 (15)

Based on experiments, the normal and tangential force coefficients CN and CT take
the form (Deng et al. 2006b)

CN = C̄N sgn(β̇) sin η

CT = C̄T sgn(β̇) cos2 2η (16)

where C̄N and C̄T are constant parameters.
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There is another component of the normal force due to feathering (pitching) of the
wings:

Fr,N = 1

2
ρ AwC̄r cmaxη̇vcp

where C̄r is a force coefficient and cmax is the maximum chord of the wing. Since the
feather angle η is assumed to remain constant during each half stroke of the wings,
however, this normal force vanishes. (During stroke transitions, when the feather angle
changes sign, the stroke velocity β̇ goes to zero so that vcp ≈ 0.)

To use the aerodynamic forces in the equations of motion, the components of the
normal and tangential forces in the body frame can be expressed as(

Fx
Fz

)
=

(
cos θ sin θ

− sin θ cos θ

) (
FX
FZ

)
=

(
cos θ sin θ

− sin θ cos θ

)(
cos β 0

0 1

)(
cos η sin η

− sin η cos η

) (
FT
FN

)
(17)

The aerodynamic moment My is the moment of the normal and tangential forces
about the center of mass of the body:

My = rcp(FT sin η − FN cos η) sin β − 1

4
c̄FN sgn(β̇) cos β (18)

where c̄ is the mean geometric chord of the wing.
Using Eqs. (15) through (18) and after some calculations, the components of aero-

dynamic force and moment in the inertial frame can be written as

FX = fX (θ, η, β)β̇2

FZ = fZ (θ, η, β)β̇2

My = my(θ, η, β)β̇2 (19)

where

fX =1

2
ρ Awr2

cp

(
(C̄N cos η − C̄T cos2 2η) sin η sin θ

+ (C̄N sin2 η + C̄T cos η cos2 2η) cos β cos θ
)
sgn(β̇)

fZ =1

2
ρ Awr2

cp

(
(C̄N cos η − C̄T cos2 2η) sin η cos θ − (C̄N sin2 η

+ C̄T cos η cos2 2η) cos β sin θ
)
sgn(β̇)

my =1

2
ρ Awr2

cp

(
rcp(C̄T cos2 2η

− C̄N cos η)sgn(β̇) sin β − 1

2
c̄C̄N cos β

)
sin η

The aerodynamic force and moment components required to determine the motion of
the system are expressed as functions of the body pitch angle θ , and the wing stroke
and feather angles β and η. Recall that, because the analysis above concerned a single
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wing, the force and moment components fX , fZ , and my in (19) are doubled for two
wings in symmetric motion.

5 Averaging and Control of Longitudinal Flight

Substituting the force and moment components FX and FY and the moment My

from (19) into (12), including the contributions from both wings, the dynamic equa-
tions of the system can be written succinctly as follows:

U̇ = 1

m
fX (θ, η, β)β̇2

Ẇ = g + 1

m
fZ (θ, η, β)β̇2

q̇ = 1

Iy

(
my(η, β)β̇2 − cqq

)

β̈ = 1

I w
zb

Mβ (20)

where the stroke control moment Mβ and the feather angle η are the control inputs of
the system. The goal is to determine the inputs such that the system follows a slowly
varying desired trajectory (Xd(t), Zd(t), θd(t)) on average.

5.1 Vibrational Control and Averaging for the BAV in Longitudinal Flight

In this paper, we use the feather angle η to control the horizontal motion of the vehicle,
and adjust the amplitude of the stroke angle of the wings to control the vertical motion
(Dickinson et al. 1999). If the feather angle η and the wing stroke angle β follow zero-
mean, periodic profiles, then the net horizontal force generated during one flapping
cycle will be zero. If the feather angle differs slightly when the wing is sweeping
forward than when it sweeps back, however, there will be a nonzero net horizontal
force which can be used to control the horizontal motion of the vehicle. To control
the horizontal motion, a proportional-derivative (PD) controller is used to adjust the
amplitude of the feather angle of the wing. Specifically, we define

η = ηs + ηx

where

ηs = η0sgn(β̇)

represents the nominal feather angle required for balanced flight and

ηx = kpx (Xd(t) − X) + kdx (Ẋd(t) − Ẋ)
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is a feedback correction based on the longitudinal position error, with PD control
parameters kpx and kdx . Provided ηx is small relative to ηs , one can make the following
approximations:

sin η = sin(ηs) + ηx cos(ηs)

cos η = cos(ηs) − ηx sin(ηs) (21)

Altitude control can be achieved by adjusting the amplitude of the stroke angle.
Using Eq. (12), the simplified dynamic equation for the stroke motion of each wing is

β̈ = 1

I w
zb

Mβ (22)

To modulate the stroke amplitude, we choose (Tahmasian and Woolsey 2015)

Mβ = kpβ β + kdβ β̇ + B0(t)
(
1 + kpz

(
Zd(t) − Z

))
ω cos ωt (23)

where B0(t) is a time-varying parameter and kpβ , kdβ , and kpz are control parameters
to be determined. By choosing the control moment Mβ as (23), the stroke amplitude
is adjusted using the altitude tracking error Zd(t) − Z . Defining the state vector x =(
X, Z , θ, β, U, W, q, ωβ

)T , with ωβ = β̇, and using Eqs. (21) through (23), the
equations of motion of the system can be written as

ẋ = f (x, t) + g(x, t)ω cos ωt (24)

where

f (x, t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ẋ
Ż
q
ωβ

1
m fXω2

β

g + 1
m fZω2

β

1
Iy

(
myω

2
β − cqq

)
1

I w
zb

(
kpβ β + kdβ ωβ

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

g(x, t) =
(

07×1
B0(t)
I w
zb

(
1 + kpz (Zd(t) − Z)

))
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Equation (24) is in the form discussed in Sect. 2. Using Theorem 2.1, the averaged
dynamics of the system (24) can be written as

˙̄x = f (x̄, t) − 1

4
〈g : g〉(x̄, t) (25)

The symmetric product in (25) is easily computed using symbolic mathematics soft-
ware, but the resulting expressions are too lengthy to be shown here.

From the structure of the input vector field g, one may infer that the input does not
directly affect vertical motion. The component of the input vector field g corresponding
to vertical acceleration is zero. However, the component of the symmetric product
〈g : g〉 corresponding to vertical acceleration is nonzero, so a periodic input introduces
a vertical force in (25) parameterized by B0(t). Thus, vertical motion may be controlled
using the input Mβ .

For a system to track a desired trajectory, that trajectory should be dynamically
feasible; i.e., it should satisfy the equations of motion. For the BAV system to follow
some desired, slowly varying time histories Xd(t), Zd(t), and θd(t) on average, these
time histories must be consistent with the averaged dynamic equations. To find the
parameter B0(t), we substitute the desired time histories into the vertical dynamic
equation of the averaged dynamics and seek a time-varying parameter value B0(t) for
which the equation holds identically. To keep the body pitch angle small, we choose
θd(t) = 0. Also note that, because the wings perform high-frequency, zero-mean
periodic motion, β̄ ≡ 0. From the sixth component equation of (25), we find that

B0(t) = I w
zb

rcp

√
4m

(
g − Z̈d(t)

)
2ρ Aw

(
C̄T (1 + cos 4η0) − 2C̄N cos η0

)
sin η0

(26)

Having determined B0(t), one may substitute it into the averaged equations of
motion (25) and seek parameters kpβ , kdβ , kpz , kpx , and kdx to meet stability and
performance requirements. To simplify stability analysis, the nonlinear averaged
dynamics (25) can be linearized about the slowly varying desired trajectory to obtain
a linear, time-varying perturbation system. In cases where the desired trajectory (for
the average motion) is constant, the system obtained from linearization will be linear,
time invariant, which considerably simplifies the analysis.

5.2 Simulation and Numerical Results

In this section, the proposed flight control method is applied to a BAV with physical
parameters resembling those of a hawkmoth. For simplicity, however, the wings are
modeled as (rigid) rectangles with chord length c = 18.5 mm and semi-span R =
52 mm. The remaining physical parameters follow, some defined by Berman and Jane
(2007); Deng et al. (2006b):

m = 1.6 × 10−3 kg, Iy = 10−6 kg m2, I w
zb

= 2 × 10−8 kg m2, ρ = 1.2 kg m−3

η0 = 40◦, xh = 0, ω = 56π rad s−1, C̄N = −3.4, C̄T = −0.4, cq = 10−5 N m s
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Fig. 3 Simulation results for a circular desired path, neglecting wing inertial effects. a Time histories of
X, Z, and θ , b X–Z path

The control moment Mβ defined in (23) makes the averaged vertical motion stable,
but not asymptotically stable. To generate a vertical asymptotically stable motion on
average, we amend the control moment by adding derivative feedback in Z as follows

Mβ(t) = kpβ β + kdβ ωβ + B0(t)
(
1 + kpz

(
Zd(t) − Z

) + kdz

(
Żd(t) − Ż

))
ω cos ωt

Omitting units, we choose the control parameters as

kpx = −10, kdx = −0.6, k pβ = −8 × 10−5, kdβ
= −2 × 10−7, k pz = −80, kdz = −1.2

In developing the control method, we assumed that the wing angle of attack is well
approximated by η0. In the simulations, however, the effect of the body’s translational
motion on the wing angle of attack has been incorporated:

η = ηs + αb + ηx (27)

where αb represents the angle of attack contribution due to the body’s motion:

αb = tan−1 w − rcpβ̇ sin β

V
sgn(β̇) where V =

√
(rcpβ̇ + u cos β)2 + w2

(28)
The BAV was tasked with tracking a circular path in vertical X–Z plane with Xd(t) =
0.3 sin(t) m and Zd(t) = −0.3 + 0.3 cos(t) m. The simulation results are presented
in Fig. 3a, b. After small deviations at the beginning of motion, the vehicle starts to
follow. (Recall that Z is positive downward.)

As evidence of the controller’s robustness, the simulations were also performed with
the inertial effect of the wings incorporated into the model. The physical properties of
the wings are

mw = 2 × 10−4 kg, Ixw = Iyw = Izw = 10−6 kg m2
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Fig. 4 Simulation results for a circular desired path, including wing inertial effects. a Time histories of X,
Z, and θ , b X–Z path

with the center of mass of each wing at its geometric center. The mass and the mass
moments of inertia given here were intentionally chosen larger than the values for a
hawkmoth, as a further indication of controller robustness. Applying the controller
developed for the simpler model, and using Eq. (10), it is evident in Fig. 4a, b that the
controller performs properly even with this multi-body perturbation in the dynamic
model.

6 Control of Three-Dimensional Flight

In this section, the controller developed earlier is extended to the problem of three-
dimensional (3-D) trajectory tracking. In this case, the main body moves in all six
degrees of freedom. Rotational motions are parametrized by the roll (φ), pitch (θ ),
and yaw (ψ) angles. For motion in the body longitudinal plane, the method discussed
in Sect. 5 is used. To control roll and yaw attitude and lateral translation, we introduce
asymmetry into the wing motion. Thus, we define angles βrw(t) and βlw(t) for the
stroke angles of the right and left wings, respectively. The two waveforms will have
the same frequency but, in general, different amplitudes. Also, the two wings may use
different feather angles ηrw and ηlw. Asymmetric feather angles are used to control
the yaw angle (ψ), and thus the inertial direction of forward flight. Since flapping
with different wing feather angles also produces a nonzero lateral force, the vehicle
deviates from the desired trajectory when undergoing a yaw motion. Lateral motion
is controlled by modulating the vehicle’s roll angle (φ) with differential stroke angle
amplitudes.

6.1 Equations of Three-Dimensional Motion

To simplify control design and analysis, wing inertial effects are neglected when
considering the 3-D dynamics. Recall that the multi-body effect of the wings had little
impact on the closed-loop performance in the simulations described in the previous
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section. Let X = (X, Y, Z)T represent the position of the body frame in the inertial
frame and let x = (x, y, z)T represent the same position vector in a rotating frame
pinned at the origin of the inertial frame. The transformation matrix R from the inertial
frame to the rotating frame is

R = Rx,φ Ry,θ Rz,ψ

where

Rx,φ =
⎛
⎝ 1 0 0

0 cos φ sin φ

0 − sin φ cos φ

⎞
⎠ , Ry,θ =

⎛
⎝ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞
⎠ , and

Rz,ψ =
⎛
⎝ cos ψ sin ψ 0

− sin ψ cos ψ 0
0 0 1

⎞
⎠

Letting V = (U, V, W )T and v = (u, v, w)T represent inertial velocity expressed in
the inertial and body frames, respectively, we have v = RV . Letting ω = (p, q, r)T

represent the body angular velocity, expressed in the body frame, the rates of change
of the roll angle φ, the pitch angle θ , and the yaw angle ψ are (Etkin 1972):

φ̇ = p + q sin φ tan θ + r cos φ tan θ

θ̇ = q cos φ − r sin φ

ψ̇ = (q sin φ + r cos φ) sec θ

The dynamic equations for the main body, with the simplified wing dynamic model
are

Fx = m(u̇ + qw − rv) + mg sin θ

Fy = m(v̇ + ru − pw) − mg cos θ sin φ

Fz = m(ẇ + pv − qu) − mg cos θ cos φ

Mx = Ix ṗ − Izx (ṙ + pq) − (Iy − Iz)qr

My = Iyq̇ − Izx (r
2 − p2) − (Iz − Ix )r p

Mz = Izṙ − Izx ( ṗ − qr) − (Ix − Iy)pq

Mβ,rw = I w
zb

β̈rw

Mβ,lw = I w
zb

β̈lw (29)

where Ix , Iy , and Iz are the mass moments of inertia about the xb-, yb-, and zb-axes,
respectively, and Izx is the product of inertia about z–x-axes. The terms Fx , Fy , Fz

are the aerodynamic force components and Mx , My , Mz are the aerodynamic moment
components in the body frame. Finally, Mβ,rw and Mβ,lw are the control forces applied
on the right and left wings, respectively.
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6.2 Control of Three-Dimensional Motion

Motion control in 3-D is carried out by decomposing the motion of the wings into
symmetric and asymmetric parts. The symmetric part of the wings’ motion is used
to control the longitudinal degrees of freedom, as discussed in Sect. 5, while the
asymmetric part is used to control roll, yaw, and lateral translation. Suppose the vehicle
is to follow a slowly varying yaw angle ψd(t). When the wings undergo symmetric
motion (as in the case of longitudinal motion), the net aerodynamic moment generated
about zb-axis by the wings is zero. The lateral aerodynamic forces generated along
yb-axis by the two wings are equal and opposite, and therefore cancel each other. If the
wings perform slightly asymmetric motions, however, the net aerodynamic moment
along zb-axis and the net lateral force will no longer be zero. The resulting aerodynamic
moment and force cause the vehicle to rotate about the zb-axis (yaw motion) and
translate along the yb-axis (lateral motion). The yaw motion of the vehicle can be
controlled by generating a proper aerodynamic moment about the zb-axis. By using
different feather angles ηrw and ηlw for the two wings, a proper aerodynamic moment
can be generated to effect the desired yaw motion. By defining the asymmetric part of
the wings’ feather angles as

ηψ = kpψ (ψd − ψ) + kdψ (ψ̇d − ψ̇)

where kpψ and kdψ are control parameters to be determined, the wings’ feather angles
can be considered as

ηrw = ηs + ηx + ηψ

ηlw = ηs + ηx − ηψ

The slight difference in the wings’ feather angles caused by ηψ generates an aerody-
namic moment about zb-axis to follow the desired yaw angle ψd. But it also causes
a roll motion which generates a lateral force in its turn, causing the vehicle to devi-
ate from its desired trajectory along yb-axis. The control of the lateral motion of the
vehicle can be done by changing the roll angle of the body. A nonzero roll angle of
the vehicle causes a nonzero component of the aerodynamic force along the yb-axis
(lateral force). By control of the roll angle, one can control this lateral force to generate
(or arrest) lateral motion of the vehicle. To this end, the desired roll angle φd at each
time is defined as

φd = kpy (yd − y) + kdy (ẏd − ẏ) (30)

where kpy and kdy are control parameters and yd is the y component of the desired
position vector in the rotating {x, y, z} frame. By considering Xd = (Xd, Yd, Zd)

T as
the desired position vector in the inertial frame, the desired “quasi-position” vector in
the rotating frame {x, y, z} is

xd = (xd, yd, zd)
T = RT Xd
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In this paper, the control of the roll angle is performed by using different amplitudes
for the wings’ stroke angles βrw and βlw. Different stroke amplitudes generate different
aerodynamic forces at the right and left sides of the body, which cause the rotation of
the body about the xb-axis (roll motion). Using the desired roll angle φd defined by
(30), the asymmetric part of the stroke angle is defined as

βφ = kφ(φd − φ)

where kφ is a constant parameter. Using βφ , the control moments applied to the wings
are determined as

Mβ,rw(t) = kpβ,r βrw + kdβ,r β̇rw + B0(t)
(
1 + kpz

(
Zd(t) − Z

)
+ kdz

(
Żd(t) − Ż

) − βφ

)
ω cos ωt

Mβ,lw(t) = kpβ,l βlw + kdβ,l β̇lw + B0(t)
(
1 + kpz

(
Zd(t) − Z

)
+ kdz

(
Żd(t) − Ż

) + βφ

)
ω cos ωt

Substituting these control moments into equations of motion (29), one can transform
these equations to the standard averaging form of (24) with the averaged approximation
of (25). Then one may seek control parameter values that enable the system to meet
stability and performance requirements.

6.3 Numerical Results for the Three-Dimensional Motion

Using the control method described for 3-D motion, the vehicle can turn in hover or
during forward motion. In this section, the results of following two such trajectories
are presented. The physical parameters are

Ix = 1.5 × 10−6 kg m2, Iz = 1.2 × 10−6 kg m2, Izx = −0.02Ix

kpψ = 1, kdψ = 1, kpy = 0.6, kdy = 0.4 kφ = 20

The rest of the physical parameters are the same as in Sect. 5.2. For the simulations, as
before, the body’s motion was incorporated when computing the wing angle of attack:

ηrw = ηs + αbrw + ηx + ηψ

ηlw = ηs + αblw + ηx − ηψ

where αbrw and αblw are the contributions to wing angle of attack due to the base body
translation and rotation.

In the first simulation, the desired trajectory is a concatenation of straight and har-
monic ascending and descending flight segments, interspersed with turning maneuvers
in hovering flight. The simulation results in Figs. 5 and 6 exhibit effective trajectory
following.

For the second simulation, the desired trajectory begins with straight forward motion
and continues into an ascending helical trajectory. The required yaw angle during the
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Fig. 5 Simulation results for trajectory 1. Time histories of a X, Y, and Z, b φ, θ , and ψ
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Fig. 6 3-D trajectory 1 of the BAV (full-blue: simulation, dashed-red: desired) (Color figure online)

helical motion is ψd(t) = tan−1 vd(t)
ud(t) , where ud and vd are the body frame components

of the desired translational velocity. Again, Figs. 7 and 8 illustrate effective trajectory
following.

7 Conclusion

An approach to three-dimensional flight control for a biomimetic air vehicle was
developed by treating the vehicle as a vibrational control system—a mechanical system
subject to high-frequency, high-amplitude forcing. First, the longitudinal equations of
motion were developed and then simplified by omitting the inertial effects of the
wings. Using this simplified model, a trajectory tracking controller was developed
using two of the wings’ three degrees of freedom: wing stroke (or flapping) motion and
wing feather (or pitch) motion. Modulating the amplitude of the stroke angle enables
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control of vertical motion, while the amplitude of the feather angle allows control
of horizontal (forward) motion. The control method was implemented in simulation
using equations that include multi-body effects. Results suggest that the proposed
controller is robust to model uncertainty. The controller developed for longitudinal
flight was then extended to enable three-dimensional trajectory tracking. In this case,
differential motion of the wings was incorporated to enable control of yaw, roll, and
lateral translation. In simulations, the controller enabled turning flight in hover and in
forward, climbing flight. As future work, one may consider more realistic kinematics
for the wing feathering (pitch) motion. Using fewer actuators, thereby decreasing the
vehicle weight, is also a significant goal for future work.
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